
Volume Mesh Generation for

Numerical Flow Simulations

Using Catmull–Clark and

Surface Approximation Methods

Michael Rom1,2 and Karl–Heinz Brakhage1

Bericht Nr. 334 Dezember 2011

Key words: volume mesh generation, hexahedral meshes,
Catmull–Clark subdivision, B–spline surfaces,
surface approximation

AMS subject classifications: 65M50, 65N50, 41A15, 65D07, 65D17

Institut für Geometrie und Praktische Mathematik

RWTH Aachen

Templergraben 55, D–52056 Aachen (Germany)

1,2
Institut für Geometrie und Praktische Mathematik, RWTH–Aachen, D–52056 Aachen, Germany,
{rom, brakhage}@igpm.rwth-aachen.de

2
German Research School for Simulation Sciences, 52425 Jülich, Germany



Volume Mesh Generation for Numerical Flow
Simulations using Catmull-Clark and Surface
Approximation Methods

Michael Rom1,2 and Karl-Heinz Brakhage1

1 Institut für Geometrie und Praktische Mathematik, RWTH Aachen,
52056 Aachen, Germany, {rom,brakhage}@igpm.rwth-aachen.de

2 German Research School for Simulation Sciences, 52425 Jülich, Germany

Summary. In this paper we present a new technique for the semi-automatic gener-
ation of volume meshes which can be used for numerical simulations of flows around
given geometries. Our aim is to end up with a high-quality block-structured volume
mesh connected to a smooth surface mesh. For this purpose we start with a polyhe-
dron giving a rough approximation of the target surface geometry which can be of
arbitrary genus. To this initial polyhedron we apply an alternating iterative process
of Catmull-Clark subdivisions and approximations of the target surface. Usually,
such a surface is given by a collection of trimmed B-spline surfaces. Hence, the
best approximation results can be achieved by projecting the points of the Catmull-
Clark limit surface, which converges to uniform bi-cubic B-spline patches, onto it
and subsequently recomputing the control mesh. If we construct another polyhe-
dron surrounding the initial polyhedron, both being automatically connected to
each other, we can perform three-dimensional Catmull-Clark subdivision to the flow
field between the inner and the outer surface.

1 Introduction, Significance and Related Work

Numerical flow simulations require high-quality volume meshes. The genera-
tion of such meshes as well as the construction of the object around or through
which the flow should be simulated can be very difficult and time-consuming.
We have developed a new promising approach by combining established meth-
ods for 2D- and 3D-subdivision with new or adapted algorithms for the com-
putation of the limit points of a subdivision surface, the projection of these
limit points onto given B-spline surfaces and the approximation of these given
surfaces to get new surface mesh control points (= vertices).

The overall process is illustrated in Fig. 1. The user only has to construct
a simple inner initial surface polyhedron, being roughly similar to the target
surface of arbitrary genus, and an outer surrounding polyhedron by giving
the coordinates, the face connectivity and optionally edges which should be



2 Michael Rom and Karl-Heinz Brakhage

Fig. 1. Process of volume mesh generation

treated like creases. These two surfaces are connected automatically leading to
a coarse volume mesh representing the flow field. This initial semi-automatic
step is illustrated for a simple wing with an open end for the attachment of a
fuselage in Fig. 2.

The subsequent iterative process can be stopped if the approximation of
the target surface is satisfying. If necessary, a more uniform distribution of
mesh control points can be obtained by applying smoothing steps after an
approximation step in each iteration. The mesh resulting from the overall
process depicted in Fig. 1 can be converted to a B-spline volume mesh. Hence,
it is possible to apply further grid refinement by spline evaluation.

Figure 3 gives a 1D-example of the iterative process by showing a fragment
of a polygon: P0 is a vertex of this control polygon. One subdivision (iteration
step 1) leads to a new position of that vertex (Q0) and a refinement of the
control polygon by inserting edge points (which are not drawn in the picture).
The point on the limit curve corresponding to P0 can be calculated and is
denoted by L0 (iteration step 2). If this is projected to a given target curve
we obtain Lp (iteration step 3). To force our limit curve to pass through Lp

or at least to lie close to it, we have to replace Q0 by Q1. This calculation
is done by a least squares approximation (iteration step 4). Repeating the
overall process results in an accurate approximation of the target curve along
with a consequent refinement of control points.

