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BASED ON GRADIENT RECOVERY
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Abstract. We introduce a new redistancing method for level set functions. This method applies
in a finite element setting and uses a gradient recovery technique. Based on the recovered gradient
a quasi-normal field on the zero level of the finite element level set function is defined and from this
an approximate signed distance function is determined. For this redistancing method rigorous error
bounds are derived. For example, the distance between the original zero level and the zero level after
redistancing can be shown to be bounded by chk+1, if finite elements of degree k are used in the
discretization.
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1. Introduction. The level set method is a very popular method to treat prob-
lems involving free surfaces or interfaces. We refer to the literature for an explanation
of this method and of fields of application, e.g. [16, 17, 12, 18]. Very often in this level
set method a so-called reinitialization or redistancing (or reparametrization) proce-
dure is used. Since the introduction of the reinitialization approach in [4] many of
such methods have been proposed in the literature. Most of these can be classified
as either PDE-based [19, 14] or geometry based [15, 17, 5]. We refer to the recent
paper [3] for a discussion and comparison of these approaches. For an approach based
on extension velocities, in which reinitialization is avoided, we refer to [1, 6].

In reinitialization methods, for a given discrete approximation φh of the unknown
level set function φ one constructs an approximate signed distance function dh to the
(only implicitly given) zero level Γh of φh. Let the (implicitly given) zero level of dh
be denoted by Γ̃h. In general, for an approximate signed distance function one has
dist(Γ̃h,Γh) > 0. In reinitialization methods one tries to construct a function dh such
that, in a neighborhood of Γh, this function is “close to” the exact signed distance
function to Γh, denoted by dexh , and such that dist(Γ̃h,Γh) is “small”. In numerical
analyses of such methods one typically uses numerical experiments, for certain model
problems, to investigate and quantify what is meant by “close to” and “small”. We
are not aware of any paper in which rigorous error bounds for the difference between
dh and dexh or for dist(Γ̃h,Γh) > 0 are derived.

In this paper we present a new, geometry based, reinitialization method and
derive rigorous error bounds for it. Although its error analysis is rather technical,
the basic idea of the method is easy to explain. Our method is a geometric one, with
a structure that is common in fast marching techniques (FMM), namely an initial
phase combined with an extension phase. In the initial phase one assigns values to
the finite element nodes of the simplices that are intersected by Γh. These values
are close to (as quantified further on) the signed distance values to Γh. Given these
values, in the extension phase values are assigned to all other nodes, using e.g. a fast
marching sweeping approach . It is well-known that in such redistancing methods
the initial phase is the critical one and determines the accuracy of the reinitialization
method. The method that we introduce is different from the methods known in the
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literature with respect to its initial phase. For the extension phase one can use any
of the extension methods already available in the literature.

We explain the approach used in the initial phase. First consider a point z that is
close to the zero level Γ of a smooth level set function φ. The normals on Γ are denoted
by n. We then have a unique decomposition z = p(z) + dex(z)n(p(z)), with p(z) ∈ Γ
the orthogonal projection of z on Γ. By definition, the distance from z to Γ is given
by |dex(z)| = ‖z − p(z)‖. We adapt this elementary distance characterization to the
discrete case. We assume that Γh is the zero level of a finite element approximation
φh of φ. The function φh is continuous and a piecewise polynomial of degree k (on
simplices). Under weak assumptions, Γh is a Lipschitz-manifold. We introduce the
notion of a quasi-normal field nh on such a Lipschitz-manifold. Its essential conditions
are that x → nh(x), x ∈ Γh, is locally Lipschitz-continuous and that nh(x) is “close
to” orthogonal to Γh (cf. Definition 3.1 for precise formulation). The “close to
orthogonal” condition is quantified using a parameter δ; in the case of a smooth
manifold one has δ = | cos θ|, with θ the angle between nh(x) and the tangent plane
at x. Based on this quasi-normal field, for z sufficiently close to Γh there is a unique
representation z = p(z) + dh(z)nh(p(z)), p(z) ∈ Γh, which induces an approximate
signed distance function dh(z). In general z → p(z) is an oublique projection on
Γh. In a general analysis, presented in section 4, the difference between dh(z) and the
exact signed distance value dexh (z) to Γh can be bounded in terms of the orthogonality
parameter δ. To be able to apply this abstract approach in a concrete finite setting we
need such a quasi-normal field. The normal field ∇φh(x)/‖∇φh(x)‖, x ∈ Γh, (x not
on a simplex boundary) does not satisfy the requirements, since it is discontinuous
between simplices, hence not Lipschitz. In the finite element literature, however, there
are so-called gradient recovery techniques which result in approximations of ∇φh that
satisfy the conditions of a quasi-normal field on Γh. In this paper, as an exampe, we
use the polynomial-preserving recovery (PPR) technique introduced in [20]. Using
error bounds for this recovery technique and (discretization) error bounds for φh − φ
we can quantify statements like “dh is close to dexh ” and “dist(Γ̃h,Γh) is small”. We

prove, for example that dist(Γ̃h,Γh) ≤ chk+1 and ‖Ihdh− dexh ‖L∞(ΩΓh
) ≤ chk+1 hold,

with Ih the nodal finite element interpolation operator and ΩΓh
the neigborhood of

Γh consisting of all simplices that are intersected by Γh. Thus, for quadratic finite
elements (k = 2) our reinitialization method has accuracy h3. We include results of a
numerical experiment (in 3D) that illustrates this h3 error behavior.

2. Lipschitz-manifolds. In the literature there are several (not all equivalent)
definitions of k-dimensional Lipschitz-manifolds in RN . A recent overview of the
commonly used ones is given in [10]. In this paper we restrict ourselves to the case
k = N−1 and use the standard definition of an (N−1)-dimensional Lipschitz-manifold
in graph representation, cf. e.g. [8, 10], which we now recall.

Definition 2.1. A subset M⊂ RN is called an (N − 1)-dimensional Lipschitz-
manifold (in graph representation) if for every x0 ∈M there exists a local Euclidean
coordinate system with origin Ox0 in x0 and such that

1. there are open subsets V1 ∈ RN−1 and V2 ⊂ R with Ox0
∈ V := V1 × V2,

2. there exists a Lipschitz mapping h : V1 → V2 with

M∩ V = { (x1, h(x1)) | x1 ∈ V1 }.

In view of our application to the level set function we also introduce the following im-
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plicit representation of an (N −1)-dimensional Lipschitz-manifold which is equivalent
to the one given in Defition 2.1, cf. Theorem 2.11 in [10].

Definition 2.2. A subset M⊂ RN is called an (N − 1)-dimensional Lipschitz-
manifold (in implicit representation) if for every x0 ∈M there exists a local Euclidean
coordinate system with origin Ox0 in x0 and such that

1. there are open subsets V1 ∈ RN−1 and V2 ⊂ R with Ox0
∈ V := V1 × V2,

2. there exists a scalar function φ : V → R with φ(Ox0
) = 0 and there are

constants Lφ, Kφ > 0 such that

|φ(x)− φ(y)| ≤ Lφ‖x− y‖ for all x, y ∈ V, (2.1)

|φ(x1, x2)− φ(x1, y2)| ≥ Kφ|x2 − y2| for all x1 ∈ V1, x2, y2 ∈ V2, (2.2)

3. M∩ V = { x ∈ V | φ(x) = 0 }.
In the remainder we assume Γ to be compact, and thus an open cover of Γ resulting

from the definitions above can be reduced to a finite cover.

3. A Lipschitz continuous local coordinate system. If Γ is a C2-manifold
then the (oriented) normal field n(x), x ∈ Γ, can be used to define a local coordinate
system of the form

y = p(y) + d(y)n(p(y)), y ∈ {y ∈ RN | |d(y)| < ε }, (3.1)

with ε > 0 sufficiently small, d(·) the signed distance function to Γ and p(·) the
orthogonal projection onto Γ. In this section we derive a generalization of this local
coordinate system for the case of a Lipschitz-manifold. We introduce a so-called quasi-
normal field and a corresponding approximate signed distance function. These form
the basis for the reinitialization method discussed in section 6.

We use B(x; r) ⊂ RN to denote the open ball with centre x ∈ RN and radius
r > 0 and BΓ(x; r) := B(x; r) ∩ Γ.

