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A CERTIFIED REDUCED BASIS METHOD FOR PARAMETRIZED ELLIPTIC

OPTIMAL CONTROL PROBLEMS ∗

Mark Kärcher1 and Martin A. Grepl2

Abstract. In this paper, we employ the reduced basis method as a surrogate model for the solu-
tion of linear-quadratic optimal control problems governed by parametrized elliptic partial differential
equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds
for the error in several quantities of interest: the optimal control, the cost functional, and general
linear output functionals of the control, state, and adjoint variables. We show that, based on the as-
sumption of affine parameter dependence, the reduced order optimal control problem and the proposed
bounds can be efficiently evaluated in an offline-online computational procedure. Numerical results are
presented to confirm the validity of our approach.
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Introduction

Many problems in science and engineering can be modeled in terms of optimal control problems governed
by parametrized partial differential equations (PDEs). While the PDE describes the underlying system or
component behavior, the parameters often serve to identify a particular configuration of the component —
such as boundary and initial conditions, material properties, and geometry. The solution of PDE-constrained
optimal control problems using classical discretization techniques such as finite elements or finite volumes is
computationally expensive and time-consuming. One way to decrease the computational burden is the surrogate
model approach, where the original high-dimensional model is replaced by its reduced order approximation.
These ideas have received a lot of attention in the past and various model order reduction techniques have
been used in this context. We refer, e.g., to [1, 16, 17] for proper orthogonal decomposition (POD), to [11] for
reduction based on inertial manifolds, and to [12–14] for reduced basis methods. However, the solution of the
reduced order optimal control problem is generally suboptimal and reliable error estimation is thus crucial.

A posteriori error bounds have been proposed previously for POD approximations in [28] to estimate the
distance between the computed suboptimal control and the unknown optimal control; also see [27, 32] for an
application of this approach to other model order reduction techniques. In [4,5], reduced basis approximations
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and associated a posteriori error estimation procedures have been derived to estimate the error in the optimal
value of the cost functional. However, the bounds in [28], although rigorous, require solution of the underlying
high-dimensional problem and are thus online-inefficient; whereas the estimates in [4, 5], although efficient to
evaluate, are not rigorous upper bounds for the error.

In this paper we employ the reduced basis method as a surrogate model for the solution of the optimal
control problem. The reduced basis method is a model order reduction technique which provides efficient yet
reliable approximations to solutions of parametrized partial differential equations in the many-query or real-
time context [19,24]; also see [26] for a review of contributions to the methodology and further references. The
methodology is thus ideally suited for the solution of parametrized PDE-constrained optimal control problems.
In a recent note [7] we considered elliptic optimal control problems involving a scalar control and proposed
rigorous and efficiently evaluable a posteriori error bounds for the optimal control and the associated cost
functional. Our approach thus allows not only the efficient real-time solution of the reduced optimal control
problem, but also the efficient real-time evaluation of the quality of the suboptimal solution. We also refer
to [15] for an extension of these ideas to problems involving distributed controls. Recently, a reduced basis
approach to optimal control problems based on a saddle-point formulation has been considered in [20].

Here, we extend the work in [7] in the following directions: First, we introduce new a posteriori error bounds
based on a dual approach. To this end, we note that each component of the optimal control is in fact a linear
output of the optimality system. We thus build on the ideas in [23] to obtain superconvergent a posteriori
error bounds for the optimal control and, more generally, for linear output functionals of the state, adjoint, and
control. We show that the duality-based error bounds can be efficiently evaluated using the standard offline-
online computational procedure. Recall that dual techniques have been used successfully in [9,24,29] to improve
the convergence of reduced basis output approximations and the associated output bounds. We also generalize
the optimal control problem discussed in [7] by (i) considering problems involving multiple control inputs; and
(ii) introducing a more general parametrization of the cost functional. Concerning the latter, we show that our
approach directly applies to cost functionals involving an (affinely) parametrized desired state (or control) and
that we can also allow the regularization parameter to vary.

This paper is organized as follows. In Section 1 we briefly review the reduced basis recipe for linear second-
order elliptic partial differential equations (PDEs). The optimal control problem is discussed in Section 2: we
start with the general problem statement, state the first order optimality conditions, and illustrate how the
reduced basis method can be applied as a surrogate model. In Section 3 we introduce rigorous and efficiently
evaluable a posteriori error bounds for several quantities of interest: the optimal control, the associated cost
functional, and general linear output functionals of the state, adjoint and control variables. Finally, in Section 4,
we present numerical results for a stationary heat conduction model problem that show the validity of our
approach.

1. The Reduced Basis Method

We start with the general problem formulation and a brief review of the reduced basis approximation and
associated a posteriori error estimation procedures for linear second-order elliptic partial differential equations.
The derivation of our a posteriori error bounds for the optimal control problem in Section 3 relies heavily on
these – by now – standard results.

1.1. Problem Formulation

Let Ye with H1
0(Ω) ⊂ Ye ⊂ H1(Ω) be a Hilbert space over the bounded Lipschitz domain Ω ⊂ Rd, d = 1, 2, 3,

with boundary Γ.1 The inner product and induced norm associated with Ye are given by (·, ·)Ye
and ‖·‖Ye

=√
(·, ·)Ye , respectively; we assume that the norm ‖·‖Ye is equivalent to the H1(Ω)-norm [25]. In anticipation

of the optimal control problem considered in Section 2 we also introduce the finite-dimensional control space
U = Rm,m ∈ N, together with its standard euclidean inner product (·, ·)U and induced norm ‖·‖U =

√
(·, ·)U .

1The subscript e denotes “exact”.
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We denote the associated dual spaces of Ye and U by Y ′e and U ′, respectively. Furthermore, we let D ⊂ RP be
a prescribed P -dimensional compact parameter set in which our P -tuple (input) parameter µ = (µ1, . . . , µP )
resides.

We next introduce the parameter dependent bilinear form a(·, ·;µ) : Ye × Ye → R. We shall assume that
a(·, ·;µ) is continuous,

γe(µ) = sup
w∈Ye\{0}

sup
v∈Ye\{0}

a(w, v;µ)

‖w‖Ye‖v‖Ye

≤ γ0 <∞, ∀µ ∈ D, (1.1)

coercive,

αe(µ) = inf
v∈Ye\{0}

a(v, v;µ)

‖v‖2Ye

≥ α0 > 0, ∀µ ∈ D, (1.2)

and satisfies the affine parameter dependence

a(w, v;µ) =

Qa∑
q=1

Θq
a(µ) aq(w, v), ∀w, v ∈ Ye, ∀µ ∈ D, (1.3)

for some (preferably) small integer Qa. Here, the coefficient functions Θq
a : D → R are continuous and depend

on µ, but the continuous bilinear forms aq do not depend on µ. We recall that the affine parameter dependence
is crucial for the efficiency of the reduced basis method (see [8] for an extension to nonaffine problems). Finally,
we introduce the continuous and linear operator B : U → Y ′e , given by

Bu =

m∑
i=1

bi(·)ui, (1.4)

where b1, . . . , bm are given bounded linear functionals on Ye and u = (u1, . . . , um)T ∈ U is the control with
control components ui ∈ R, 1 ≤ i ≤ m. For simplicity, we assume that the functionals b1, . . . , bm do not depend
on the parameter; however, (affine) parameter dependence of the bi and thus of the operator B itself is readily
admitted [26].

We may now introduce the exact problem statement: For any parameter µ ∈ D and fixed control u ∈ U , find
ye ≡ ye(µ) ∈ Ye

2 such that

a(ye, v;µ) = 〈Bu, v〉Y ′e ,Ye
, ∀v ∈ Ye, (1.5)

where 〈·, ·〉Y ′e ,Ye
denotes the dual pairing between Y ′e and Ye. This equation will act as the PDE constraint for

the optimal control problem considered in Section 2.

1.1.1. Truth Approximation

We next introduce a “truth” finite element approximation space Y ⊂ Ye of very large dimension N . Note
that Y shall inherit the inner product and norm from Ye: (·, ·)Y = (·, ·)Ye

and ‖·‖Y = ‖·‖Ye
. Clearly, the

continuity and coercivity properties of the bilinear form a are inherited by the “truth” approximation, i.e.,

γ(µ) = sup
w∈Y \{0}

sup
v∈Y \{0}

a(w, v;µ)

‖w‖Y ‖v‖Y
≤ γe(µ) ≤ γ0 <∞, ∀µ ∈ D (1.6)

and

α(µ) = inf
v∈Y \{0}

a(v, v;µ)

‖v‖2Y
≥ αe(µ) ≥ α0 > 0, ∀µ ∈ D. (1.7)

2Here and in the following we often drop the dependence on µ to simplify notation.
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Our truth approximation to the exact problem (1.5) is then: Given µ ∈ D and u ∈ U , find y ≡ y(µ) ∈ Y such
that

a(y, v;µ) = 〈Bu, v〉Y ′,Y , ∀v ∈ Y. (1.8)

We shall assume that the truth space Y is sufficiently rich such that y(µ) and ye(µ) are indistinguishable. We
further recall that the reduced basis approximation shall be built upon – and the reduced basis error thus
evaluated with respect to – the truth solution y(µ) ∈ Y .

1.2. Reduced Basis Approximation

We assume that we are given the nested parameter samples DN ≡ {µ1 ∈ D, . . . , µN ∈ D}, 1 ≤ N ≤ Nmax,
and associated Lagrangian reduced basis spaces, YN = span{y(µn), 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, consisting
of so-called snapshots, i.e., solutions y of (1.8) for all µ ∈ DN . In actual practice, we construct DN using a
Greedy sampling procedure [30]. For stability considerations the snapshots are orthogonalized to obtain a set
of mutually (·, ·)Y -orthogonal basis functions ζn, 1 ≤ n ≤ N , such that YN = span{ζn, 1 ≤ n ≤ N}.

The reduced basis approximation is then obtained by a standard Galerkin projection onto the reduced basis
space: Given µ ∈ D and u ∈ U , find yN ≡ yN (µ) ∈ YN such that

a(yN , v;µ) = 〈Bu, v〉Y ′,Y , ∀v ∈ YN . (1.9)

1.3. A Posteriori Error Estimation

A posterior error estimation procedures play a decisive role in the reduced basis method. The error bounds
help to (i) efficiently and rigorously assess the error introduced by the reduced basis approximation; and (ii)
drive the Greedy procedure for generating the reduced basis space YN .

To begin, we specify the inner product (v, w)Y = 1
2

(
a(v, w;µref) + a(w, v;µref)

)
, where µref ∈ D is a reference

parameter value (for a symmetric we then have (v, w)Y = a(v, w;µref)). We next assume that we are given a
positive lower bound αLB(µ) : D → R+ for the coercivity constant α(µ) such that

α(µ) ≥ αLB(µ) ≥ α0 > 0, ∀µ ∈ D; (1.10)

various recipes exist to construct this lower bound [10, 24, 31]. We can now state the standard Y -norm error
bound in Theorem 1.1. We repeat the short proof here since the derivation of our new error bounds in the
optimal control setting is, in fact, an extension of this standard result.

