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AN ASYMPTOTIC PRESERVING SCHEME FOR LOW FROUDE
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ABSTRACT. We present an asymptotic preserving (AP), large time-step scheme
for the shallow water equations in the low Froude number limit. Based on a
multiscale asymptotic expansion, the momentum fluxes are split into a nonstiff
and a stiff part. A semi-implicit discretisation, where the nonstiff terms are
treated explicitly and stiff terms implicitly in time, is crucial to achieve the AP
property. A combination of the semi-discrete mass and momentum equations
leads to an elliptic equation for the water height at the new time-level. With
the aid of this, the momentum can be update explicitly using a large time-
step which solely determined by the nonstiff characteristic speeds. The second
order accuracy of the scheme is based on Runge-Kutta and Crank-Nicolson
time-stepping procedures and MUSCL-type reconstructions. The numerical
results clearly demonstrate the accuracy and robustness of the scheme and its
efficacy to compute very low Froude number flows.
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1. Introduction. In several problems of physics, engineering and industry, one
often encounters processes acting on different spatial and temporal scales. In many
situations, atmospheric and oceanic phenomena modelled by the shallow water equa-
tions are also reminiscent of such multiscale behaviours. In deep waters, e.g. where
water-depth ranges up to 4000 metres, the speed of the gravitational waves on the
ocean surface reaches up to 200 metres per second or more, while water moves
only about 1-2 metres per second; see also [6]. In other words, there exists two
different temporal (spatial) scales and in ocean dynamics such a disparity in the
wave-speeds is usually quantified using the Froude number, which is the ratio of
convection speed to gravitational wave-speed. A low Froude number flow is the
shallow water analogue of the well known low Mach number hydrodynamics and
hence it deserves a lot of attention from a mathematical point of view too. It has
been rigorously proved, e.g. in [4], that the compressible Euler equations converge
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to their incompressible counter parts in the low Mach number limit. In fact, the
low Mach number limit is a singular limit for the Euler system, therein the system
of equations changes its nature from hyperbolic to mixed hyperbolic-elliptic.

We start with the shallow water system in the nondimensional form

Oth+V - (hu) =0, (1)
Oy(hu) + V- (hu®@u) +V (2};22) =0, (2)

where t > 0 is time, x € R% d = 1,2 is the space variable, h(x,t) > 0 is the
water height, u(x,t) € R? is the velocity vector. The operators V,V- and ® are
respectively the gradient, divergence and tensor products in R%.

Here, the nondimensional parameter € := uyot/v/ghret is the reference Froude
number which is the analogue of the Mach number in compressible flows. The
asymptotic limit of the solutions to (1)-(2), as € — 0, can be investigated using the
procedure due to Klainerman and Majda [4]. Formally, inserting the asymptotic
ansatz

F,t) = FO(x,8) + 2D (x,8) + 22D (x, 1) (3)
for the unknown functions h and u and equating the like powers of ¢ yields the limit
equations

h(x,t) = KO (t) + 2D (x,1),  (4)
V-ul® = —% log h(®), (5)
o (MOu®) + 7 (hOu® @ u®) + KOVA® =0, (6)

Note that the water height h has two components: the spatially homogeneous lead-
ing order height A(®) admits expansions or compressions at boundaries via the re-

lation
1

9] Joa
while the second order height h(? serves the role of a Lagrange multiplier for the
constraint (5).

The goal of the present work is to develop a numerical approximation to the shal-
low water system (1)-(2), in the context of the asymptotic preserving (AP) schemes
[3], which is uniformly valid in . As e — 0, the standard explicit discretisations of
(1)-(2) suffer from a severe restriction on the timestep due to the CFL condition,

e.g. in one dimension

At h

CFL := — max <|u| + f) <1. (8)
Az Q €

d
u?. v do = —; log h©), (7)

On the contrary, the AP schemes have the desirable property that their stability
requirements are independent of the perturbation parameter € and in addition they
automatically detect the asymptotic limit (4)-(6) as ¢ — 0. In other words, the
limit of an AP scheme for (1)-(2) as € — 0 is a consistent discretisation of the limit
system (4)-(6).