Fig. 2. Semi-automatic construction of an initial mesh (1: simple polyhedron as a
starting point for the volume mesh generation, 2: surrounding polyhedron around the
initial one, 3: edge and face connections between the inner and the outer polyhedron,
translucent view)



Catmull-Clark Volume Meshing 3

Fig. 3. Example for the workflow in the case of a curve (0: initial control polygon,
1: control polygon after one subdivision, 2: limit curve of the subdivision process,
3: given target curve, 4: new control polygon after approximation of the target curve)

For the 2D-subdivisions of the inner and the outer surface, which are
applied simultaneously to the 3D-subdivision of the space in between, we use
the scheme presented by Catmull and Clark [1] which is applicable to surfaces
of arbitrary genus. Due to the convergence of the Catmull-Clark limit surface
to uniform bi-cubic B-spline patches (see [1]) we get a smooth C2-surface with
the exception of points where no tensor-product topology is given (C1 there).
The results of Stam’s analysis of the subdivision matrix [2] with an extension
for modeling creases by de Rose et al. [3] allow for the pre-calculation of the
limit points of the inner surface at each refinement level. The limit points can
then be used for the approximation of a given target surface. In our practical
applications these target surfaces are often given as trimmed B-spline surfaces.
The Nelder-Mead optimization algorithm [4] is used for the projection of the
limit surface onto such a B-spline surface.

The space between the inner and the outer surface is the flow field and
has to be refined successively. Thus, we need an extension of the Catmull-
Clark subdivision rules to volume meshes. The first scheme for that purpose
was presented by Joy and MacCracken [5] as a direct generalization of the
two-dimensional subdivision rules. The analysis of the rules in matters of the
smoothness of the resulting volume mesh is very difficult. Hence, Bajaj et
al. [6] tried another approach: They factored the tri-cubic subdivision process
into tri-linear subdivision followed by averaging, overall leading to rules which
are easier to understand. We apply 3D-subdivision by using a combination of
these two schemes.

The rest of the paper is structured as follows: Section 2 gives an overview
of the Catmull-Clark subdivision rules for surfaces and volumes and describes
why the Catmull-Clark scheme is the method of choice for our purpose. In



4 Michael Rom and Karl-Heinz Brakhage

Sect. 3 we briefly explain how the points of the limit surface can be calculated
and demonstrate how they are used for the approximation of target surfaces
given by a B-spline representation. Section 4 describes a non-shrinking mesh
smoothing algorithm which can be applied after an approximation to obtain
a more uniform distribution of mesh control points.

2 Background on Catmull-Clark Subdivision

In iteration step 1 of our mesh generation process (see Fig. 1) two-dimensional
Catmull-Clark subdivision [1] is applied to the inner and to the outer sur-
face, while the space in between is refined by using derived rules for three-
dimensional subdivision.

2D-Subdivision

Catmull and Clark published their descriptions of quadratic and cubic subdi-
vision surfaces in 1978. Contrary to tensor-product splines, this scheme can
be applied to meshes that are not regular rectangular grids. A refinement step
is defined by the following rules:

1. For each face add a point given by the average of the N face vertices:

F =
1
N

N−1∑
i=0

Pi

2. For each edge add a point given by a weighted average of the two new
adjacent face points Fleft, Fright and the edge midpoint Ec:

E =
1
4

(Fleft + 2Ec + Fright)

3. Move each old vertex to a new position given by a weighted average of the
vertex P, the average F̃ of the new adjacent face points and the average
Ẽc of the adjacent edge midpoints:

Pnew =
1
N

(F̃ + 2Ẽc + (N − 3)P)

N denotes the valence of P, i.e., the number of edges connected to P.

Figure 4 shows three fragments of a mesh representing these three refinement
rules of one Catmull-Clark subdivision. The weights given for the vertices and
face points directly result from the rules. Finally, the new edges are built by
splitting the old ones and connecting the new face points to the new adjacent
edge points. The new faces are the faces inside the old ones.



