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NITSCHE-XFEM WITH STREAMLINE DIFFUSION
STABILIZATION FOR A TWO-PHASE MASS TRANSPORT

PROBLEM

CHRISTOPH LEHRENFELD AND ARNOLD REUSKEN∗

Abstract. We consider an unsteady convection diffusion equation which models the transport
of a dissolved species in two-phase incompressible flow problems. The so-called Henry interface
condition leads to a jump condition for the concentration at the interface between the two phases. In
[A. Hansbo, P. Hansbo, Comput. Methods Appl. Mech. Engrg. 191 (20002)], for the purely elliptic
stationary case, extended finite elements (XFEM) are combined with a Nitsche-type of method,
and optimal error bounds are derived. These results were extended to the unsteady case in [A.
Reusken, T. Nguyen, J. Fourier Anal. Appl. 15 (2009)]. In the latter paper convection terms are
also considered, but assumed to be small. In many two-phase flow applications, however, convection
is the dominant transport mechanism. Hence there is a need for a stable numerical method for the
case of a convection dominated transport equation. In this paper we address this topic and study
the streamline diffusion stabilization for the Nitsche-XFEM method. The method is presented and
results of numerical experiments are given that indicate that this kind of stabilization is satisfactory
for this problem class. Furthermore, a theoretical error analysis of the stabilized Nitsche-XFEM
method is presented that results in optimal a-priori discretization error bounds.

AMS subject classification. 65N12, 65N30

1. Introduction. Let Ω ⊂ Rd, d = 2, 3, be a convex polygonal domain that con-
tains two different immiscible incompressible phases. The (in general time dependent)
subdomains containing the two phases are denoted by Ω1, Ω2, with Ω̄ = Ω̄1∪ Ω̄2. The
interface Γ := Ω̄1 ∩ Ω̄2 is assumed to be sufficiently smooth. A model example is a
(rising) droplet in a flow field. The fluid dynamics in such a flow problem is usually
modeled by the incompressible Navier-Stokes equations combined with suitable con-
ditions at the interface which describe the effect of surface tension. For this model we
refer to the literature, e.g. [3, 8, 15, 21, 9]. By w we denote the velocity field resulting
from these Navier-Stokes equations. We assume that div w = 0 holds. Furthermore,
we assume that the transport of the interface is determined by this velocity field, in
the sense that VΓ = w · n holds, where VΓ is the normal velocity of the interface and
n denotes the unit normal at Γ pointing from Ω1 into Ω2. In this paper we restrict
ourselves to the case of a stationary interface, i.e., we assume w · n = 0. This case
is (much) easier to handle than the case of an non-stationary interface Γ = Γ(t). We
restrict to this simpler case because even for that the issue of stabilization of the
Nitsche-XFEM method for convection-dominated transport problems has not been
investigated, yet. The case of a non-stationary interface will be studied in a forth-
coming paper. We comment on this further in Remark 6 at the end of the paper. We
consider a model which describes the transport of a dissolved species in a two-phase
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flow problem. In strong formulation this model is as follows:

∂u

∂t
+ w · ∇u− div(ε∇u) = f in Ωi, i = 1, 2, t ∈ [0, T ], (1.1)

[ε∇u · n]Γ = 0, (1.2)

[βu]Γ = 0, (1.3)

u(·, 0) = u0 in Ωi, i = 1, 2, (1.4)

u(·, t) = 0 on ∂Ω, t ∈ [0, T ]. (1.5)

For a sufficiently smooth function v, [v] = [v]Γ denotes the jump of v across Γ, i.e.
[v] = (v1)|Γ − (v2)|Γ, where vi = v|Ωi

is the restriction of v to Ωi. In (1.1) we have
standard parabolic convection-diffusion equations in the two subdomains Ω1 and Ω2.
In most applications one has a homogeneous problem, i.e. f ≡ 0. The diffusion
coefficient ε = ε(x) is assumed to be piecewise constant:

ε = εi > 0 in Ωi.

In general we have ε1 6= ε2. The interface condition in (1.2) results from the conser-
vation of mass principle. The condition in (1.3) is the so-called Henry condition, cf.
[14, 20, 19, 4, 3]. In this condition the coefficient β = β(x) is strictly positive and
piecewise constant:

β = βi > 0 in Ωi.

In general we have β1 6= β2, since species concentration usually has a jump disconti-
nuity at the interface due to different solubilities within the respective fluid phases.
Hence, the solution u is discontinuous across the interface.

In recent years it has been shown that for such a transport problem with an
(evolving) interface the Nitsche-XFEM method is very well suited [10, 17]. In [11, 12,
13, 1, 5] the application of the Nitsche-XFEM to other classes of problems is studied.
In [10] this method is analyzed for a stationary heat diffusion problem (no convection)
with a conductivity that is discontinuous across the interface (ε1 6= ε2) but with a
solution that is continuous across the interface (β1 = β2). In [17] the method is studied
for the parabolic problem described above, with β1 6= β2 (discontinuous solution), and
with a convection term in (1.1). It is assumed, however, that the transport problem
is diffusion dominated. In none of these papers, or in other literature that we know
of, the Nitsche-XFEM method is considered for a two-phase transport problem as in
(1.1)-(1.5) that is convection-dominated. In this paper we treat this topic. We combine
the Nitsche-XFEM method with one of the most popular FE stabilization techniques
for convection-dominated problems, namely the streamline diffusion finite element
method (SDFEM), cf. [18]. The resulting method is presented in section 2. In section 3
the method is applied to a convection-dominated test problem and its performance is
investigated. An error analysis of the Nitsche-XFEM with SD stabilization is given
in section 4.

2. The Nitsche-XFEM method with SD stabilization. Since we restrict to
the case of a stationary interface, the discontinuity in the solution is located at a fixed
position, independent of t, which then allows a rather standard weak formulation and
a corresponding discretization based on the method of lines approach. In this section
we present this weak formulation and the stabilized Nitsche-XFEM discretization. In
case of an evolving interface a space-time weak formulation and corresponding space-
time XFEM discretization is more natural, cf. Remark 6.
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We describe the Nitsche-XFEM method as treated in detail in [17]. We first introduce
a suitable weak formulation of the transport problem. For this we need the space

H1
0 (Ω1 ∪ Ω2) := { v ∈ L2(Ω) | v|Ωi

∈ H1(Ωi), i = 1, 2, v|∂Ω = 0 }.

For v ∈ H1
0 (Ω1 ∪ Ω2) we write vi := v|Ωi

, i = 1, 2. Furthermore

H := L2(Ω), V := { v ∈ H1
0 (Ω1 ∪ Ω2) | [βv]Γ = 0 }. (2.1)

Note:

v ∈ V ⇔ βv ∈ H1
0 (Ω). (2.2)

On H we use the scalar product

(u, v)0 := (βu, v)L2 =

∫
Ω

βuv dx,

which clearly is equivalent to the standard scalar product on L2(Ω). The corre-
sponding norm is denoted by ‖ · ‖0. For u, v ∈ H1(Ωi) we define (u, v)1,Ωi

:=
βi
∫

Ωi
∇ui · ∇vi dx and furthermore

(u, v)1,Ω1∪Ω2
:= (u, v)1,Ω1

+ (u, v)1,Ω2
, u, v ∈ V.

The corresponding norm is denoted by | · |1,Ω1∪Ω2
. This norm is equivalent to(

‖ · ‖20 + | · |21,Ω1∪Ω2

) 1
2 =: ‖ · ‖1,Ω1∪Ω2

.