Our design of a numerical scheme for the low Froude number flows is via a
splitting of the flux functions in (1)-(2) into nonstiff and stiff parts based on the
multiscale representation (4). The non-stiff parts of the fluxes are constructed in
such a way that they have O(1) eigenvalues when e — 0. Hence, in the discretisation
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stage, the non-stiff part is treated explicitly in time, whereas the remaining stiff part
is implicit in time. Following a crucial observation due to Degond and Tang [2],
the elimination of implicit velocity terms leads to an elliptic equation for the water
height, which complies with the divergence constraint (5) in the zero Froude number
limit. Having solved the elliptic equation for the water height, the velocity can be
computed explicitly. Hence, the scheme involves only two steps: the resolution of
an elliptic equation and an explicit evaluation. The second order spatial accuracy
of the scheme is achieved by using standard MUSCL type reconstructions, whereas
the second order temporal accuracy is via Runge-Kutta midpoint predictions and
Crank-Nicolson time stepping strategies.

2. Asymptotic Preserving Time Discretisation. Let 0 =t < t! < -.. < t" <
t"*t1 < ... be an increasing sequence of times and let At be the timestep at the n'”
stage, i.e. t"T1 = " + At. We denote by f™(x), the approximation of any unknown
function f at time t”, i.e. f(x) ~ f(x,t").

As a first step towards the construction of an AP scheme, as in [1, 5], we split
the stiff pressure gradient term in (2) into nonstiff and stiff parts, i.e.

h? (1—¢?)
— | = hVh 4+ ————=hVh. 9
v(£) =nons 0= .
The AP time discretisation now consists of treating the second term on the right

hand side of (9) and the mass flux implicitly, leading to the definition

Definition 2.1. The semi-implicit, semi-discrete, AP scheme is
AT = A" — AtV - (hu)" T, (10)

1— 2
(hu)"*! = (hu)® — AtV - (hu @ u)" — Ath"Vh" — At(%)h"“w"“. (11)
The details of the space discretisation and the fully discrete scheme will be pre-
sented later. In order to justify the above definition, we want to first show that
the scheme (10)-(11) indeed possesses the AP property, i.e. as ¢ — 0, it leads to a

consistent discretisation of the limit system (4)-(6).

Theorem 2.2. The semi-discrete, semi-implicit scheme (10)-(11) is AP.

Proof. The proof of the AP property follows the same lines of asymptotic analysis
in section 1. We propose the same three-term asymptotic ansatz

Fr(x) = fO(x) +efrW(x) + 3 (x) (12)

for the discrete functions A™ and u”. Next, we balance the powers of £ on both
sides of (10)-(11), e.g. O(e72) and O(e~1) terms give

hn+1,(0)th+1,(0) _ 0’ (13)
hn+1,(0)th+1,(l) + hn+1,(1)th+1,(0) = 0. (14)

Therefore, the leading order water height A"+(9) and the first order water height
R™t1(1) are spatially constants, yielding

W (x) = RO 4 2t @) (x), (15)

in consistency with (4). If we assume that the initial value of h also has the multi-
scale representation (4), it then follows that (15) holds for all times.
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Equating the O(1) terms in (10)-(11) and using (15) gives
hn-‘rl,(O) _ hn,(O) — AtV - (hu)n-‘rl,(O)7 (16)
(b)) = (hu)™© — AtV - (hu@w)" ) — ARHLO TR (17)

Note that (17) is clearly a consistent discretisation of (6), whereas in the light of
(15), we can write (16) in the form

hn+1,(0) _ hn,(O)

L +1,(0)
V-u =TT LA (18)
which is a consistent discretisation of the divergence constraint (5). Thus, the proof
of AP property is complete. O

Our next step is to linearise the nonlinear term in (11). Before proceeding further,
we would like to emphasise that we assume i > 0 so as to avoid wet/dry areas. Let
us denote q = hu, the momentum, we define an auxiliary height and momentum

hi=h" — AtV - q”, (19)
Q= q" — ALV - (O“i“ly YNTIA (20)
The update formulae (10)-(11) can then be written in the form
Rt = — ALV - g, (21)
Q" =q- At(l%z)hnﬂvmﬂ (22)

Using (22) in (21) leads to an elliptic equation
1— 2
_ap=g) 626 )v. (R"HIVRM ) 4 RV = Rt — AtV - q (23)

for the water height h. In order to remove the nonlinearity of (23), we linearise the
nonlinear term about the auxiliary height h to get the linearised elliptic equation
1—¢? “
A=y (AR 1) B = = ALY -, (24)
€
We solve the elliptic equation (24) to get the updated value of the water height

h"*1. The momentum update (22) can then be evaluated explicitly to get the
velocity u™*1!.