Catmull-Clark Volume Meshing 5

Fig. 4. Illustration of the subdivision rules for the Catmull-Clark method, from left
to right: insertion of a new face point, insertion of a new edge point, computation
of a new vertex position

Applying the subdivision rules to a mesh of quadrilaterals we obtain a
refined mesh at the new subdivision level l+ 1 with the following numbers of
faces (#F ), edges (#E) and vertices (#V ):

#Fl+1 = 4 #Fl

#El+1 = 4 #Fl + 2 #El

#Vl+1 = #Fl + #El + #Vl

In our modeling and grid generation concepts (see [7]) we want to end
up with smooth untrimmed B-spline patches. These can be provided by an
easy implementable conversion of the Catmull-Clark limit surface. Thus, this
scheme is the method of choice. We summarize its crucial properties (cf. [8]):

• The surfaces can be of arbitrary genus since the subdivision rules can be
carried out to a mesh of arbitrary topological type.

• After one subdivision all faces are quadrilaterals.
• Except at extraordinary vertices (vertices of valence N 6= 4) the limit

surface converges to uniform bi-cubic B-spline patches. Hence, the surface
is C2-continuous except at extraordinary vertices.

• Near an extraordinary vertex the surface can be shown to have a well de-
fined tangent plane at the limit point, but the curvature there is generally
not well defined.

• The number of extraordinary vertices is fixed after the first subdivision,
so that less smooth regions are scaled down with each further subdivision
(see Sect. 3 and Fig. 7 for more details).

• After two subdivisions each face can contain one extraordinary vertex at
most. This allows us to easily compute the points of the Catmull-Clark
limit surface, see Sect. 3.

• The subdivision rules can be modified in such a way that they generate
infinitely sharp creases as well as semi-sharp creases, i.e., creases for which



6 Michael Rom and Karl-Heinz Brakhage

the sharpness can vary from zero (meaning smooth) to infinite, see de Rose
et al. [3] for more details. An example for a situation in which we need the
possibility of modeling creases is the connection of a wing to a fuselage
which should not be smoothed during a subdivision process.

Example

Figure 5 gives an example for the application of the Catmull-Clark subdivision
scheme. Despite using a rough approximation of a wing as an initial mesh, we
end up with a smooth mesh of high quality after only a few subdivisions (in
this case three).

Fig. 5. Initial polyhedron for the Catmull-Clark method (top) and polyhedron after
three subdivisions (bottom)

3D-Subdivision

For three-dimensional subdivision we use the rules given in the list below
demanding the volume mesh to contain only hexahedra composed of eight
vertices, six faces and twelve edges. This is guaranteed if the inner surface
mesh exclusively consists of quadrilaterals before connecting it to the outer
one. Since the first Catmull-Clark subdivision always provides a quadrilateral
mesh, this requirement can be fulfilled easily.



Catmull-Clark Volume Meshing 7

The following rules are used:

1. For each volumetric cell add a point given by the average of the eight cell
vertices:

C =
1
8

7∑
i=0

Pi

2. For each face add a point given by a weighted average of the two new
adjacent cell points Cleft, Cright and the face centroid Fc:

F =
1
4

(Cleft + 2Fc + Cright)

3. For each edge add a point given by a weighted average of the edge midpoint
Ec where N denotes the number of adjacent faces, the average C̃ of the
new adjacent cell points and the average F̃c of the adjacent face centroids:

E =
1
N

(C̃ + 2F̃c + (N − 3)Ec)

4. Move each old vertex to a new position:

Pnew =
∑

Ui ∈ ring(P)

33−dim(Ui,P)

43 val(P)
val(Ui,P) Ui

with ring(P) denoting the set of vertices Ui connected to P by a cell, a
face or an edge. The vertex P itself is stored in ring(P), too. val(P) is
the number of cells containing P, whereas val(Ui,P) gives the number
of cells containing both Ui and P. dim(Ui,P) specifies the connection
between Ui and P (0 if Ui = P, 1 if Ui and P lie on a common edge, 2
if they only lie on a common face or 3 if they only lie on a common cell).

The first three of these 3D-rules were presented by Joy and MacCracken [5]
in 1996. Since their vertex recomputation formula (rule 4) does not consider
an adjustment for the number of edges a vertex is connected to, we use the
equation published by Bajaj et al. [6] in 2002 instead.

Finally, the new edges are built by splitting the old ones, connecting the
new face points to the new adjacent edge points and connecting the new cell
points to the new adjacent face points. The new faces are the faces inside
the old ones and inside the old cells. The new cells are the cells inside the
old ones. Similar to the surface case we can define special edges (creases) and
special faces to which the subdivision coefficients for curves and for surfaces
are applied, respectively.