We emphasize that the norms ‖ · ‖0 and ‖ · ‖1,Ω1∪Ω2
depend on β. We define the

bilinear form

a(u, v) := (εu, v)1,Ω1∪Ω2 + (w · ∇u, v)0, u, v ∈ V. (2.3)

Consider the following weak formulation of the mass transport problem (1.1)-(1.5):
Determine u ∈W 1(0, T ;V ) := { v ∈ L2(0, T ;V ) | v′ ∈ L2(0, T ;V ′) } such that u(0) =
u0 and for almost all t ∈ (0, T ):

(
du

dt
, v)0 + a(u, v) = (f, v)0 for all v ∈ V. (2.4)

In [17] it is proved that if the velocity field w satisfies div w = 0 in Ωi, i = 1, 2,
w · n = 0 at Γ, and ‖w‖L∞(Ω) ≤ c < ∞, then for f ∈ H, and u0 sufficiently smooth
the weak formulation (2.4) has a unique solution. For precise definitions of the gen-
eralized time derivatives used in the definition of W 1(0, T ;V ) and in (2.4) we refer to
[17].

We describe the Nitsche-XFEM method for spatial discretization of the weak formu-
lation in (2.4). Let {Th}h>0 be a family of shape regular triangulations of Ω. A trian-
gulation Th consists of simplices T , with hT := diam(T ) and h := max{hT | T ∈ Th}.
For any simplex T ∈ Th let Ti := T ∩ Ωi be the part of T in Ωi. We now introduce
the finite element space

V Γ
h := { v ∈ H1

0 (Ω1 ∪ Ω2) | v|Ti
is linear for all T ∈ Th, i = 1, 2. }. (2.5)
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Note that V Γ
h ⊂ H1

0 (Ω1 ∪ Ω2), but V Γ
h 6⊂ V , since the Henry interface condition

[βvh] = 0 does not necessarily hold for vh ∈ V Γ
h .

Remark 1. In the literature a finite element discretization based on the space
V Γ
h is often called an extended finite element method (XFEM), cf. [2, 6]. Furthermore,

in the (engineering) literature this space is usually characterized in a different way,
which we briefly explain. Let Vh ⊂ H1

0 (Ω) be the standard finite element space of
continuous piecewise linears, corresponding to the triangulation Th. Define the index
set J = {1, . . . , n}, where n = dimVh, and let (φi)i∈J be the nodal basis in Vh.
Let JΓ := { j ∈ J | |Γ ∩ supp(φj)| > 0 } be the index set of those basis functions
the support of which is intersected by Γ. The Heaviside function HΓ has the values
HΓ(x) = 0 for x ∈ Ω1, HΓ(x) = 1 for x ∈ Ω2. Using this, for j ∈ JΓ we introduce a
so-called enrichment function Φj(x) := HΓ(x)−HΓ(xj), where xj is the vertex with
index j. We introduce new basis functions φΓ

j := φjΦj , j ∈ JΓ, and define the space

Vh ⊕ span{φΓ
j | j ∈ JΓ }. (2.6)

This space is the same as V Γ
h in (2.5) and the characterization in (2.6) accounts for

the name “extended finite element method”. The new basis functions φΓ
j have the

property φΓ
j (xi) = 0 for all i ∈ J . An L2-stability property of the basis (φj)j∈J ∪

(φΓ
j )j∈JΓ of V Γ

h is given in [16].

Define

(κi)|T =
|Ti|
|T |

, T ∈ Th, i = 1, 2,

hence, κ1+κ2 = 1. For v sufficiently smooth such that (vi)|Γ, i = 1, 2, are well-defined,
we define the weighted average

{v} := κ1(v1)|Γ + κ2(v2)|Γ.

For the average and jump operators the following identity holds for all f, g such that
these operators are well-defined:

[fg] = {f}[g] + [f ]{g} − (κ1 − κ2)[f ][g]. (2.7)

Define the scalar products

(f, g)Γ :=

∫
Γ

fg ds, (f, g) 1
2 ,h,Γ

:=
∑
T∈T Γ

h

h−1
T

∫
ΓT

fg ds,

where T Γ
h is the collection of T ∈ Th with ΓT = T ∩ Γ 6= ∅. With ε̄ := 1

2 (ε1 + ε2) we
introduce the bilinear form

ah(u, v) := a(u, v)− ([βu], {ε∇v ·n})Γ− ({ε∇u ·n}, [βv])Γ +λε̄([βu], [βv]) 1
2 ,h,Γ

, (2.8)

with λ > 0 a parameter that will be specified below. Note that the scaling of the
stabilization term ([βu], [βv]) 1

2 ,h,Γ
in (2.8) differs from the standard one used in the

literature for a diffusion dominated problem, which is of the form λ([βu], [βv]) 1
2 ,h,Γ

with λ a constant that is “sufficiently large”. The theoretical analysis in section 4
motivates the following choice of λ in (2.8):

λ =

{
c‖w‖∞h/ε̄ if ‖w‖∞h ≥ 2ε̄

c if ‖w‖∞h < 2ε̄,
(2.9)
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with a constant c that is sufficiently large, and ‖w‖∞ := ‖w‖L∞(Ω). Note that in
the convection-dominated case, i.e. ‖w‖∞h ≥ 2ε̄, this results in a scaling of the
stabilization term ([βu], [βv]) 1

2 ,h,Γ
that differs from the scaling with c used in the

diffusion dominated case.

Remark 2. In practice the following localized variant of the parameter choice
rule in (2.9) is used. For T ∈ Th we define the element Peclet number PTh :=
1
2‖w‖∞,ThT /ε̄. A generalization of the analysis in section 4 leads to the following
choice of λ = λT :

λT =

{
c‖w‖∞,ThT /ε̄ if PTh ≥ 1

c if PTh < 1,
(2.10)

The stabilization term λε̄([βu], [βv]) 1
2 ,h,Γ

in (2.8) is generalized to

ε̄
∑
T∈T Γ

h

λTh
−1
T

∫
ΓT

[βu][βv] ds.

In practice this variant typically performs better than the one with a global stabiliza-
tion parameter λ.

Using the bilinear form ah(·, ·) we define a method of lines discretization of (2.4).
Let û0 ∈ V Γ

h be an approximation of u0. For t ∈ [0, T ] let uh(t) ∈ V Γ
h be such that

uh(0) = û0 and

(
duh
dt

, vh)0 + ah(uh, vh) = (f, vh)0 for all vh ∈ V Γ
h . (2.11)

Opposite to the weak formulation in (2.4), in this discretization method the Henry
interface condition [βuh] = 0 is not treated as an “essential” interface condition in
the finite element space V Γ

h . This interface condition is satisfied only approximately
by using a modified bilinear form ah(·, ·), which is a technique due to Nitsche. For
this semi-discretization optimal order error bounds are derived in [17]. In the analysis
in that paper it is assumed that the transport problem is diffusion-dominated. In
the evaluation of the bilinear form ah(·, ·) one has to determine integrals over Γ. In
practice the weak formulation will be used with Γ replaced by an approximation Γh.

We now add the streamline diffusion stabilization to this semi-discretization. Recall
that in a one-phase problem (set β = 1) in the SD approach one adds a residual term
of the form ∑

T∈Th

γT

∫
T

(
∂uh
∂t

+ w · ∇uh − div(ε∇uh)− f
)

(w · ∇vh) dx (2.12)

to the variational formulation. The choice of the stabilization parameter value γT is
discussed below. If, as in our case, one considers linear finite elements then the term
div(ε∇uh) vanishes.

