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Abstract. In this paper we investigate an error analysis of the DG method in space and the
Crank-Nicolson scheme in time applied to the level set equation.The exact solution is assumed to
be sufficiently smooth. Under certain assumption on the underlying velocity field we proof an error

bound of order hk+ 1
2 + ∆t2 for the error between the exact solution and the fully discrete solution

in the L2-norm , where h is the spatial gird size, ∆t the time step size and k the polynomial degree.
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1. Introduction. Level set methods [Set96, Set99, OF03] are very popular for
numerically capturing moving surfaces or interfaces and used in many applications,
e.g. in two-phase flow simulations [GR11, SAB+99, SSO94, SSH+07]. The surface or
interface is implicitly given by the zero level of the continuous level set function φ.
Let Ω ⊂ Rd, d ∈ N, be a domain. We introduce the level set equation

∂

∂t
φ+ u · ∇φ = 0for t ≥ 0, x ∈ Ω, (1.1)

with a given velocity field u and with suitable initial conditions and boundary condi-
tions on the inflow boundary. Due to the representation of the interface as the zero
level of the level set function the level set method can handle topological changes
of the interface easily. There are many different possibilities to solve the level set
method numerically, e.g. finite differencing schemes or finite element methods. Often
the method of lines is used. That means the level set equation is discretized in space
first and then with respect to time. A popular finite element method that is used for
the spatial discretization of the level set equation is the SUPG method. This method,
that is based on continuous finite elements, is stable. In [Bur10] an analysis of the
SUPG method combined with different time stepping schemes applied to the level
set equation is presented. In case of the Crank-Nicolson scheme the discretization
error is shown to be of order hk+ 1

2 + ∆t2, when polynomials of order k are used, h
denotes the spatial grid size and ∆t the time step size and the stabilization param-
eter δ is chosen to be of order h. In this analysis the error is measured in the norm
‖ · ‖2u := ‖ · ‖2L2

+ δ2‖u · ∇ · ‖2L2
.

Another popular finite element method that may be used for the spatial dis-
cretization of the level set equation is the Discontinuous Galerkin (DG) method with
upwind flux [MRC06, PFP06, FK08]. In this paper we present an analysis of this DG
method combined with the Crank-Nicolson scheme in time applied to the level set
equation. The discretization error is estimated in the L2-norm. The derivation of an
error estimate in an H1(Ω)-norm is still an open problem. There are many papers on
the analysis of DG methods. For instance, an analysis of the DG method for station-
ary convection diffusion reaction problems can be found in [AM09]. For a sufficiently
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smooth exact solution u and the DG-solution uh the authors show the error bounds

‖|u− uh|‖ = C|u|Hk+1(Ω)


hk+ 1

2 convection dominated

hk diffusion dominated

hk+1 reaction dominated,

where ‖|·|‖ includes among other terms a grid dependent H1(Ω)-norm and an L2-norm.
The analysis in [AM09], however, does not apply to a pure advection problem as the
presence of a strictly positive reaction coefficient is crucial. Furthermore, the classical
DG method (with upwind numerical flux) for stationary first order advection-reaction

problems is analyzed in [JP86]. The authors prove convergence of order hk+ 1
2 in the

norm ‖| · |‖2 := ‖ · ‖2L2
+ h‖u · ∇ · ‖2L2

+
∑
e∈F | [[·]] |2e. The last summand denotes the

integrals of the jump over all faces. Later in [BMS04] the same order of convergence is
shown for a whole class of DG methods for the same stationary first order hyperbolic
problem. The DG methods differ in the choice of the numerical flux function. The
estimates, however, hold in a norm, that includes the L2-norm and a semi-norm on
the faces, but not an L2-norm of the streamline gradient.
A special DG method for the stationary advection-reaction equation was analyzed in
[BS07]. Here the estimates hold in a norm, that is similar to the norm in [JP86]. In
particular the control over the streamline gradient is included. We are not aware of
a complete analysis, i.e. treating discretization errors in space and time, of the DG
method applied to a transient advection-reaction problem. There is some literature
on analysis of transient problems. For instance, in [CHS90] the truncation error of
the DG method for hyperbolic conservation laws of the form

∂tu+ divf(u) = 0in Ω× (0, T )

is shown to be of order k + 1.
A convergence result for the linear transport equation in 1D is presented in