In the remainder, Γ is assumed to be an (N − 1)-dimensional Lipschitz-manifold.
Definition 3.1. A quasi-normal field is a mapping n : Γ→ RN , with ‖n(x)‖ = 1

for all x, which has the following properties. For all x ∈ Γ there exist δx < 1, rx > 0
and γx, cx with:

‖n(x)− n(y)‖ ≤ γx‖x− y‖ for all y ∈ BΓ(x; rx), (3.2)

|〈n(x), x− y〉| ≤ δx‖x− y‖+ cx‖x− y‖2 for all y ∈ BΓ(x; rx), (3.3)

and sup
x∈Γ

δx =: δ < 1, sup
x∈Γ

γx <∞, sup
x∈Γ

cx <∞, inf
x∈Γ

rx > 0. (3.4)

The conditions in (3.2) and (3.3) can be interpreted as smoothness and transversality
conditions that the field n has to satisfy. For a C2-manifold these conditions are
satisfied for the normal field (with δx = O(rx)). For a quasi-normal field we can
always reduce rx (if necessary) such that

0 < rx ≤
1− δx

4(γx + cx)
(3.5)

holds. With rx such that this holds and y ∈ BΓ(x; rx) property (3.3) implies that
|〈n(x), x−y〉| ≤ 1

2 (1+δ)‖x−y‖ and thus the angle between n(x) and x−y is bounded
from below by a strictly positive constant, uniformly in x and y. Given a quasi-normal
field n we define:

F : Γ× R→ RN , F (x, t) := x+ t n(x). (3.6)
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We first derive the local injectivity of this function:
Lemma 3.1. Given a quasi-normal field with rx such that (3.5) is satisfied, define

D := { (x, t) | x ∈ Γ, t ∈ (−1

2
rx,

1

2
rx) }. (3.7)

The function F is injective on D.
Proof. Take (x, t), (x̂, t̂) ∈ D such that F (x, t) = F (x̂, t̂), i.e. x + t n(x) = x̂ +

t̂ n(x̂). If x = x̂ it follows that t = t̂. Assume that x 6= x̂. Note that ‖F (x, t)− x̂‖ = |t̂|
and ‖F (x̂, t̂)− x‖ = |t|. Define m := max{rx, rx̂}. Note that

‖x− x̂‖ = ‖t̂ n(x̂)− t n(x)‖ ≤ |t̂|+ |t| < 1

2
(rx̂ + rx) ≤ m

holds. It sufficies to consider the case m = rx. Thus x̂ ∈ BΓ(x, rx) holds. From (3.3)
and (3.2) we obtain

|〈n(x), x− x̂〉| ≤ (δx + cxrx)‖x− x̂‖ ≤ 1

2
(1 + δx)‖x− x̂‖, (3.8)

|〈n(x̂), x− x̂〉| ≤ |〈n(x̂)− n(x), x− x̂〉|+ |〈n(x), x− x̂〉|

≤ (γxrx + δx + cxrx)‖x− x̂‖ ≤ 1

2
(1 + δx)‖x− x̂‖. (3.9)

From t = t̂ = 0 we obtain the contradiction x = x̂. Hence |t| + |t̂| > 0 holds.
From this and the results in (3.8)-(3.9) it follows that the triangle with vertices x,
x̂ and F (x, t) = F (x̂, t̂) is non-degenerated. The inner angle at vertex x is denoted
by β. From (3.8) we obtain | cosβ| ≤ 1

2 (1 + δx) and thus sinβ > 1 − | cosβ| ≥
1
2 (1 − δx) holds. The inner angle at F (x, t) = F (x̂, t̂) is denoted by α. The cosine

rule implies ‖n(x)− n(x̂)‖2 = 2(1− cosα) = 4 sin2( 1
2α) and thus sinα ≤ 2 sin( 1

2α) =

‖n(x) − n(x̂)‖ ≤ γx‖x − x̂‖ holds. Due to the sine rule we have |t̂|
sin β = ‖x−x̂‖

sinα ,

and thus |t̂| = sin β
sinα‖x − x̂‖ >

1
2 (1 − δx)γ−1

x holds. This yields a contradiction with

|t̂| < 1
2rx ≤

1
2 (1 − δx)γ−1

x , cf. (3.7). Hence x = x̂, which implies t = t̂, and thus

(x, t) = (x̂, t̂) holds.

Take z ∈ F (D), with D as in Lemma 3.1. There are unique p(z) = x ∈ Γ, d(z) ∈
(− 1

2rx,
1
2rx) such that

z = p(z) + d(z)n(p(z)). (3.10)

Theorem 3.2. Take D as in lemma 3.1. Then F (D) ⊂ RN is open. The
functions z → p(z) and z → d(z) are continuous on F (D).

Proof. Take F (x0, t0) = x0 + t0n(x0) ∈ F (D), i.e., x0 ∈ Γ, − 1
2rx0 < t0 <

1
2rx0 .

From the graph representation of Γ, cf. Definition 2.1, it follows that there are
open subsets V1 ⊂ RN−1, V2 ⊂ R and a Lipschitz function h such that Γ ∩ V =
{ (x1, h(x1)) | x1 ∈ V1 } with V = V1×V2. Define rV1

:= inf{ rx | x = (x1, h(x1)), x1 ∈
V1 } > 0 and the open subset U := V1 × (− 1

2rV1
, 1

2rV1
) ⊂ RN . On U we define

the continuous mapping G(x1, t) := F
(
(x1, h(x1)), t

)
∈ F (D). Lemma 3.1 implies

injectivity of the function G. From Brouwer’s invariant domain theorem it follows
that G(U) ⊂ F (D) is open and the inverse of G−1 : G(U) → U is continuous.
Hence, F (D) is open. The inverse is given by G−1(z) = (x1, t) with x1 and t such
that z = (x1, h(x1)) + t n(x1, h(x1)). Continuity of G−1 implies that the mapping
z → t = d(z) is continuous. Furthermore, using the continuity of h we also obtain the

4



continuity of z → (x1, h(x1)) = p(z).

The compact Lipschitz-manifold Γ is contained in the open set F (D) and thus for z
sufficiently close to Γ we have a unique decomposition z = p(z) + d(z)n(p(z)). Note
that the width of the domain D of the mapping F is determined by rx, which in
turn depends on the parameters δx, γx, cx that quantify the local smoothness and
transversality of the quasi-normal field n and the local geometry (“curvature”) of the
manifold Γ.

Based on the representation in (3.10) there is the following natural definition of
an approximate distance function.

Definition 3.2. The function z → d(z), with d as in (3.10) is called the approx-
imate signed distance function.

Note that this function d(z) gives an approximation of the signed distance, only
for z close to the manifold Γ. Below it will be convenient to use the relation

d(z) = 〈z − p(z), n(p(z))〉, (3.11)

which immediately follows form (3.10). The decomposition in (3.10) corresponds to a
local Lipschitz continuous coordinate system and is a generalization of the one for a
smooth manifold given in (3.1). Note that z → p(z) is an oublique projection onto Γ.

4. Properties of the approximate signed distance function. In this sec-
tion we derive some properties of the approximate signed distance function d(z),
z ∈ F (D), defined in (3.10). For convenience we extend the quasi-normal field n, by
taking a constant value in the quasi-normal direction, as follows:

n(z) = n(p(z) + d(z)n(p(z)) := n(p(z)) for all z ∈ D.

The normal field and the manifold Γ are characterized by Lipschitz functions. From
a Lipschitz version of the implicit function theorem one can conclude that the func-
tions p and d are not only continuous (cf. Theorem 3.2) but even locally Lipschitz
continuous. Instead of applying such a theorem we derive this property directly, us-
ing the continuity result from Theorem 3.2 and the properties in (3.2)-(3.3). This
derivation yields bounds which show how the local Lipschitz constant depends on the
orthogonality parameter δ in (3.3).