For the stabilization of the Nitsche-XFEM method we make obvious modifications
related to the fact that in the XFEM space, close to the interface we have contributions
on elements T ∩Ωi 6= T . For the stabilization we introduce a locally weighted discrete
variant of (·, ·)0:

(u, v)0,h :=

2∑
i=1

∑
T∈Th

βiγT

∫
T∩Ωi

uv dx =
∑
T∈Th

γT (u, v)0,T (2.13)
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For the choice of γT we use a strategy as in the standard finite element method, cf.
[18, 7]. We take γT as follows:

γT =

{ 2hT

‖w‖∞,T
if PTh > 1

h2
T /ε̄ if PTh ≤ 1.

(2.14)

Very similar results (both in the theoretical analysis and in the experiments) are
obtained if for the case PTh ≤ 1 one sets γT = 0. Note that the stabilization parameter
γT does not depend on the position of the interface within the element. We introduce
the following Nitsche-XFEM semi-discretization method with SD stabilization: For
t ∈ [0, T ] let uh(t) ∈ V Γ

h be such that uh(0) = û0 and

(
duh
dt

, vh)0 + (
duh
dt

,w · ∇vh)0,h + ah(uh, vh) + (w · ∇uh,w · ∇vh)0,h

= (f, vh)0 + (f,w · ∇vh)0,h for all vh ∈ V Γ
h .

(2.15)

Clearly, this semi-discretization can be combined with standard methods for time
discretization to obtain a fully discrete problem. For example, the θ-scheme takes the
following form, where for notational simplicity we assume that f does not depend on
t. For n = 0, 1, . . . , N − 1, with N∆t = T , set u0

h := û0 and determine un+1
h ∈ V Γ

h

such that for all vh ∈ V Γ
h :(

un+1
h − unh

∆t
, vh

)
0

+

(
un+1
h − unh

∆t
,w · ∇vh

)
0,h

+ ah(θun+1
h + (1− θ)unh, vh) + (w · (θ∇un+1

h + (1− θ)∇unh),w · ∇vh)0,h

= (f, vh)0 + (f,w · ∇vh)0,h.

(2.16)

In the numerical experiments in section 3 we used this method with θ = 1.
Remark 3. Above we considered the case of a stationary interface and an XFEM

space based on piecewise linears. Both the Nitsche-XFEM method and the SD sta-
bilization method presented above have a straightforward extension to higher order
piecewise polynomials. Note that for higher order finite elements in the SD stabiliza-
tion the term (div(ε∇uh),w · ∇vh)0,h has to be taken into account, cf. (2.12).

3. Numerical experiment. In this section we present results of a numerical
experiment to illustrate properties of the stabilized Nitsche-XFEM method introduced
above. The main goal is to compare the Nitsche-XFEM method with the stabilized
Nitsche-XFEM method. Furthermore the effect of the choice of the stabilization
parameter λ in the Nitsche term is investigated.

3.1. Problem description. We consider a quasi two-dimensional time depen-
dent problem with a stationary interface. The domain Ω := [0, 2]×[0, 2]×[0, 1] ⊂ R3 is
separated into a cylindrical domain Ω1 :=

{
(x, y, z) ∈ R3 : (x− 1)2 + (y − 1)2 < R2

}
,

with R = 0.25, and Ω2 := Ω \ Ω1 by the stationary interface Γ := ∂Ω1 \ ∂Ω. The
piecewise constant coefficients ε, β are chosen as ε = (ε1, ε2) = (10−4, 2 · 10−4),
β = (β1, β2) = (3, 1) and a stationary velocity field is given by

w =

{ (
1 +

R2(d2
y−d

2
x)

r4 ,
−2R2(dxdy)

r4 , 0
)

if (x, y, z) ∈ Ω2

(0, 0, 0) if (x, y, z) ∈ Ω1,
(3.1)

where dx := x− 1, dy := y − 1 and r := (d2
x + d2

y)
1
2 . A sketch of the domains and of

w in term of field-lines is given in Fig. 3.1.
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Ω1

Γ
∂ΩD

Ω2

Fig. 3.1. Mesh and sketch of interface position and flow field

The assumptions on the velocity field made in section 1 are satisfied: div w = 0
in both domains and w · n = 0 on Γ. We impose a Dirichlet boundary conditions
on ∂ΩD := {(x, y, z) ∈ Ω : x = 0}, s.t. u|∂ΩD

= 0.05 and a homogeneous Neuman
boundary condition ε∇u ·n = 0 on ∂Ω\∂ΩD. As initial conditions we take u|t=0,Ω1 =
0, u|t=0,Ω2 = 0.05. Note that these do not fulfill the interface condition (1.3).

This problem is strongly convection dominated since the ratio between the mag-
nitude of the velocity field in Ω2 and the diffusion is of the order 104. The physical

Peclet number PD := ‖w‖2R
ε̄ , which describes the relation between convective and

diffuse mass transport, is around 3000. Furthermore due to the inconsistent (w.r.t.
condition (1.3)) initial conditions a boundary layer at the interface will form directly
after t = 0. With the help of standard perturbation theory (see e.g. [22]) one can
show that this parabolic boundary layer has a thickness of size O(

√
εt), independent

of the velocity field. For t → ∞ the solution converges to the stationary piecewise
constant function u = 0.05β−1. In Fig. 3.2 the solution along two lines is displayed,
where one observes the predicted boundary layer behavior. In the experiment below
we take t = 1.

Summarizing, we consider a convection dominated, non-stationary transport prob-
lem with a stationary interface and with inconsistent initial values, resulting in parabolic
boundary layers for small t.

3.2. Discretization. We use a shape regular quasi-uniform triangulation of Ω
consisting of approx. 30000 tetrahedral elements such that the mesh is not aligned
to the interface (cf. Fig. 3.1). With an average characteristic mesh size h = 0.1 the
mesh related Peclet number PTh reaches values up to 1000. The mesh resolution is
much too low to resolve the boundary layer (for t = 1).
The exact interface Γ is given by the zero level of the level set function ϕ(x, y, z) =
(x−1)2+(y−1)2−0.25. In the discretization we use a (sufficiently accurate) polygonal
approximation Γh of this interface. This introduces an additional error which is not
analyzed here but is considered to be sufficiently small and to have negligible effect
on the accuracy and stability properties of the (stabilized) Nitsche-XFEM method.
We are primarily interested in the accuracy of the spatial discretization. Hence, in
the implicit Euler method (2.16) we choose a small time step size ∆t = 10−4, such
that the total discretization error is dominated by the spatial discretization error.
We consider the following two variants of the Nitsche-XFEM method. Firstly, we use
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stationary case

Fig. 3.2. Concentration profile through line γx := {(x, y, z) ∈ Ω : y = 1, z = 0.5} for several
values of t. One can observe the predicted O(

√
εt) sized boundary layer.

the (standard) scaling λε̄ of the Nitsche stabilization term, where we choose λ = 2,
which is sufficiently large in the sense of the analysis carried out in section 4, i.e. it
ensures coercivity of the bilinear form ah in (2.8). This scaling variant is denoted as
the “diffusive” scaling as it is independent of the convection. In the second variant
we take λ = λT = c‖w‖∞,ThT /ε̄, according to (2.10) for PTh > 1, with c := 2.
Note that in this case the factor λε̄ used as scaling for the Nitsche stabilization
term does not depend on the diffusion coefficients εi. Hence we call this variant the
“convective” scaling. In the experiments considered below the different scalings vary
by approximately a factor 1000.