Theorem 1.1. Let y ∈ Y be the solution to the truth problem (1.8) and yN ∈ YN be the corresponding reduced
basis approximation satisfying (1.9). The error then satisfies

‖y − yN‖Y ≤ ∆N (µ) ≡ ‖r(·;µ)‖Y ′
αLB(µ)

, ∀µ ∈ D, (1.11)

where the residual r(·;µ) : Y → R is given by r(v;µ) = 〈Bu, v〉Y ′,Y − a(yN , v;µ), ∀v ∈ Y , and its dual norm by
‖r(·;µ)‖Y ′ ≡ supv∈Y \{0} r(v;µ)/‖v‖Y .

Proof. It follows from (1.8) and the definition of the residual r(v;µ) that the reduced basis error, y−yN , satisfies

a(y − yN , v;µ) = 〈Bu, v〉Y ′,Y − a(yN , v;µ) = r(v;µ), ∀v ∈ Y. (1.12)

Choosing v = y − yN in (1.12), invoking (1.7), (1.10), and the dual norm of the residual, we obtain

αLB(µ)‖y − yN‖2Y ≤ a(y − yN , y − yN ;µ) ≤ ‖r(·;µ)‖Y ′‖y − yN‖Y , (1.13)

from which the result directly follows. �
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1.4. Computational Procedure

The affine parameter dependence of the bilinear form a allows an efficient offline-online computational pro-
cedure to evaluate the reduced basis approximation yN and associated a posteriori error bound ∆N (µ). We
briefly recall the essential steps of the former and then summarize the online computational cost to evaluate yN
and ∆N (µ); we refer to [26] for more details.

We express yN (µ) =
∑N
i=1 yNi(µ)ζi and choose as test functions v = ζi, 1 ≤ i ≤ N , in (1.9). It then follows

that y
N

(µ) = [yN1(µ), . . . , yNN (µ)]T ∈ RN satisfies

AN (µ)y
N

(µ) = BNu, (1.14)

where AN (µ) ∈ RN×N and BN (µ) ∈ RN×m are matrices with entries (AN (µ))ij = a(ζj , ζi;µ), 1 ≤ i, j ≤ N ,
and (BN )ij = bj(ζi), 1 ≤ i ≤ N, 1 ≤ j ≤ m, respectively. Invoking the affine parameter dependence (1.3) yields

the expansion AN (µ) =
∑Qa

q=1 Θq
a(µ)AqN , where the parameter-independent matrices AqN ∈ RN×N are given by

(AqN )ij = aq(ζj , ζi), 1 ≤ i, j ≤ N, 1 ≤ q ≤ Qa.
The offline computational cost clearly depends on N : we need to solve for the basis functions ζi, 1 ≤ i ≤ N ,

and precompute the parameter-independent matrices AqN , 1 ≤ q ≤ Qa, and BN ; the offline cost associated
to ∆N (µ) also depends on N [26]. In the online stage, for each new parameter value µ, we assemble the
parameter-dependent matrix AN (µ) at cost O(QaN

2) and then solve (1.14) at cost O(N3). We subsequently
evaluate ∆N (µ) online at cost O((QaN +m)2). The computational cost in the online stage is thus independent
of the truth finite element dimension N .

2. Parametrized Optimal Control Problem

In this section we introduce the parametrized linear-quadratic optimal control problem with elliptic PDE
constraint. We recall the first-order necessary (and in our case sufficient) optimality conditions and employ the
reduced basis method for the efficient solution of the resulting optimality systems.

2.1. General Problem Statement

We consider the problem setting as stated in Section 1. We next introduce the quadratic cost functional
J(·, ·;µ) : Ye × U → R given by

J(y, u;µ) =
1

2
‖y − yd(µ)‖2L2(D) +

λ

2
‖u− ud‖2U , (2.1)

where D ⊂ Ω or D ⊂ Γ is a measurable set; yd(µ) ∈ L2(D),∀µ ∈ D, and ud ∈ U = Rm are the desired state and
control, respectively; and λ > 0 is the regularization parameter. We shall assume that yd(µ) satisfies an affine
parametric dependence, i.e., we can express

yd(µ) =

Qyd∑
q=1

Θq
yd(µ) yqd(x), ∀µ ∈ D, (2.2)

for some (preferably) small integer Qyd. We note that, similar to the affine decomposition (1.3), the coefficient
functions Θq

yd : D → R are continuous and depend on µ, but the functions yqd ∈ L2(D) do not depend on µ.

For simplicity, we assume that the desired control ud is parameter-independent; however, (affine) parameter
dependence is readily admitted. Furthermore, for our model problem in Section 4 we will also consider the
regularization parameter λ itself as a varying input parameter.

We can now state the parametrized optimal control problem as

min J(ye, ue;µ) s.t. (ye, ue) ∈ Ye × U solves a(ye, v;µ) = 〈Bue, v〉Y ′e ,Ye
, ∀v ∈ Ye. (Pe)
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It follows from our assumptions that there exists a unique optimal solution (y∗e , u
∗
e) to (Pe) [18]. Employing a

Lagrangian approach we obtain the first-order optimality system consisting of the state equation, the adjoint
equation, and the optimality condition: Given µ ∈ D, the optimal solution (y∗e , p

∗
e , u
∗
e) ∈ Ye × Ye × U satisfies

a(y∗e , φ;µ) = 〈Bu∗e , φ〉Y ′e ,Ye
, ∀φ ∈ Ye, (2.3a)

a(ϕ, p∗e ;µ) = (yd(µ)− y∗e , ϕ)L2(D), ∀ϕ ∈ Ye, (2.3b)

(λ(u∗e − ud)− B?p∗e , ψ)U = 0, ∀ψ ∈ U . (2.3c)

Here, pe is the adjoint variable and the superscript ∗ denotes optimality. Furthermore, the linear and bounded
dual operator of B in (2.3c) is given by B? : Ye → U , where we identify (Y ′e )′ with Ye and U ′ with U . From the
relationship

〈Bu, φ〉Y ′e ,Ye
=

m∑
i=1

bi(φ)ui = (B?φ, u)U , (2.4)

it follows that, for given φ ∈ Ye, the dual operator B?φ can be expressed as

B?φ =
(
b1(φ), . . . , bm(φ)

)T
. (2.5)

We note that for the linear-quadratic optimal control problem (Pe) the first-order conditions (2.3) are necessary
and sufficient for the optimality of (y∗e , u

∗
e).

2.2. Truth Approximation

In general, we of course cannot expect to find an analytic solution to (2.3). We thus replace the infinite-
dimensional Ansatz-space Ye for the PDE constraint by our truth approximation space Y ⊂ Ye introduced in
Section 1.1.1. The corresponding truth optimal control problem is then given by

min J(y, u;µ) s.t. (y, u) ∈ Y × U solves a(y, v;µ) = 〈Bu, v〉Y ′,Y , ∀v ∈ Y. (P)

The associated first-order optimality system reads: Given µ ∈ D, the optimal solution (y∗, p∗, u∗) ∈ Y × Y ×U
satisfies

a(y∗, φ;µ) = 〈Bu∗, φ〉Y ′,Y , ∀φ ∈ Y, (2.6a)

a(ϕ, p∗;µ) = (yd(µ)− y∗, ϕ)L2(D), ∀ϕ ∈ Y, (2.6b)

(λ(u∗ − ud)− B?p∗, ψ)U = 0, ∀ψ ∈ U . (2.6c)

We note that the Ansatz and test spaces are identical for the state and adjoint equations. This corresponds to a
“first-discretize-then-optimize” approach and ensures that the solution of the optimality system (2.6) is indeed
also an optimal solution of the truth optimal control problem (P).

The optimality system (2.6) constitutes a coupled set of equations of dimension 2N +m and is thus expensive
to solve, especially if one is interested in various values of µ ∈ D. Our goal is therefore to significantly speed up
the solution of (2.6) by employing the reduced basis approximation as a surrogate model for the PDE constraint
in (P).

2.3. Reduced Basis Approximation

We first assume that we are given the “integrated” reduced basis spaces

YN = span{ζn, 1 ≤ n ≤ N} = span{y∗(µn), p∗(µn), 1 ≤ n ≤ N/2}, 1 ≤ N/2 ≤ Nmax/2, (2.7)

where the ζn, 1 ≤ n ≤ N , are mutually (·, ·)Y -orthogonal basis functions and N,Nmax are even. We comment
on the Greedy sampling procedure to construct the spaces YN in Section 3.5.
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We next replace the truth approximation of the PDE constraint in (P) by its reduced basis approximation.
The reduced basis optimal control problem is thus given by

min J(yN , uN ;µ) s.t. (yN , uN ) ∈ YN × U solves a(yN , v;µ) = 〈BuN , v〉Y ′,Y , ∀v ∈ YN . (PN)

We can also directly state the associated first-order optimality system: Given µ ∈ D, find (y∗N , p
∗
N , u

∗
N ) ∈

YN × YN × U such that

a(y∗N , φ;µ) = 〈Bu∗N , φ〉Y ′,Y , ∀φ ∈ YN , (2.8a)

a(ϕ, p∗N ;µ) = (yd(µ)− y∗N , ϕ)L2(D), ∀ϕ ∈ YN , (2.8b)

(λ(u∗N − ud)− B?p∗N , ψ)U = 0, ∀ψ ∈ U . (2.8c)

The reduced basis optimality system is only of dimension 2N + m and can be evaluated efficiently using an
offline-online computational decomposition. Before presenting the details in the next section we make several
remarks.

We note that we use a single reduced basis Ansatz and test space for the state and adjoint equations. The
reason is twofold: first, the reduced basis optimality system (2.8) reflects the reduced basis optimal control
problem (PN) only if the spaces of the state and adjoint equations are identical; and second, using different
spaces may result in an unstable system (2.8). This issue is closely related to the stability of reduced basis
formulations for saddle point problems, see [6] for details. If we use the same space YN for the state and
the adjoint equation, on the other hand, the system (2.8) is provably stable. Finally, since the state and
adjoint solutions need to be well-approximated using the single space YN , we choose “integrated” spaces, i.e.,
we integrate both snapshots of the state and adjoint equations into the space YN defined in (2.7).