[CSJT98]. The spatial discretization error at the end time T can be shown to be
of order k + 1, where k is the polynomial degree. The transport equation with con-
stant velocity is solved on the interval [0, 1] with periodic boundary conditions.
Although the level set equation is a linear transport equation, this result does not in-
clude the initial-boundary problem, that we consider in this paper, as the arguments
used can not be generalized to higher dimensions and other boundary conditions than
periodic boundary conditions. In [ZS04] and [ZS10] error estimates for Runge-Kutta
DG methods applied to scalar conservation laws are presented. In [ZS04] the time
discretization is a second order TVD Runge-Kutta method and in [ZS10] a third order

explicit TVD Runge-Kutta method. An estimate of order O(hk+ 1
2 + ∆tm), m = 1, 2

is derived for a general monotone numerical flux function. If the upwind flux is used
the order improves to O(hk+1 + ∆tm), m = 1, 2. The estimate relies on smooth exact
solutions. The proofs are only given for scalar conservation laws in 1D while boundary
conditions are not considered. Instead, it is assumed that the solution is periodic or
compactly supported. The authors claim that the analysis can be extended to mul-
tidimensional conservation laws in case of the linear flux f(ϕ) = uϕ. This, however
would still exclude the level set equation due to the assumption on the behavior of
the solution at the boundary.

In this paper we present a complete analysis of the DG method in space and a
time differencing scheme in time applied to the level set equation in arbitrary space
dimensions and with boundary conditions.
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In section 2 the level set equation, its spatial discretization by the classical DG
method with upwind flux and its time discretization due to the Crank-Nicolson scheme
are introduced. In section 3 the main result, the discretization error estimate, and its
proof are presented. In section 4 numerical results are presented.

2. Problem setting. Consider the domain Ω ⊂ Rd, d ∈ N, and a given velocity
field u that is defined in Ω. Let n denote the outer unit normal on ∂Ω. The inflow
boundary is defined as

∂Ωin := {x ∈ ∂Ω|u(x) · n(x) < 0}.

Boundary conditions for the level set equation need to be prescribed on ∂Ωin. In this
paper we consider Dirichlet boundary conditions φD. Furthermore, initial conditions
are needed. Let φ0 : Ω→ R be (close to) a signed distance function. Then, the level
set problem in strong formulation is

find φ ∈ C1([0, T ]; C1(Ω)) such that
∂
∂tφ+ u · ∇φ = 0 in Ω× [0, T ]

φ(x, 0) = φ0(x) in Ω

φ(x, t) = φD(x, t) on ∂Ωin × [0, T ]

(2.1)

Let φD be a smooth extension of φD into the whole domain Ω. By subtracting φD
problem (2.1) can be transformed into a problem of the form (2.2).

find Ψ ∈ C1([0, T ]; C1(Ω)) such that
∂
∂tΨ + u · ∇Ψ = f in Ω× [0, T ]

Ψ(x, 0) = Ψ0(x) in Ω

Ψ(x, t) = 0 on ∂Ωin × [0, T ],

(2.2)

where f := − ∂
∂tφD − u · ∇φD and Ψ0 = φ0 − φD. We will analyze the DG method

for problem (2.2) in section 3. The corresponding DG method for problem (2.1) is
derived in Appendix A. Furthermore, we prove that the two methods are equivalent
in Appendix A. Thus, the error bound we derive for the DG method for problem
(2.2) also holds for the DG method for problem (2.1). Throughout the analysis we
need the following assumptions on the velocity field u.

Assumption 1. Let u : Rd → Rd be a divergence-free, globally Lipschitz-
continuous function that does not depend on time. Furthermore, u ∈ [W 1,∞(Ω)]3

has no closed curves and no stationary points, i.e. |u(x)| 6= 0 for all x ∈ Ω.
Assumption 2. Let {Th}h>0 be a family of shape-regular tetrahedral (triangular)

triangulations of Ω We restrict to triangulations Th that are quasi-uniform. We
introduce the notation un := u · n. We derive the DG method for problem (2.2). As
the velocity field is divergence free, we can transform the level set equation into the
conservation law

∂

∂t
Ψ +∇ · (uΨ) = f (2.3)

with initial and boundary conditions as above. To derive the classical DG discretiza-
tion we multiply (2.3) by a differentiable test function v and integrate over K ∈ Th.∫

K

∂

∂t
Ψv dx+

∫
K

∇ · (uΨ)v dx =

∫
K

fv dx.

3



Integration by parts yields∫
K

∂

∂t
Ψv dx−

∫
K

Ψu · ∇v dx+

∫
∂K

Ψvun ds =

∫
K

fv dx.