For the streamline diffusion stabilized method, denoted by SD-Nitsche-XFEM, we
consider the same two variants. We use a slightly different choice for the stabilization
parameter γT as in (2.14):

γT =

{
(1− 1

PT
h

) hT

2‖w‖∞,T
if PTh > 1

0 if PTh ≤ 1.
(3.2)

This choice can also be found in [7].
We computed a reference solution on a very fine 2D mesh which is aligned to the
interface and resolves the boundary layer for t > 10−2. This reference solution is used
to provide the profiles in Fig. 3.2 and the reference profiles in Fig. 3.4 below.

3.3. Numerical results. In Fig. 3.3 the numerical solution in the plane z = 0.5
at t = 1 (where the boundary layer has a width of approximately 0.01) is shown
for four different methods. As a measure for the quality of the discretization of the
interface condition [βu] = 0 by the Nitsche method we use the L2 norm of the jump
[βuh] on the approximate interface Γh. In Fig. 3.3 we also give this error in the jump
condition.

We observe several effects. Comparing the different scalings in the Nitsche method,
i.e. the left and the right columns in Fig. 3.3, it is clear that the convective scaling
performs much better. This scaling results in a stabilization parameter λε̄ that is
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‖[βuh]‖L2(Γh) = 4.5 · 10−2 ‖[βuh]‖L2(Γh) = 3.3 · 10−3

‖[βuh]‖L2(Γh) = 4.5 · 10−2 ‖[βuh]‖L2(Γh) = 2.3 · 10−3

Fig. 3.3. Numerical solution in the plane z = 0.5 at t = 1 for Nitsche-XFEM (top) and SD-
Nitsche-XFEM (bottom), with diffusion scaling (left) and convection scaling (right) of the Nitsche
stabilization.

about a factor 1000 larger than with the diffusive scaling. Furthermore, from the
results in the first row we conclude that the more weight is put on the interface
condition, the larger the non-physical high oscillatory parts in the discrete solution
are. This effect is as we expected, since for a more relaxed interface condition, the
boundary layer and the corresponding instabilities in a standard Galerkin finite ele-
ment method are triggered less. Finally, comparing the first and the second row, we
see that the streamline diffusion stabilization suppresses the oscillations whereas the
quality of the approximation of the interface condition is not negatively affected by
this stabilization. We conclude that the SD-Nitsche-XFEM method with a convective
scaling outperforms the three other methods and yields satisfactory results.
In Fig. 3.4 the numerical solutions of the same four methods as in Fig. 3.3 together
with the reference solution, on the line z = 0.5, y = 1.0 in Ω2 at time t = 1 are
shown. One can observe that the boundary layer which is represented well by the
reference solution is not resolved accurately by any of the four methods. Especially
for x > 1.25, i.e. downwind of Ω1 none of the methods come close to the reference
solution. The solution uh of the SD-Nitsche-XFEM methods is much smoother than
the other three and upwind of Ω1, where the solution is almost constant outside the
boundary layer, it is very accurate. In Fig. 3.5 the results of the SD-Nitsche-XFEM
method with convective scaling on three successive (uniformly) refined meshes are
shown. The resolution of the boundary layer at t = 1 improves if the grid is refined,
but on level 3 the discrete solution is still not in good agreement with the reference
solution. This is caused by the fact that large errors from smaller times, where the
boundary layer is stronger and not well-resolved by the level 3 grid, are propagated
in time.
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Fig. 3.4. Numerical solutions on the line z = 0.5, y = 1.0 at time t = 1 obtained with Nitsche-
XFEM, SD-Nitsche-XFEM, and the reference solution.
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Fig. 3.5. Numerical solutions on the line z = 0.5, y = 1.0 at time t = 1 obtained with SD-
Nitsche-XFEM on three consecutively refined meshes and the reference solution.

Remark 4. In the example considered above the instabilities were caused by
non-matching (w.r.t. the Henry condition) initial condition and not by boundary
conditions. It is well-known that the instabilities of the standard Galerkin method are
very strong in cases with exponential boundary layers caused by Dirichlet boundary
conditions. If we change the Neumann boundary condition at the outflow face x = 2
to a homogeneous Dirichlet boundary condition an exponential boundary layer occurs
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at that face. This exponential layer of width O(ε) is essentially independent of time.
Therefore we consider the stationary case, i.e. ∂u

∂t = 0. We take diffusion coefficients
ε = (ε1, ε2) = (10−3, 2 ·10−3) and apply the Nitsche-XFEM method with the diffusive
scaling and the SD-Nitsche-XFEM method with the convective scaling. The numerical
solutions obtained with these two methods are illustrated in the plane z = 0.5 in
Fig. 3.6. As expected, although the mesh Peclet number is only of order 100, for
the method without stabilization the oscillations are much larger than in the case
considered above, where the mesh Peclet number is of order 1000. With the SD-
Nitsche-XFEM method the oscillations are almost completely eliminated and the error
in the Henry condition is significantly smaller. Note that the approximation of the
interface condition in this example is much better for the SD-Nitsche-XFEM method
than in the previous example as the solution is almost piecewise constant at the
interface.

‖[βuh]‖L2(Γh) = 6.0 · 10−3 ‖[βuh]‖L2(Γh) = 3.1 · 10−9

Fig. 3.6. Numerical solutions of the modified example (Remark 4) with Dirichlet boundary
conditions at the outflow boundary obtained with NitscheXFEM (left) and SDNitscheXFEM (right)

4. Error analysis. In this section we present an error analysis of the Nitsche-
XFEM with SD stabilization. We investigate the bilinear form

ah(u, v) := (εu, v)1,Ω1∪Ω2 + (w · ∇u, v)0 + ξ(u, v)0

− ([βu], {ε∇v · n})Γ − ({ε∇u · n}, [βv])Γ + λε̄([βu], [βv]) 1
2 ,h,Γ

+ (ξu+ w · ∇u,w · ∇u)0,h

on Wreg + V Γ
h , with V Γ

h the XFEM space, cf. (2.5), and Wreg := {u ∈ H1
0 (Ω1 ∪

Ω2) | u|Ωi
∈ H2(Ωi), i = 1, 2 }. Compared to the transport problem considered above

we introduced an additional zero order term ξ(u, v)0, with a given constant ξ ≥ 0.
This is standard in the analysis of convection-dominated problems (cf. [18]), since
only if this zero order term is present (ξ > 0) one can derive uniform error bounds in
the L2-norm. We derive an error bound for the Galerkin projection of u ∈ Wreg on
the XFEM space V Γ

h , cf. Theorem 4.7 below. We start with the main assumptions
used and introduce additional notation. To obtain estimates that are uniform with
respect to the parameter ξ, we have to generalize the choice of of the stabilization
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parameter γT . If ξ = 0 we take γT as in (2.14). For the case ξ > 0 we take

γT :=

{
min

{
1
ξ ,

2hT

‖w‖∞,T

}
if PTh > 1

min
{

1
ξ ,

h2
T

ε̄

}
if PTh ≤ 1.