Since our volume meshes consist of hexahedra only (see above), each sub-
division leads to the following numbers of cells (#C), faces (#F ), edges (#E)
and vertices (#V ) at the new subdivision level l + 1:



8 Michael Rom and Karl-Heinz Brakhage

#Cl+1 = 8 #Cl

#Fl+1 = 12 #Cl + 4 #Fl

#El+1 = 6 #Cl + 4 #Fl + 2 #El

#Vl+1 = #Cl + #Fl + #El + #Vl

Example

An example for three-dimensional subdivision is given in Fig. 6. The coarse
volume mesh in the right of Fig. 2 (mesh 3) has been subdivided twice treating
the outer surface vertices as fixed and the outer surface edges as creases.

Fig. 6. Example for three-dimensional subdivision (translucent view)

3 Limit Points of Catmull-Clark Subdivision Surfaces,
Projection onto B-Spline Surfaces and Approximation

Stam [2] gave an algorithm for evaluating the Catmull-Clark scheme and its
derivatives at arbitrary points. He used a choice of ordering for the control ver-
tices such that the main part of the subdivision matrix has a cyclical structure.
Hence, the discrete Fourier transform can be used to compute its eigenstruc-
ture. For the modified rules given in [3] this analysis is very technical, details
of the investigation and the implementation can be found in [9].



Catmull-Clark Volume Meshing 9

Fig. 7. Behavior near an extraordinary vertex of valence N = 3

Due to the existence of extraordinary points a surface mesh cannot be
evaluated everywhere at each subdivision level by well-known B-spline algo-
rithms because the control vertex structure near an extraordinary point is not
a simple rectangular grid. Thus, all faces that contain extraordinary vertices
cannot be evaluated as uniform B-splines. For our mesh we assume that each
face is a quadrilateral and contains one extraordinary vertex at most, which
both is fulfilled after two subdivisions at the latest. Figure 7 shows that the
region in which the surface cannot be evaluated with standard methods is
scaled down with every subdivision.

Since we can evaluate the surface away from extraordinary vertices as a
regular bi-cubic B-spline, the remaining problem is to demonstrate how to
evaluate a patch corresponding to a face with just one extraordinary vertex,
such as the dark region shown in Fig. 7. We introduce parameter values and
define a surface patch x(u, v) over the unit square [0, 1]× [0, 1] such that the
point x(0, 0) corresponds to the extraordinary vertex. We can evaluate the
surface at such a vertex (x(0, 0)) as a linear combination of the circumfluent
vertices. Additionally, we can evaluate x(u, 1) for u ∈ [0, 1] and x(1, v) for
v ∈ [0, 1] as regular B-spline part. The remaining problem is the evaluation
x(u, v) in the rest of the unit square. This problem is solved by doing just
enough subdivisions such that (u, v) corresponds to a regular part at that
stage to do the evaluation as a regular bi-cubic B-spline.

Limit Points

A point Li of the Catmull-Clark limit surface corresponding to a mesh control
point P(k)

i of the current subdivision level k is defined by

Li = lim
k→∞

P(k)
i ,

i.e., the position after k → ∞ subdivisions. For the approximation of given
surfaces with our Catmull-Clark meshes we can pre-compute the values Li

of the limit surface (see iteration step 2 in Fig. 1) by using Stam’s above-
mentioned algorithm for evaluating the Catmull-Clark scheme at arbitrary
points. For each face we compute nine limit points: four corresponding to the
face vertices, four corresponding to the edges and one corresponding to the



10 Michael Rom and Karl-Heinz Brakhage

Fig. 8. Example for the computation of the nine limit points for a face with one
extraordinary vertex (number 0), left: six limit points can be calculated immediately,
right: the remaining three limit points can be calculated after one subdivision

face. An example is given in Fig. 8 where the vertex with the number 0 rep-
resents an extraordinary vertex. The six limit points for the vertices marked
in the left part of the picture can be calculated immediately, since they be-
long to x(0, 0), x(u, 1) for u ∈ [0, 1] or x(1, v) for v ∈ [0, 1], see above. The
computation of the remaining three limit points requires one subdivision of
the mesh, so that the new vertices with the numbers 31, 41 and 51 belong to
x(u, 1) for u ∈ [0, 1] or x(1, v) for v ∈ [0, 1] at the new refinement level. All
these computations can be applied without explicitly subdividing and lead
to coefficients for each vertex participating in the limit point computation.
Hence, the limit points Li can be written as a linear combination