2.4. Computational Procedure

We now turn to the computational details of the reduced basis approximation of the optimality system. To

this end, we express the reduced basis state and adjoint solutions as yN (µ) =
∑N
i=1 yNi(µ)ζi and pN (µ) =∑N

i=1 pNi(µ)ζi and denote the coefficient vectors by y
N

(µ) = [yN1(µ), . . . , yNN (µ)]T ∈ RN and p
N

(µ) =

[pN1(µ), . . . , pNN (µ)]T ∈ RN , respectively. If we choose as test functions φ = ζi, 1 ≤ i ≤ N , ϕ = ζi, 1 ≤ i ≤ N ,
and ψ = ei, 1 ≤ i ≤ m, in (2.8), where ei denotes the i-th unit vector in Rm, the reduced basis optimality
system can be expressed in terms of the (2N +m)× (2N +m) linear systemAN (µ) 0 −BN

DN AN (µ)T 0
0 −BTN λIm

 y
N
p
N
uN

 =

 0
Yd,N (µ)
λud

 . (2.9)

Here, AN (µ) ∈ RN×N and BN ∈ RN×m are the matrices defined in Section 1.4; DN ∈ RN×N is a matrix
with the entries (DN )ij = (ζj , ζi)L2(D), 1 ≤ i, j ≤ N ; Yd,N (µ) ∈ RN is a vector with entries (Yd,N )i =

(yd(µ), ζi)L2(D), 1 ≤ i ≤ N ; and Im ∈ Rm×m denotes the identity matrix. Invoking the affine parameter

dependence (1.3) yields the expansion AN (µ) =
∑Qa

q=1 Θq
a(µ)AqN as discussed in Section 1.4. Similarly, due to

the affine parameter dependence (2.2) of the desired state, we obtain Yd,N (µ) =
∑Qyd

q=1 Θq
yd(µ)Y qd,N , where the

parameter-independent vectors Y qd,N ∈ RN are given by (Y qd,N )i = (yqd, ζi)L2(D), 1 ≤ i ≤ N, 1 ≤ q ≤ Qyd.
Finally, to allow an efficient evaluation of the cost functional in the online stage, we also assemble and store the
matrix Ỹd ∈ RQyd×Qyd given by (Ỹd)pq = (ypd, y

q
d)L2(D), 1 ≤ p, q ≤ Qyd.

The offline-online decomposition is now clear. In the offline stage — performed only once — we first construct
the reduced basis space YN . We then assemble the parameter-independent quantities AqN , 1 ≤ q ≤ Qa, DN , BN ,

Y qd,N , 1 ≤ q ≤ Qyd, and Ỹd. The computational cost clearly depends on the truth finite element dimension N .
In the online stage — for each new parameter value µ — we first assemble the parameter-dependent quantities
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AN (µ) and Yd,N (µ) in O(QaN
2) and O(QydN) operations, respectively. We then solve the reduced basis

optimality system (2.9) at cost O((2N + m)3). Given the reduced basis optimal solution, the cost functional
can then be evaluated efficiently from

J(yN , uN ) =
1

2
yT
N
DNyN−

Qyd∑
q=1

Θq
yd(µ)(Y qd,N )T y

N
+

1

2

Qyd∑
p=1

Qyd∑
q=1

Θp
yd(µ)Θq

yd(µ)(Ỹd)pq+
λ

2
(uN−ud)T (uN−ud) (2.10)

in O(N2 + QydN + Q2
yd + m) operations. Hence, the computational cost for the online stage is independent

of N , the dimension of the underlying “truth” finite element approximation space. Since N � N , we expect
significant computational savings in the online stage relative to the solution of (2.6). However, we need to
rigorously and efficiently assess the error introduced.

3. A Posteriori Error Estimation

We will now develop a posteriori error bounds for several quantities of interest: the error in the optimal
control, the error in the associated cost functional, and the error in a given linear output functional of the
optimal solution. We note that the a posteriori error bounds are not only crucial to confirm the fidelity of
the reduced basis solution of the optimal control solution, but are also an essential ingredient in the Greedy
procedure to generate the reduced basis space YN .

We start with the control and cost functional bounds in Section 3.1 and Section 3.2, respectively. In Section 3.3
we then propose a dual approach which considerably improves the convergence rate of our control error bound.
The error bounds introduced are rigorous upper bounds for the true errors and are efficient to compute; we
summarize the computational procedure in Section 3.4. Finally, we present the Greedy procedure to generate
YN in Section 3.5.

3.1. Error Bound for the Optimal Control

We first consider the error in the optimal control. Our derivation is an extension of the results for scalar
controls in [7] and is based on the following result from [28] (see Theorem 4.11 in [28] for the proof).

Theorem 3.1. Let u∗ and u∗N be the optimal solutions to the truth and reduced basis optimal control problems
(P) and (PN), respectively. The error in the optimal control then satisfies

‖u∗ − u∗N‖U ≤
1

λ
‖λ(u∗N − ud)− B?p (y(u∗N ))‖U , ∀µ ∈ D. (3.1)

We note that y(u∗N ) is the solution of the (truth) state equation (2.6a) with control u∗N instead of u∗, and
p (y(u∗N )) is the solution of the (truth) adjoint equation (2.6b) with y(u∗N ) instead of y∗(u∗) on the right-hand
side. Evaluation of the bound (3.1) thus requires a solution of both truth approximations and is computationally
expensive. In contrast, our new bound is online-efficient, i.e, its evaluation is independent of N . The underlying
idea is to replace the truth approximation p(y(u∗N )) in (3.1) with the reduced basis approximation p∗N (y∗N (u∗N ))
and to bound the error term p(y(u∗N ))− p∗N (y∗N (u∗N )).

Before we continue, let us make some notational remarks. Following the notation and terminology in [4], we
refer to ẽy = y(u∗N )−y∗N (u∗N ) as the state predictability error and to ẽp = p(y(u∗N ))−p∗N (y∗N (u∗N )) as the adjoint
predictability error. They reflect the ability of the corresponding reduced basis solutions to approximate the
truth state and adjoint solutions for a prescribed control. In contrast, we define the state, adjoint, and control
optimality errors as ey,∗ = y∗(u∗)−y∗N (u∗N ), ep,∗ = p∗ (y∗(u∗))−p∗N (y∗N (u∗N )), and eu,∗ = u∗−u∗N , respectively.
We start with the following definition.
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Definition 3.2. The residuals of the state equation, the adjoint equation, and the optimality condition are
defined by

ry(φ;µ) = 〈Bu∗N , φ〉Y ′,Y − a(y∗N , φ;µ), ∀φ ∈ Y, ∀µ ∈ D, (3.2)

rp(ϕ;µ) = (yd(µ)− y∗N , ϕ)L2(D) − a(ϕ, p∗N ;µ), ∀ϕ ∈ Y, ∀µ ∈ D, (3.3)

ru(ψ;µ) = (λ(u∗N − ud)− B?p∗N , ψ)U , ∀ψ ∈ U , ∀µ ∈ D. (3.4)

Note that since we do not reduce the already low-dimensional control space U , the residual of the optimality
condition vanishes, i.e., we in fact have ru(ψ;µ) = 0, ∀ψ ∈ U .

Before stating the main result we require the following two intermediate results.

Lemma 3.3. The state predictability error, ẽy = y(u∗N )− y∗N (u∗N ), is bounded by

‖ẽy‖Y ≤ ∆̃y
N (µ) ≡ ‖ry(·;µ)‖Y ′

αLB(µ)
, ∀µ ∈ D, (3.5)

where ry(φ;µ) is the state residual defined in (3.2), y∗N (u∗N ) is the solution of (2.8a), and y(u∗N ) is the solution
of the truth state equation (2.6a) with control u∗N .

This is the standard a posteriori error bound for coercive elliptic PDEs, cf. Theorem 1.1 for the proof.

Lemma 3.4. The adjoint predictability error, ẽp = p (y(u∗N ))− p∗N (y∗N (u∗N )), is bounded by

‖ẽp‖Y ≤ ∆̃p
N (µ) ≡ 1

αLB(µ)

(
‖rp(·;µ)‖Y ′ + C2

D ∆̃y
N (µ)

)
, ∀µ ∈ D, (3.6)

where rp(ϕ;µ) is the adjoint residual defined in (3.3), CD ≡ supv∈Y \{0}
‖v‖L2(D)

‖v‖Y , p∗N (y∗N (u∗N )) is the solution

of (2.8b), and p (y(u∗N )) is the solution of the truth adjoint equation (2.6b) with y(u∗N ) on the right-hand side.

Proof. We note from the definition of the adjoint residual, rp(ϕ;µ), and (2.6b) that the error, ẽp, satisfies

a(ϕ, ẽp;µ) = rp(ϕ;µ) + (y∗N (u∗N )− y(u∗N ), ϕ)L2(D), ∀ϕ ∈ Y. (3.7)

We now choose ϕ = ẽp, invoke (1.7), (1.10), the definition of the dual norm of the residual, and the Cauchy-
Schwarz inequality to obtain

αLB(µ)‖ẽp‖2Y ≤ ‖rp(·;µ)‖Y ′‖ẽp‖Y + ‖y(u∗N )− y∗N (u∗N )‖L2(D)‖ẽp‖L2(D). (3.8)

The desired result directly follows from the definition of CD and Lemma 3.3. �

We note that this proof is in fact a simple extension of the proof of Theorem 1.1. The main difference is the
additional error term due to the change in the right hand sides of equations (2.6b) and (2.8b). This error in the
right hand side propagates and results in the additional term in the error bound (3.6).

We are now ready to state the optimal control error bound in

Proposition 3.5. Let u∗ and u∗N be the optimal solutions to the truth and reduced basis optimal control problems,

respectively. Given ∆̃p
N (µ) defined in (3.6), the error in the optimal control satisfies

‖u∗ − u∗N‖U ≤ ∆u,∗
N (µ) ≡ 1

λ

( m∑
i=1

‖bi‖2Y ′
)1/2

∆̃p
N (µ), ∀µ ∈ D. (3.9)
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Proof. We append ±B?p∗N (y∗N (u∗N )) to the bound in (3.1) and invoke (2.8c) to obtain

‖u∗ − u∗N‖U ≤
1

λ
‖B?

(
p
(
y(u∗N )

)
− p∗N

(
y∗N (u∗N )

))
‖U , ∀µ ∈ D. (3.10)

Furthermore, from the definition of the dual operator B? and the dual norm of b1, . . . , bm we have

1

λ
‖B?

(
p
(
y(u∗N )

)
− p∗N

(
y∗N (u∗N )

))
‖U =

1

λ

( m∑
i=1

bi(ẽ
p)2
)1/2

≤ 1

λ

( m∑
i=1

‖bi‖2Y ′
)1/2

‖ẽp‖Y . (3.11)

The desired result directly follows from Lemma 3.4. �

3.2. Error Bound for the Cost Functional

Given the error bound ∆u,∗
N (µ) for the optimal control we may readily derive a bound for the error in the

cost functional. We require the following two preparatory lemmata stating the a posteriori error bounds for
the state and adjoint optimality errors. We note that the proofs of these lemmata are similar to the proof of
Lemma 3.4, i.e., the error in the optimal control — or, more precisely, the error bound of the optimal control
— propagates and appears as an additional term in the state and adjoint optimality error bound.