(4.1)

This parameter choice is essentially the same as in [18]. The following estimates can
be derived:

γT ξ ≤ 1, γT ‖w‖∞,T ≤ 2hT , γ−1
T h2

T ≤ ξh2
T +

1

2
‖w‖∞,ThT + ε̄. (4.2)

The family of triangulations {Th}h>0 is assumed to be shape regular, but not neces-
sarily quasi-uniform. The triangulation Th is not assumed to be fitted to the interface
Γ, but the resolution close to the interface should be sufficiently high such that the
interface can be resolved by the triangulation, in the sense that if Γ ∩ T =: ΓT 6= ∅
then ΓT can be represented as the graph of a function on a planar cross-section of
T (cf. [10] for precise conditions). In the analysis of the Nitsche-XFEM method an
interpolation operator IΓ

h : Wreg → V Γ
h plays an important role. We recall the def-

inition of this operator. For i = 1, 2, let Ri be the restriction operator to Ωi, i.e.,
(Riv)(x) = v(x) for x ∈ Ωi and (Riv)(x) = 0 otherwise. Let Ei : H2(Ωi)→ H2(Ω) be
a bounded extension operator with Eiv = 0 on ∂Ω, and Ih : H2(Ω)∩H1

0 (Ω)→ Vh the
standard nodal interpolation operator corresponding to the space Vh of continuous
linear finite elements. The XFEM interpolation operator is given by

IΓ
h = R1IhE1R1 +R2IhE2R2.

Define Ti := T ∩ Ωi. Note that Ti can be very shape irregular. The constants that
occur in the estimates in this section are independent of the shape regularity of Ti.
For the interpolation operator IΓ

h optimal (local) interpolation error bounds can easily
be derived (cf. [10, 16]). The following holds:

‖u− IΓ
hu‖Hm(Ti) ≤ ‖EiRiu− IhEiRiu‖Hm(T )

≤ ch2−m
T ‖EiRiu‖H2(T ), m = 0, 1, 2, for u ∈Wreg.

(4.3)

In the analysis below we use the assumptions div w = 0 on Ω, ‖w‖L∞(Ω) < ∞ and
w · n = 0 on Γ.

We are particularly interested in the convection-dominated case, and therefore
allow ε̄ = 1

2 (ε1 + ε2) ↓ 0, but we assume the ratio between ε1 and ε2 to be bounded,
i.e. for i = 1, 2, we have ε̄/εi ≤ c with a uniform (for ε̄ ↓ 0) constant c.

We assume that the constants βi used in the Henry condition are of order one.
We will need several norms related to the Nitsche stabilization and the streamline
diffusion stabilization. The inner products (·, ·)0 and (·, ·)1,Ω1∪Ω2 (with corresponding
norms ‖·‖0 and |·|1,Ω1∪Ω2

) have been defined above in section 2. These inner products
depend on a weighting with β, but this causes no problem since β is assumed to be of
order one. For the streamline diffusion stabilization we introduced the inner product
(u, v)0,h =

∑
T∈Th γT (u, v)0,T with corresponding norm denoted by ‖ · ‖0,h. In the

analysis of the Nitsche method the following norms are used:

‖v‖21
2 ,h,Γ

= (v, v) 1
2 ,h,Γ

=
∑
T∈T Γ

h

h−1
T ‖v‖

2
L2(ΓT ), ‖v‖

2
− 1

2 ,h,Γ
:=

∑
T∈T Γ

h

hT ‖v‖2L2(ΓT ).

Recall that T Γ
h is the collection of T ∈ Th with ΓT = T ∩ Γ 6= ∅. We first derive

interpolation error bounds in different norms, which turn out to be useful.
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The constants used in the results derived below are all independent of λ, ξ, ε̄, h, ‖w‖,
and of how the interface Γ intersects the triangulation Th (i.e. of the shape regularity
of Ti).

Lemma 4.1. For u ∈Wreg the following interpolation error bounds hold:

‖u− IΓ
hu‖0 ≤ ch2‖u‖2,Ω1∪Ω2

(4.4)

|u− IΓ
hu|1,Ω1∪Ω2

≤ ch‖u‖2,Ω1∪Ω2
(4.5)√

ξ‖u− IΓ
hu‖0,h ≤ ch2‖u‖2,Ω1∪Ω2

(4.6)

‖w · ∇(u− IΓ
hu)‖0,h ≤ c‖w‖

1
2∞h

1 1
2 ‖u‖2,Ω1∪Ω2

(4.7)

2∑
i=1

‖Ri(u− IΓ
hu)‖ 1

2 ,h,Γ
≤ ch‖u‖2,Ω1∪Ω2 (4.8)

2∑
i=1

‖n · ∇Ri(u− IΓ
hu)‖− 1

2 ,h,Γ
≤ ch‖u‖2,Ω1∪Ω2 . (4.9)

Proof. The results in (4.4), (4.5) are known in the literature, e.g. [10, 16]. For
completeness we show how the result in (4.5) can be derived from (4.3):

|u− IΓ
hu|21,Ω1∪Ω2

=

2∑
i=1

∑
T∈Th

|u− IΓ
hu|21,Ti

≤ c
2∑
i=1

∑
T∈Th

h2
T ‖EiRiu‖22,T

≤ ch2
2∑
i=1

‖EiRiu‖22,Ω ≤ ch2
2∑
i=1

‖Riu‖22,Ωi
= ch2‖u‖22,Ω1∪Ω2

.

The result in (4.4) can be proved using similar arguments. Using the choice of the
stabilization parameter γT we obtain

ξ‖u− IΓ
hu‖20,h =

∑
T∈Th

ξγT ‖u− IΓ
hu‖20,T ≤ ‖u− IΓ

hu‖20 ≤ ch4‖u‖22,Ω1∪Ω2
,

and thus the result in (4.6) holds. The result in (4.7) follows from

‖w · ∇(u− IΓ
hu)‖20,h =

∑
T∈Th

γT ‖w · ∇(u− IΓ
hu)‖20,T ≤

2∑
i=1

∑
T∈Th

γT ‖w‖2∞,T |u− IΓ
hu|21,Ti

≤ c‖w‖L∞(Ω)h|u− IΓ
hu|21,Ω1∪Ω2

≤ c‖w‖L∞(Ω)h
3‖u‖22,Ω1∪Ω2

.

The results in (4.8), (4.9), are derived in [10]. The essential ingredient is the following
result:

‖w‖2L2(ΓT ) ≤ c
(
h−1
T ‖w‖

2
L2(T ) + hT |w|21,T

)
for all w ∈ H1(T ),

which holds for all T ∈ T Γ
h and with a constant c that is independent of the shape
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regularity of Ti, cf. [10, 9]. For completeness we give a proof of (4.8):

2∑
i=1

‖Ri(u− IΓ
hu)‖21

2 ,h,Γ
=

2∑
i=1

∑
T∈T Γ

h

h−1
T ‖EiRiu− IhEiRiu‖

2
L2(ΓT )

≤ c
2∑
i=1

∑
T∈T Γ

h

(
h−2
T ‖EiRiu− IhEiRiu‖

2
L2(T ) + |EiRiu− IhEiRiu|21,T

)

≤ ch2
2∑
i=1

∑
T∈T Γ

h

‖EiRiu‖22,T ≤ ch2
2∑
i=1

‖EiRiu‖22,Ω

≤ ch2
2∑
i=1

‖Riu‖22,Ωi
= ch2‖u‖22,Ω1∪Ω2

.