Li = cT
i Vi

where we have collected the weights cj of the involved vertices P(k)
j in the

vicinity of the control point P(k)
i in the vector ci and the associated vertices

P(k)
j in Vi. Details of the computation of the coefficients cj and the choice

of the associated vertices P(k)
j can be found in [9]. The vertex and edge limit

points are only calculated if they have not already been computed by consid-
ering an adjacent face before. Overall this leads to #Vl + #Fl + #El limit
points at the current subdivision level l. If a control point belongs to a special
edge, i.e. a crease, we need other rules for the evaluation. Therefore, we use
our extension [9] in these cases.

Projection

For a given surface s we can project Li onto it: Li → Ls
i (iteration step 3 in

Fig. 1). Usually, the surface s is given by a B-spline representation defined by

x(u, v) =
m∑

r=0

n∑
s=0

xr,sNr,p(u)Ns,q(v) (?)



Catmull-Clark Volume Meshing 11

where (m+1)× (n+1) gives the number of control points and p and q denote
the degree of the B-spline basis functions Nr,p(u) and Ns,q(v), respectively.
Together with knot vectors in u- and v-direction, which have been omitted
in (?), we can evaluate x(u, v) and the partial derivatives xu(u, v) and xv(u, v)
by applying de Boor’s algorithm [10]. Given such a representation, we search
for parameter values uLi and vLi for each limit point Li such that

‖x(uLi , vLi)− Li‖2 = min
u,v
‖x(u, v)− Li‖2.

We use the Nelder-Mead algorithm [4] to solve this distance minimization
problem. This optimization algorithm is simple to understand and to imple-
ment, does not need any derivatives and is very robust. For each limit point
a simplex, which in this two-dimensional case is a triangle in (u, v)-space, is
built around the initial values (u0, v0) which have to be set once prior to the
first projection. Due to the robustness of the algorithm an inaccurate choice
of initial values does not destroy the convergence of the algorithm. For each
further projection we can calculate better initial values being closer to the
resulting values: The limit points corresponding to vertices get the current
(u, v)-values of the vertex as initial values, whereas the (u, v)-values for limit
points corresponding to face or edge points are initialized by an average of
the (u, v)-values of the particular adjacent vertices. In the first step of the
Nelder-Mead algorithm the distances dj = ‖Li − x(uj , vj)‖2, j = 0, 1, 2, of
the limit point Li to the B-spline surface points x(uj , vj) calculated for the
triangle points yj = (uj , vj)T are computed determining the best (b), the
second-best (sb) and the worst (w) point of the triangle:

db = min
j
dj , dsb = min

j 6=b
dj , dw = max

j
dj , j = 0, 1, 2

The corresponding triangle points in are denoted by yb = (ub, vb)T , ysb =
(usb, vsb)T and yw = (uw, vw)T , respectively. After that the midpoint

ym =
1
2

∑
j 6=w

yj , j = 0, 1, 2

of the triangle edge opposite the worst point is computed. This leads to the
reflection point

yr = 2 ym − yw.

Depending on the distance dr of x(ur, vr) to the limit point the triangle is
changed by applying the following rules:

• If dr < dsb, replace yw by yr and restart the algorithm at the first step.
• If dsb ≤ dr < dw, compute the contraction point

yc =
1
2

(ym + yr).



12 Michael Rom and Karl-Heinz Brakhage

– If dc < dr, replace yw by yc and restart the algorithm at the first step.
– If dc ≥ dr, perform a shrinking transformation (see below).

• If dr ≥ dw, compute the contraction point

yc =
1
2

(ym + yw).

– If dc < dw, replace yw by yc and restart the algorithm at the first step.
– If dc ≥ dw, perform a shrinking transformation (see below).

• Shrinking transformation: Compute two new points

y1 =
1
2

(yb + ysb), y2 =
1
2

(yb + yw)

and replace ysb by y1 and yw by y2. Restart the algorithm at the first
step.

The algorithm is terminated if the distance between the limit point and the
B-spline surface point corresponding to the best triangle point is smaller than
a threshold ε1 or if the distance between the best and the worst triangle point
is smaller than a threshold ε2, i.e., the area of the triangle is very small.