Lemma 4.1. For every z ∈ F (D) there exists an ε > 0 such that for all z1, z2 ∈
B(z; ε) the following holds:

‖p(z1)− p(z2)‖ ≤ 4

1− δp(z1)
‖z1 − z2‖ (4.1)

|d(z1)− d(z2)| ≤
2(1 + δp(z1))

1− δp(z1)
‖z1 − z2‖. (4.2)

Proof. Take z0 = F (x0, t0) = x0 + t0n(x0) with x0 ∈ Γ, t0 ∈ (− 1
2rx0 ,

1
2rx0). Note

that x0 = p(z0) and t0 = d(z0). Without loss of generality we can assume that for
x ∈ Γ the function x→ rx, with rx as in Definition 3.1, and such that (3.5) holds, is
continuous. Due to this and the continuity of the functions p and d there exists an
ε > 0 such that for all z ∈ B(z0; ε) we have p(z) ∈ BΓ(x0; 1

4rx0), d(z) ∈ (− 1
2rx0 ,

1
2rx0)

and max{ rp(z) | z ∈ B(z0; ε) } ≤ 2 min{ rp(z) | z ∈ B(z0; ε) }. Take arbitrary z1, z2 ∈
B(z0; ε). From

‖p(z1)− p(z2)‖ ≤ ‖p(z1)− x0‖+ ‖p(z2)− x0‖ <
1

2
rx0 ≤ rp(z1)
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it follows that p(z2) ∈ BΓ(p(z1); rp(z1)) holds. Thus, using (3.2) and (3.3) we get

|d(z1)− d(z2)| = |〈z1 − p(z1), n(p(z1))〉+ 〈z2 − p(z2), n(p(z2))〉|
≤ |〈p(z2)− p(z1), n(p(z1))〉|+ |〈p(z2)− z2, n(p(z2))− n(p(z1))〉|
+ |〈z1 − z2, n(p(z1))〉|
≤
[
δp(z1) + cp(z1)rp(z1) + |d(z2)|γp(z1)

]
‖p(z1)− p(z2)‖+ ‖z1 − z2‖.

Note that |d(z2)| ≤ 1
2rx0

≤ rp(z1), and using (3.5) we get

|d(z1)− d(z2)| ≤
[
δp(z1) + (cp(z1) + γp(z1))rp(z1)

]
‖p(z1)− p(z2)‖+ ‖z1 − z2‖

≤ 1

4
(1 + 3δp(z1))‖p(z1)− p(z2)‖+ ‖z1 − z2‖. (4.3)

Using this we obtain

‖p(z1)− p(z2)‖ = ‖z1 − d(z1)n(p(z1))− z2 + d(z2)n(p(z2))‖
≤ ‖z1 − z2‖+ ‖(d(z1)− d(z2))n(p(z1))‖+ ‖d(z2) [n(p(z1))− n(p(z2))] ‖
≤ ‖z1 − z2‖+ |d(z1)− d(z2)|+ |d(z2)|γp(z1)‖p(z1)− p(z2)‖

≤ 2‖z1 − z2‖+

[
1

4
(1 + 3δp(z1)) +

1

4
(1− δp(z1))

]
‖p(z1)− p(z2)‖

= 2‖z1 − z2‖+
1

2
(1 + δp(z1))‖p(z1)− p(z2)‖.

Since δp(z1) < 1 we obtain

‖p(z1)− p(z2)‖ ≤ 4

1− δp(z1)
‖z1 − z2‖,

and using this in (4.3) results in

|d(z1)− d(z2)| ≤
2 + 2δp(z1)

1− δp(z1)
‖z1 − z2‖,

which completes the proof.

From Rademacher’s theorem it follows that p and d are Frechet-differentiable
almost everywhere on F (D). Let Ns ⊂ F (D) be the subset with |Ns| = 0 such that
d is differentiable at F (D) \Ns.

For the exact signed distance function to a Lipschitz-manifold, denoted by dex, it
is known that ‖∇dex(z)‖ = 1 almost everywhere in a neighborhood of the manifold.
From (4.2) it follows that for z ∈ F (D)\Ns we have ‖∇d(z)‖ ≤ 2(1+δp(z))(1−δp(z))−1,
i.e. ‖∇d(z)‖ . 2 for δp(z) � 1. In the next theorem we derive ‖∇d(z)‖ ≈ 1 if
δp(z) � 1.

Theorem 4.2. The following holds, with δp(z) < 1 as in (3.3),

1−
16δp(z)

7 + 9δp(z)
≤ ‖∇d(z)‖ ≤ 1 +

16

7

δp(z)

1− δp(z)
for all z ∈ F (D) \Ns. (4.4)
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Proof. The Frechet derivative of a function G : RN → RN is denoted by DG,
and its representation at x ∈ RN by the Jacobian matrix DG(x) ∈ RN×N . From
‖n(z)‖ = 1 for all z ∈ D it follows that

Dn(z)Tn(z) = 0 for all z ∈ F (D) \Ns (4.5)

holds. From the relation (3.11) we obtain, for z ∈ F (D) \Ns,

∇d(z) = D(id− p)(z)Tn(p(z)) +D(n ◦ p)(z)T (z − p(z))
= (I −Dp(z)T )n(p(z)) +Dp(z)TDn(p(z))T (z − p(z)).

Using (3.10) and (4.5) we get Dn(p(z))T (z − p(z)) = d(z)Dn(p(z))Tn(p(z)) = 0 and
thus

∇d(z) = n(p(z))−Dp(z)Tn(p(z)), z ∈ F (D) \Ns.

Hence,

‖∇d(z)− n(p(z))‖ ≤ ‖Dp(z)Tn(p(z))‖ z ∈ F (D) \Ns. (4.6)

For w ∈ RN and |ε| sufficiently small we obtain, due to (3.3),

|〈n(p(z)), p(z)− p(z + εw)〉| ≤ δp(z)‖p(z)− p(z + εw)‖+ cp(z)‖p(z)− p(z + εw)‖2,

and thus, for z ∈ F (D) \Ns,

‖Dp(z)Tn(p(z))‖ = max
‖w‖=1

〈w,Dp(z)Tn(p(z))〉

= max
‖w‖=1

〈n(p(z)), Dp(z)w〉 ≤ δp(z)‖Dp(z)‖

holds. Relation (3.10) implies

Dp(z) = I − d(z)Dn(p(z))Dp(z)− n(p(z))∇d(z)T ,

and thus

[I + d(z)Dn(p(z))]Dp(z) = I − n(p(z))∇d(z)T .

From (3.2) we obtain ‖Dn(p(z))‖ ≤ γp(z) for z ∈ F (D)\Ns, and due to |d(z)| ≤ 1
2rp(z)

and the condition (3.5) we get |d(z)|‖Dn(p(z))‖ ≤ 1
8 (1 − δp(z)) and thus the matrix

I + d(z)Dn(p(z)) is invertible and we have the estimate ‖ [I + d(z)Dn(p(z))]
−1 ‖ ≤

8(7 + δp(z))
−1. Combining these results we get

‖∇d(z)− n(p(z))‖ ≤ ‖Dp(z)Tn(p(z))‖ ≤ δp(z)‖Dp(z)‖

≤ δp(z)‖ [I + d(z)Dn(p(z))]
−1 ‖‖I − n(p(z))∇d(z)T ‖

≤ 8δp(z)(7 + δp(z))
−1(1 + ‖∇d(z)‖).

Using ‖n(p(z))‖ = 1 and 8δp(z)(7 + δp(z))
−1 < 1 this implies

1−
16δp(z)

7 + 9δp(z)
≤ ‖∇d(z)‖ ≤ 1 +

16

7

δp(z)

1− δp(z)
,
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i.e., the result in (4.4).

Note that the bounds in (4.4) are determined (only) by the quantity δp(z) from (3.3).
For a “close to orthogonal” quasi-normal field we have δp(z) � 1 and thus ‖∇d(z)‖ ≈ 1

as quantified in (4.4). In our application below we have δp(z) = O(hk)� 1, with h a
(local) mesh size parameter and k related to the degree of the finite elements used.

The next result quantifies, in which sense the function d is close to the exact
signed distance function dex.

Theorem 4.3. Take z ∈ F (D), z /∈ Γ and let x0 ∈ Γ be such that |dex(z)| =
minx∈Γ ‖z− x‖ = ‖z− x0‖. Define Lx0,z := {x0 + t(z− x0) | 0 ≤ t ≤ 1 } and assume
that Lx0,z ∩Ns has 1D measure zero. Then

0 ≤ |d(z)| − |dex(z)|
|dex(z)|

≤ 16

7

δL
1− δL

(4.7)

holds, with δL := max{δp(y) | y ∈ Lx0,z } < 1.
Proof. From |d(z)| = ‖z−p(z)‖, with p(z) ∈ Γ, it follows that |d(z)| ≥ |dex(z)| and

thus the left inequality in (4.7) holds. Using the mean value theorem and d(x0) = 0
we get

d(z) =

∫ 1

0

∇d(x0 + t(z − x0)) · (z − x0) dt.