Lemma 3.6. The state optimality error, ey,∗ = y∗(u∗)− y∗N (u∗N ), is bounded by

‖ey,∗‖Y ≤ ∆y,∗
N (µ) ≡ 1

αLB(µ)

(
‖ry(·;µ)‖Y ′ +

( m∑
i=1

‖bi‖2Y ′
) 1

2

∆u,∗
N (µ)

)
, ∀µ ∈ D. (3.12)

Proof. We note from (3.2) and (2.6a) that the error, ey,∗, satisfies

a(ey,∗, φ;µ) = ry(φ;µ) +

m∑
i=1

bi(φ)(u∗i − u∗N i), ∀φ ∈ Y. (3.13)

We now choose φ = ey,∗, invoke (1.7), (1.10), the definition of the dual norm of the residual and the linear
functionals b1, . . . , bm to obtain

αLB(µ)‖ey,∗‖2Y ≤ ‖ry(·;µ)‖Y ′‖ey,∗‖Y + ‖ey,∗‖Y
m∑
i=1

‖bi‖Y ′ |u∗i − u∗N i|. (3.14)

We use the Cauchy-Schwarz inequality and invoke Proposition 3.5 to obtain the desired result. �

Lemma 3.7. The adjoint optimality error, ep,∗ = p∗ (y∗(u∗))− p∗N (y∗N (u∗N )), is bounded by

‖ep,∗‖Y ≤ ∆p,∗
N (µ) ≡ 1

αLB(µ)

(
‖rp(·;µ)‖Y ′ + C2

D ∆y,∗
N (µ)

)
, ∀µ ∈ D. (3.15)

Proof. We note from (3.3) and (2.6b) that the error, ep,∗, satisfies

a(ϕ, ep,∗;µ) = rp(ϕ;µ) + (y∗N (u∗N )− y∗(u∗), ϕ)L2(D), ∀ϕ ∈ Y. (3.16)

We now choose ϕ = ep,∗, invoke (1.7), (1.10), the definition of the dual norm of the residual, and the Cauchy-
Schwarz inequality to obtain

αLB(µ)‖ep,∗‖2Y ≤ ‖rp(·;µ)‖Y ′‖ep,∗‖Y + ‖y∗(u∗)− y∗N (u∗N )‖L2(D)‖ep,∗‖L2(D). (3.17)

The desired result directly follows from the definition of CD and Lemma 3.6. �
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We can now state

Proposition 3.8. Let J∗ = J(y∗, u∗;µ) and J∗N = J(y∗N , u
∗
N ;µ) be the optimal values of the cost functionals of

the truth and reduced basis optimal control problems, respectively. The error then satisfies

|J∗ − J∗N | ≤ ∆J,∗
N (µ) ≡ 1

2

(
‖ry(·;µ)‖Y ′ ∆p,∗

N (µ) + ‖rp(·;µ)‖Y ′ ∆y,∗
N (µ)

)
, ∀µ ∈ D. (3.18)

Proof. We use the standard result from [2] to estimate the error in the cost functional by

|J∗ − J∗N | ≤
1

2
(‖ry(·;µ)‖Y ′ ‖ep,∗‖Y + ‖rp(·;µ)‖Y ′ ‖ey,∗‖Y ) , ∀µ ∈ D. (3.19)

The result follows from Lemma 3.6 and 3.7. �

We briefly remark at this point that our a posteriori bounds defined in (3.9) and (3.18) are rigorous upper
bounds for the true errors and that the standard reduced basis offline-online computational procedure directly

applies — online evaluation of ∆u,∗
N (µ) and ∆J,∗

N (µ) is independent of N ; see Section 3.4.

3.3. Duality Based Error Bound

In this section we propose superconvergent a posteriori error bounds for linear output functionals of the
state, adjoint, and control by employing dual techniques. Since each control component u1, . . . , um is a linear
output of the optimal solution x∗ = (y∗, p∗, u∗), this approach allows us to considerably improve the control
error bound (3.9) — and subsequently also the cost functional error bound (3.18). Dual techniques are widely
used in PDE approximations to obtain superlinear convergence of linear output functionals [23]; also see for
example [3, 22] in the finite element context. These ideas have also been used successfully to improve the
convergence of reduced basis output approximations and the associated a posteriori error bounds in [9, 24,29].

We note from (3.18) that the cost error bound ∆J,∗
N (µ) is in fact superconvergent, i.e., ∆J,∗

N (µ) is proportional
to the product of error terms involving the state and adjoint solutions of the optimality system. The control
error bound ∆u,∗

N (µ) defined in (3.9), on the other hand, is only proportional to the error in the adjoint solution.
If the actual error in the control converges superlinearly, the effectivities, i.e., the ratio of the error bound and
the actual error, will thus grow with the dimension N of the reduced basis approximation. We will observe and
comment on this behavior in Section 4; also see the results in [7].

Our goal is to avoid this growth of the effectivity with N by employing dual techniques. We first derive the
theory for a general linear output functional of the optimal solution x∗ = (y∗, p∗, u∗) and then state the results
for the improved control and cost functional error bounds.

3.3.1. Linear Output Functional

We start by writing the truth optimality system (2.6a) – (2.6c) in a more condensed form. To this end, we
introduce the product space X = Y ×Y ×U and define, for any µ ∈ D, the bilinear form h(·, ·;µ) : X ×X → R
as

h(x, z;µ) = h
(
(y, p, u), (φ, ϕ, ψ);µ

)
= a(y, φ;µ)− 〈Bu, φ〉Y ′,Y + a(ϕ, p;µ) + (y, ϕ)L2(D) + (λu− B?p, ψ)U . (3.20)

The optimality system (2.6a) – (2.6c) can then be written compactly as: Given µ ∈ D, the optimal solution
x∗ = (y∗, p∗, u∗) ∈ X satisfies

h(x∗, z;µ) = f(z), ∀z ∈ X , (3.21)

where z = (φ, ϕ, ψ) and the bounded linear functional f ∈ X ′ is defined as

f(z) = (yd(µ), ϕ)L2(D) + λ(ud, ψ)U . (3.22)
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We are interested in the evaluation of a linear output `(x∗) of the optimal solution x∗ = (y∗, p∗, u∗). Here,
` ∈ X ′ is a bounded linear output functional which is composed of its components `y, `p ∈ Y ′ and `u ∈ U ′ and
is given by `(z) = `y(φ) + `p(ϕ) + `u(ψ). Note that we obtain the control component ui as output by simply
choosing `y(φ) = `p(ϕ) = 0 and `u(ψ) = ψi; similarly, we can set `p(ϕ) = `u(ψ) = 0 and `y(φ) 6= 0 if we are
interested in a linear output of the state y.

We can also directly state the reduced basis optimality system (2.8) in this form: Given µ ∈ D, find
x∗N = (y∗N , p

∗
N , u

∗
N ) ∈ XN = YN × YN × U such that

h(x∗N , z;µ) = f(z), ∀z ∈ XN ; (3.23)

we then obtain the reduced basis output approximation from `(x∗N ).
We next introduce the associated truth dual problem [23]: Given µ ∈ D, the dual variable x̂∗ = (ŷ∗, p̂∗, û∗) ∈

X satisfies
h(z, x̂∗;µ) = `(z), ∀z ∈ X . (3.24)

The left-hand side of the dual problem (3.24) has the form

h(z, x̂∗;µ) = a(φ, ŷ∗;µ)− 〈Bψ, ŷ∗〉Y ′,Y + a(p̂∗, ϕ;µ) + (φ, p̂∗)L2(D) + (λψ − B?ϕ, û∗)U , (3.25)

and – by sorting with respect to the test functions – the dual problem (3.24) can thus be written in extended
form as

a(φ, ŷ∗;µ) + (φ, p̂∗)L2(D) = `y(φ), ∀φ ∈ Y, (3.26a)

a(p̂∗, ϕ;µ)− 〈Bû∗, ϕ〉Y ′,Y = `p(ϕ), ∀ϕ ∈ Y, (3.26b)

(λû∗ − B?ŷ∗, ψ)U = `u(ψ), ∀ψ ∈ U . (3.26c)

We note that the variables ŷ and p̂ in the dual optimality system have switched the roles compared to y and p
in the primal optimality system. We thus will refer to (3.26b) as the dual state equation and to (3.26a) as the
dual adjoint equation.

At this point we should in fact remark on a conflict in notation. Although the expressions “dual” and
“adjoint” are often used interchangeably, we need to distinguish between the two, i.e., we refer to (2.6) as the
primal optimality system containing the primal state equation, primal adjoint equation, and primal optimality
condition, and to (3.26) as the dual optimality system containing the dual state equation, dual adjoint equation,
and dual optimality condition.

It remains to introduce the reduced basis approximation of the dual problem (3.24). In analogy to the primal
problem we introduce the “integrated” dual reduced basis spaces

ŶM = span{ζdu
m , 1 ≤ m ≤M} = span{ŷ∗(µmdu), p̂∗(µmdu), 1 ≤ m ≤M/2}, 1 ≤M/2 ≤Mmax/2, (3.27)

where the ζdu
m , 1 ≤ m ≤M , are mutually (·, ·)Y -orthogonal basis functions and M,Mmax are even. We comment

on the Greedy sampling procedure to construct the spaces ŶM in Section 3.5. The dual reduced basis optimality
system is then: Given µ ∈ D, find x̂∗M = (ŷ∗M , p̂

∗
M , û

∗
M ) ∈ X̂M = ŶM × ŶM × U such that

a(φ, ŷ∗M ;µ) + (φ, p̂∗M )L2(D) = `y(φ), ∀φ ∈ ŶM , (3.28a)

a(p̂∗M , ϕ;µ)− 〈Bû∗M , ϕ〉Y ′,Y = `p(ϕ), ∀ϕ ∈ ŶM , (3.28b)

(λû∗M − B?ŷ∗M , ψ)U = `u(ψ), ∀ψ ∈ U . (3.28c)

We can now prove the following bound for the error in the output functional.

Theorem 3.9. Let x∗ ∈ X and x∗N ∈ XN be the optimal solutions to the primal truth and reduced basis

optimality systems (2.6) and (2.8), respectively. Furthermore, let x̂∗ ∈ X and x̂∗M ∈ X̂M be the optimal
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solutions to the dual truth and reduced basis optimality systems (3.26) and (3.28), respectively. The error in the
output functional ` then satisfies

|`(x∗)− `(x∗N )| ≤ ‖ry(·;µ)‖Y ′‖ŷ∗ − ŷ∗M‖Y + ‖rp(·;µ)‖Y ′‖p̂∗ − p̂∗M‖Y
+ |ry(ŷ∗M ;µ) + rp(p̂

∗
M ;µ)|, ∀µ ∈ D. (3.29)

Proof. From the linearity of the output functional ` and the definition of the dual problem (3.24) we obtain

`(x∗)− `(x∗N ) = `(x∗ − x∗N ) = h(x∗ − x∗N , x̂∗;µ), ∀µ ∈ D. (3.30)

Furthermore, for every z = (φ, ϕ, ψ)T ∈ X the error residual relationship

h(x∗ − x∗N , z;µ) = f(z)− h(x∗N , z;µ) (3.31)

= ry(φ) + rp(ϕ) + ru(ψ) = ry(φ) + rp(ϕ) (3.32)

holds by Definition 3.2. We now choose z = x̂∗ and obtain

h(x∗ − x∗N , x̂∗;µ) = h(x∗ − x∗N , x̂∗ − x̂∗M ;µ) + h(x∗ − x∗N , x̂∗M ;µ) (3.33)

= ry(ŷ∗ − ŷ∗M ;µ) + rp(p̂
∗ − p̂∗M ;µ) + ry(ŷ∗M ;µ) + rp(p̂

∗
M ;µ). (3.34)

The result now follows directly from the definition of the dual norms of the residuals. �

Note that ry and rp are the residuals associated to the primal optimality system and that their dual norms
‖ry(·;µ)‖Y ′ and ‖rp(·;µ)‖Y ′ as well as the residual correction terms ry(ŷ∗M ;µ) and rp(p̂

∗
M ;µ) can be evaluated

efficiently using an offline-online decomposition; see Section 3.4. However, we still need to develop efficiently
evaluable a posteriori error bounds for the dual optimality errors ŷ∗−ŷ∗M and p̂∗−p̂∗M . Fortunately, the derivation
of these bounds follows directly from the analysis in Section 3.1 and Section 3.2: we first derive bounds for the
dual predictability errors and the dual optimal “control” û∗− û∗M ; we then employ the dual control error bound
to obtain the dual optimality error bounds. We summarize the necessary results in Appendix A. Given the
dual optimality error bounds, we can state the main result of this section.