Approximation

Finally, we get an equation of the form

cT
i Vi != Ls

i , Ls
i = x(uLi

, vLi
).

We use the notation CV != Ls for the approximation problem

‖CV − Ls‖2 → min

and apply it for a single equation of this system, too. As described above,
we have #Vl + #Fl + #El limit points at the current subdivision level l and,
consequentially, the same number of projection points. Hence, we end up with
an over-determined sparse linear system for approximation (iteration step 4 in
Fig. 1, Q0 → Q1 in Fig. 3) which we solve by applying the conjugate gradient
method for linear least squares (CGLS or also called CGNR [11]), see below.
Solving the approximation problem leads to new control point positions with
better approximation properties for the next iteration loop.

CGLS method

Let A ∈ IRm×n with m ≥ n. It is well known that the solution for the linear
least squares problem ‖Ax − b‖2 → min can be determined by solving the
normal equations ATAx = AT b. Furthermore, if rank(A) = n then ATA is
symmetrical positive definite (spd). Unfortunately, in most cases ATA is badly



Catmull-Clark Volume Meshing 13

conditioned and for a sparse A usually ATA is not sparse. The conjugate
gradient method (CG) can be reformulated to resolve both problems. We use
two residual vectors r(k) = b − Ax(k) and s(k) = AT b − ATAx(k) = AT r(k).
With this notation we can formulate the CGLS-algorithm as follows:
For A ∈ IRm×n with rank(A) = n and arbitrary initial vector x(0):

r(0) = b−Ax(0)

s(0) = AT r(0)

d(0) = s(0)

for k = 0, 1, 2, ...
αk = ‖s(k)‖22 / ‖Ad(k)‖22 // store Ad(k)

x(k+1) = x(k) + αkd(k)

r(k+1) = r(k) − αkAd(k)

s(k+1) = AT r(k+1)

βk = ‖s(k+1)‖22 / ‖s(k)‖22
d(k+1) = s(k+1) + βkd(k)

until stop
We stop if a maximum number of steps is exceeded (emergency exit) or the
residual becomes smaller than a given tolerance ε, i.e., ‖s(k)‖2 ≤ ε. Notice
that the cost for one CGLS step is linear in the number of control points.

Example

The wing depicted in Fig. 9 is used for a test of our iterative process from
Fig. 1. The target geometry which we want to approximate consists of two
different B-spline representations: The wing with degree 3 in u- and degree
1 in v-direction is continuously differentiable connected to a wing tip (see
Fig. 10) with degree 3 in u- and degree 2 in v-direction. Figure 11 shows
the initial polyhedron which has been constructed manually. The result of the
alternating application of 2D-subdivision, limit point computation, projection
and approximation can be seen in Fig. 12 for the whole wing after three process
iterations, while Fig. 13 reveals a detailed view of the wing tip. The agreement

Fig. 9. B-spline surface (wing + wing tip) with knot-isolines



14 Michael Rom and Karl-Heinz Brakhage

of the given B-spline surface and the approximated surface mesh as well as
the distribution of mesh points are fine. An even better distribution can be
achieved by applying smoothing steps after an approximation as shown in
Sect. 4.

Fig. 10. B-spline surface (wing tip) with knot-isolines

Fig. 11. Initial polyhedron for the approximation of the B-spline surface from Fig. 9

Fig. 12. Surface mesh (wing + wing tip) after three process iterations



Catmull-Clark Volume Meshing 15

Fig. 13. Surface mesh (close-up of wing tip) after three process iterations

4 Smoothing

We want to obtain a more uniform distribution of mesh control points. There-
fore, we use a smoothing method which is non-shrinking because otherwise we
would lose the approximation of the given surface geometry. For each regular
control point Pi of the mesh, i.e., each control point with valence N = 4, we
search for two opposite adjacent control points Padj,1 and Padj,3 connected by
edges and construct a parabola passing through these two opposite vertices
and the control point itself. The first smoothing step is then applied by moving
the control point Pi along the parabola into the direction of the midpoint of
the parabola. The second step uses the other direction, i.e., passing a parabola
through the control point Pi and its remaining two opposite neighbors Padj,2

and Padj,4 and again moving into the direction of the midpoint of that new
parabola. An example for the procedure is depicted in Fig. 14.