Hence, using Theorem 4.2 we obtain

|d(z)| ≤ max
y∈Lx0,z

‖∇d(y)‖‖z − x0‖ ≤ max
y∈Lx0,z

(
1 +

16

7

δp(y)

1− δp(y)

)
|dex(z)|

=

(
1 +

16

7

δL
1− δL

)
|dex(z)|,

which proves the right inequality in (4.7).

5. A method for computing p(z). In this section we introduce a simple it-
erative procedure for computing the oublique projection p(z). If for a given z the
oublique projection p(z) ∈ Γ is known, the value for d(z) can directly be determined
from d(z) = 〈z− p(z), n(p(z))〉. Let z sufficiently close to Γ (z ∈ F (D)) be given. We
propose the following scheme:

let x0 ∈ Γ (close to p(z)) be given. For k ≥ 0:

xk+1 := z − αn(xk) with α ∈ R such that xk+1 ∈ Γ and |α| minimal.
(5.1)

The following theorem shows that this method is well-defined and converges locally.

Theorem 5.1. Let z ∈ F (D) with |d(z)| < 3
4

1−δp(z)

γp(z)
be given. For x0 suffciently

close to p(z) the iteration (5.1) is well-defined and the following holds:

‖xk+1 − p(z)‖ ≤ 4

3

γp(z)

1− δp(z)
|d(z)|‖xk − p(z)‖, k = 0, 1 . . . . (5.2)

Proof. Take z as specified above. In a sufficiently small neighborhood V = V1×V2

of p(z) ∈ Γ, as in the Definitions 2.1, 2.2, we can use both the graph representation
and level set representation of Γ:

Γ ∩ V = { (x1, h(x1)) | x1 ∈ V1 } = {x ∈ V | φ(x) = 0 }.
8



The function f : V1 × V2 → R given by f(x1, α) = φ(z − αn(x1, h(x1))) has a zero
(x∗1, α

∗) ∈ V1 × V2, with x∗1 such that (x∗1, h(x∗1)) = p(z) and α∗ = d(z). From a
Lipschitz version of the implicit function theorem, cf. [7], it follows that there exists
a neighborhood W of x∗1 and a function α : W → V1 such that f(x1, α(x1)) = 0 for
all x1 ∈ W and Γ ∩ (W × V2) = { f(x1, α(x1)) = 0 | x1 ∈ W }. This implies that for
x0 ∈ Γ sufficiently close to p(z) there is a unique α1 = α1(x0) ∈ V1 such that

x1 = z − α1 n(x0) ∈ Γ. (5.3)

We conclude that for k = 0 the iteration (5.1) is well-defined for all x0 ∈ Γ with
‖x0 − p(z)‖ < ξ and ξ sufficiently small. From a continuity argument it follows that
for ξ > 0 sufficiently small we have xk ∈ BΓ(p(z); rp(z)) for k = 0, 1. We use the

notation ek = xk − p(z). From (5.3) and p(z) = z − d(z)n(p(z)) it follows that

e1 = d(z)n(p(z))− α1n(x0) = d(z)
(
n(p(z))− n(x0)

)
+
(
d(z)− α1

)
n(x0)

holds, and thus

‖e1‖2 ≤ |d(z)|γp(z)‖e0‖‖e1‖+ |d(z)− α1||〈n(x0), e1〉|. (5.4)

Note that

|d(z)− α1| =
∣∣‖p(z)− z‖ − ‖x1 − z‖

∣∣ ≤ ‖p(z)− x1‖ = ‖e1‖.

Hence,

‖e1‖ ≤ |d(z)|γp(z)‖e0‖+ |〈n(x0), e1〉|

holds. Using xk ∈ BΓ(p(z); rp(z)) and the conditions (3.2)-(3.3) we get

|〈n(x0), e1〉| = |〈n(x0), p(z)− x1〉|
≤ |〈n(x0)− n(p(z)), p(z)− x1〉|+ |〈n(p(z)), p(z)− x1〉|
≤ γp(z)rp(z)‖e1‖+

(
δp(z) + cp(z)rp(z)

)
‖e1‖.

(5.5)

Using this we obtain

‖e1‖ ≤ |d(z)|γp(z)‖e0‖+
[
δp(z) + (cp(z) + γp(z))rp(z)

]
‖e1‖

and using (3.5) this yields

(
1− 1

4
(1 + 3δp(z)

)
‖e1‖ ≤ |d(z)|γp(z)‖e0‖.

Hence, the result (5.2) holds for k = 0. From the assumption |d(z)| < 3
4

1−δp(z)

γp(z)
it

follows that ‖e1‖ < ‖e0‖ and thus the same argument can be applied for k ≥ 1.

It remains to determine the value of α such that xk+1 = z − αn(xk) ∈ Γ holds,
cf. (5.1). In our applications the manifold Γ is represented as the zero level of a
level set function φ. In that case the value of α can be determined by a line search
algorithm applied to gk(α) = 0, with gk(α) := φ(z−αn(xk)). If gk is (only) Lipschitz,
special algorithms should be used, cf. [7, 13].
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6. Application to the reinitialization of finite element level set func-
tions. In this section we explain how the approximate signed distance function intro-
duced above, cf. Definition 3.2, can be used in a reinitialization method. For a generel
discussion of the role of reinitialization techniques in level set methods we refer to the
literature, cf. [11, 15, 16, 17].

We consider a finite element setting and a standard level set description of a
smooth manifold (interface) in Rd (d = 2, 3). Let φ : Ω → R be a smooth function
and Ω ⊂ Rd, Ω = Ω1 ∪ Ω2, Γ = Ω̄1 ∩ Ω̄2 = {x ∈ Ω | φ(x) = 0 }, φ(x) < 0 for x ∈ Ω1,
φ(x) > 0 for x ∈ Ω2.

In applications one typically only has a finite element approximation φh of φ
available. Examples of such approximations are mentioned in section 7 below. Let
{Th}h>0 be a family of shape regular simplicial triangulations of Ω, and Vh the corre-
sponding standard finite element space of continuous piecewise polynomials of degree
k ≥ 1:

Vh = {ψ ∈ C(Ω) | ψ|T ∈ Pk for all T ∈ Th }. (6.1)

The function φh ∈ Vh is a given (sufficiently accurate) approximation of φ. We de-
fine Γh = {x ∈ Ω | φh(x) = 0 }. Note that the zero level set Γh is only implicitly
described and except for the case k = 1 (linear finite elements) it can generally not
be represented in an explicit form.

We need some further notation. Let TΓh
be the set of all simplices that are intersected

by Γh. This set is called local triangulation. The corresponding local domain is de-
noted by ΩΓh

= ∪T∈TΓh
T . To avoid technical details, we assume the generic situation

that the intersection of any simplex T ∈ TΓh
with Γh divides T into two subsets with

nonzero d-dimensional measure. For a collection of simplices A let V (A) be the set
of all vertices of the simplices contained in A and N(A) the set of all finite element
nodes of the simplices contained in A. Hence, for k = 1 we have V (A) = N(A) and
V (A) ⊂ N(A) for k ≥ 2. For a vertex v the union of all simplices that have v as a ver-
tex is denoted by ω(v). The local triangulation is enlarged by adding the neigboring
simplices, resulting in the set

T eΓh
; = ∪v∈V (TΓh

)ω(v),

which is called the extended local triangulation. The corresponding domain is denoted
by ΩeΓh

. The finite element space Vh restricted to the local triangulation is denoted
by Vh(ΩΓh

) := {ψ|ΩΓh
| ψ ∈ Vh }. We define Vh(ΩeΓh

) similarly.

We are interested in a reinitialization of the finite element function φh. One very
often used approach is the Fast Marching (FM) technique [15, 11, 5] in which an
initialization phase and an extension phase are distinguished. In the former, every
point from a set of near interface grid points (points that are “close to” the interface)
is assigned a value that should be close to the value of the exact signed distance
function at that grid point. In the finite element setting introduced above, the near
interface grid points are given by N(TΓh

). Given the initialization values an outward
marching algorithm is used to assign values to the other grid points. In general the
initialization phase is the most critical one, since the location of the zero level of the
reinitialization depends only on the values at the near interface grid points. In this
paper we only consider this initialization phase. Given this initialization phase. any
of the (many) known variants of the FM extension algorithms can be applied.