Define the finite dimensional trial and test space

Vk,DG
h := {vh : vh|K ∈ Pk(K),∀K ∈ Th}. (2.4)

Substituting φ and v by their approximations in Vk,DG
h and summing over all K ∈ Th

leads to∑
K∈Th

∫
K

∂

∂t
Ψhvh dx−

∫
K

Ψhu · ∇vh dx+

∫
∂K

Ψhvhun ds =
∑
K∈Th

∫
K

fvh dx.(2.5)

The finite element functions Ψh and vh are not uniquely defined on the faces e ∈
F0, where F0 denotes the set of interior faces of Th. To gain a uniquely defined
discretization a numerical flux function has to be chosen. This numerical flux then
substitutes the fluxes f(Ψh) · n = Ψhun. In this paper we consider the upwind
flux. Furthermore, we consider the DG method in the primal formulation. Let F∂
denote the set of all faces located at the boundary ∂Ω. Then the set of all faces is
F := F0 ∪ F∂ . F∂ can be further divided into F∂in , F∂out and F∂0 according to
the inflow boundary ∂Ωin, the outflow boundary ∂Ωout and the part of the boundary
∂Ω0 where un = 0. That means un is zero on all e ∈ F∂0 and thus, F∂0 will not be
needed in the remainder.
For the interior faces e ∈ F0 there are two simplices K+ and K− sharing this face.
Then the jump [[·]] across e and the average {·} on e for a scalar function g and a
vector valued function ψ are defined by

[[g]] := g+n+ + g−n−{g} :=
1

2
(g+ + g−)

[[ψ]] := ψ+ · n+ + ψ− · n−{ψ} :=
1

2
(ψ+ + ψ−).

Furthermore, we need the scalar product (·, ·)F :=
∑
e∈F (·, ·)e. The scalar products

(·, ·)F∂out , (·, ·)F0 and (·, ·)F∂in denote the summation over the corresponding subsets

of F . As a function in Vk,DG
h may be discontinuous across the interior faces, its

gradient does not exist on e ∈ F0. However, it exists on every K ∈ Th. Thus, we use
the L2-scalar product (·, ·)Th :=

∑
K∈Th(·, ·)K , the L2-norm ‖ · ‖Th :=

√
(·, ·)Th and

the Sobolev-norm ‖ · ‖Hm(Th) :=
√∑

K∈Th ‖ · ‖
2
Hk+1(K)

, m ∈ N, for gradients of the

discontinuous finite element functions.
We substitute the term

∑
K∈Th

∫
∂K

Ψhvhun ds in (2.5) by the sum over all faces.
As Ψh is not single-valued on the faces we substitute the fluxes Ψhun by the upwind

flux ûΨh

uw
. Due to the inflow boundary conditions Ψ = 0 on ∂Ωin we obtain

(
∂

∂t
Ψh, vh)L2(Ω) − (Ψh,u · ∇vh)Th + (Ψh, vhun)F∂out + (ûΨh

uw
, vh)F0

=(f, vh)L2(Ω),
(2.6)

with

(ûψ
uw
, v)F0 :=

∑
e∈F0

∫
e

u · [[v]] {ψ}+
1

2
|un| [[v]] · [[ψ]] ds. (2.7)
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As Ψh|∂Ωin
= 0 for all t ∈ [0, T ], we introduce the following space:

Vk,DG
h,0 := {vh ∈ Vk,DG

h : vh|∂Ωin
= 0}.

In the remainder we change the notation and use φ and φh also for the transformed
variables Ψ and Ψh. We define the bilinear form ah as follows

ah : H1(Th)×H1(Th)→ R,
ah(ϕ, v) = −(ϕ,u · ∇v)Th + (ϕ, vun)F∂out + (ûϕ

uw
, v)F0

(2.8)

where H1(Th) := {ψ ∈ L2(Ω);ψ|T ∈ H1(T ), ∀T ∈ Th} and

(ûϕ
uw
, v)F0 :=

∑
e∈F0

∫
e

u · [[v]] {ϕ}+
1

2
|un| [[v]] · [[ϕ]] ds. (2.9)

The semi-discrete level set DG method resulting form (2.2), then, reads:

find φh ∈ C1([0, T ]; Vk,DG
h,0 ) such that

(
∂

∂t
φh, vh)L2(Ω) + ah(φh, vh) = (f, vh)L2(Ω)for all vh ∈ Vk,DG

h . (2.10)

Now, we apply the Crank-Nicolson scheme to discretize (2.10) in time. We introduce
the time step size ∆t := T/N , N ∈ N, and tn := n∆t, n = 0, ..., N . The fully discrete
problem is given by the following scheme:

φ0
h = φ0,h

for n = 1, ..., N find φnh ∈ Vk,DG
h,0 such that for all vh ∈ Vk,DG

h

(
φnh − φ

n−1
h

∆t
, vh)L2(Ω) + ah(

1

2
(φnh + φn−1

h ), vh) = (
1

2
(f(tn) + f(tn−1)), vh)L2(Ω).

(2.11)

Here, φ0,h is an approximation in Vk,DG
h,0 to φ0. We will specify this approximation

later. In the next section we derive error bounds for the scheme (2.11).

3. Error analysis. The analysis is based on ideas, that are used in [Bur10] for
the analysis of the SUPG method applied to the level set equation and in [Tho97] for
the analysis of FE methods for parabolic equations. We outline the main ingredients
in the analysis below.