Proposition 3.10. Let x∗ and x∗N be the optimal solutions to the primal truth and reduced basis optimality
systems, respectively. Furthermore, let x̂∗ and x̂∗M be the optimal solutions to the dual truth and reduced basis
optimality systems, respectively. The error in the output functional ` then satisfies

|`(x∗)− `(x∗N )| ≤ ∆`,∗
N,M (µ), ∀µ ∈ D, (3.35)

where

∆`,∗
N,M (µ) ≡ ‖ry(·;µ)‖Y ′∆ŷ,∗

M (µ) + ‖rp(·;µ)‖Y ′∆p̂,∗
M (µ) + |ry(ŷ∗M ;µ) + rp(p̂

∗
M ;µ)|, ∀µ ∈ D. (3.36)

Proof. The result follows directly from Theorem 3.9 and the definitions of the dual state and adjoint optimality

error bounds ∆p̂,∗
M (µ) and ∆ŷ,∗

M (µ) in Lemmas A.5 and A.6, respectively. �

The primal-dual error bound ∆`,∗
N,M (µ) obviously depends on the dimensions of the primal and dual reduced

basis approximations through the primal residuals and the dual optimal solutions and associated bounds. We

present the computational procedure to evaluate ∆`,∗
N,M (µ) in Section 3.4.
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3.3.2. Optimal Control

For low-dimensional control spaces we may employ the dual approach to obtain superlinear convergent a
posteriori error bounds for the optimal control. To this end, we consider the linear output functional `ui(z) = ψi
for z = (φ, ϕ, ψ) ∈ X associated to the i-th control component ui. The error in the i-th control component then
coincides with the error for the functional `ui and is thus bounded by

|u∗i − u∗N i| = |`ui(x∗)− `ui(x∗N )| ≤ ∆`ui,∗

N,M (µ). (3.37)

Consequently, for the error in the optimal control we directly obtain

Corollary 3.11. Let x∗ and x∗N be the optimal solutions to the primal truth and reduced basis optimal control
problems, respectively. The error in the optimal control then satisfies

‖u∗ − u∗N‖U ≤ ∆u,∗
N,M (µ) ≡

( m∑
i=1

(
∆`ui,∗

N,M (µ)
)2) 1

2

. (3.38)

We note that the evaluation of the primal-dual error bound (3.38) requires m dual problems in addition to
the primal optimal control problem and is thus feasible only for problems involving a modest number of controls.

3.3.3. Cost Functional

We mentioned in the beginning of Section 3.3 that the (primal-only) cost error bound ∆J,∗
N (µ) defined in (3.18)

is already superconvergent. However, the cost error bound can still benefit indirectly from the dual approach.
As pointed out in Section 3.2, the control error bound propagates and enters as an additional error term in
the state and adjoint optimality error bounds. A sharper (primal-dual) control error bound will hence lead to
sharper optimality error bounds and finally to a sharper cost error bound.

The approach is as follows: we replace the control error bound ∆u,∗
N (µ) in (3.12) with its primal-dual coun-

terpart ∆u,∗
N,M (µ) to obtain the primal-dual state optimality error bound

∆y,∗
N,M (µ) ≡ 1

αLB(µ)

(
‖ry(·;µ)‖Y ′ +

( m∑
i=1

‖bi‖2Y ′
) 1

2

∆u,∗
N,M (µ)

)
(3.39)

and subsequently the primal-dual adjoint optimality error bound

∆p,∗
N,M (µ) ≡ 1

αLB(µ)

(
‖rp(·;µ)‖Y ′ + C2

D ∆y,∗
N,M (µ)

)
. (3.40)

These bounds in turn allow to develop a new primal-dual cost functional error bound given by

∆J,∗
N,M (µ) ≡ 1

2

(
‖ry(·;µ)‖Y ′ ∆y,∗

N,M (µ) + ‖rp(·;µ)‖Y ′ ∆p,∗
N,M (µ)

)
. (3.41)

Here, the primal-only state and adjoint optimality error bounds ∆y,∗
N (µ) and ∆p,∗

N (µ) in (3.18) have been replaced
by ∆y,∗

N,M (µ) and ∆p,∗
N,M (µ), respectively. We present numerical results for the original and improved bounds in

Section 4.

3.4. Computational Procedure

3.4.1. Control and Cost Functional Error Bound

For the evaluation of the control and cost functional error bounds described in Section 3.1 and 3.2 the following
quantities need to be computed: the dual norms of the state and adjoint equation residuals ‖ry(·;µ)‖Y ′ and
‖rp(·;µ)‖Y ′ , respectively; the constant CD; the dual norms of the linear functionals ‖bi‖Y ′ , 1 ≤ i ≤ m; and the



TITLE WILL BE SET BY THE PUBLISHER 15

coercivity lower bound αLB(µ). Since all of these quantities can be evaluated using the standard offline-online
decomposition [26], we only summarize the computational cost in the online stage. Given a new parameter

µ ∈ D and associated optimal solution x∗N , evaluation of ∆u,∗
N (µ) and ∆J,∗

N (µ) requires (to leading order)
O((QaN +m)2 + (QaN +N +Qyd)

2) operations, and is thus independent of N .

3.4.2. Dual Problem

The computational procedure for the reduced basis approximation of the dual optimality system is anal-
ogous to the one for the primal problem. We express the reduced basis dual state and adjoint solution

as ŷM (µ) =
∑M
i=1 ŷMi(µ)ζdu

i and p̂M (µ) =
∑M
i=1 p̂Mi(µ)ζdu

i and denote the coefficient vectors by ŷ
M

(µ) =

[ŷM1(µ), . . . , ŷMM (µ)]T ∈ RM and p̂
M

(µ) = [p̂M1(µ), . . . , p̂MM (µ)]T ∈ RM , respectively. If we choose as test

functions φ = ζdu
i , 1 ≤ i ≤ M , ϕ = ζdu

i , 1 ≤ i ≤ M and ψ = ei, 1 ≤ i ≤ m in (3.28), where ei de-
notes the i-th unit vector in Rm, the dual reduced basis optimality system can be expressed in terms of the
(2M +m)× (2M +m) linear system

ATM (µ) DM 0
0 AM (µ) −BM
−BTM 0 λIm

 ŷ
M
p̂
M
ûM

 =

 LyM
LpM
Lu

 . (3.42)

Here, AM (µ) ∈ RM×M , DM ∈ RM×M , and BM ∈ RM×m are matrices with the entries (AM (µ))ij =
a(ζdu

j , ζdu
i ;µ), 1 ≤ i, j ≤ M , (DM )ij = (ζdu

j , ζdu
i )L2(D), 1 ≤ i, j ≤ M , and (BM )ij = bj(ζ

du
i ), 1 ≤ i ≤ M, 1 ≤

j ≤ m, respectively. The vectors LyM ∈ RM and LpM ∈ RM are given by (LyM )i = `y(ζdu
i ), 1 ≤ i ≤ M ,

and (LpM )i = `p(ζdu
i ), 1 ≤ i ≤ M , respectively. We denote by Im ∈ Rm×m the identity matrix and

Lu ∈ Rm is the Riesz representation of `u. Invoking the affine parameter dependence (1.3) yields the ex-

pansion AM (µ) =
∑Qa

q=1 Θq
a(µ)AqM , where the parameter-independent matrices AqM ∈ RM×M are given by

(AqM )ij = aq(ζdu
j , ζdu

i ), 1 ≤ i, j ≤M, 1 ≤ q ≤ Qa.
The offline-online decomposition is now clear. In the offline stage — performed only once — we first construct

the reduced basis space ŶM and assemble the parameter-independent matrices AqM , 1 ≤ q ≤ Qa, DM , BM ,
and the parameter-independent vectors LyM , LpM ; the computational cost clearly dependents on N . In the
online stage — for each new parameter value µ — we first assemble the parameter-dependent matrix AM (µ) in
O(QaM

2) operations. We then solve the reduced basis optimality system (3.42) at cost O((2M +m)3). Hence,
the computational cost for the online stage is independent of N .

3.4.3. Duality Based Error Bound

For the evaluation of the primal-dual error bound ∆`,∗
N,M (µ) in (3.36) we additionally need the following

ingredients: the dual norms of the dual residuals ‖r̂p̂(·;µ)‖Y ′ and ‖r̂ŷ(·;µ)‖Y ′ and the residual correction terms
ry(ŷM ;µ) and rp(p̂M ;µ). Again, the offline-online decomposition for the dual norms of the residuals is standard;
we thus focus on the residual correction terms.

In the offline stage, given YN and ŶM , we assemble the parameter-independent matrices AqN,M ∈ RN×M ,

AqM,N ∈ RM×N , and DN,M ∈ RN×M with entries (AqN,M )ij = aq(ζi, ζ
du
j ), 1 ≤ i ≤ N, 1 ≤ j ≤M, 1 ≤ q ≤ Qa,

(AqM,N )ij = aq(ζdu
i , ζj), 1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ q ≤ Qa, and (DN,M )ij = (ζi, ζ

du
j )L2(D), 1 ≤ i ≤ N, 1 ≤ j ≤

M , respectively; and the parameter-independent vector Y qd,M ∈ RM with entries (Y qd,M )i = (yqd, ζ
du
i )L2(D), 1 ≤

i ≤M, 1 ≤ q ≤ Qyd.
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In the online stage, given a new parameter µ ∈ D and associated optimal solutions x∗N and x̂∗M , we evaluate
the residual correction terms from

ry(ŷM ;µ) = 〈BuN , ŷM 〉Y ′,Y − a(yN , ŷM ;µ) (3.43)

= (BMuN )T ŷ
M
−

Qa∑
q=1

Θq
a(µ)yT

N
AqN,M ŷM (3.44)

and

rp(p̂M ;µ) = (yd(µ), p̂M )L2(D) − (yN , p̂M )L2(D) − a(p̂M , pN ;µ) (3.45)

=

Qyd∑
q=1

Θq
yd(µ)(Y qd,M )T p̂

M
− yT

N
DN,M p̂M −

Qa∑
q=1

Θq
a(µ)p̂T

M
AqM,NpN . (3.46)

The overall computational cost to evaluate ∆`,∗
N,M (µ) online is O((QaM+m+1)2 +(QaM+M+1)2 +QaNM+

QydM) and thus independent of N .