The initialization phase that we propose in this paper is based on two key compo-
nents. For the given φh its gradient field ∇φh cannot be used as a quasi-normal field
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on Γh since it is discontinuous (at the faces between simplices). In the finite element
literature there are well-established gradient recovery techniques. Such techniques are
often used in error estimators, cf. e.g. [2]. A famous example is the gradient recovery
method introduced by Zienkiewicz and Zhu [21, 22], known as the Superconvergence
Patch Recovery (SPR), which forms the basis of the ZZ error estimator. Basically, the
SPR uses a least squares fit to the gradient of the finite element function to recover a
continuous gradient. Another method, the so-called Polynomial-Preserving Recovery
(PPR) is introduced in [20] and analyzed in [9]. In PPR one applies a least squares
fit directly to the finite element function and based on this fit a continuous gradient
is determined. As we will show below, such a gradient recovery method results in
a gradient approximation that satisfies all the conditions imposed on a quasi-normal
field (on Γh) formulated in Definition 3.1. Such a gradient recovery technique is the
first key component in our method. The second one is the approximate signed dis-
tance function introduced in Definition 3.2, which depends on the quasi-normal field
resulting from the gradient recovery technique.

In section 6.1 we describe one paricular gradient recovery method known from the
literature, namely the PPR method. We emphasize, however, that in the initialization
method one could replace the PPR method by another gradient recovery algorithm.
In section 6.2 we introduce our new initialization phase. In section 7 we apply the
general results derived for the approximate signed distance function in section 4 to
the finite element setting.

6.1. The polynomial-preserving recovery (PPR) method. The reason
that we use PPR is that for this method more theoretical analysis, e.g. error bounds
as in [9], is known. As mentioned already above, in the initialization method one
can replace the PPR method by another gradient recovery algorithm. The general
description (i.e. d = 2, 3, k ≥ 1) of the PPR method is given in [9]. To simplify
the presentation, we restrict to the cases d = 3, k = 1, 2. For v ∈ N(Th) let ψv
be the corresponding nodal finite element basis function. Below we explain how,
given the set of function values {φh(v) | v ∈ N(Th) } the gradient recovery vectors
{ (Ghφh)(v) | v ∈ N(Th) } are constructed. The induced continuous gradient recovery
finite element vector function is given by the operator Gh : Vh → V 3

h :

Ghφh :=
∑

v∈N(Th)

(Ghφh)(v)ψv ∈ V 3
h . (6.2)

The function Ghφh is a continuous finite element approximation of the gradient:
(Ghφh)(x) ≈ ∇φ(x). In the application of the PPR method in section 6.2 we use the
gradient recovery only “close to Γh”. More precisely, we only need

(Ghφh)|ΩΓh
=

∑
v∈N(TΓh

)

(Ghφh)(v)ψv. (6.3)

It remains to explain how the vectors (Ghφh)(v), v ∈ N(TΓh
) are determined.

We first consider k = 1. In this case the set of finite element nodes and the set
of vertices coincide: V (TΓh

) = N(TΓh
). Take v ∈ V (TΓh

) and the corresponding
neigborhood ω(v). Let pv be the polynomial of degree 2 that fits φh in a least-squares
sense: ∑

z∈V (ω(v))

|(φh(z)− pv(z)|2 = min
p∈P2

∑
z∈V (ω(v))

|(φh(z)− p(z)|2.
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We assume that this least-squares problem has a unique solution and define

(Ghφh)(v) := ∇pv(v).

Note that the polynomial pv is uniquely defined if we have at least 10 independent
conditions. In our applications this holds, since we typically have 11-14 edges that
have v as a vertex. If there are not enough independent conditions one can enlarge
the neighborhood ω(v) by including further neighboring simplices. This approach
is explained in [9]. For ease of implementation we propose to use a simpler (but
theoretically less favorable) approach. In case of less than 10 independent conditions
we fit a polynomial of degree 2 (or 1) with less degrees of freedom. For example,
we set the coefficient corresponding to xy and/or xz and/or yz to zero. Another
possibility is to use a local refinement of one or more of the T ∈ ω(v) and thus create
more conditions.

We now consider k = 2, and thus V (TΓh
) 6= N(TΓh

). We first take v ∈ V (TΓh
). The

approach is the same as above: we fit a polynomial pv of degree 3 to the values in all
nodes in ω(v): ∑

z∈N(ω(v))

|(φh(z)− pv(z)|2 = min
p∈P3

∑
z∈N(ω(v))

|(φh(z)− p(z)|2. (6.4)

We assume a unique solution (which is generally true in our applications) and define

(Ghφh)(v) := ∇pv(v).

We now consider v ∈ N(TΓh
)\V (TΓh

). Let v be the midpoint of an edge with vertices
v1 and v2. We define

(Ghφh)(v) :=
1

2

(
∇pv1

(v) +∇pv1
(v)
)
,

where pvi are the least-squares polynomials defined in (6.4).

6.2. The initialization phase. As input for the method we need (only) T eΓh

and {φh(v) | v ∈ N(T eΓh
) }. Note that we do not need an approximation of Γh. The

output is a finite element function Ihdh ∈ Vh(TΓh
) that is “close to” the (local) signed

distance function to Γh.
Given {φh(v) | v ∈ N(T eΓh

) }, the PPR method described in (6.3) results in
Ghφh ∈ Vh(T eΓh

)3, with (Ghφh)(x) ≈ ∇φ(x) for x ∈ ΩΓh
(cf. section 7). We define

nh(x) = ‖(Ghφh)(x)‖−1(Ghφh)(x), x ∈ ΩΓh
. (6.5)

As we will indicate in section 7, it is reasonable to assume that this function satisfies
the conditions of a quasi-normal field on Γh as formulated in Definiton 3.1. Hence,
for z close to Γh the approximate signed distance function d(z), cf. Definition 3.2,
is well-defined. To emphasize the dependence on the triangulation Th, we write dh
instead of d. For h ↓ 0 the points z ∈ ΩΓh

can be forced to be sufficiently close to
Γh. We assume that h is small enough such that the approximate signed distance
function dh(z) is well-defined for z ∈ ΩΓh

. Note that the function dh is close to the
exact signed distance function to Γh, cf. Theorems 4.2 and 4.3, and it has Γh as its
zero level :

{x ∈ ΩΓh
| dh(x) = 0 } = Γh.

12



Clearly, dh(z), z ∈ ΩΓh
, is not explicitly available. Therefore we introduce a nodal

interpolation Ihdh ∈ Vh(TΓh
) of dh given by

Ihdh(v) = dh(v) for all v ∈ N(TΓh
). (6.6)

This finite element function Ihdh is the output of our initialization phase. Clearly,
the interpolation procedure introduces an interpolation error that causes a change in
the zero level, i.e.

Γ̃h := {x ∈ ΩΓh
| (Ihdh)(x) = 0 } ≈ Γh. (6.7)

As we will show below, this interpolation error can be considered to be “small” cf.
Theorem (7.7).

It remains to discuss how dh(v), v ∈ N(TΓh
), can be computed. For this we use

an obvious variant of the method explained in section 5. Given a node v ∈ N(TΓh
)

and xk ∈ Γh, xk ≈ p(v), we have to determine the zero of

φh(v − αnh(xk)) = 0, (6.8)

cf. (5.1). This can be realized by, for example, the following approximate Newton
line-search: α0 := 0 and

αn+1 = αn +
φh(v − αnnh(xk))

(Ghφh)(v − αnnh(xk) · nh(xk)
, n = 0, 1, . . . . (6.9)

The iteration in (5.1) takes the form

xk+1 = v − αnh(xk), (6.10)

with α that solves (6.8). A starting vector x0 ∈ Γh can be determined as follows.
Notice that the quasi-normal field nh is defined not only on Γh but also on ΩΓh

.
Hence, one can define x0 := v− αnh(v), with α such that φh(v− αnh(v)) = 0 holds.