An inf-sup-condition with respect to a suitable norm is proven for the bilinear form
ah. For the derivation of the inf-sup-condition the assumptions, that the velocity field
is Lipschitz-continuous and has no closed curves and no stationary points, are crucial.
This analysis is given in section 3.2. Using this result we show that in a suitable norm
the projection error of the Ritz-projection related to ah is of order hk+ 1

2 , cf. section
3.3. Then, in section 3.4, we consider the fully discrete system. As in the analysis for
parabolic problems in [Tho97] the error between the fully discrete solution and the
exact solution in the L2-norm is decomposed into the projection error of the Ritz-
projection and the difference between the Ritz-projection of the exact solution and
the fully discrete solution. The latter is shown to be of order hk+ 1

2 + ∆t2. Here the
assumption that the velocity field is time-independent is needed.

The proof of the inf-sup-condition (Theorem 3.11) is based on the construction
of a suitable test function ψ∗h. Similar arguments can be found in [BS07], where a
stabilized DG method for the stationary advection-reaction equation is analyzed, in
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[AM09], where DG methods for advection-diffusion-reaction problems are studied and
in [BS11], where an analysis of the SUPG method applied to a transient convection-

diffusion equation is presented. In our analysis the test function ψ∗h ∈ Vk,DG
h is the

sum of two functions, that are similar to those used in the papers mentioned above, i.e.
ψ∗h := δ1hu·∇ϕh+δ2πh(χϕh), with a suitable choice for δ1 and δ2. Here, ϕh ∈ Vk,DG

h,0 ,
u denotes the mean value of the velocity field u, χ is a suitable smooth function, which
will be introduced later, and πh denotes the L2-projection onto Vk,DG

h . We show that

for all ϕh ∈ Vk,DG
h,0 and ψ∗h = ψ∗h(ϕh) as above there are positive constants c1 and

c2 > 0 such that

ah(ϕh, ψ
∗
h) ≥ c1‖|ϕh|‖2 and ‖|ψ∗h|‖ ≤ c2‖|ϕh|‖ (3.1)

hold for a suitable norm ‖| · |‖. Thus, an inf-sup condition follows directly. The first
summand, hu · ∇ϕh, is used in [BS07] together with the additional term κϕh where
κ is a suitable constant. hu · ∇ϕh yields control over the L2-norm of the streamline
gradient. However, the test function as in [BS07] does not yield control over the L2-
norm of ϕh in the case of the level set equation due to the lack of the reaction term.
Instead of adding κϕh, we add πh(χϕh) which yields the control over the L2-norm of
ϕh. The idea to construct such a test function was introduced in [JP86] and reused
in [AM09].

The treatment of the time-dependent case is analog to the analysis of the SUPG
method in [Bur10] and the approach in [Tho97].

3.1. Preliminaries. We introduce norms and semi-norms, that are related to
the triangulation Th and the bilinear form ah.

Notation 1. Let ϕ ∈ H1(Th).

‖ϕ‖2F :=
1

2

∑
e∈F0

‖|un|
1
2 [[ϕ]] ‖2e +

1

2

∑
e∈F∂out

‖|un|
1
2ϕ‖2e.

‖ϕ‖2ah
:= ‖ϕ‖2L2(Ω) + ‖ϕ‖2F .

‖|ϕ|‖2 := h‖u · ∇ϕ‖2Th + ‖ϕ‖2ah

Note that due to the definition of the jump

‖|un| [[ϕh]] ‖e = ‖u · [[ϕh]] ‖e ≤ c‖|un|
1
2 [[ϕh]] ‖e, (3.2)

holds with c = ‖|un|
1
2 ‖∞ for every internal face e ∈ F0. Furthermore we will need

inverse inequalities, trace inequalities and L2-projection error estimates. For the finite
element functions the standard inverse inequality and trace inequality hold due to
Assumption 2. Consider an arbitrary element K ∈ Th. Then, the inverse inequalities

‖∇ϕh‖L2(K) ≤ CKh−1
K ‖ϕh‖L2(K) and ‖∇ϕh‖Th ≤ Ch−1‖ϕh‖L2(Ω) (3.3)

hold for all ϕh ∈ Vk,DG
h with constants Ck and C independent of h, e.g. [EG04].

Furthermore, the trace inequality

‖ϕh‖L2(∂K) ≤ CKh
− 1

2

K ‖ϕh‖L2(K) (3.4)

holds for all ϕh ∈ Vk,DG
h with a constant CK independent of h [CL91]. Now consider

an arbitrary face e ∈ F and K+ ∈ Th such that e is a face of K+. Hence, there exists
a constant CK+ independent of hK+ such that

‖ϕ+
h ‖e ≤ CK+h

− 1
2

K+‖ϕh‖L2(K+)
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due to the trace inequality. Based on this observation we can derive trace inequalities
for the jumps and averages on e ∈ F0 and for the face norm ‖ · ‖F .