3. Space Discretisation. In this section, we present the details of the space dis-
cretisation and in order to make the exposition simpler, we restrict ourselves to the
one-dimensional (1-D) case. However, the present ideas can be straight-forwardly
extended to two space dimensions.

The split shallow water system can be written in the usual divergence form

OU + 0, (F(U) ¥ F(U)) —0, (25)

=) rom(gle) (k)

As a first step in the numerical approximation, we discretise the given computational
domain into uniform cells of size Az and let C; := {z: |x — z;| < &%} be the cell
centred around the mesh point x; = iAz. The cell integral averages U are used

where
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to approximate the solutions of the conservation law (25). Note that the semi-
discrete formulation presented in the previous section requires the computation of
the auxiliary height h; and the auxiliary momentum ¢;, for which we employ a finite
volume update

VAN .
U = Ul—ﬂ{]—‘ %—}‘i_%}. (27)
Here, we use the Rusanov numerical flux
T 1 n @it n
Firy =5 (FOM + PULY) ) — =52 (U - U7) (28)

with
aiJr% 1= max (|ui|+\/hi,|ui+1|+\/hi+1) . (29)

The elliptic equation (24) in the 1-D case reads

_ 2 R
— A#? (1-e )al. ho A" 1) 4+ Bt = B — At0,4. 30
62

Employing central discretisations yields the linear system of equations

Eii? d ;262) {(i““ + h) i = (ﬁm +2h + ;}Fl) hy
At

+ (ilz + ilz'—l) h?fll} A AL (Git1 — Gi—1)

We now show that our fully discrete scheme also possess the AP property.

Theorem 3.1. The fully discrete scheme is AP.
Proof. Let us consider the asymptotic expansion
fzn — fZL:(O) + Ef;n’(l) + €2fi7%(2) (32)

of the unknowns A" and u}. Next, we insert the ansatz (32) in (31) and equate to
zero the like powers of . After using periodic boundary conditions, O(¢~?) terms

immediately gives hEO) = const = A1) say. In analogous manner we can
obtain thrl = const. Hence,
n n+1, n+1,(2
it = prl(0) 4 g2t () (33)
In the light of (27) and after using (33), the leading order momentum update is
G0 = g = DL (b b)) (34)
Ax it3 =3
n,(0 n,(0
_ gm0 At ) (¢? © (¢ © - ﬁh (hn+1,(2) _ L (2))
g Al‘ h S 1 h .1 Aa: i+% ii%
i+ =3
(35)

Note that (35) is clearly a consistent discretisation of the zero Froude number
momentum conservation law (6). In order to obtain a discrete form of the mass
conservation (5), we consider the O(1) term in (31):

AL (a0) | 20 @) (70) | 07 (0) L 7(0) ) a1
TOAL2 {(hiJrl + h; )hi+1 - (hi+1 +2h;7 + hzel) h;

NN At i
(RO + RO ) B ) et O = ) 22 (g - %))

(36)
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The quantity in the curly braces is a discretisation of 9, (h(?9,h" 1)) and there-
fore, taking the difference form of (34) and comparing it with (36) we get

At/ ni10 n+1,(0 n n
~ 9Ax ( i+1 O 9i—1 ( )> = prHb O — O, (37)
which can be rearranged to get a discrete version of (5). Hence, the proof of AP
property is complete. O

4. Second Order Extension. The second order accuracy in time is achieved by
the second order Runge-Kutta and Crank-Nicolson time stepping procedures, i.e.

Uty — g — %@F(U") _ %axﬁ (U"+%) , (38)
U — U At F (U"+%) - %am (F(U”) L F (U”“)) . (39)

The second order spatial accuracy is via standard MUSCL-type reconstructions and
extrapolations.

5. Numerical Case Studies. In this section we report the results of some nu-
merical experiments to assess the performance of our AP scheme. The capabilities
of the AP scheme are more pronounced when its results are compared to those of a
fully explicit scheme.