The derivation of the computations needed for a smoothing step can be
explained on the basis of Fig. 15. The equation for the planar parabola passing
through the three points Padj,1, Pi and Padj,3 can be formulated as

P(ξ) = Padj,1 +
ξ

d
(Padj,3 −Padj,1) + αξ(d− ξ)(Pi −Pm)

where d is given by
d = ‖Padj,3 −Padj,1‖2

and α will be determined later. The point Pm is defined by

Pm = Padj,1 + β(Padj,3 −Padj,1).

If we insert this into the scalar product

(Pi −Pm) · (Padj,3 −Padj,1) = 0

we obtain

β =
(Pi −Padj,1) · (Padj,3 −Padj,1)

(Padj,3 −Padj,1)2
.



16 Michael Rom and Karl-Heinz Brakhage

Fig. 14. Smoothing by moving control points along parabolae

Fig. 15. Setting for the computation of a planar parabola passing through three
points



Catmull-Clark Volume Meshing 17

Finally, we have to determine α in such a way that the parabola passes through
Pi = P(βd), leading to the equation

Pi = Padj,1+β(Padj,3−Padj,1)+αβd2(1−β) (Pi −Padj,1 − β(Padj,3 −Padj,1))

which is equivalent to

αβd2(1− β) = 1 ⇔ α =
1

βd2(1− β)
.

Now we can move Pi into the direction of P
(

1
2d
)
.

The method only works well if Padj,1 or Padj,3 do not lie too close to Pi

because the parabola may become very steep in that case. Moving the control
point along such a steep parabola would increase the distance of that point
from the mesh quickly. Hence, we constrain the method to values of β between
0.3 and 0.7. If β is smaller than 0.3 we move Padj,1 away from Pi on the line
through Padj,1 and Padj,3 until β becomes equal to or greater than 0.3 defining
the new artificial point P̄adj,1. Then the flattened parabola passing through
P̄adj,1, Pi and Padj,3 is computed. Analagously, we move Padj,3 away from Pi

if β is greater than 0.7 and construct the artificial point P̄adj,3.
Finally, the control point is moved into the direction of the point P

(
1
2d
)

by using a damping factor. A good choice has turned out to be

ξ =
(

3
4
β +

1
8

)
d.

If the control point currently considered (Pi) is an extraordinary vertex,
i.e., having a valence of N 6= 4 and thus not being connected to four adjacent
vertices by edges, we have to use another smoothing method. If N = 3 we
compute the plane through the three adjacent control points connected to Pi

by edges. Now we define a local coordinate system by using the unit vectors
spanning the plane as x- and y-direction. Hence, the signed distance of a
control point to the plane gives the z-coordinate. We then can fit an explicit
surface

z(x, y) = ax2 + bxy + cy2 + dx+ ey + f (? ?)

to the control point Pi and its six adjacent control points (the three connected
by edges as mentioned above and another three only connected by faces).
If we translate the plane such that Pi lies in it we can choose Pi to be
the origin of the local coordinate system. Hence, f = 0 forces the plane to
pass through Pi. The other five coefficients are computed by inserting the
local coordinates of the six adjacent control points into (? ?) and solving the
resulting approximation problem via a QR-algorithm. The new position for
the control point Pi finally is determined by taking the x- and y-values of
the barycenter of the triangle defined by the three adjacent control points
connected by edges and inserting them into the equation for the fitted surface
to obtain a z-coordinate.



18 Michael Rom and Karl-Heinz Brakhage

If N ≥ 5 the approach is similar: Instead of a plane we have to use a regres-
sion plane, since the control point Pi in this case has five or more adjacent
control points connected by edges. To these and to the remaining adjacent
control points being only connected by faces (at least five) we fit the surface

z(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j.

Hence, we have to solve an approximation problem again.

Example

Figure 16 again shows a close-up of the approximated wing tip after the same
number of iterations as in Fig. 13 without smoothing (top) and with two
smoothing steps after each approximation (bottom) leading to a more uniform
distribution of mesh points.

