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Abstract. In this paper, we present a numerical scheme for the propagation
of acoustic waves in a heterogeneous medium in the context of the finite vol-

ume evolution Galerkin (FVEG) method (M. Lukáčová-Medvid’ová et al. J.

Comput. Phys., 183:533–562, 2002). As a mathematical model we consider a
wave equation system with space dependent wave-speed and impedance, which

is used to study the wave propagation in a complex media. A main building

block of our scheme is a genuinely multidimensional evolution operator based
on the bicharacteristic theory of hyperbolic systems under the assumption of

space dependent Jacobian matrices. We employ a novel approximation of the

evolution operator, resulting from quadratures, in the flux evaluation stage of
a finite volume scheme. The results of several numerical case studies clearly

demonstrate the efficiency and robustness of the new FVEG scheme.

1. Introduction. Hyperbolic conservation laws with spatially varying flux func-
tions model acoustic or elastic waves in a heterogeneous medium [2]. In exploration
seismology, e.g., one studies the propagation of small amplitude man-made waves
in earth and their reflection off geological structures. The hope is to determine the
geological structure (for example oil reservoirs) from measurements at the surface.
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A similar principle as in seismological exploration of the earth is used also in ul-
trasound exploration of human tissues. In all of these cases new phenomena can
appear since reflections of waves at interfaces can lead to discontinuities even for
linear equations.

The goal of the present work is to develop a numerical scheme for the propagation
of acoustic waves in a heterogeneous medium in the context of the finite volume
evolution Galerkin (FVEG) method. The FVEG method has been developed o-
riginally by Lukáčová and her coworkers, cf. e.g. [3, 4]. It is a predictor-corrector
method combining the finite volume corrector step with the evolutionary predictor
step. The corrector step approximates the fluxes by the midpoint rule in time and
trapezoidal rule in space. At the space-time quadrature nodes, point values of the
solution are predicted by a multidimensional approximate evolution operator. The
latter is constructed using the theory of bicharacteristics under the assumption of
spatially dependent Jacobian matrices. In the previous works of Lukáčová and oth-
ers the evolution operators were derived for constant coefficient, locally linearised
systems where bicharacteristics reduce to straight lines. An attempt to design a
generalised FVEG scheme for linear hyperbolic systems with variable coefficients
is done by Arun et al. in [1], where the methodology is demonstrated for a simple
acoustic wave equation. The present work is a continuation along the lines of [1]
to study wave propagation in complex media and to this end, we consider more
general and practically relevant mathematical models.

Using a general version of the compatibility condition on a bicharacteristic curve
[5], we derive an exact and (then use it to get) an approximate evolution operator.
As shown in [1], in order to obtain a stable scheme, the coefficients of the hetero-
geneous medium must be approximated over a staggered grid that is centered at
the integration points on cell interfaces. Our numerical experiments for wave prop-
agation with continuous as well as discontinuous wave speeds, through smooth as
well as non-smooth interfaces confirm robustness and reliability of the new FVEG
scheme.

2. Finite Volume Evolution Galerkin Method. In this section we design an
FVEG scheme for the numerical simulation of acoustic waves in a heterogeneous
medium. In contrast to [1], the mathematical model used here for the propagation
of acoustic waves is obtained by linearising the isentropic Euler equations or the
elasticity equations; see [2] for a derivation. The system of equations reads

∂tU + ∂xF1(U) + ∂yF2(U) = 0, (1)

with the vector of unknowns U and the flux-vectors F1(U) and F2(U) given as

U =

 φ
ρu
ρv

 , F1(U) =

 u
Kφ
0

 , F2(U) =

 v
0
Kφ

 . (2)

Here, φ can be thought as the amplitude of a pressure wave and u, v are respectively
the velocities in the x and y directions. The parameters K(x, y) and ρ(x, y) are
respectively the bulk modulus and density and hence, are material dependent.

Let X be the vector-valued Sobolev space of solutions to (1) and let E(τ) : X →
X be the exact solution operator, i.e.

U(·, t+ τ) = E(τ)U(·, t). (3)
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Let Vr be an approximation space of vector-valued piecewise polynomials of degree
r and let us denote by Un, the approximation to the exact solution U(·, tn) in
the space Vr. Since the exact solution is not always available, we suppose that an
adequate approximate solution operator Eτ : Vr → X is given. Let us also denote
by R : Vs → Vr, a suitable recovery operator, where Vs ⊂ Vr is the space of vector-
valued piecewise polynomials of degree s. Starting from Un, the FVEG scheme can
be recursively defined by

Definition 2.1.

Un+1 = Un − 1

∆x

∫ ∆t

0

δxF1

(
Un+ τ

∆t

)
dτ − 1

∆y

∫ ∆t

0

δyF2

(
Un+ τ

∆t

)
dτ. (4)

Here, δx and δy are finite difference operators, e.g. δxf(x) = f(x+h/2)−f(x−h/2)

and δxF1(Un+τ/∆t) and δyF2(Un+τ/∆t) are respectively the flux differences in the x
and y directions at time tn+ τ . In order to evolve the these fluxes, the approximate
evolution operator is used, i.e.