Lemma 3.1. Let ϕh, ψh ∈ Vk,DG
h . Let K+, K− be such that ∂K+ ∩ ∂K− = e ∈

F0. Then,

‖{ϕh}‖e ≤Ch−
1
2 ‖ϕh‖K+∪K− (3.5)

and ‖ [[ϕh]] ‖e ≤Ch−
1
2 ‖ϕh‖K+∪K− . (3.6)

Furthermore, {∑
e∈F0 ‖{ψh}‖2e∑
e∈F0 ‖ [[ψh]] ‖2e

≤ Ch−1‖ψh‖2L2(Ω) (3.7)

and

‖ϕh‖F ≤ Ch−
1
2 ‖ϕh‖L2(Ω). (3.8)

A similar result can be found in [BS07], Lemma 2.2. We will need this version of
the trace inequality rather than (3.4). Furthermore, it is helpful to use an alternative
representation of ah. Let ϕ,ψ ∈ H1(Th) with ϕ = 0 on ∂Ωin. By partially integrating
the volume integral in (2.8) and applying the identity∑
K∈Th

∫
∂K

ϕψun ds =
∑
e∈F0

∫
e

u · [[ψ]] {ϕ}+ u · [[ϕ]] {ψ} ds+
∑

e∈F∂out

∫
e

ϕψun ds (3.9)

(e.g. see [AM09]) we obtain the representation

ah(ϕ,ψ) =
∑
K∈Th

∫
K

(u · ∇ϕ)ψ dx+
∑
e∈F0

∫
e

−u · [[ϕ]] {ψ}+
1

2
|un| [[ϕ]] · [[ψ]] ds. (3.10)

In a similar way one can show that

ah(ϕ,ϕ) = ‖ϕ‖2F (3.11)

holds for every ϕ ∈ H1(Th). To construct the first summand of the test function ψ∗h
the mean value u of the velocity field and the following estimates are needed. Let
u ∈ V0,DG

h be the mean value of u on every K ∈ Th, i.e.

u|K =
1

|K|

∫
K

u dx ∀K ∈ Th.

Let L denote the Lipschitz-constant of u. Then, for K ∈ Th and an arbitrary x ∈ K
the estimate

‖u(x)− u‖2 =‖ 1

|K|

∫
K

u(x)− u(y) dy‖2

≤ 1

|K|

∫
K

L‖x− y‖2 dy ≤
1

|K|
LhK

∫
K

1 dy = LhK

follows due to the Lipschitz-continuity of u. Thus,

‖u− u‖L∞(K) = max
x∈K
‖u(x)− u‖2 ≤ LhK .

7



Summing over all K ∈ Th yields

‖u− u‖L∞(Ω) ≤ Ch. (3.12)

Lemma 3.2. For the velocity field u and its element-wise mean value u

‖u · ∇ϕh‖Th ≤ ‖u · ∇ϕh‖Th + c‖ϕh‖L2(Ω) (3.13)

holds.
Proof. We add and subtract u · ∇ϕh and apply the triangle-inequality.

‖u · ∇ϕh‖Th ≤ ‖u · ∇ϕh‖Th + ‖(u− u) · ∇ϕh‖Th

Applying (3.12) and an inverse inequality yields

‖u · ∇ϕh‖Th ≤ ‖u · ∇ϕh‖Th + Ch‖∇ϕh‖Th ≤ ‖u · ∇ϕh‖Th + c‖ϕh‖L2(Ω).

As the second summand is defined as the L2-projection of χϕh, we need the fol-
lowing approximation results. Let πh denote the standard L2-projection into Vk,DG

h .
Let ψ ∈ Hk+1(Ω). Denote by ph := ψ−πhψ the projection error. The standard error
estimates

|ph|Hm(K) ≤ Chk+1−m
K |ψ|Hk+1(K), ∀ψ ∈ Hk+1(K), 0 ≤ m ≤ k (3.14)

hold for any K ∈ Th with a constant C independent of h. Also a trace inequality can
be shown for ψ ∈ Hk+1(K), K ∈ Th arbitrary, i.e.

