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Abstract. Recently, we have proposed a method for solving steady-state

convection-diffusion equations, including the full compressible Navier-Stokes
equations [17]. The method is a combination of a mixed Finite Element method

for the diffusion terms, and a Discontinuous Galerkin method for the convec-

tion term. The method is fully implicit, and the globally coupled unknowns are
the hybrid variables, i.e., variables having support on the skeleton of the mesh

only. This reduces the amount of overall degrees of freedom tremendously.

In this paper, we extend our method to be able to cope with time-dependent
convection-diffusion equations, where we use a dual time-stepping method in

combination with backward difference schemes.

1. Introduction. Based on recent work on high-order methods, especially Dis-
continuous Galerkin methods [1, 6, 10], we have proposed a method for solving
steady-state convection-diffusion equations in [17], based on the work by Egger and
Schöberl [7]. The method combines a mixed Finite Element method for the diffusion
terms, and a Discontinuous Galerkin method for the convection terms. It turned
out to be actually very similar to a hybridized DG method proposed by Nguyen
et al. [14, 15, 16], see also [18] for a comparison of both methods with respect to
asymptotic performance.

For stationary and (weakly-)instationary applications in aerodynamics, implicit
methods are very popular, as they allow for large time-steps and thus an efficient
solution process [12, 13]. Arguably, most popular implicit methods rely on the use
of a Newton-type solver, i.e., one needs the Jacobian of the discretization. Typically,
for Discontinuous Galerkin methods, the size of this matrix is O(N · p2d), where
N is the number of elements in the triangulation, p is the underlying degree of
polynomial and d is the spatial dimension. Available memory then usually poses a
severe restriction on both N and p.
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A known way to reduce the size of the Jacobian that has gained some attention
recently is the use of hybridization [3, 5]. Roughly speaking, instead of considering
ansatz functions having support in the interior of the elements, one considers ansatz
functions whose support is the skeleton of the mesh. For a hybridized Discontinuous

Galerkin method, the Jacobian is of size O(N̂ · p2(d−1)), where N̂ is the number of
edges. Typically, this yields a reduction of the Jacobian size, which implies less
storage requirements and, usually, a faster iterative solution process.

In this paper, we extend the method proposed in [17] to cope with time-dependent
problems. Time discretization relies on A(α)-stable backward difference schemes.
We will give the definition of the method and show numerical results.

2. Underlying Equations. Let Ω ⊂ R2 be a domain. For a given system size m,
fluxes f : Rm → Rm×2 and fv : Rm × Rm×2 → Rm×2, we consider viscous balance
laws, given in mixed form as

σ = ∇w, wt +∇ · (f(w)− fv(w, σ)) = g ∀(x, t) ∈ Ω× (0,∞), (1)

equipped with suitable initial and boundary conditions.
A case of particular interest is that of time-dependent Navier-Stokes equations,

where the unknowns w := (ρ, ρu, ρv, E)T are density, momentum and total energy,
and the fluxes f ≡ (f1, f2) and fv ≡ (f1

v , f
2
v ) are defined as

f1 = (ρu, p+ ρu2, ρuv, u(E + p))T , f2 =(ρv, ρuv, p+ ρv2, v(E + p))T , (2)

f1
v = (0, τ11, τ21, τ11u+ τ12v + kTx1)T , f2

v=(0, τ12, τ22, τ21u+ τ22v + kTx2)T . (3)

Here p is the pressure, related to the other variables via the ideal gas law. Fur-
thermore, τ denotes the stress tensor, T is the temperature, and k is the thermal
conductivity coefficient. For the Navier-Stokes equations, g ≡ 0.

Boundary conditions on a surface, e.g., an airfoil, are set as adiabatic, no-slip
boundary conditions, i.e., one sets (u, v) ≡ 0 and n · ∇T ≡ 0. In- and outflow
boundary conditions are set via a characteristic splitting of the convective flux.