5.1. Order of Convergence Under Grid Refinement. Our first goal is to verify
the convergence of our scheme and to this end, we consider an asymptotic solution

h(z,y,t) = 1 — 2 {cos(4m(x — t)) + cos(4m(y — 1))}, (40)
u(z,y,t) =1 —2cos(2m(x — t)) sin(2w(y — t)), (41)
v(x,y,t) =1+ 2sin(27(z — t)) cos(2n(y — t)). (42)

The asymptotic solution is constructed from an exact solution of the zero Froude
number equations (4)-(6); see also [7] for more details. For at least a short time, the
asymptotic solution will agree with an exact solution of the shallow water equations.
Therefore, we initialise the variables with the asymptotic solution at ¢ = 0 and we
do computations up to t = 0.01. We set ¢ = 0.005 and divide the computational
domain [0, 1] x [0,1] consecutively into 20 x 20,40 x 40,80 x 80,160 x 160 cells.
The boundary conditions are periodic everywhere. The L! errors and the rates of
convergence are in depicted table 1, which clearly demonstrate the second order
convergence of the scheme.

’ N \ LY errorin h | Rate | L! error in w | Rate | L! error in v | Rate

20 | 0.00000939 0.00133667 0.00133667
40 | 0.00000324 | 1.5340 | 0.00025461 | 2.3923 | 0.00025459 | 2.3924
80 | 0.00000049 | 2.7355 | 0.00005550 | 2.1978 | 0.00005551 | 2.1974
160 | 0.00000007 | 2.8878 | 0.00001227 | 2.1774 | 0.00001227 | 2.1780

TABLE 1. Errors and convergence computed using the asymptotic
solution at ¢ = 0.01 and € = 0.005.
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5.2. Two Colliding Pulses. In this problem we model two colliding gravitational
pulses in a 1-D channel. The motivation for this test is an analogous study reported
in [5]. The initial data read

h(z,0) = 0.955 + g (1 — cos(2mz)), u(x,0) = —sign(z)v2 (1 — cos(2nz)).

The computational domain [—1,1] is divided into 200 equal mesh points and we
have set ¢ = 0.1, the boundary conditions being periodic. The evolution of the
water height at different times is shown in Figure 1.

t=0.0 t=0.01 t=0.03

-1 -05 0 05 1 -1 -05 0 05 1 -05 0 0.5
X X X

FiGURE 1. Two colliding gravitational pulses in a 1-D channel:
evolution of water height at different times. Here, ¢ = 0.1 and
CFL number is 0.45.

5.3. Advection of a Vortex. In this test we simulate the advection of a vortex,
which is a typical example of a low Froude number flow. Specifically, the initial data
model a rotating vortex positioned at a point (0.5, 0.5) of the computational domain
[0,1] x [0,1] and superimposed in a uniform flow in the z-direction. The initial
conditions are specified in terms of the radial distance r = /(z — 0.5)2 + (y — 0.5)2
in the form

h(z,y,0) = 0.5+ e2h® (r), u(z,y,0) = 1 — uy(r)sing, v(z,y,0) = uy(r) cos ¢,

where

5r, if0<r<0.2
up(r)=4q2—->5r, if0.2<r <04,
0, otherwise.

Here, tan¢ = (y — 0.5)/(z — 0.5) and h(®) satisfies 9,h(?) = u3/r. We have set
¢ = 0.001 and the boundary conditions are periodic at left and right boundaries
and wall on top and bottom. The computational domain is divided into 160 x 40
mesh points. Figure 2 shows the isolines of the vorticity at times t = 0,1,2 and 3.

In order to compare the dissipations of the AP scheme and a fully explicit scheme,
we perform this experiment also for ¢ = 0.01 and € = 0.1. The relative kinetic
energies obtained by both schemes are plotted in Figure 3. The figure clearly shows
that the fully explicit scheme is far more dissipative then AP scheme and as ¢
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Vorticity

1 T T T

FIGURE 2. Advection of a vortex: isolines of the vorticity at times
t=20,1,2,3, here £ = 0.001.

decreases, the dissipation of the explicit scheme decreases further. However, the
dissipation of the AP scheme is almost independent of the Froude number .

Relative kinetic energy: e = 0.1 Relative kinetic energy: € = 0.01 Relative kinetic energy: € = 0.001

FIGURE 3. Advection of a vortex: relative kinetic energies for ¢ =
0.1,0.01 and 0.001.
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