The result in (4.9) can be proved with similar arguments.

As we will see below, we can derive an ellipticity and continuity result for the bi-
linear form ah(·, ·) with respect to a suitable norm. As expected this norm involves
terms that come from the Nitsche stabilization and from the streamline diffusion
stabilization. To simplify the presentation we split the bilinear form in two parts
(corresponding to Nitsche and streamline diffusion stabilization) and first consider
these two parts separately. Afterwards the results for these two parts can easily be
glued together. We use the splitting

ah(u, v) = aNh (u, v) + aSDh (u, v)

aNh (u, v) =
1

2
(εu, v)1,Ω1∪Ω2

− ([βu], {ε∇v · n})Γ − ({ε∇u · n}, [βv])Γ

+ λε̄([βu], [βv]) 1
2 ,h,Γ

aSDh (u, v) =
1

2
(εu, v)1,Ω1∪Ω2

+ (w · ∇u, v)0 + ξ(u, v)0 + (ξu+ w · ∇u,w · ∇u)0,h.

Corresponding norms are defined as

‖v‖2N =
1

2
ε̄|v|21,Ω1∪Ω2

+ λε̄‖[βv]‖21
2 ,h,Γ

‖v‖2SD =
1

2
ε̄|v|21,Ω1∪Ω2

+ ξ‖v‖20 + ‖w · ∇v‖20,h.

Lemma 4.2. There exists a constant c > 0 such that

aSDh (vh, vh) ≥ c‖vh‖2SD for all vh ∈ V Γ
h .

Proof. We apply partial integration to the term (w · ∇vh, vh)0. Since vh may be
discontinuous across Γ we have to split the integral. Using w · n = 0, div w = 0 and
vh(x) = 0 for x ∈ ∂Ω we obtain

(w · ∇vh, vh)0 =

2∑
i=1

∫
Ωi

βiw · ∇vh vh dx =

2∑
i=1

∫
∂Ωi∩∂Ω

βiv
2
h w · nΩ ds

+

∫
Γ

[βv2
h]w · n ds−

2∑
i=1

∫
Ωi

βiw · ∇vh vh + βi(div w)v2
h dx

= −(w · ∇vh, vh)0.

(4.10)
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Hence, (w · ∇vh, vh)0 = 0 holds. Furthermore, using γT ξ ≤ 1 we get

ξ(vh,w · ∇vh)0,h = ξ
∑
T∈Th

γT (vh,w · ∇vh)0,T

≤ 1

2

∑
T∈Th

ξ2γT ‖vh‖20,T + γT ‖w · ∇vh‖20,T

≤ 1

2
ξ‖vh‖20 +

1

2
‖w · ∇vh‖20,h.

Hence,

aSDh (vh, vh) ≥ 1

2
min{ε1, ε2}‖vh‖21,Ω1∪Ω2

+ ξ‖vh‖20 + ‖w · ∇vh‖20,h + ξ(vh,w · ∇vh)0,h

≥ cε̄‖vh‖21,Ω1∪Ω2
+

1

2
ξ‖vh‖20 +

1

2
‖w · ∇vh‖20,h,

with a constant c > 0 which depends only on the ratio between ε1 and ε2, which is
assumed to be bounded.

Lemma 4.3. There exists a constant c such that

aSDh (u−IΓ
hu, vh) ≤ c

(√
ε̄+
√
‖w‖∞h+

√
ξ h
)
h‖u‖2,Ω1∪Ω2

‖vh‖SD ∀ u ∈Wreg, vh ∈ V Γ
h .

Proof. We use the notation eh := u− IΓ
hu and recall the definition of aSDh (·, ·):

aSDh (eh, vh) =
1

2
(εeh, vh)1,Ω1∪Ω2

+(w·∇eh, vh)0+ξ(eh, vh)0+(ξeh+w·∇eh,w·∇vh)0,h.

Using the interpolation error bounds of lemma 4.1 we obtain

1

2
(εeh, vh)1,Ω1∪Ω2

≤ c
√
ε̄ h‖u‖2,Ω1∪Ω2

‖vh‖SD

ξ(eh, vh)0 ≤ c
√
ξh2‖u‖2,Ω1∪Ω2‖vh‖SD

ξ(eh,w · ∇vh)0,h ≤ c
√
ξh2‖u‖2,Ω1∪Ω2

‖vh‖SD

(w · ∇eh,w · ∇vh)0,h ≤ c‖w‖
1
2∞h

1 1
2 ‖u‖2,Ω1∪Ω2

‖vh‖SD.

To the term (w · ∇eh, vh)0 we apply partial integration as in (4.10), resulting in

(w · ∇eh, vh)0 = −(eh,w · ∇vh)0 ≤
( ∑
T∈Th

γ−1
T ‖eh‖

2
0,T

) 1
2 ‖vh‖SD

≤ c
(
ξh2 + ‖w‖∞h+ ε̄)

1
2h‖u‖2,Ω1∪Ω2

‖vh‖SD,

where in the last inequality we used the bound for γ−1
T h2

T given in (4.2). Combining
these estimates completes the proof.

We now turn to the analysis of the Nitsche bilinear form aNh (·, ·). We need the following
inverse inequality given in [10]. For completeness we include its elementary proof.

Lemma 4.4. There exists a constant cI independent of ε̄ such that

‖{ε∇vh · n}‖− 1
2 ,h,Γ

≤ cI ε̄|vh|1,Ω1∪Ω2
for all vh ∈ V Γ

h .
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Proof. Let Pk be the space of polynomials of degree at most k. Using a scaling
argument it follows that there exists a constant c, depending only on k and the shape
regularity of the triangulation Th, such that

hTκi‖p‖2L2(ΓT ) ≤ c‖p‖
2
L2(Ti)

for al p ∈ Pk, T ∈ T Γ
h , i = 1, 2. (4.11)

Using this we get

‖{ε∇vh · n}‖2− 1
2 ,h,Γ

≤ 2

2∑
i=1

κ2
i ‖εi∇(vh)i · n‖2− 1

2 ,h,Γ

= 2

2∑
i=1

∑
T∈T Γ

h

hTκ
2
i ‖εi∇(vh)i · n‖2L2(ΓT ) ≤ cε̄

2∑
i=1

∑
T∈T Γ

h

|vh|21,Ti
≤ cε̄|vh|21,Ω1∪Ω2

,

and thus the result holds.

We now derive an ellipticity result for aNh (·, ·):
Lemma 4.5. There exist constants c1 > 0, cs > 0 such that for λ > cs

aNh (vh, vh) ≥ c1‖vh‖2N for all vh ∈ V Γ
h .

Proof. Define ĉ = 1
2̄ε

min{ε1, ε2} ≤ 1
2 and take λ ≥ 4c2I ĉ

−1 with cI from lemma 4.4.
The following holds:

aNh (vh, vh) ≥ ĉε̄|vh|21,Ω1∪Ω2
− 2‖[βvh]‖ 1

2 ,h,Γ
‖{ε∇vh · n}‖− 1

2 ,h,Γ
+ λε̄‖[βvh]‖21

2 ,h,Γ

≥ ĉε̄|vh|21,Ω1∪Ω2
− 2cI ε̄‖[βvh]‖ 1

2 ,h,Γ
|vh|1,Ω1∪Ω2

+ λε̄‖[βvh]‖21
2 ,h,Γ

≥ 1

2
ĉε̄|vh|21,Ω1∪Ω2

+ (λ− 2c2I ĉ
−1)ε̄‖[βvh]‖21

2 ,h,Γ

≥ 1

2
ĉε̄|vh|21,Ω1∪Ω2

+
1

2
λε̄‖[βvh]‖21

2 ,h,Γ
≥ ĉ‖vh‖2N .