3.5. Greedy Algorithm

We generate the primal and dual reduced basis spaces using the Greedy sampling procedure summarized
in Algorithm 1 (exemplarily shown only for one dual problem). Here, Ξpr

train ⊂ D and Ξdu
train ⊂ D are finite

but suitably large parameter train samples for the primal and dual problem, respectively; µ1
pr ∈ Ξpr

train and

µ1
du ∈ Ξdu

train are the initial parameter values; and εtol,min > 0 is a prescribed desired error tolerance. Note that
we expand the primal and dual reduced basis spaces in steps 8 and 9 with a snapshot of the corresponding state
and the adjoint equation, i.e., we use “integrated” spaces as discussed previously.

We make two remarks: First, if one is interested in the “primal-only” approach described in Sections 3.1
and 3.2, all steps in Algorithm 1 associated to the generation of the dual space can be ignored. In this

case we propose to use the (relative) cost functional error bound, ∆J,∗
N (µ)/J∗N (µ), for the sampling procedure

due to its superconvergent property. Second, if the primal-dual approach is used, we propose to use the

(relative) primal-dual cost functional bound, ∆N,M (µ) = ∆J,∗
N,M (µ)/J∗N (µ), for sampling the primal problem

and ∆M (µ) = max(∆ŷ,∗
M (µ),∆p̂,∗

M (µ)), i.e., the dual ingredients of the cost functional bound, for sampling the
dual problem. The spaces are generated simultaneously since ∆N,M (µ) depends on the primal and dual problem.
This choice is also used in Section 4 for the numerical results.

4. Numerical Results

We consider a linear-quadratic optimal control problem governed by steady heat conduction in a two-
dimensional domain [21]. The spatial domain, a typical point of which is (x1, x2), is given by Ω = (0, 7)× (0, 3)
and is subdivided into the four subdomains Ω1 = ((1, 2) × (0, 1)) ∪ ((5, 6) × (0, 1)), Ω2 = (3, 4) × (0, 1),
Ω3 = (1, 6) × (2.5, 3), and Ω4 = Ω \ {Ω1 ∪ Ω2 ∪ Ω3}. A sketch of the domain is shown in Figure 1. The
temperature satisfies Laplace’s equation in Ω with continuity of temperature and heat flux across subdomain
interfaces. We impose zero Dirichlet conditions on the left and right boundaries and zero Neumann conditions
on the bottom and top boundaries. The amount of heat supply in the heater domains Ω1 and Ω2 is regulated by
the first and second component of the control u = (u1, u2) ∈ U ≡ R2, respectively. The (reference) conductivity
in the subdomain Ω1 ∪Ω2 is set to unity. We consider the normalized conductivity κ in the subdomain Ω3 ∪Ω4

as our parameter µ1 ∈ [0.5, 5].
The temperature y(µ) ∈ Y thus satisfies (1.8), where Y ⊂ Y e ≡ {v ∈ H1(Ω) : v|ΓD

= 0} is a linear finite
element truth approximation subspace of dimension N = 8479 over a triangulation of Ω. The bilinear and
linear forms are given by a(w, v;µ) = µ1

∫
Ω3∪Ω4

∇w∇v dx+
∫

Ω1∪Ω2
∇w∇v dx and bi(v) =

∫
Ωi
v dx for i = 1, 2,
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Algorithm 1 Greedy Sampling Procedure

1: Choose Ξpr
train ⊂ D, Ξdu

train ⊂ D, µ1
pr ∈ Ξpr

train (arbitrary), µ1
du ∈ Ξdu

train (arbitrary), and εtol,min > 0

2: Set N ← 0, YN ← {}
3: Set M ← 0, ŶM ← {}
4: Set µ∗pr ← µ1

pr, µ
∗
du ← µ1

du and ∆N (µ∗pr)←∞
5: while ∆N,M (µ∗pr) > εtol,min do

6: N ← N + 2

7: M ←M + 2

8: YN ← YN−2 ⊕ span{ y(µ∗pr), p(µ
∗
pr) }

9: ŶM ← ŶM−2 ⊕ span{ ŷ(µ∗du), p̂(µ∗du) }
10: µ∗pr ← arg max

µpr∈Ξpr
train

∆N,M (µpr)

11: µ∗du ← arg max
µdu∈Ξdu

train

∆M (µdu)

12: end while

13: Nmax ← N

14: Mmax ←M

Figure 1. Domain Ω for the model problem.

respectively. The bilinear form a admits the affine representation (1.3) with Θ1
a(µ) = µ1,Θ

2
a(µ) = 1 and Qa = 2.

We also define the inner product (w, v)Y = µref
1

∫
Ω3∪Ω4

∇w∇v dx+
∫

Ω1∪Ω2
∇w∇v dx for µref

1 =
√

2.5; we may

hence choose αLB(µ) = min(µ1/µ
ref
1 , 1) in (1.10).

We consider the quadratic cost-functional J(y, u;µ) = 1
2‖y − yd(µ)‖2L2(D) + λ

2 ‖u − ud‖U , with ud = (1, 1)T

and D = Ω3. Here, the parameter-dependent desired state yd(µ) : D → R is given by

yd(x;µ) = µ2(x1 − 3.5)2 + 1, (4.1)

where the parameter µ2 varies from −0.1 to 0.1. The desired state yd(µ) clearly satisfies the affine parameter
dependence (2.2) with Qyd = 2: Θ1

yd(µ) = µ2, Θ2
yd = 1, y1

d(x) = (x1 − 3.5)2, and y2
d(x) = 1. Finally, we

also assume that the regularization parameter λ is allowed to vary in the range from 0.01 to 1. The full
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parametrization of our problem is thus given by µ = (µ1, µ2, λ) ∈ D ≡ [0.5, 5] × [−0.1, 0.1] × [0.01; 1]; we have
P = 3 parameters.

0
1

2
3

4
5

6
7

0
1

2
3
0

0.5
1

1.5
2

x1x2

y*
(µ
)

(µ1, µ2, λ) = (0.5, 0.1, 0.1),
u∗ = (1.07, 0.71), J∗ = 0.2192

0
1

2
3

4
5

6
7

0
1

2
3
0

0.5
1

1.5
2

x1x2

y*
(µ
)

(µ1, µ2, λ) = (5.0, 0.1, 0.1),
u∗ = (2.63, 2.36), J∗ = 1.1394

0
1

2
3

4
5

6
7

0
1

2
3
0

0.5
1

1.5
2

x1x2

y*
(µ
)

(µ1, µ2, λ) = (0.5, 0.1, 0.01),
u∗ = (2.32,−0.88), J∗ = 0.1907

0
1

2
3

4
5

6
7

0
1

2
3
0

0.5
1

1.5
2

x1x2

y*
(µ
)

(µ1, µ2, λ) = (0.5,−0.1, 0.01),
u∗ = (0.53, 0.79), J∗ = 0.0020

0
1

2
3

4
5

6
7

0
1

2
3
0

0.5
1

1.5
2

x1x2

y*
(µ
)

(µ1, µ2, λ) = (0.8, 0.1, 0.01),
u∗ = (2.42, 0.09), J∗ = 0.2112

0
1

2
3

4
5

6
7

0
1

2
3
0

0.5
1

1.5
2

x1x2

y*
(µ
)

(µ1, µ2, λ) = (0.8, 0.1, 1),
u∗ = (1.21, 1.14), J∗ = 0.2925

Figure 2. Optimal state y∗(µ), optimal control u∗(µ), and optimal cost functional value J∗(µ)
for different representative parameter values

We first present results for the solution of the truth optimal control problem (P) for different parameter
combinations. In Figure 2 we plot the optimal temperature distribution and state the optimal control and
associated cost functional value. We note that all parameters have a strong influence on the solution of the
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optimal control problem: the temperature and optimal control vary significantly and the variation in the cost
functional is almost three orders of magnitude. The range in the cost functional is largely due to the second
parameter value, µ2, which influences the desired temperature profile in Ω3: positive values of µ2 correspond to
a parabola facing up and negative values to a parabola facing down. The optimal control problem can achieve
a good fit — and thus small tracking error — only for negative values of µ2 because of the Dirichlet boundary
condition.

We construct the reduced basis space YN according to the Greedy sampling procedure described in Section 3.5.
To this end, we employ the train samples Ξpr

train ⊂ D consisting of npr
train = 845 parameter points over D for the

primal and Ξdu
train ⊂ D̂ of size ndu

train = 169 for the dual problem. Here D̂ = [0.5, 5] × [0.01, 1] is the parameter
domain for the dual problem3. We sample the primal problem on the relative primal-dual cost functional error

bound ∆J,∗
N,M (µ)/J∗N (µ) and the dual problem on the maximum of the dual state and adjoint optimality error

bounds max(∆ŷ,∗
M (µ),∆p̂,∗

M (µ)). The desired error tolerance is εtol,min = 1 E – 10 and the initial parameter values
are µ1

pr = (0.5,−0.1, 0.01) and µ1
du = (0.5, 0.01). We also introduce a parameter test sample Ξtest of size

ntest = 100 with a log-random distribution in µ1 and λ and a uniform-random distribution in µ2.

State Adjoint

N εyN,max,rel ∆̃y
N,max,rel η̄yN εpN,max,rel ∆̃p

N,max,rel η̄pN
2 6.74 E – 01 9.16 E – 01 1.20 E + 00 1.01 E + 00 4.38 E + 01 1.57 E + 01

4 5.39 E – 01 6.94 E – 01 1.25 E + 00 3.16 E – 01 1.52 E + 01 1.28 E + 01
8 4.72 E – 02 5.22 E – 02 1.43 E + 00 1.01 E – 01 1.33 E + 00 9.48 E + 00

12 4.69 E – 03 9.77 E – 03 1.41 E + 00 1.75 E – 02 1.22 E – 01 5.50 E + 00

16 1.61 E – 04 1.66 E – 04 1.43 E + 00 7.56 E – 03 7.93 E – 03 3.12 E + 00
20 4.21 E – 06 7.69 E – 06 1.45 E + 00 2.08 E – 04 3.38 E – 04 2.00 E + 00

24 1.92 E – 07 2.72 E – 07 1.50 E + 00 6.09 E – 05 6.41 E – 05 1.60 E + 00

Table 1. State and adjoint predictability errors, error bounds, and effectivities as a function of N .

In Table 1 we present, as a function of N , the maximum relative predictability errors εyN,max,rel and εpN,max,rel,

the maximum relative error bounds ∆̃y
N,max,rel and ∆̃p

N,max,rel, and the average effectivities η̄yN and η̄pN for the

state and adjoint equation, respectively. Here, εyN,max,rel is the maximum over Ξtest of ‖ẽy(µ)‖Y /‖y(u∗N (µ))‖Y ,

∆̃y
N,max,rel is the maximum over Ξtest of ∆̃y

N (µ)/‖y(u∗N (µ))‖Y , and η̄yN is the average over Ξtest of ∆̃y
N (µ)/ẽy(µ).