‖ph‖L2(∂K) ≤ Ch
k+ 1

2

K |ψ|Hk+1(K) (3.15)

holds with a constant C independent of hK and ψ. Due to the trace inequality (3.15)
and the estimates (3.14) we obtain the following estimates:

Corollary 3.3. Let e ∈ F . There exist constants Ce and C independent of h
such that

‖ [[ph]] ‖e ≤ Cehk+ 1
2 |ψ|Hk+1(U), ‖{ph}‖e ≤ Cehk+ 1

2 |ψ|Hk+1(U) (3.16)

and ‖ph‖F ≤ Chk+ 1
2 |ψ|Hk+1(Ω) for all ψ ∈ Hk+1(Ω), (3.17)

where U = K−(e) ∪ K+(e) (K+ and K− are the two elements sharing e) if e is
an interior face and U = K for the element K that has e as a face if e ∈ F∂ .
Furthermore, there is a constant C independent of h such that

‖ph‖Hm(Th) ≤ Chk+1−m|ψ|Hk+1(Ω), ∀ψ ∈ Hk+1(Ω), 0 ≤ m ≤ k. (3.18)

3.2. Proof of an inf-sup-property. First, we consider the first summand of
ψ∗h, i.e. hu · ∇ϕh ∈ Vk,DG

h,0 .

Lemma 3.4. Let ϕh ∈ Vk,DG
h,0 . Consider the function hu · ∇ϕh ∈ Vk,DG

h . Then,

1

2
h‖u · ∇ϕh‖2Th ≤ ah(ϕh, hu · ∇ϕh) + C(h‖ϕh‖2L2(Ω) + ‖ϕh‖2F ) (3.19)

8



holds with a constant C that is independent of h and ϕh.
Proof. We use the representation (3.10) of ah, which yields

ah(ϕh, hu · ∇ϕh) = h‖u · ∇ϕh‖2Th +
∑
K∈Th

∫
K

u · ∇ϕhh(u− u) · ∇ϕh dx

+
∑
e∈F0

∫
e

−u [[ϕh]] {hu · ∇ϕh}+
1

2
|un| [[ϕh]] · [[hu · ∇ϕh]] ds.

Hence,

h‖u · ∇ϕh‖2Th = ah(ϕh, hu · ∇ϕh) +
∑
K∈Th

∫
K

u · ∇ϕhh(u− u) · ∇ϕh dx

+
∑
e∈F0

∫
e

u [[ϕh]] {hu · ∇ϕh} −
1

2
|un| [[ϕh]] · [[hu · ∇ϕh]] ds.

Thus,

h‖u · ∇ϕh‖2Th ≤ah(ϕh, hu · ∇ϕh) + |
∑
K∈Th

∫
K

u · ∇ϕhh(u− u) · ∇ϕh dx|︸ ︷︷ ︸
=I1

+ |
∑
e∈F0

∫
e

u [[ϕh]] {hu · ∇ϕh} −
1

2
|un| [[ϕh]] · [[hu · ∇ϕh]] ds|︸ ︷︷ ︸

I2

.

(3.20)

We estimate Ij , j = 1, 2.
Due to the Cauchy-Schwarz inequality, estimate (3.12), Young’s inequality with an
arbitrary ε1 > 0 we get

I1 ≤h‖u · ∇ϕh‖Th‖(u− u) · ∇ϕh‖Th
(3.12)

≤ Ch2‖u · ∇ϕh‖Th‖∇ϕh‖Th

≤C(
1

ε1
h‖ϕh‖2L2(Ω) + ε1h‖u · ∇ϕh‖2Th).

The Cauchy-Schwarz inequality, equation (3.2), Young’s inequality with an arbitrary
ε2 > 0, equation (3.7) with ψh = u · ∇ϕh, and Lemma 3.2 are used to derive

I2 ≤
∑
e∈F0

(
‖u · [[ϕh]] ‖eh‖{u · ∇ϕh}‖e +

1

2
‖|un| [[ϕh]] ‖eh‖ [[u · ∇ϕh]] ‖e

)
≤
√∑
e∈F0

‖u · [[ϕh]] ‖2e
√∑
e∈F0

h2‖{u · ∇ϕh}‖2e

+

√∑
e∈F0

‖|un| [[ϕh]] ‖2e

√
1

4

∑
e∈F0

h2‖ [[u · ∇ϕh]] ‖2e

≤ ε2

∑
e∈F0

h2

(
‖{u · ∇ϕh}‖2e +

1

4
‖ [[u · ∇ϕh]] ‖2e

)
+
C̃

ε2

∑
e∈F0

‖|un|
1
2 [[ϕh]] ‖2e

≤ ε2Ch‖u · ∇ϕh‖2Th +
C̃

ε2
‖ϕh‖2F ≤ ε2Ch

(
‖u · ∇ϕh‖2Th + c‖ϕh‖2L2(Ω)

)
+
C̃

ε2
‖ϕh‖2F .
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Substituting these estimates in (3.20) and choosing ε1 = 1
4C(I1) and ε2 = 1

4C(I2) yields

1

2
h‖u · ∇ϕh‖2Th ≤ ah(ϕh, hu · ∇ϕh) + C(h‖ϕh‖2L2(Ω) + ‖ϕh‖2F ) (3.21)

Furthermore, we will need the following result:
Lemma 3.5. There exists a constant c independent of h such that