In the iterations (6.9), (6.10) the work per iteration is “low” since one only has
to evaluate the known FE functions φh, Ghφh and nh. These iterations converge if v
is sufficiently close to Γh, cf. section 5. Furthermore, the contraction of the iteration
(6.10) can be bounded by c|d(v)|, cf. Theorem 5.1 for the precise statement. In the
initialization phase we have v ∈ N(TΓh

) and thus |d(v)| = O(h), i.e. we have “fast”
convergence for small h.

The iteration (6.10) is stopped when a suitable tolerance criterion is satisfied.
The oublique projection of v is then given by p(v) = xk+1.

Concerning the practical realization of the algorithm there are several issues that
should be addressed. For example. it might be better to replace (6.9) by a damped
variant to guarantee that the iterates remain in ΩΓh

. Furthermore it might be neces-
sary to choose a better starting value than x0 := v − αnh(v) proposed above. These
and other numerical issues will be investigated in a forthcoming paper.

7. Analysis of the PPR based initialization phase. In this section we use
the results derived in section 4 to analyze the initialization phase presented in sec-
tion 6.2. We consider the following setting. We assume that Γ is the zero level of a
level set function φ, i.e. Γ = {x ∈ Ω | φ(x) = 0 }. The analysis is restricted to a
(small) neighborhood U ⊂ Ω of Γ. We assume that φ is smooth on U (φ ∈ Ck+1(U))
and that there are constants cL > 0 and cU such that

cL ≤ ‖∇φ(x)‖ ≤ cU for all x ∈ U. (7.1)

13



Let there be given a finite element function φh ∈ Vh that is an optimal approximation
of φ in the neighborhood U , in the sense that

‖φ− φh‖L∞(U) + h‖φ− φh‖W 1,∞(U) . hk+1 (7.2)

holds. Here and in the remainder we use the notation a . b to denote a ≤ cb with a
constant c independent of h. In applications, the finite element function φh is known
and used as input for the initialization phase. The zero level of φh, which for k ≥ 2
can not be determined explicitly, is denoted by

Γh = {x ∈ Ω | φh(x) = 0 }. (7.3)

Under mild assumptions, cf. section 7.2, we have

dist(Γh,Γ) . hk+1. (7.4)

As output of the initialization phase we obtain Ihdh ∈ Vh as in (6.6), with a zero level
denoted by

Γ̃h = {x ∈ Ω | (Ihdh)(x) = 0 }. (7.5)

Note that Γ̃h can also not be determined explicitly for k ≥ 2.
In section 7.1 we show that the scaled recovered gradient (6.5) forms a quasi-

normal field on Γh (but not on Γ !) and that for the orthogonality measure δx in (3.3)
we have δx . hk. Using this and the analysis in section 4 we derive an estimate that
quantifies in which sense the output Ihdh of the initialization phase is “close to” the
exact signed distance function to Γh, cf. Theorem 7.3. Furthermore, we show that
Γ̃h has optimal accuracy, namely dist(Γ̃h,Γ) . hk+1. The precise result is given in
Theorem 7.7.

7.1. Recovered gradient as a quasi-normal field on Γh. In this section we
assume that (7.1) and (7.2) hold. In the analysis we also need certain properties of
the PPR gradient recovery operator Gh : Vh → V dh . This operator has been analyzed
in [20, 9]. In our analysis we need the following two approximation and stability
properties:

‖Gh(Ihφ)−∇φ‖L∞(U) . hk+1 (7.6)

‖Ghvh‖L∞(U) ≤ c‖vh‖W 1,∞(Ue) for all vh ∈ Vh, (7.7)

with a constant c independent of vh and h. Here Ue denotes the neighborhood U
extended with a suitable patch of surrounding elements (we refer to [9] for the details).
The approximation result (7.6) follows from the Bramble-Hilbert lemma and the fact
that Gh has the consistency property Gh(Ihp) = ∇p for all p ∈ Pk. The stability
property (7.7) is proved for d = 2 (under mild assumptions on the triangulation Th)
in [9]. A proof of this property for d = 3 is not known to us.

In the remainder we assume that (7.6) and (7.7) hold. In the following two
lemmas, we show that the scaled recovered gradient nh defined in (6.5) satisfies the
two conditions (3.2) and (3.3) for a quasi-normal field on Γh.

Lemma 7.1. Consider nh as in (6.5). There exist constants c and h0 > 0 such
that for all h ≤ h0 the following holds:

‖nh(x)− nh(y)‖ ≤ c‖x− y‖ for all x ∈ Γh, y ∈ B(x; rx), (7.8)

14



with rx sufficiently small such that B(x; rx) ⊂ U .
Proof. Take x ∈ Γh and y ∈ B(x; rx) ⊂ U . Inserting the definition we get

‖nh(x)− nh(y)‖ =

∥∥∥∥ (Ghφh)(x)

‖(Ghφh)(x)‖
− (Ghφh)(y)

‖(Ghφh)(y)‖

∥∥∥∥
≤ 2
‖(Ghφh)(x)− (Ghφh)(y)‖

‖(Ghφh)(x)‖
.

(7.9)

For the term in the denominator we have

Ghφh = Gh(φh − Ihφ) +
(
Gh(Ihφ)−∇φ

)
+∇φ,

and using (7.6), (7.7), (7.1), (7.2) and the interpolation bound ‖φ−Ihφ‖W 1,∞(Ue) . hk

we get

‖(Ghφh)(x)‖ ≥ ‖∇φ(x)‖ − c‖φh − Ihφ‖W 1,∞(Ue) − c‖Gh(Ihφ)−∇φ‖L∞(U)

≥ cL − chk.

Hence, for h sufficiently small we have

‖(Ghφh)(x)‖ ≥ 1

2
cL. (7.10)

The vector function Ghvh ∈ V 3
h is Lipschitz continuous and

‖(Ghφh)(x)− (Ghφh)(y)‖ ≤
∫ 1

0

‖∇(Ghφh)(x+ t(x− y))‖ dt‖x− y‖ (7.11)

holds. We write z := x+ t(x− y) ∈ B(x; rx) and note that

‖∇(Ghφh)(z)‖ ≤ ‖∇
(
Ghφh − Ih(∇φ)

)
‖L∞(U) + ‖∇Ih(∇φ)‖L∞(U).

Using an inverse inequality and the boundedness of Ih on W 1,∞(U) we get

‖∇(Ghφh)(z)‖ . h−1‖Ghφh − Ih(∇φ)‖L∞(U) + 1,

and using (7.6), (7.7) results in

‖∇(Ghφh)(z)‖ . h−1‖Gh(φh − Ihφ)‖L∞(U) + h−1‖Gh(Ihφ)−∇φ‖L∞(U)

+ h−1‖∇φ− Ih(∇φ)‖L∞(U) + 1 (7.12)

. h−1‖φh − Ihφ‖W 1,∞(Ue) + hk + 1 . hk−1 + 1 . 1.

Using this result in (7.11), in combination with (7.10) and (7.9) completes the proof.

Lemma 7.2. There exist constants c1, c2 and h0 > 0 such that for h ≤ h0 and
all x ∈ Γh, y ∈ Γh ∩ B(x; rx), with rx sufficiently small such that B(x; rx) ⊂ U , the
following holds:

|〈nh(x), x− y〉| ≤ c1hk‖x− y‖+ c2‖x− y‖2.
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Proof. Using the definition of nh and the lower bound in (7.10) results in

|〈nh(x), x− y〉| ≤ 2

cL
|〈(Ghφh)(x), x− y〉|. (7.13)

Since x ∈ Γh and y ∈ Γh we have

0 = φh(x)− φh(y) =

∫ 1

0

〈∇φh(x+ t(y − x), x− y〉 dt.

Using this relation we obtain

〈(Ghφh)(x), x− y〉 =

∫ 1

0

〈(Ghφh)(x)− (Ghφh)(x+ t(y − x)), x− y〉 dt

+

∫ 1

0

〈(Ghφh)(x+ t(y − x))−∇φh(x+ t(y − x)), x− y〉 dt
(7.14)

From the Lipschitz continuity estimate (7.11)-(7.12), with y replaced by x+t(y−x) ∈
B(x, rx) we get

|〈(Ghφh)(x)− (Ghφh)(x+ t(y − x)), x− y〉| ≤ c‖x− y‖2. (7.15)

For the second term on the right-hand side in (7.14) we get

|〈(Ghφh)(x+ t(y − x))−∇φh(x+ t(y − x)), x− y〉| ≤ ‖Ghφh −∇φh‖L∞(U)‖x− y‖

≤
(
‖Gh(φh − Ihφ)‖L∞(U) + ‖Gh(Ihφ)−∇φ‖L∞(U) + ‖∇φ−∇φh‖L∞(U)

)
‖x− y‖

.
(
‖φh − Ihφ‖W 1,∞(Ue) + hk+1 + hk

)
‖x− y‖ . hk‖x− y‖.