Lemma 4.6. There exists a constant c such that for λ > 0

aNh (u− IΓ
hu, vh) ≤ c

√
ε̄
(√
λ+

1√
λ

)
h‖u‖2,Ω1∪Ω2

‖vh‖N

holds for all u ∈Wreg, vh ∈ V Γ
h .

Proof. We use the notation eh := u− IΓ
hu and recall the definition of aNh (·, ·):

aNh (eh, vh) =
1

2
(εeh, vh)1,Ω1∪Ω2

− ([βeh], {ε∇vh · n})Γ − ({ε∇eh · n}, [βvh])Γ

+ λε̄([βeh], [βvh]) 1
2 ,h,Γ

.

Using the interpolation error bounds of lemma 4.1 and the inverse inequality in
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lemma 4.4 we obtain

1

2
(εeh, vh)1,Ω1∪Ω2

≤ c
√
ε̄ h‖u‖2,Ω1∪Ω2

‖vh‖N

−([βeh], {ε∇vh · n})Γ ≤ ‖[βeh]‖ 1
2 ,h,Γ
‖{ε∇vh · n}‖− 1

2 ,h,Γ

≤ cε̄
2∑
i=1

‖Rieh‖ 1
2 ,h,Γ
|vh|1,Ω1∪Ω2

≤ c
√
ε̄ h‖u‖2,Ω1∪Ω2

‖vh‖N

−({ε∇eh · n}, [βvh])Γ ≤ ‖{ε∇eh · n}‖− 1
2 ,h,Γ
‖[βvh]‖ 1

2 ,h,Γ

≤ cε̄
2∑
i=1

‖n · ∇Rieh‖− 1
2 ,h,Γ
‖[βvh]‖ 1

2 ,h,Γ

≤ c
√
ε̄

λ
h‖u‖2,Ω1∪Ω2‖vh‖N

λε̄([βeh], [βvh]) 1
2 ,h,Γ

≤ λε̄‖[βeh]‖ 1
2 ,h,Γ
‖[βvh]‖ 1

2 ,h,Γ
≤ c
√
ε̄λ h‖u‖2,Ω1∪Ω2‖vh‖N .

Combination of these estimates and using 1√
λ

+
√
λ > 1 proves the result.

We now combine the estimates derived above for aNh (·, ·) and aSDh (·, ·). For this we
introduce the norm

|||v|||2 = ‖v‖2N + ‖v‖2SD = ε̄|v|21,Ω1∪Ω2
+ ξ‖v‖20 + ‖w · ∇v‖20,h + λε̄‖[βv]‖21

2 ,h,Γ
.

Note that the two terms ‖w ·∇v‖20,h and λε̄‖[βv]‖21
2 ,h,Γ

originate from the stabilization

terms in the streamline diffusion and the Nitsche method, respectively.
We discuss the choice of the stabilization parameter λ in the Nitsche method.

For the error analysis in the norm ||| · ||| it is natural to balance the upper bounds
in lemma 4.3 and in lemma 4.6. For simplicity we make the (weak) assumption that
ξh2 ≤ c(ε̄+‖w‖∞h) holds, i.e. in the bound in lemma 4.3 the factor

√
ε̄+
√
‖w‖∞h+√

ξ h can be replaced by
√
ε̄ +

√
‖w‖∞h. The factor

√
ε̄(
√
λ + 1/

√
λ) in the upper

bound in lemma 4.6 should balance the latter factor, i.e.,

√
ε̄+

√
‖w‖∞h ≈

√
ε̄(
√
λ+ 1/

√
λ).

This leads to the choice as in (2.9), namely λ = c‖w‖∞h/ε̄ if ‖w‖∞h ≥ ε̄ and λ = c
otherwise. We take c = cs, cf. lemma 4.5, to guarantee ellipticity. A slightly refined
error analysis leads to a localized variant of this parameter choice given in remark 2.
In the remainder we take λ as in (2.9), with c = cs, cf. lemma 4.5. To simplify the
presentation, in the estimates below the terms ‖w‖∞ are absorbed in the constant c.

From the interpolation error bounds in lemma 4.1, and using λε̄ ≤ c(ε̄+‖w‖∞h) ≤
c(ε̄+ h), we obtain

|||u− IΓ
hu||| ≤ c

(√
ε̄+
√
h+

√
ξ h
)
h‖u‖2,Ω1∪Ω2 for all u ∈Wreg. (4.12)

Theorem 4.7. For u ∈ Wreg let RGu ∈ V Γ
h be the Galerkin projection for the

bilinear form ah(·, ·), i.e. ah(RGu, vh) = ah(u, vh) for all vh ∈ V Γ
h . The following

holds:

|||u−RGu||| ≤ c
(√
ε̄+
√
h+

√
ξ h
)
h‖u‖2,Ω1∪Ω2

for all u ∈Wreg. (4.13)
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The constant c is independent of ε̄, h, ξ and of how the interface Γ intersects the
triangulation Th.

Proof. The proof uses standard arguments. Define χh = RGu− IΓ
hu ∈ V Γ

h . Using
the results in the lemmas above we obtain, with a suitable c > 0,

|||χh|||2 = ‖χh‖2N + ‖χh‖2SD ≤ c
(
aNh (χh, χh) + aSDh (χh, χh)

)
= c ah(χh, χh) = c ah(u− IΓ

hu, χh) = c aNh (u− IΓ
hu, χh) + c aSDh (u− IΓ

hu, χh)

≤ c
(√
ε̄+
√
h+

√
ξ h
)
h‖u‖2,Ω1∪Ω2

|||χh|||.

The result follows from a triangle inequality and the interpolation error bound in
(4.12).

We comment on the bound derived in (4.13). For the diffusion dominated case, i.e.
ε̄ ∼ 1, this result reduces to results known in the literature. We discuss the convection
dominated case ε̄ ≤ h with ξ ∈ [0, 1] and write eh := u − RGu. Furthermore we
assume h ≤ chT (quasi-uniformity of the family of triangulations). Using h ≤ cγT for
all T ∈ Th we obtain from (4.13)

‖w · ∇eh‖L2(Ω) ≤ ch‖u‖2,Ω1∪Ω2
.

Hence, as for the streamline diffusion finite element method with the standard linear
finite element space, we have an optimal error bound (uniformly in ε̄) for the derivative
of the error in streamline direction. Furthermore, from

λε̄‖[βeh]‖21
2 ,h,Γ

≤ ch3‖u‖22,Ω1∪Ω2
,

and λε̄ = ch, we obtain

‖[βeh]‖L2(Γ) ≤ ch1 1
2 ‖u‖2,Ω1∪Ω2

uniformly in ε̄. This bound of order h1 1
2 for the error in the jump approximation is

the same as for the diffusion dominated case. Finally, if we take ξ > 0 we obtain an
L2-norm error bound that is the same as for the streamline diffusion finite element
method with the standard linear finite element space, namely

‖eh‖L2(Ω) ≤
c√
ξ
h1 1

2 ‖u‖2,Ω1∪Ω2
.