Un+ τ
∆t =

∑(
1

|∂Ω|

∫
∂Ω

EτRU
ndσ

)
χ∂Ω, (5)

where χ is the characteristic function of the edge ∂Ω and summation is taken over
all the computational cells.

In traditional predictor-corrector schemes like the two step Lax-Wendroff scheme,
the predictor step is done by a multi-dimensional finite difference operator, for exam-
ple the Lax-Friedrichs scheme. The FVEG scheme tries to replace the Lax-Friedrichs
step by a more accurate evolution operator based on the theory of bicharacteristic
curves, which is then approximated by quadrature; see [3] for details. The appealing
element of the latter is that it systematically tries to take into account the infinitely
many directions of wave propagation.

3. Exact and Approximate Evolution Operators. Let us write the wave e-
quation system in the primitive form:

∂tV +A1∂xV +A2∂yV = 0, (6)

where

V =

pu
v

 , A1 =

 0 K(x, y) 0
1

ρ(x,y) 0 0

0 0 0

 , A2 =

 0 0 K(x, y)
0 0 0
1

ρ(x,y) 0 0

 . (7)

We define the wavespeed c and the impedance Z via the relations c :=
√
K/ρ and

Z :=
√
Kρ.

We fix a point P = (x, y, tn + τ) in space-time and consider the characteristic
conoid of (6), passing through P and enveloped by the bicharacteristics given by

dx

dt
= −c(x, y) cos θ,

dy

dt
= −c(x, y) sin θ,

dθ

dt
= − sin θ∂xc+ cos θ∂yc. (8)

Here, (cos θ, sin θ) is the unit normal to the wavefront, which is the section of the
conoid by t = const hyperplanes. We solve the system of equations (8) with the
initial values x(ω, t+τ) = x, y(ω, t+τ) = y and θ(ω, t+τ) = ω ∈ [0, 2π]. Let Q and
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Q̃ be respectively arbitrary points on the wavefronts at t = tn and t = t̃ ∈ (tn, tn+τ).
Proceeding as in [1], we can derive the exact evolution operatorspu

v

 (P ) =
1

2π

∫ 2π

0

(p− Z cos θu− Z sin θv) (Q)

 1
cosω
sinω

 dω

− 1

2π

∫ 2π

0

 1
−2 cosω
Z(P )

−2 sinω
Z(P )

 dω

∫ tn+τ

tn

{
u
d

dt
(Z cos θ) + v

d

dt
(Z sin θ)

}
(Q̃)dt̃

− 1

2π

∫ 2π

0

 1
−2 cosω
Z(P )

−2 sinω
Z(P )

 dω

∫ tn+τ

tn
(ZS)(Q̃)dt̃,

(9)
where

S := c
{
∂xu sin2 θ − (∂yu+ ∂xv) sin θ cos θ + ∂yv cos2 θ

}
. (10)

We begin the approximation to the operator (9) by applying the rectangular
quadrature rule in time. The approximation of the last integral (involving the term
S) is done exactly as in [1] and hence we do not elaborate them here. However, the
approximation of the first two terms in (9) are done differently as outlined below.
Let

I := (Z cos θu)(Q) +

∫ tn+τ

tn
u
d

dt
(Z cos θ)(Q̃)dt̃ (11)

Using Taylor development for Z(Q) cos θ in the first summand of (11) and rectangle
rule for the time integral in the second summand yields

I = u(Q)

{
Z(P ) cosω + (tn − (tn + τ))

d

dt
(Z cos θ)(P )

}
+O(τ2)

+ τu
d

dt
(Z cos θ)(Q) +O(τ2).

= u(Q)

{
Z(P ) cosω − τ d

dt
(Z cos θ)(P )

}
+ τu(Q)

d

dt
(Z cos θ)(P ) +O(τ2)

= u(Q)Z(P ) cosω +O(τ2). (12)

The terms involving v are treated analogously. Using these approximations together
with the approximation of the source term integrals as in [1] yields the approximate
evolution operators, e.g. for pressure,

p(P ) =
1

2π

∫ 2π

0

[p− Z(P )(u cosω + v sinω)]dω

− 1

2π

∑
j

[
Z(ω)(−u sinω + v cosω)

]ω+
j

ω−
j

− 1

2π

∫ 2π

0

[
u

(dZ(ω) sinω)

dω
− v d(Z(ω) cosω)

dω

]
dω.

(13)

The expressions for u and v are analogous; see also [1, 3, 4] for more details on the
use of the evolution operators in a finite volume framework, leading to the FVEG
scheme.



FVEG SCHEME FOR ACOUSTIC WAVES 5

4. Numerical Case Studies. In this section we demonstrate the performance
of our scheme for smooth and non-smooth data. The scheme is implemented as
follows: In order to avoid the overlap of the discontinuities along the integration
paths in (13), both c and Z are stored at the centres of a staggered grid, whereas
p, u and v are stored in the physical grid; see also [1]. We use a piecewise linear
reconstruction for Z, p, u and v on their respective grids with the minmod limiter
to limit overshoots and undershoots of the linearly recovered approximations. The
rectangle rule is used for spatial integral of flux (5) on the edges and for all the
numerical experiments performed, the CFL number is set to be 0.5.