Fig. 16. Surface mesh (close-up of wing tip) after three process iterations, top:
without smoothing, bottom: with two smoothing steps after each approximation

5 Conclusion and Future Work

We have presented a fast iterative procedure for the generation of high-quality
block-structured volume meshes with an inner surface well conforming to a
given target surface. Apart from the manual generation of two initial polyhe-
dra the whole process operates automatically. It uses modified Catmull-Clark
surface subdivision rules to produce smooth surface meshes, extended by the
possibility to model creases, and tensor-product Catmull-Clark volume sub-
division rules for the refinement of the flow field between the inner and the



Catmull-Clark Volume Meshing 19

outer surface. The points of the inner Catmull-Clark limit surface can be pre-
computed after each subdivision and then be projected onto a given B-spline
surface by using the Nelder-Mead algorithm. New control points of the mesh
can then be obtained by approximating the projected limit points. This lin-
ear least-squares problem is solved by applying the CGLS-method. After an
approximation one or more smoothing steps can be applied to obtain a more
uniform distribution of mesh control points.

We will evaluate the quality of our implementation by using the resulting
volume meshes for numerical flow simulations as already done for simple ge-
ometries in [9]. From the sub-project High Reynolds Number Aero-Structural
Dynamics (HIRENASD) of the SFB 401 Flow Modulation and Fluid-Structure
Interaction at Airplane Wings at RWTH Aachen (see [12]) we have experi-
mental data from wind tunnel readings for the wing in Fig. 9 attached to a
simplified fuselage. Furthermore, from the follow-up project Aero-Structural
Dynamics Methods for Airplane Design (ASDMAD) (see [13]), a cooperation
with Airbus, we have additional experimental results for a wing with a winglet.
We will compare the results for both configurations to the simulation results
in order to have an indicator for the quality of the overall process.

Acknowledgments

The first author is funded by the German Research School for Simulation
Sciences (GRS), Jülich, Germany.

References

1. J. Clark and E. Catmull. Recursively generated B-spline surfaces on arbitrary
topological meshes. CAD, 10(6):350–355, 1978.

2. J. Stam. Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary
Parameter Values. In Proceedings of SIGGRAPH, pages 395–404, 1998.

3. T. DeRose, M. Kass, and T. Truong. Subdivision Surfaces in Character Anima-
tion. In Proceedings of the 25th annual conference on Computer graphics and
interactive techniques, ACM SIGGRAPH, pages 85–94, 1998.

4. J. A. Nelder and R. Mead. A simplex method for function minimization. Com-
puter Journal, 7:308–313, 1965.

5. K. Joy and R. MacCracken. The Refinement Rules for Catmull-Clark Solids.
Technical Report CSE-96-1, Department of Computer Science, University of
California, Davis, 1996.

6. C. Bajaj, S. Schaefer, J. Warren, and G. Xu. A subdivision scheme for hexahe-
dral meshes. The Visual Computer, 18:343–356, 2002.

7. K.-H. Brakhage and Ph. Lamby. Application of B-Spline Techniques to the
Modeling of Airplane Wings and Numerical Grid Generation. CAGD, 25(9):738–
750, 2008.



20 Michael Rom and Karl-Heinz Brakhage

8. K. H. Brakhage. Modified Catmull-Clark Methods for Modelling, Reparameteri-
zation and Grid Generation. In Proceedings of the 2. Internationales Symposium
Geometrisches Modellieren, Visualisieren und Bildverarbeitung, HfT Stuttgart,
pages 109–114, 2007.

9. M. Rom. Oberflächenreparametrisierung und Gittererzeugung für numerische
Strömungssimulationen mit Hilfe von Catmull-Clark-Methoden. Diplomarbeit,
RWTH Aachen, 2009.

10. C. de Boor. A Practical Guide to Splines. Springer, 1978.
11. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2nd edition, 2003.
12. W. Schröder, editor. Summary of Flow Modulation and Fluid-Structure Inter-

action Findings. Notes on Numerical Fluid Mechanics and Multidisciplinary
Design, Vol. 109. Springer, 2010.

13. J. Ballmann, A. Boucke, B.-H. Chen, L. Reimer, M. Behr, A. Dafnis, C. Buxel,
S. Buesing, H.-G. Reimerdes, K.-H. Brakhage, H. Olivier, M. Kordt, J. Brink-
Spalink, F. Theurich, and A. Büscher. Aero-Structural Wind Tunnel Exper-
iments with Elastic Wing Models at High Reynolds Numbers (HIRENASD -
ASDMAD). 49th AIAA Aerospace Sciences Meeting, Orlando, Florida, 2011.