‖|hu · ∇ϕh|‖ ≤ c‖|ϕh|‖, ∀ϕh ∈ Vk,DG
h,0 . (3.22)

Proof. Using the inverse inequality, (3.8) and Lemma 3.2 we get

‖|hu · ∇ϕh|‖2 =h2‖u · ∇ϕh‖2Th + h3‖u · ∇(u · ∇ϕh)‖2Th + h2‖u · ∇ϕh‖2F
≤h2

(
c̄2‖ϕh‖2L2(Ω) + ‖u · ∇ϕh‖2Th

)
+ C2h‖u · ∇ϕh‖2Th

≤h2
(
c̄2‖ϕh‖2L2(Ω) + ‖u · ∇ϕh‖2Th

)
+ C2h

(
c̃2‖ϕh‖2L2(Ω) + ‖u · ∇ϕh‖2Th

)
≤ c2‖|ϕh|‖2.

Similar estimates can be shown for the second summand πh(χϕh). Before we
prove these estimates we need the following results.

Lemma 3.6. There exists a function η ∈ W k+1,∞(Ω) such that u · ∇η ≥ Cu > 0
in Ω. The existence of such a function η was shown under assumptions that u has
neither closed curves nor stationary points and u ∈ [W 1,∞(Ω)]3 in [AM09], Appendix
A. Due to Assumption 1 these conditions hold.

Consider the function χ = e−η ∈ W k+1,∞(Ω). Due to the properties of η there
exist positive constants χ1, χ2, χ3 such that

χ1 ≤ χ ≤ χ2 |∇χ| ≤ χ3 (3.23)

Note that for any ϕh ∈ Vk,DG
h , χϕh ∈ H1(Th). Based on the estimate (3.18), (3.23)

and the fact that χ ∈W k+1,∞(Ω) the following estimates can be shown: There exist
positive constants C1, C2 and C3 independent of h such that

‖χϕh − πh(χϕh)‖L2(Ω) ≤C1h‖ϕh‖L2(Ω) ∀ϕh ∈ Vk,DG
h (3.24)

‖χϕh − πh(χϕh)‖H1(Th) ≤C2‖ϕh‖L2(Ω) ∀ϕh ∈ Vk,DG
h (3.25){∑

e∈F0 ‖ [[χϕh − πh(χϕh)]] ‖e∑
e∈F0 ‖{χϕh − πh(χϕh)}‖e

≤C3h
1
2 ‖ϕh‖L2(Ω) ∀ϕh ∈ Vk,DG

h . (3.26)

Hence, also ‖χϕh − πh(χϕh)‖F ≤ C3h
1
2 ‖ϕh‖L2(Ω) ∀ϕh ∈ Vk,DG

h follows directly. A
proof can be found in [AM09].

Lemma 3.7. There exists a positive constant C independent of h such that

ah(ϕh, χϕh) ≥ C‖ϕh‖2ah
∀ϕh ∈ Vk,DG

h . (3.27)
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Proof. Integration by parts, the identity 1
2∇(ϕ2

h) = (∇ϕh)ϕh and the fact that
ϕh vanishes on the inflow boundary yield:

∑
K∈Th

−
∫
K

u · ∇(χϕh)ϕh dx =
∑
K∈Th

∫
K

−(u · ∇χ)ϕ2
h − χ(u · ∇ϕh)ϕh dx

=
∑
K∈Th

−
∫
K

(u · ∇χ)ϕ2
h dx−

1

2

∫
K

χ(u · ∇ϕ2
h) dx

=
∑
K∈Th

−
∫
K

(u · ∇χ)ϕ2
h dx+

1

2

∫
K

(u · ∇χ)ϕ2
h dx

− 1

2

∑
e∈F0

∫
e

χu ·
[
[ϕ2
h]
]
ds− 1

2

∑
e∈F∂out

∫
e

χϕ2
h|un| ds

=− 1

2

∑
K∈Th

∫
K

(u · ∇χ)ϕ2
h dx−

1

2

∑
e∈F0

∫
e

u ·
[
[ϕ2
h]
]
χds− 1

2

∑
e∈F∂out

∫
e

χϕ2
h|un| ds.

Thus, using the identity 1
2u ·

[
[ϕ2
h]
]

= u · [[ϕh]] {ϕh} and the continuity of χ we obtain

ah(ϕh, χϕh)

=− 1

2

∑
K∈Th

∫
K

(u · ∇χ)ϕ2
h dx−

1

2

∑
e∈F0

∫
e

u ·
[
[ϕ2
h]
]
χds− 1

2

∑
e∈F∂out

∫
e

χϕ2
h|un| ds

+
∑
e∈F0

∫
e

u · [[ϕh]] {ϕh}χ+
1

2
|un| [[ϕh]] · [[ϕh]]]χds+

∑
e∈F∂out

∫
e

χϕ2
h|un| ds

=− 1

2

∑
K∈Th

∫
K

(u · ∇χ)ϕ2
h dx+

1

2

∑
e∈F0

∫
e

χ|un| [[ϕh]] · [[ϕh]] ds

+
1

2

∑
e∈F∂out

∫
e

χϕ2
h|un| ds.