3. Method. In the sequel, we will work on a regular triangulation of Ω ⊂ R2. For
the necessary notation, we make the following definition:

Definition 3.1 (Triangulation). Let Ω be regularly triangulated as Ω =
⋃N

k=1 Ωk.
We define an edge ek as an intersection of two neighboring elements, or an element
with the physical boundary ∂Ω, having positive one-dimensional measure. Γ denotes
the collection of all these intersections, while Γ0 ⊂ Γ denotes those ek ∈ Γ that do

not intersect the physical boundary ∂Ω of the domain. We define N̂ := |Γ| to be
the number of edges in Γ.

To simplify the notation, we introduce the following abbreviations for integration:

(f1, f2) :=

N∑
k=1

∫
Ωk

f1 · f2 dx,

〈f1, f2〉Γ :=

N̂∑
k=1

∫
ek

f1 · f2 dσ, 〈f1, f2〉∂Ωk
:=

N∑
k=1

∫
∂Ωk

f1 · f2 dσ

The method to be presented depends on a triple of function spaces. For a given
triangulation, we thus make the following definition:
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Definition 3.2. For the approximation of σh ≈ ∇w, wh ≈ w and λh ≈ w|Γ, we
consider the following spaces:

Vh := {f ∈ L2(Ω)|f|Ωk
∈ Πp(Ωk) ∀k = 1, . . . N}m

Hh := {f ∈ L2(Ω)|f|Ωk
∈ Πq(Ωk) ∀k = 1, . . . N}2·m

Mh := {f ∈ L2(Γ)|f|ek ∈ Πq(ek) ∀k = 1, . . . N̂}m.
Recall that m denotes the dimension of the system, i.e., m = 4 for the Navier-Stokes
equations, and m = 1 for a scalar equation. Πp(U) is the space of polynomials up
to order p on a domain U . On the relation of p and q, see Remark 1.

Remark 1. For q = p+ 1, our method will be inspired by a Hybrid Mixed method
[2], while for q = p, it is indeed a hybridized Discontinuous Galerkin method [14,
15, 18]. We will demonstrate numerical results for both choices.

We start by semi-discretizing (1) in a straightforward, DG-like manner as

(σh −∇wh, τh)− 〈λh − wh, τ
−
h · n〉∂Ωk = 0 ∀τh ∈ Hh

((wh)t, ϕh)− (f(wh)− fv(wh, σh),∇ϕh) + 〈(f̂ − f̂v) · n, ϕ−
h 〉∂Ωk = (g, ϕh) ∀ϕh ∈ Vh

〈[(f̂ − f̂v)] · n, µh〉Γ = 0 ∀µh ∈Mh

with numerical fluxes

f̂ := f(λh)− β
(
λh − w−h

)
n, f̂v := fv(λh, σ

−
h ) + γ

(
λh − w−h

)
n.

[·] denotes the jump of a quantity; β is Lax-Friedrich’s parameter and γ a penalty
parameter resulting from a local DG discretization. Note that γ ≡ 0 for the Hybrid
Mixed method. Boundary conditions are incorporated by changing wh and λh on
boundary edges accordingly to achieve both a consistent and adjoint consistent
scheme. For more details, see [18].

In shorthand notation, the scheme can be written as

T ((wh)t, ϕh) +N(σh, wh, λh; τh, ϕh, µh) = 0, (4)

where we have suppressed the fact that this has to hold for all (τh, ϕh, µh) in the
corresponding spaces. T denotes the vector having 0 entries for the first and the
last equation, i.e.,

T ((wh)t, ϕh) := (0dim(Hh), ((wh)t, ϕh), 0dim(Mh
)T .

Remark 2. Note that the very special form of T is the reason that a straightforward
explicit method of lines approach is not possible, because T only involves temporal
derivatives of wh, but not of σh and λh, and one can not locally eliminate σh and
λh in favor of wh.