The quantities for the adjoint variable are defined analogously (normalized by ‖p(y(u∗N (µ)))‖Y ). We observe
that the state and adjoint predictability errors and bounds are decreasing very rapidly with increasing dimension
of the reduced basis space and that the error bounds are very sharp for all values of N . The slightly larger
effectivity of the adjoint error bound for small values of N is due to the fact that the state error bound, i.e.,
the second term in (3.6), dominates at this point. However, for higher values of N the dual norm of the adjoint

residual becomes the main contributor to ∆̃p
N (µ), which leads to a very sharp error bound.

Given the predictability error bounds we can evaluate the error bound for the optimal control. In Table 2
we thus present, as a function of N(= M), the maximum relative control error εu,∗N,max,rel and the primal-only

and primal-dual control error bounds ∆u,∗
N,max,rel and ∆u,∗

N,M,max,rel and associated average effectivities η̄u,∗N and

η̄u,∗N,M , respectively. Here, εu,∗N,max,rel is the maximum over Ξtest of ‖u∗(µ) − u∗N (µ)‖U/‖u∗(µ)‖U ; ∆u,∗
N,max,rel and

∆u,∗
N,M,max,rel are the maxima over Ξtest of ∆u,∗

N (µ)/‖u∗(µ)‖U and ∆u,∗
N,M (µ)/‖u∗(µ)‖U , respectively; and η̄u,∗N and

η̄u,∗N,M are the averages over Ξtest of ∆u,∗
N (µ)/‖u∗(µ) − u∗N (µ)‖U and ∆u,∗

N,M (µ)/‖u∗(µ) − u∗N (µ)‖U . We observe
that the control error exhibits a superlinear convergence with respect to the state and adjoint predictability
errors. The primal-only control error bound is not able to capture the error decay in the control and the mean
effectivity thus deteriorates considerably as N increases. In contrast, the primal-dual error bound is able to
match the convergence behavior of the actual error and the effectivities even decrease slightly with increasing

3Note that the second parameter, µ2, does not enter the dual problem (3.24) and is thus also not included in the Greedy sampling
procedure.



20 TITLE WILL BE SET BY THE PUBLISHER

N = M εu,∗N,max,rel ∆u,∗
N,max,rel η̄u,∗N ∆u,∗

N,M,max,rel η̄u,∗N,M

2 6.64 E – 02 3.23 E + 02 8.68 E + 02 5.53 E + 03 2.98 E + 04
4 6.63 E – 02 3.42 E + 02 3.08 E + 03 1.84 E + 02 6.26 E + 03

8 3.12 E – 03 1.08 E + 01 3.72 E + 03 6.95 E + 00 1.16 E + 03

12 6.27 E – 05 6.24 E – 01 2.44 E + 04 2.85 E – 02 2.58 E + 03
16 2.15 E – 07 7.74 E – 02 4.45 E + 05 4.95 E – 05 3.37 E + 02

20 1.70 E – 09 8.98 E – 04 5.56 E + 06 3.32 E – 08 2.12 E + 02

24 1.80 E – 11 1.57 E – 04 4.14 E + 07 4.13 E – 10 1.04 E + 02

Table 2. Control: error convergence, error bounds, and effectivities as a function of N .

N . We recall that evaluation of the primal-dual control error bound requires the solution of two dual optimality
systems in addition to the primal optimality system. Here, and for the rest of this section, we assume that the
reduced basis dimensions of the two dual problems are equivalent.

State Adjoint

N εy,∗N,max,rel ∆y,∗
N,max,rel η̄y,∗N εp,∗N,max,rel ∆p,∗

N,max,rel η̄p,∗N

2 6.70 E – 01 5.28 E + 02 7.93 E + 01 8.06 E – 01 1.30 E + 04 2.55 E + 03
4 5.36 E – 01 5.60 E + 02 8.44 E + 01 3.17 E – 01 1.15 E + 04 3.18 E + 03

8 4.68 E – 02 1.70 E + 01 1.28 E + 02 1.01 E – 01 3.09 E + 02 2.06 E + 03

12 4.69 E – 03 1.02 E + 00 1.85 E + 02 1.75 E – 02 1.86 E + 01 6.16 E + 02
16 1.61 E – 04 1.27 E – 01 7.22 E + 02 7.56 E – 03 2.31 E + 00 3.25 E + 02

20 4.21 E – 06 1.31 E – 03 2.10 E + 03 2.08 E – 04 6.90 E – 02 1.46 E + 02

24 1.92 E – 07 2.07 E – 04 1.70 E + 04 6.09 E – 05 7.00 E – 03 9.83 E + 01

Table 3. State and adjoint optimality errors, error bounds, and effectivities as a function of N .

We next turn to the optimality errors. In Table 3 we present, as a function of N , the maximum relative
optimality errors εy,∗N,max,rel and εp,∗N,max,rel, the maximum relative error bounds ∆y,∗

N,max,rel and ∆p,∗
N,max,rel, and

the average effectivities η̄y,∗N and η̄p,∗N for the state and adjoint variable, respectively. Here, εy,∗N,max,rel is the

maximum over Ξtest of ‖ey,∗(µ)‖Y /‖y∗(µ)‖Y , ∆y,∗
N,max,rel is the maximum over Ξtest of ∆y,∗

N (µ)/‖y∗(µ)‖Y , and

η̄y,∗N is the average over Ξtest of ∆y,∗
N (µ)/ey,∗(µ). The quantities for the adjoint variable are defined analogously.

Again, we observe a rapid decay of both the state and adjoint optimality errors with increasing N . However, the
effectivities of the state optimality error bounds increase with increasing N . This is caused by the control error
bound, ∆u,∗

N (µ) (see Table 2), which enters ∆y,∗
N (µ) and limits the convergence. In contrast, the effectivities

of the adjoint optimality error bounds decrease with increasing N . Although ∆u,∗
N (µ) also enters the adjoint

optimality bound ∆p,∗
N (µ) indirectly through ∆y,∗

N (µ), the bound ∆p,∗
N (µ) is dominated by the dual norm of the

adjoint residual for larger N and thus the overestimation of the control has a reduced effect on ∆p,∗
N (µ).

State Adjoint

N = M εy,∗N,max,rel ∆y,∗
N,M,max,rel η̄y,∗N,M εp,∗N,max,rel ∆p,∗

N,M,max,rel η̄p,∗N,M

2 6.70 E – 01 9.05 E + 03 2.59 E + 03 8.06 E – 01 6.69 E + 05 9.21 E + 04

4 5.36 E – 01 2.76 E + 02 1.89 E + 02 3.17 E – 01 9.04 E + 03 4.52 E + 03
8 4.68 E – 02 8.01 E + 00 3.75 E + 01 1.01 E – 01 1.74 E + 02 6.01 E + 02
12 4.69 E – 03 5.79 E – 02 1.36 E + 01 1.75 E – 02 1.64 E + 00 2.74 E + 01

16 1.61 E – 04 2.22 E – 04 2.02 E + 00 7.56 E – 03 8.00 E – 03 3.44 E + 00
20 4.21 E – 06 7.69 E – 06 1.54 E + 00 2.08 E – 04 3.38 E – 04 2.00 E + 00

24 1.92 E – 07 2.72 E – 07 1.56 E + 00 6.09 E – 05 6.41 E – 05 1.60 E + 00

Table 4. State and adjoint optimality errors, dual error bounds, and effectivities as a function of N .

As pointed out in Section 3.3.3 we can employ the primal-dual control error bound to obtain improved
optimality error bounds for the state and adjoint variable. We summarize the results in Table 4. The quantities
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are defined analogously to Table 3, we simply replace the error bounds ∆y,∗
N (µ) and ∆p,∗

N (µ) by their respective
counterparts ∆y,∗

N,M (µ) and ∆p,∗
N,M (µ). Except for small values of N we now obtain very sharp bounds resulting

in O(1− 10) effectivities for the state and adjoint optimality errors.

N = M εJ,∗N,max,rel ∆J,∗
N,max,rel η̄J,∗N ∆J,∗

N,M,max,rel η̄J,∗N,M

2 2.03 E – 01 6.38 E + 04 3.99 E + 04 3.29 E + 06 1.39 E + 06

4 1.74 E – 02 2.19 E + 04 1.80 E + 05 1.61 E + 04 2.59 E + 05

8 1.67 E – 03 3.40 E + 01 1.67 E + 04 2.35 E + 01 3.86 E + 03
12 5.53 E – 06 6.11 E – 02 9.92 E + 03 8.18 E – 03 1.40 E + 03

16 6.57 E – 08 9.38 E – 04 2.82 E + 04 1.63 E – 06 1.99 E + 02

20 2.32 E – 10 5.35 E – 07 2.33 E + 04 1.24 E – 09 6.91 E + 02
24 4.95 E – 12 9.43 E – 09 2.67 E + 04 1.12 E – 11 6.20 E + 01

Table 5. Cost functional: error convergence, error bounds, and effectivities as a function of N .

We next consider the cost functional. In Table 5 we report, as a function of N(= M), the maximum

relative cost functional errors εJ,∗N,max,rel, the maximum relative error bounds ∆J,∗
N,max,rel and ∆J,∗

N,M,max,rel, and

the associated average effectivities η̄J,∗N and η̄J,∗N,M . Here, εJ,∗N,max,rel is the maximum over Ξtest of |J∗(µ) −
J∗N (µ)|/J∗(µ), ∆J,∗

N,max,rel and ∆J,∗
N,M,max,rel are the maxima over Ξtest of ∆J,∗

N (µ)/J∗(µ) and ∆J,∗
N,M (µ)/J∗(µ),

respectively; and η̄J,∗N and η̄J,∗N,M are the averages over Ξtest of ∆J,∗
N (µ)/|J∗(µ)− J∗N (µ)| and ∆J,∗

N,M (µ)/|J∗(µ)−
J∗N (µ)|, respectively. We note that — as opposed to the control — the error in the cost functional and the
primal-only bound converge superlinearly with respect to the predictability and/or optimality errors and the
effectivities thus do not deteriorate with increasing N . Unfortunately, the effectivities are fairly large for all
values of N , i.e., we consistently overestimate the error in the cost. We therefore consider the improved primal-
dual error bound (3.41): we observe that the primal-dual bound is indeed sharper for N,M ≥ 4 and results in
much smaller effectivities especially for larger values of N,M . We would also like to point out that, if the dual
approach is used for the control error bound, the improvement in the cost functional bound is basically “for
free,” i.e., we do not need to solve an additional dual problem to obtain the sharper primal-dual error bound
for the cost functional.

N = M ε`,∗N,max,rel ∆`,∗
N,max,rel η̄`,∗N ∆`,∗

N,M,max,rel η̄`,∗N,M

2 1.28 E – 01 1.12 E + 03 6.52 E + 04 1.77 E + 02 3.33 E + 04

4 1.90 E – 02 1.19 E + 03 2.55 E + 06 7.75 E + 01 3.78 E + 05
8 4.77 E – 04 3.61 E + 01 3.89 E + 05 7.34 E – 01 4.73 E + 03
12 1.22 E – 06 2.17 E + 00 4.13 E + 06 2.18 E – 03 1.02 E + 04

16 1.68 E – 08 2.69 E – 01 6.10 E + 07 1.39 E – 05 9.37 E + 03
20 4.44 E – 11 2.78 E – 03 3.74 E + 09 3.13 E – 08 8.68 E + 03

24 1.16 E – 12 3.74 E – 04 6.44 E + 09 5.52 E – 10 1.88 E + 03

Table 6. Output functional: error convergence, error bounds, and effectivities as a function of N .