Using this and (7.15) in (7.14) in combination with (7.13) completes the proof.

From the lemmas above we conclude that indeed nh defines a quasi-normal field on Γh
and that for the parameter δx in (3.3) we have δx ≤ chk with a constant c independent
of x ∈ Γh.

7.2. Accuracy of the initialization phase. In the previous section we have
shown that, under reasonable assumptions, the scaled recovered gradient nh defines a
quasi-normal field on Γh and that for δx as in (3.3) we have δx ≤ chk, with a constant
c independent of h and x. In this section, we use this result for nh and apply the
results derived in section 4 to derive properties of the signed distance function dh and
the zero level Γ̃h given in (6.7).

The results in section 4, e.g. in the theorems 4.2 and 4.3, hold on a neighborhood
F (D) of the manifold. Using the fact that limh→0 dist(Γh,Γ) = 0 (follows from
(7.2)) and the results in the lemmas 7.1 and 7.1 one can check that the width of this
neigborhood F (D) around Γh is bounded from below by a strictly positive constant
uniformly for h→ 0. Hence, for h sufficiently small the local neighborhood ΩΓh

, that
has width O(h) is contained in the neighborhood F (D).

Let dexh denote the exact signed distance function to Γh. As output of the initial-
ization phase we obtain Ihdh, cf. (6.6). In the next theorem, which is an immediate
consequence of Theorem 4.3, we quantify the statement, that Ihdh is “close to” the
exact signed distance function to dexh .
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Theorem 7.3. There exist constants c and h0 > 0 such that for h ≤ h0 the
following holds:

0 ≤ |Ihdh(v)| − |dexh (v)|
|dexh (v)|

≤ chk (7.16)

for all nodes v ∈ N(TΓh
), v /∈ Γh, that fulfill the condition, specified in Theorem 4.3,

that Lx0,v ∩Ns has 1D measure zero.
Proof. We apply Theorem 4.3. For h sufficiently small we have v ∈ F (D). For

v ∈ N(TΓh
) we have Ihdh(v) = dh(v). Due to Lemma 7.2 the parameter δL in

Theorem 4.3 is bounded by chk.

In the generic case the condition “Lx0,v∩Ns has 1D measure zero” used in the theorem
above is satisfied. In the remainder of this section we analyze the accuracy of the
perturbed zero level Γ̃h compared to that of Γh. We start with the accuracy of the
latter as an approximation of the zero level Γ of the “exact” level set solution φ. The
exact signed distance function to Γ is denoted by dex. The exact normal field on Γ is
denoted by nΓ(x), x ∈ Γ. We take a (sufficiently small) neighborhood U of Γ such that
for all z ∈ U there exists a unique p(z) = x ∈ Γ such that z = p(z) + dex(z)nΓ(p(z)),
cf. (3.10). Furthermore, to simplify the analysis, we assume that Γh ⊂ U is the graph
of a function on Γ in the following sense: there exists a function g : Γ→ R such that
Γh = {x+ g(x)nΓ(x) | x ∈ Γ }. Then dex(z) = g(p(z)) holds for all z ∈ Γh.

Lemma 7.4. Define cH := maxz∈Ū ‖∇2φ(z)‖ < ∞ Assume that (7.1) and (7.2)
are satisfied and that |dex(z)| ≤ cLc

−1
H holds for all z ∈ Γh. For h0 > 0 sufficiently

small and h ≤ h0 the following holds:

dist(Γh,Γ) := max
z∈Γh

|dex(z)| . hk+1. (7.17)

Proof. Take z = p(z) + dex(z)nΓ(p(z)) ∈ Γh. Hence, |dex(z)| = ‖z − p(z)‖ holds.
From Taylor expansion we obtain

φ(z)− φ(p(z)) = ∇φ(p(z))T (z − p(z)) +
1

2
(z − p(z))T∇2φ(ξ)(z − p(z)),

for suitable ξ. Since ∇φ(p(z)) and z − p(z) are aligned we obtain, using φ(p(z)) =
φh(z) = 0:

‖∇φ(p(z))‖‖z − p(z)‖ = |∇φ(p(z))T (z − p(z))|

≤ ‖φ(z)− φ(p(z))‖+
1

2
cH‖z − p(z)‖2

= ‖φ(z)− φh(z)‖+
1

2
cH‖z − p(z)‖2

≤ chk+1 +
1

2
cH‖z − p(z)‖2.

From (7.1), (7.2) and ‖z − p(z)‖ ≤ cLc−1
H we then get ‖z − p(z)‖ . hk+1.

In the next lemma we show that from the result in (7.17) it follows that the signed
distance functions dexh and dex to Γh and Γ, respectively, are close.

Lemma 7.5. Let the assumptions as in Lemma 7.5 be fulfilled. For h0 > 0
sufficiently small and h ≤ h0 the following holds:

‖dexh − dex‖L∞(U) . hk+1. (7.18)
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Proof. Take z ∈ U . First we consider the case that dexh (z) and dex(z) have the
same sign. Then |dexh (z) − dex(z)| =

∣∣|dexh (z)| − |dex(z)|
∣∣ holds. Let z∗h ∈ Γh be such

that |dexh (z)| = ‖z − z∗h‖. Since p(z∗h) ∈ Γ, we get, using (7.17):

|dex(z)| − |dexh (z)| ≤ ‖z − p(z∗h)‖ − ‖z − z∗h‖ ≤ ‖z∗h − p(z∗h)‖ = |dex(z∗h)| . hk+1.

Take y∗h := p(z) + g(p(z))nΓ(p(z)) ∈ Γh. With (7.17) we obtain

|dexh (z)| − |dex(z)| ≤ ‖z − y∗h‖ − ‖z − p(z)‖
≤ |g(p(z))| = |g(p(y∗h))| = |dex(y∗h)| . hk+1.

Now we treat the case that dexh (z) and dex(z) have opposite sign. With y∗h as defined
above we get

|dexh (z)− dex(z)| = ‖z − p(z)‖+ min
x∈Γh

‖z − x‖ ≤ ‖z − p(z)‖+ ‖z − y∗h‖.

Due to the sign property, z is located on the line segment that connects p(z) with y∗h.
Hence,

|dexh (z)− dex(z)| ≤ ‖p(z)− y∗h‖ = |g(p(z))| = |g(p(y∗h))| = |dex(y∗h)| . hk+1

holds.

We are now in a position to derive a bound for the difference between the approximate
signed distance function Ihdh ∈ Vh, that results from the initialization phase, and the
signed distance functions dex and dexh to the zero levels Γ and Γh, respectively.

Lemma 7.6. Let the assumptions as in Lemma 7.5 be satisfied. In addition we
assume (the generic case) that all v ∈ N(TΓh

) fulfill the condition that Lx0,v ∩Ns has
1D measure zero (cf. Theorem 4.3). For h0 > 0 sufficiently small and h ≤ h0 the
following holds:

‖Ihdh − dex‖L∞(ΩΓh
) . hk+1 (7.19)

‖Ihdh − dexh ‖L∞(ΩΓh
) . hk+1. (7.20)

Proof. From Theorem 4.3 it follows that
∣∣|Ihdh(v)| − |dexh (v)|

∣∣ . hk+1 holds,
uniformly for v ∈ N(TΓh

). Since per construction Ihdh(v) and dexh (v) have the same
sign, we get

max
v∈N(TΓh

)
|dh(v)− dexh (v)| . hk+1,

and thus,

‖Ih(dh − dexh )‖L∞(ΩΓh
) ≤ c max

v∈N(TΓh
)
|dh(v)− dexh (v)| . hk+1.

From the smoothness of dex (close to Γ) we get ‖Ihdex − dex‖L∞(ΩΓh
) . hk+1. Com-

bining these results with the result in (7.18) we get:

‖Ihdh − dex‖L∞(ΩΓh
) ≤ ‖Ih(dh − dexh )‖L∞(ΩΓh

) + ‖Ih(dexh − dex)‖L∞(ΩΓh
)

+ ‖Ihdex − dex‖L∞(ΩΓh
) . hk+1 + ‖dexh − dex‖L∞(ΩΓh

) . hk+1,
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which completes the proof of (7.19). The result in (7.20) follows from (7.18) and
(7.19).