Our time discretization follows Jameson’s idea of dual time-stepping [12], which
relies on classical backward difference (BDF) schemes. For an ordinary differential
equation y′(t) = f(y(t)), these schemes can be written as

l∑
i=0

αiy
n+1−i = ∆tf(yn+1).

for (constant) values αi, y
n ≈ y(n∆t) and a given choice of ∆t. BDF schemes

are A(α)−stable for l ≤ 6 [9]. The first three BDF schemes are listed in Table 1.
Obviously, all BDF schemes are implicit, however, similar to computing the steps in
DIRK (diagonally implicit Runge-Kutta) methods, they are only implicit in yn+1.
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Name l α0 α1 α2 α3,
implicit Euler 1 1 −1

BDF2 2 3/2 −2 1/2
BDF3 3 11/6 −3 3/2 −1/3

Table 1. BDF schemes

If we apply BDF to the scheme defined in (4), we obtain

α0T (wn+1
h , ϕh) + ∆tN(σn+1

h , wn+1
h , λn+1

h ; τh, ϕh, µh) = −
l∑

i=1

αiT (wn+1−i
h , ϕh),

which has to hold for all (τh, ϕh, µh) ∈ Hh × Vh ×Mh.
For BDF schemes of order l ≥ 2, it is necessary to have a ’startup’ phase, i.e.,

one has to compute (σk
h, w

k
h, µ

k
h) for k = 1, . . . , l − 1 with a different method. We

use the following strategy: For BDF2, it is enough to compute (σ1
h, w

1
h, µ

1
h) by

an implicit Euler step, as this method generates (in one step) approximations of
O(∆t2). Unfortunately, for BDF3, such a simple strategy is not sufficient any more.
To compute (σ1

h, w
1
h, µ

1
h) and (σ2

h, w
2
h, µ

2
h), we use a BDF2 scheme with time step

∆̂t := (∆t)
3
2 . This ensures that both quantities are approximations to the exact

quantities of O(∆t3).
Obviously, the scheme in its current form has a lot of degrees of freedom. How-

ever, the unknowns associated to σh and wh on a cell Ωk are not directly coupled to
the unknowns on another cell Ωk′ , they are only implicitly coupled via λ. Thus, via
local solution procedures (or, on the linear algebra level, via static condensation)
[4], it is possible to express both σh and wh as functions of λh only. Therefore, for
each time step we obtain a nonlinear system of equations

M(λh, µh) = b(µh) ∀µh ∈Mh,

which usually has less degrees of freedom than the corresponding DG discretization.

4. Numerical Results.

4.1. Linear convection-diffusion equation. We consider a test case that has
also been investigated by Nguyen et al. [14]. It is a scalar and linear convection-
diffusion equation with the convective flux given as f(w) = (−4y, 4x)Tw, and the
diffusive flux given as fv(w,∇w) = 0.1∇w. The source term g is set to 0, and the
domain Ω is defined as Ω := [−0.5, 0.5]2. Note that in the vicinity of the origin,
this problem is diffusion-dominated, as the convective flux vanishes. Away from
(0, 0), convection gets more and more dominant. Based on the initial distribution,
the exact solution can be chosen to be a rotating Gaussian distribution. We use
a hybrid mixed method for this test case, i.e., we set q = p + 1. For p = 0, 1, 2,
we perform a numerical convergence study. For p = 0, we use the implicit Euler
scheme, for p = 1 we use a BDF2 scheme, and for p = 2, we use a BDF3 scheme. In
all cases, the optimal order for wh−convergence should be p+ 1, which is observed,
see Fig. 1 on the left. Note that for p = 0, the scheme needs much more time to get
into the asymptotic regime. This is due to the rich spatial structure of the solution,
which cannot be resolved well by a low-order scheme. In Fig. 1 on the right, we
have plotted σh−convergence. For this test case, the order to be expected is p+ 1
(which is also achieved), although σh is approximated in a space of polynomial order
p+ 1. This lack of optimality is due to the need for stabilization of the convective
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terms, and is a common feature in mixed discretizations. For implications and ways
to overcome this when diffusion is dominating, we refer to [7, 18].
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Figure 1. Convergence for the linear test case: wh convergence
(left) and σh convergence (right).