4.1. Order of Convergence. Our first goal is to demonstrate the second order
convergence of the scheme by computing the experimental order of convergence
(EOC). To this end, we choose a smooth coefficients and initial data

ρ(x, y) = K(x, y) = 1 +
1

4
(sin(4πx) + cos(4πy)) ,

p(x, y, 0) = sin(2πx) + cos(2πy), u(x, y, 0) = v(x, y, 0) = 0.

The computational domain [0, 1] × [0, 1] is successively divided into 10 × 10, 20 ×
20, . . . , 320× 320 mesh cells and the final time is set to t = 1.0. The boundary con-
ditions are periodic everywhere. Since an exact solution of this initial value problem
is not available, the numerical solution obtained an N ×N grid is compared to the
one obtained on a 2N × 2N grid. The errors in p, u and v and the corresponding
EOCs obtained in the L1 norm is shown in table 1. The table clearly shows the
second order convergence of the scheme.

N error of p EOC error of u EOC error of v EOC
10 8.52E-02 - 7.54E-02 - 5.54E-02 -
20 3.96E-02 1.11 2.57E-02 1.55 1.55E-02 1.84
40 1.70E-02 1.22 5.93E-03 2.12 4.60E-03 1.75
80 3.53E-03 2.27 1.37E-03 2.11 1.24E-03 1.89
160 6.35E-04 2.47 3.05E-04 2.17 3.00E-04 2.05
320 1.32E-04 2.27 7.30E-05 2.06 7.37E-05 2.02

Table 1. Wave propagation in a medium with smoothly varying
density and bulk modulus: EOCs for p, u and v measured in the
L1-norm.

4.2. Wave Propagation in a Heterogeneous Layered Medium. This test
problem is motivated an anlogous study in [1] and the problem models the prop-
agation of a pressure pulse through a heterogeneous layered medium with a single
interface. The density and bulk modulus are initialised as

(ρ(x, y),K(x, y)) =

{
(1, 1), if x ≤ 0.5,

(4, 2), otherwise.

The initial data read

p(x, y, 0) =

{
1 + 0.5(cos(πr/0.1)− 1), if r ≤ 0.1,

0, otherwise,

u(x, y, 0) = 0 = v(x, y, 0),
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where r denotes the distance r =
√

(x− 0.25)2 + (y − 0.4)2. The computational
domain is [−0.95, 1.05]× [−0.8, 1.6] and the boundary conditions are absorbing via
simple extrapolation of the variables on all sides. The contours of p, u and v at times
t = 0.2, 0.4, 0.6 and 0.8 are plotted in Figure 1. In the figure we clearly notice a
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Figure 1. Waves passing through the interface of a layered medium.

good resolution of the circular waves, which confirms the genuine multidimensional
behaviour of the FVEG scheme. There are no spurious oscillations at the interface
and the deformation of the wave due to the change in the medium is captured very
well. Due to the jump in the impedances of the media, a part of the wave is reflected
backwards as seen in the plots at t = 0.4 onwards.

4.3. Waves passing through a wavy interface. In this test we simulate the
waves passing through a complex, wavy interface, which is not aligned to the grid.
The initial values of p, u and v are same as in the previous problem. The material
parameters K and ρ are initialised as

K(x, y) = 1, ρ(x, y) =

{
1, if x ≤ 0.5 cos(2π(y − 0.4)) + 0.4,

4, otherwise.

The computational domain is [−0.95, 1.2]× [−0.675, 1.475] and the boundary condi-
tions are absorbing everywhere. The isolines of the solutions at times t = 0.2, 0.4, 0.6
and 1.0 are depicted in Figure 2. As in the previous problem we observe both the
reflection and transmission of the waves at the interface. However, due to the wavy
geometry of the material interface, a complex flow pattern of the reflected waves
can be observed at the interface.
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Figure 2. Waves passing through a wavy interface of a layered medium.

4.4. Wave Propagation through a Nonsmooth Interface. This test taken
from the reference [2]. The setup consists of a planar square wave pressure pulse
passing through a heterogeneous medium with piecewise constant density and bulk
modulus. The density and bulk modulus have the initial values

ρ(x, y) = 1.0, K(x, y) =

{
0.25 if x > 0 and y < 0.55x,

1.0 otherwise.

The initial data read

v(x, y, 0) = 0, p(x, y, 0) = u(x, y, 0) =

{
1 if − 0.35 < x < −0.2,

0 otherwise.

We apply periodic boundary conditions and the simulations are performed for t =
0.4, 0.6 and 1.0. The isolines of the pressure obtained on a 100×100 mesh are plotted
in Figure 3 and for the sake of comparison we also plot the pressure obtained on
finer mesh of 400×400 cells. The results clearly show the reflection and transmission
of waves at the interface. After passing through interface, a part of the waves get
reflected off due to the ramp-like geometry of the interface. It has to be noted
that both reflected and transmitted waves are oblique to the grid and the genuinely
multidimensional FVEG scheme resolve these waves without any grid alignment
effect or spurious oscillations.
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