Remark 5. As noted in Remark 3, the SD-Nitsche-XFEM method has a straight-
forward extension to finite elements of higher order. We comment on the generaliza-
tion of the error analysis presented above to the higher order case. The interpolation
error bounds in Lemma 4.1 can easily be generalized to higher order extended finite
elements. The result in Lemma 4.4, cf. (4.11), also holds for higher order elements,
and using this the results for the Nitsche bilinear form in the Lemmas 4.5 and 4.6
can be generalized. In the analysis of the streamline diffusion bilinear form, how-
ever, a difficulty arises related to an inverse inequality needed in the analysis. For
higher order finite elements the term (div(ε∇uh),w · ∇vh)0,h arises in the stream-
line diffusion stabilization. In the analysis of the streamline diffusion method for
a standard higher order finite element space Vh one uses an inverse inequality of
the form ‖∆vh‖0,T ≤ µinvh

−1
T |vh|1,T for all vh ∈ Vh, cf. [18]. Such a result does

not hold in a higher order XFEM space, since the supports Ti = T ∩ Ωi of the ad-
ditional (discontinuous) basis functions can be very shape irregular. We only have
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‖∆vh‖0,Ti
≤ µ(Ti)h

−1
Ti
|vh|1,Ti

with a factor µ(Ti) that depends on the shape regularity
of Ti. To control this, instead of (4.1), one can choose a stabilization parameter γTi

that is sufficiently small. This would yield a stability result as in Lemma 4.2. If, how-
ever, this parameter is “too small” it is not likely that a result as in Lemma 4.3, which
uses the third inequality in (4.2), still holds. We did not investigate this further.

5. Note on mass conservation. We derive a mass conservation property of
the stabilized semi-discretization in (2.15) for the case of a stationary interface, i.e.
w ·n = 0. For this we replace the homogeneous Dirichlet boundary condition in (1.5)
by a, in view of mass conservation, more natural one. Define the inflow boundary by
∂Ω− := {x ∈ ∂Ω | w · nΩ < 0 }, where nΩ is the outward pointing unit normal on
∂Ω, and ∂Ω+ := ∂Ω \ ∂Ω−. Instead of (1.5) we consider

(uw − ε∇u) · nΩ = uIw · nΩ on ∂Ω−, t ∈ [0, T ]

ε∇u · nΩ = 0 on ∂Ω+, t ∈ [0, T ],
(5.1)

with uI a given mass inflow function. In the weak formulation we have to change
accordingly the function space V to Ṽ := { v ∈ H1(Ω1 ∪ Ω2) | [βv]Γ = 0 }, and
the weak formulation is as follows, cf. (2.4): Determine u ∈ W 1(0, T ; Ṽ ) such that
u(0) = u0 and for almost all t ∈ (0, T ):

(
du

dt
, v)0 + a(u, v)−

∫
∂Ω−

βuvw · nΩ ds = (f, v)0−
∫
∂Ω−

βuIvw · nΩ ds for all v ∈ Ṽ.(5.2)

Using w · n = 0 on Γ and div w = 0 in Ωi we get

(w · ∇u, β−1)0 =

∫
Ω

w · ∇u dx =

2∑
i=1

(∫
∂Ωi

uw · nΩi
ds−

∫
Ωi

udiv w dx

)
=

∫
∂Ω−

uw · nΩ ds+

∫
∂Ω+

uw · nΩ ds.

(5.3)

Using this and taking the test function v = 1
β ∈ Ṽ in (5.2) we obtain the global mass

conservation property

d

dt

∫
Ω

u dx+

∫
∂Ω−

uIw · nΩ ds+

∫
∂Ω+

uw · nΩ ds =

∫
Ω

f dx. (5.4)

This relation can also be derived directly from the strong formulation in (1.1), by
integrating the equations in (1.1) over Ω, and using the relations in (1.2), (5.1),
(5.3). We show that an analogon of the conservation law (5.4) holds for the Nitsche-
XFEM stabilized discretization. Due to the modification of the boundary condition
the XFEM space we use is given by Ṽ Γ

h := { v ∈ H1(Ω1∪Ω2) | v|Ti
is linear for all T ∈

Th, i = 1, 2. } and the discretization in (2.15) is modified as follows: determine uh(t) ∈
Ṽ Γ
h such that uh(0) = û0 and

(
duh
dt

, vh)0 + (
duh
dt

,w · ∇vh)0,h + ah(uh, vh) + (w · ∇uh,w · ∇vh)0,h

−
∫
∂Ω−

βuhvhw · nΩ ds = (f, vh)0 + (f,w · ∇vh)0,h −
∫
∂Ω−

βuIvhw · nΩ ds
(5.5)

for all vh ∈ Ṽ Γ
h . For the discrete conservation property it is essential that the XFEM

space contains piecewise smooth functions that are allowed to be discontinuous across
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Γ. In particular the piecewise constant function β−1 is contained in Ṽ Γ
h . Taking this

test function vh in (5.5) all terms with ∇vh vanish and for the Nitsche bilinear form,
cf. (2.8), we have ah(uh, β

−1) = (w · ∇uh, β−1)0. Thus we obtain

d

dt

∫
Ω

uh dx+

∫
Ω

w · ∇uh dx−
∫
∂Ω−

uhw · nΩ ds =

∫
Ω

f dx−
∫
∂Ω−

uIw · nΩ ds.

Using partial integration for the term
∫

Ω
w · ∇uh dx, as in (5.3), results in

d

dt

∫
Ω

uh dx+

∫
∂Ω−

uIw · nΩ ds+

∫
∂Ω+

uhw · nΩ ds =

∫
Ω

f dx,

which is the discrete global mass conservation analogon of the one in (5.4). Finally
we briefly consider a mass conservation property in each subdomain Ωi. We assume
∂Ω1 ∩ ∂Ω = ∅, hence, ∂Ω1 = Γ. From (1.1) we get

d

dt

∫
Ω1

u dx−
∫

Γ

ε∇u · n ds =

∫
Ω1

f dx,

and using (1.2) this conservation property can be rewritten as

d

dt

∫
Ω1

u dx−
∫

Γ

{ε∇u · n} ds =

∫
Ω1

f dx (5.6)

For the discretization we obtain (using a suitable test function vh):

d

dt

∫
Ω1

uh dx−
∫

Γ

{ε∇uh · n} ds−
λε

h

∫
Γ

[βuh] ds =

∫
Ω1

f dx.

Hence there is a discrepancy between
∫

Ω1
u dx and

∫
Ω1
uh dx that is controlled by

‖{ε∇eh ·n}‖L2(Γ) and λε
h ‖[βeh]‖L2(Γ), eh := u− uh. From the error analysis it folows

that both terms tend to zero for h ↓ 0, i.e., we have a consistency property.

Remark 6. In view of applications the case of a non-stationary interface Γ(t) is
much more interesting than that of a stationary one. We comment on a generalization
of the method in (2.16) to the former case. For an evolving interface Γ(t), instead of
the weak formulation in (2.4), one has to consider a space-time variational formulation
to obtain a well-posed problem, cf. [9]. A discretization of the time derivative by means
of finite difference approximations (as done here for a stationary interface) does no
longer lead to a consistent discretization if the interface Γ(t) is moving in time. A
discretization based on a space-time formulation using a suitable space-time extended
finite element space should be used. For a convection dominated problem this can
be combined with a space-time streamline diffusion stabilization. The development
and analysis of such a space-time SD-Nitsche-XFEM method is a topic of current
research.
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