In Section 3.3.1 we derived the primal-dual bounds for a general linear output functional of the optimal
solution. As a specific example, we consider the mean value of the temperature over the subdomain Ω3 cor-
responding to the linear output functional `(z) = `y(φ) =

∫
Ω3
φ dx for φ = y∗. We summarize the results in

Table 6. Here, ε`,∗N,max,rel, ∆`,∗
N,max,rel, η̄

`,∗
N , ∆`,∗

N,M,max,rel, and η̄`,∗N,M are defined analogously to the quantities for

the cost functional, where the standard primal-only output error bound is given by ∆`,∗
N (µ) ≡ ‖`y‖Y ′∆y,∗

N (µ).
The error decay is very rapid and comparable to the control and cost functional error. The primal-only bound
does not converge superlinearly and the effectivities thus deteriorate significantly as N increases. The primal-
dual error bound, on the other hand, is able to capture the superlinear convergence of the output error: the



22 TITLE WILL BE SET BY THE PUBLISHER

4 8 12 16 20 2410−12
10−10
10−8
10−6
10−4
10−2
100
102
104
106
108

N

m
ax

. r
el

. d
ua

l c
on

tro
l e

rro
r b

ou
nd

 

 

primal−only
M = 4
M = 8
M = 12
M = 16
M = 20
M = 24
¡N,  maxrel

Figure 3. Maximum relative control error, primal-
only error bound ∆u,∗

N,max,rel, and primal-dual control

error bound ∆u,∗
N,M,max,rel as a function of N and M .
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Figure 4. Maximum relative cost functional error,

primal-only error bound ∆J,∗
N,max,rel, and primal-dual

error bound ∆J,∗
N,M,max,rel as a function of N and M .
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Figure 5. Maximum relative output error, primal-only error bound ∆`,∗
N,max,rel, and primal-dual error bound

∆`,∗
N,M,max,rel as a function of N and M .

corresponding effectivities decrease slightly with increasing N . The behavior is similar to the one we observed
with the optimal control.

Finally, we study the effect on the primal-dual error bounds if we choose different values for N and M . In
Figure 3 we plot the maximum relative control error εu,∗N,max,rel and primal-only error bound ∆u,∗

N,max,rel as a

function of N as well as the maximum relative primal-dual control error bound ∆u,∗
N,M,max,rel as function of N

for various values of M . The corresponding plots for the primal-dual cost functional and output bound are
shown in Figures 4 and 5, respectively. We observe that the error bounds decrease for fixed M as N increases
and vice versa. A specific desired accuracy of the bound can thus be achieved for different combinations of N
and M . Furthermore, we note from Figures 3–5 that the dual approach clearly improves the convergence rates
of the control and output error bounds, whereas the convergence rate of the cost functional error bound is fairly
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insensitive to M . Considering the cost, a larger M simply allows to “shift” the convergence curve of the error
bound closer to the actual error resulting in a sharper bound.

We may thus select values of N and M so as to (say) minimize the computational cost involved to achieve
a desired accuracy, or minimize the effectivity of the error bound. If the main interest is in sharp bounds and
hence small effectivities, for example, we need to choose M larger than N for the problem at hand. We present
results for different combinations of N and M in Table 7 for the control and cost and in Table 8 for the output.
Here, we choose N vs. M based on Figures 3–5: for a given N we select the smallest possible M so as to
minimize the error bound and thus the effectivity.

N M εu,∗N,max,rel ∆u,∗
N,M,max,rel η̄u,∗N,M M εJ,∗N,max,rel ∆J,∗

N,M,max,rel η̄J,∗N,M

2 20 6.64 E – 02 7.62 E – 02 1.03 E + 00 16 2.03 E – 01 2.22 E + 02 4.12 E + 02

4 20 6.63 E – 02 6.65 E – 02 1.06 E + 00 16 1.74 E – 02 3.42 E + 01 1.06 E + 03

8 20 3.12 E – 03 3.35 E – 03 1.12 E + 00 16 1.67 E – 03 1.65 E – 01 9.33 E + 01
12 20 6.27 E – 05 8.20 E – 05 1.90 E + 00 16 5.53 E – 06 6.96 E – 04 3.56 E + 02

16 24 2.15 E – 07 2.34 E – 07 2.59 E + 00 16 6.57 E – 08 1.63 E – 06 1.99 E + 02

20 24 1.70 E – 09 2.43 E – 09 1.85 E + 01 16 2.32 E – 10 1.61 E – 09 7.15 E + 02
24 24 1.80 E – 11 4.13 E – 10 1.04 E + 02 20 4.95 E – 12 1.14 E – 11 6.32 E + 01

Table 7. Control and cost functional: error convergence, error bounds, and effectivities as a
function of N and M .

N M ε`,∗N,max,rel ∆`,∗
N,M,max,rel η̄`,∗N,M

2 20 1.28 E – 01 1.29 E – 01 1.19 E + 00
4 20 1.90 E – 02 1.91 E – 02 7.63 E + 00

8 20 4.77 E – 04 4.81 E – 04 1.81 E + 00
12 22 1.22 E – 06 1.93 E – 06 5.30 E + 00

16 24 1.68 E – 08 7.22 E – 08 2.02 E + 01

20 24 4.44 E – 11 1.41 E – 09 6.05 E + 02
24 24 1.16 E – 12 5.52 E – 10 1.88 E + 03

Table 8. Output functional: error convergence, error bounds, and effectivities as a function
of N and M .

Appendix A. A Posteriori Error Bounds for Dual Optimality System

We summarize the a posteriori error bounds for the dual optimality system. The results follow directly from
the analysis of the primal optimality system in Section 3.1 and Section 3.2. We start with the following

Definition A.1. The residuals of the dual state equation, dual adjoint equation, and the dual optimality
condition are defined as

r̂p̂(ϕ;µ) = `p(ϕ) + 〈Bû∗M , ϕ〉Y ′,Y − a(p̂∗M , ϕ;µ), ∀ϕ ∈ Y, ∀µ ∈ D, (A.1)

r̂ŷ(φ;µ) = `y(φ)− (φ, p̂M )L2(D) − a(φ, ŷ∗M ;µ), ∀φ ∈ Y, ∀µ ∈ D, (A.2)

r̂û(ψ;µ) = `u(ψ)− (λû∗M − B?ŷ∗M , ψ)U , ∀ψ ∈ U , ∀µ ∈ D. (A.3)

Again, since we do not employ a reduced basis for the low-dimensional control space U the residual of the
optimality condition vanishes, i.e., we have r̂û(ψ;µ) = 0, ∀ψ ∈ U . We next consider the dual predictability
errors and the dual optimal control error.
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Lemma A.2. The dual state predictability error, ẽp̂ = p̂(û∗M )− p̂∗M (û∗M ), is bounded by

‖ẽp̂‖Y ≤ ∆̃p̂
M (µ) ≡ ‖r̂p̂(·;µ)‖Y ′

αLB(µ)
, ∀µ ∈ D, (A.4)

where the dual adjoint residual r̂p̂(ϕ;µ) is defined in (A.1), p̂∗M (û∗M ) is the solution of (3.28b), and p̂(û∗M ) is
the solution of the truth equation (3.26b) with control û∗M .

This is the standard a posteriori error bound for coercive elliptic PDEs, see Theorem 1.1.

Lemma A.3. The dual adjoint predictability error, ẽŷ = ŷ (p̂(û∗M ))− ŷ∗M (p̂∗M (û∗M )), is bounded by

‖ẽŷ‖Y ≤ ∆̃ŷ
M (µ) ≡ 1

αLB(µ)

(
‖r̂ŷ(·;µ)‖Y ′ + C2

D ∆̃p̂
M (µ)

)
, ∀µ ∈ D, (A.5)

where the dual state residual r̂ŷ(φ;µ) is defined in (A.2), CD ≡ supv∈Y
‖v‖L2(D)

‖v‖Y , ŷ∗M (p̂∗M (û∗M )) is the solution

of (3.28a), and ŷ (p̂(û∗M )) is the solution of the truth equation (3.26a) with p̂(û∗M ) instead of p̂∗(û∗).

Proof. The desired result directly follows from the proof of Lemma 3.4 by replacing ẽp with ẽŷ as well as rp(ϕ;µ)
with r̂ŷ(φ;µ) and invoking Lemma A.2. �

Proposition A.4. Let û∗ and û∗M be the optimal solutions of the dual truth and reduced basis optimality

systems, respectively. Given ∆̃ŷ
M (µ) defined in (A.5), the error in the optimal control satisfies

‖û∗ − û∗M‖U ≤ ∆û,∗
M (µ) ≡ 1

λ

( m∑
i=1

‖bi‖2Y ′
)1/2

∆̃ŷ
M (µ), ∀µ ∈ D. (A.6)

Proof. Following the proof of Theorem 4.11 in [28], one can show that

‖û∗ − û∗M‖U ≤
1

λ
‖λû∗M − B?ŷ(p̂(û∗M ))− ˆ̀

u‖U , (A.7)

where p̂(û∗M ) is the solution to the dual state equation (3.26b) with control û∗M instead of û∗ and ŷ(p̂(û∗M )) is

the solution to the dual adjoint equation (3.26a) with p̂(û∗M ) instead of p̂∗(û∗). Furthermore ˆ̀
u ∈ U is the Riesz

representation of `u ∈ U ′. The result then follows analogously to the proof of Proposition 3.5. �

We finally turn to the dual optimality errors.

Lemma A.5. The dual state optimality error, ep̂,∗ = p̂∗(û∗)− p̂∗M (û∗M ), is bounded by

‖ep̂,∗‖Y ≤ ∆p̂,∗
M (µ) ≡ 1

αLB(µ)

(
‖r̂p̂(·;µ)‖Y ′ +

( m∑
i=1

‖bi‖2Y ′
) 1

2

∆û,∗
M (µ)

)
, ∀µ ∈ D. (A.8)

Proof. The desired results directly follows from the proof of Lemma 3.6 by replacing ey,∗ with ep̂,∗ as well as
ry(φ;µ) with r̂p̂(ϕ;µ) and invoking Proposition A.4. �

Lemma A.6. The dual adjoint optimality error, eŷ,∗ = ŷ∗ (p̂∗(û∗))− ŷ∗M (p̂∗M (û∗M )), is bounded by

‖eŷ,∗‖Y ≤ ∆ŷ,∗
M (µ) ≡ 1

αLB(µ)

(
‖r̂ŷ(·;µ)‖Y ′ + C2

D ∆p̂,∗
M (µ)

)
, ∀µ ∈ D. (A.9)

Proof. The desired results directly follows from the proof of Lemma 3.7 by replacing ep,∗ with eŷ,∗ as well as
rp(ϕ;µ) with r̂ŷ(φ;µ) and invoking Lemma A.5. �
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