4.2. Burgers equation. The second test case under consideration is the multidi-
mensional (viscous) Burgers equation with convective flux f(w) = 1

2 (w2, w2) and
viscous flux from Section 4.1, given as fv(w,∇w) = 0.1∇w. The source term g is
set in such a way that the exact solution for problem (1) can be given as

w(x, y, t) := e−t
(
x+

e10x − 1

1− e10

)(
y +

e10x − 1

1− e10

)
.

For this problem, we also use a hybrid mixed method, and perform for p = 0, 1, 2
a numerical convergence study. Again, temporal and spatial orders are chosen
correspondingly. In all cases, convergence orders of p+ 1 are achieved for both wh

and σh.
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Figure 2. Convergence for Burgers equation: wh convergence
(left) and σh convergence (right).

4.3. Navier-Stokes equations. The flow past a circular cylinder is a classical
example of a bluff body flow. When the Reynolds number is smaller than 50 the
flow is steady and symmetric about the centerline of the wake. Even at small
values of the Reynolds number, say Re = 10, the flow separates from the surface of
the cylinder and forms a pair of bound vortices in the near wake. At Re = 50 this
configuration becomes unstable and the process of vortex shedding begins, resulting
in the well-known Karman vortex street.

We examine one configuration, defined by a Mach number Ma = 0.2 and a
Reynolds number (based on the diameter of the cylinder) Re = 180. This test
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case was also investigated in [8]. The employed mesh consists of 2916 elements and
extends to 20 diameters away from the cylinder (see Fig. 3). At the cylinder wall
no-slip conditions are applied; the outer boundary is modeled by characteristic far
field conditions. We use the hybridized Discontinuous Galerkin method, i. e. p = q.
The computations are initialized with free stream conditions.

Figure 3. Close-up view of the employed mesh for the cylinder
test case.

In Tables 2 and 3, the Strouhal numbers and the temporally averaged drag co-
efficients for various spatial and temporal discretizations are listed. Both numbers
compare very well with shrinking time step to values from the literature (see Ta-
ble 4). In Fig. 4, the Mach number is plotted at four temporal instances of the
shedding cycle. The periodic nature of vortex shedding can be observed remark-
ably well (compare the first and the third, and the second and the fourth plot,
respectively).

BDF2 BDF3
∆t = 1 ∆t = 5 ∆t = 10 ∆t = 5 ∆t = 10

p = 1 0.1898 0.1585 0.1205 0.1931 0.1519
p = 2 0.1898 0.1618 0.1255 0.1964 0.1543
p = 3 0.1898 0.1618 0.1255 0.1964 0.1543

Table 2. Strouhal number for various spatial and temporal discretizations

BDF2 BDF3
∆t = 1 ∆t = 5 ∆t = 10 ∆t = 5 ∆t = 10

p = 1 1.3448 1.2449 1.0675 1.4604 1.4250
p = 2 1.3640 1.2486 1.0744 1.4972 1.4514
p = 3 1.3634 1.2490 1.0727 1.4795 1.4538

Table 3. Temporally averaged drag coefficient for various spatial
and temporal discretizations

5. Conclusions and Outlook. We have presented a hybrid mixed method for the
computation of time-dependent convection-diffusion equations, and we have demon-
strated performance by numerical studies. One disadvantage of BDF methods is
that they do not allow for (arbitrary) high order discretizations, as they become un-
stable for l ≥ 7. One very near-future project is the incorporation of time-spectral
methods to simulate periodic flows, such as the flow past the circular cylinder,
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Experiment cD Sr
Gopinath [8] 1.3406 0.1866

Henderson [11] 1.336 -
Williamson [20] - 0.1919

Table 4. Mean drag coefficients and Strouhal numbers from the literature

Figure 4. Four subsequent snapshots of the vortex shedding cycle
(p = 3, BDF2, ∆t = 1).

more efficiently. This would also allow to compute more involved test cases, such
as (periodically) flapping wings.

Furthermore, stability of our method has not yet been investigated theoretically.
For the limiting cases of the underlying equation (1), i.e., f ≡ 0 or fv ≡ 0, it is
well-known that the semi-discretization in (4) is L2−stable. However, this has yet
to be shown for the full convection-diffusion equation. Also for the fully discretized
scheme, stability has still to be shown.
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