As a direct consequence of Lemma 7.6 we obtain a result on the accuracy of the zero
level Γ̃h of Ihdh, cf. (7.5).

Theorem 7.7. Let the assumptions of Lemma 7.6 be fulfilled. For h0 > 0
sufficiently small and h ≤ h0 the following holds:

dist(Γ̃h,Γ) := max
z∈Γ̃h

|dex(z)| . hk+1 (7.21)

dist(Γ̃h,Γh) := max
z∈Γ̃h

|dexh (z)| . hk+1. (7.22)

Proof. Take z ∈ Γ̃h, hence (Ihdh)(z) = 0. Using (7.19) we obtain,

|dex(z)| = |(Ihdh)(z)− dex(z)| ≤ ‖Ihdh − dex‖L∞(ΩΓh
) . hk+1,

which proves the result in (7.21). Using (7.20) the same argument can be applied to
prove (7.22).

We conclude that under reasonable assumptions the PPR based initialization phase
results in a reinitialization Ihdh ∈ Vh, which locally (i.e. on ΩΓh

) differs at most
O(hk+1) from the exact signed distance function dexh to Γh. Furthermore, the pertur-
bation of the zero level caused by the reinitialization is also at most O(hk+1).

8. Numerical experiment. In this section we present results of a numerical
experiment. Related to the PPR based initialization algorithm introduced in sec-
tion 6.2 there are several numerical issues that have to be studied. For example, the
computational work needed in the PPR method and in the iterations (6.9)-(6.10), the
robustness of these iterations w.r.t. the choice of the starting value and the rate of
convergence of these iterations. These and other numerical aspects and the applica-
tion of the algorithm to different test problems will be studied in a forthcoming paper.
Here we consider only one test problem and illustrate the theoretical accuracy bounds
derived in section 7.2.

For the manifold Γ we take the torus, characterized by the distance function

dex(x) =

√
x2

3 +

(√
x2

1 + x2
2 −R

)2

− r,

with radii r = 0.2 and R = 0.4. For computations Γ is embedded in the domain
[−1, 1]3. We construct finite element spaces as follows. First a uniform tetrahedral
triangulation of Ω with mesh size parameter h0 = 2/3 is constructed. This uniform
grid is locally refined in a neigborhood of Γ by using a red-green procedure. This
results in triangulations with mesh size parameters h` = 2−`h0, ` = 1, 2, . . . 8, close
to Γ. These triangulations are denoted by T`. A cross-section of the level ` = 5
triangulation is given in Fig. 8.1.

We use standard finite element spaces with polynomials of degree k = 1 and
k = 2:

V k` = {ψ ∈ C(Ω) | ψ|T ∈ Pk for all T ∈ T` }, k = 1, 2.

The nodel interpolation corresponding to this space is denoted by Ih. As exact level
set function we take a perturbation of dex, given by φ(α) = dexq(α), with

q(α)(x) = 9.0 + 4.0 cos (αx1x2/||x||2) , α ∈ {1, 10, 50}.
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Fig. 8.1. Cross-section of tetrahedral triangulation on level ` = 5.

Note that φ(α) has Γ as its zero level, it has a large gradient and for increasing α it
becomes more and more distorted. For α = 50 the level lines of φ(α) on the same
cross-section as in Fig. 8.1 are illustrated in Fig. 8.2. The four level lines shown in
the figure correspond to the values φ(α) = −0.2, − 0.1, 0.1, 0.2.

Fig. 8.2. Level lines of function φ(α) for α = 50.

As input for the initialization phase we take φ
(α)
h = Ihφ

(α). Note that for k = 2

the zero level Γh of φ
(α)
h can not be constructed explicitly. We implemented the
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initialization phase described in section 6.2. We summarize its main components:
• Based on sign properties the local triangulation TΓh

that contains Γh is de-
termined.

• For v ∈ N(TΓh
) the recovered gradient (Ghφ

(α)
h )(v) and its normalization

nh(v) = ‖(Ghφ(α)
h )(v)‖−1(Ghφ

(α)
h )(v) are determined.

• For v ∈ N(TΓh
) the approximate signed distance value d

(α)
h (v) is determined

by using (6.9)-(6.10).

• Nodal interpolation results in the finite element function Ihd
(α)
h ∈ V kh (ΩΓh

),
which is the output of the initialization phase.

Since the signed distance function dexh to Γh (the zero level of φ
(α)
h ) is not known,

we compare the output Ihd
(α)
h to the signed distance function dex to Γ. We use the

following error measure:

e∞ := max
v∈N(TΓh

)
|Ihdh(v)− dex(v)|.

Furthermore, to measure the size of the gradient of Ihdh on ΩΓh
we determine

e∇∞ := max
T∈TΓh

∣∣∣∣∣
√

1

|T |

∫
T

||∇(Ihdh)(s)||2 ds− 1

∣∣∣∣∣ .
The results are shown in the tables 8.1, 8.2, 8.3 below, for the cases α = 1, 10, 50,
respectively.

k = 1 k = 1
` e∞ order e∇∞ order

3 1.21e-2 - 2.50e-1 -
4 3.01e-3 2.00 1.53e-1 0.71
5 7.54e-4 2.00 8.32e-2 0.87
6 1.90e-4 1.99 4.25e-2 0.97
7 4.68e-5 2.02 2.12e-2 1.00
8 1.19e-5 1.98 1.07e-2 0.99

k = 2 k = 2
` e∞ order e∇∞ order

3 5.73e-4 - 1.66e-2 -
4 7.21e-5 2.99 3.46e-3 2.26
5 9.94e-6 2.86 8.70e-4 1.99
6 1.24e-6 3.01 2.13e-4 2.03
7 1.58e-7 2.96 5.31e-5 2.01
8 2.07e-8 2.93 1.34e-5 1.98

Table 8.1
Errors and order of convergence for α = 1.

k = 1 k = 1
` e∞ order e∇∞ order

3 1.15e-2 - 2.40e-1 -
4 3.24e-3 1.82 1.61e-1 0.57
5 7.91e-4 2.03 8.02e-2 1.00
6 2.07e-4 1.94 4.32e-2 0.89
7 5.18e-5 2.00 2.24e-2 0.95
8 1.32e-5 1.97 1.11e-2 1.01

k = 2 k = 2
` e∞ order e∇∞ order

3 7.16e-4 - 1.77e-2 -
4 1.04e-4 2.78 3.78e-3 2.23
5 1.56e-5 2.75 1.10e-3 1.78
6 1.87e-6 3.06 3.10e-4 1.83
7 2.44e-7 2.94 7.32e-5 2.08
8 3.09e-8 2.98 1.91e-5 1.94

Table 8.2
Errors and order of convergence for α = 10.

In the cases indicated with ∗ in Table 8.3 there were convergence problems in
the sense that the approximate Newton line-search (6.9) did not satisfy its tolerance
criterion.
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k = 1 k = 1
` e∞ order e∇∞ order

3 4.07e-2 - 6.23e-1 -
4 1.05e-2 1.95 2.32e-1 1.42
5 2.91e-3 1.86 1.01e-1 1.21
6 7.63e-4 1.93 5.76e-2 0.80
7 1.94e-4 1.98 3.04e-2 0.92
8 4.84e-5 2.00 1.58e-2 0.94

k = 2 k = 2
` e∞ order e∇∞ order

3* 7.47e-2 - 8.10e-1 -
4* 2.86e-2 1.38 3.10e-1 1.39
5* 5.66e-4 5.66 1.63e-2 4.25
6 6.87e-5 3.04 2.48e-2 −0.61
7 7.21e-6 3.25 1.52e-3 4.03
8 8.78e-7 3.04 3.90e-4 1.97

Table 8.3
Errors and order of convergence for α = 50.

The results in the tables show an error reduction behavior that is consistent with
the theoretical results derived in Lemma 7.6 for the error measure e∞ and with the
results on the size of the gradient of the approximate signed distance function in The-
orem 4.2. In the application of the latter theorem to our method we have δp(z) ≤ chk,
cf. section 7.1.
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