Furthermore, −u · ∇χ = −u · ∇e−η = (u · ∇η)χ ≥ Cuχ1 > 0. Hence,

ah(ϕh, χϕh) ≥ 1

2
Cuχ1‖ϕh‖2L2(Ω) + χ1‖ϕh‖2F

The result holds with C := max{ 1
2Cu, 1}χ1.

Lemma 3.8. There exists a constant C̃ independent of h such that

ah(ϕh, χϕh − πh(χϕh)) ≤ C̃h 1
2 ‖ϕh‖2ah

∀ϕh ∈ Vk,DG
h .

Proof. Let u be the mean value of u. As u is piecewise constant, u·∇ϕh ∈ Vk,DG
h .

Due to the definition of πh

∑
K∈Th

∫
K

u · ∇ϕh(χϕh − πh(χϕh)) = 0 (3.28)
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holds. We use the alternative representation of ah (3.10) and add a zero to obtain

ah(ϕh, χϕh − πh(χϕh))

=
∑
K∈Th

∫
K

(u− u) · ∇ϕh(χϕh − πh(χϕh))︸ ︷︷ ︸
=I

+
∑
e∈F0

∫
e

−u · [[ϕh]] {χϕh − πh(χϕh)}+
1

2
|un| [[ϕh]] · [[χϕh − πh(χϕh)]] ds︸ ︷︷ ︸

=II

Now we estimate I and II applying the estimates (3.24) and (3.26), an inverse in-
equality, (3.12) and (3.2).

I ≤‖(u− u) · ∇ϕh‖Th‖χϕh − πh(χϕh))‖L2(Ω)

≤Cinvh−1‖u− u‖L∞‖ϕh‖L2(Ω)C1h‖ϕh‖L2(Ω) ≤ Ch‖ϕh‖2L2(Ω)

II ≤
∑
e∈F0

‖u · [[ϕh]] ‖e‖{χϕh − πh(χϕh)}‖e +
1

2
‖|un| [[ϕh]] ‖e‖ [[χϕh − πh(χϕh)]] ‖e

≤
√∑
e∈F0

‖u · [[ϕh]] ‖2e︸ ︷︷ ︸
≤c‖ϕh‖F

√∑
e∈F0

‖{χϕh − πh(χϕh)}‖2e︸ ︷︷ ︸
≤C3h

1
2 ‖ϕh‖L2(Ω)

+

√∑
e∈F0

‖|un| [[ϕh]] ‖2e︸ ︷︷ ︸
≤c‖ϕh‖F

√
1

4

∑
e∈F0

‖ [[χϕh − πh(χϕh)]] ‖2e︸ ︷︷ ︸
≤ 1

2C3h
1
2 ‖ϕh‖L2(Ω)

≤ch 1
2 ‖ϕh‖L2(Ω)‖ϕh‖F ≤ ch

1
2 (‖ϕh‖2L2(Ω) + ‖ϕh‖2F ) = ch

1
2 ‖ϕh‖2ah

.

Summing the estimates for I and II and defining C̃ = C + c concludes the proof.

Lemma 3.9. There exists a h0 > 0 and a constant α = α(h0) > 0 independent of
h such that for all h < h0

ah(ϕh,πh(χϕh)) ≥ α‖ϕh‖2ah
∀ϕh ∈ Vk,DG

h (3.29)

and ‖|πh(χϕh)|‖ ≤ c‖|ϕh|‖ ∀ϕh ∈ Vk,DG
h . (3.30)

Proof. Due to Lemma 3.7 and Lemma 3.8

ah(ϕh,πh(χϕh)) =ah(ϕh,πh(χϕh)− χϕh) + ah(ϕh, χϕh)

≥− C̃h 1
2 ‖ϕh‖2ah

+ C‖ϕh‖2ah
= (C − C̃h 1

2 )‖ϕh‖2ah
.

Now choose h0 = 1
4 (C
C̃

)2. Then, α(h0) = 1
2C > 0 and the first estimate holds for all

h < h0. To show (3.30) we apply the estimates (3.24) - (3.26) and note that
‖u · ∇(χϕh)‖Th ≤ ‖(u · ∇χ)ϕh‖Th + ‖χ(u · ∇ϕh)‖Th ≤ χ3‖ϕh‖L2(Ω) + χ2‖u · ∇ϕh‖Th
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due to (3.23). Then,

‖|πh(χϕh)|‖ ≤‖|πh(χϕh)− χϕh|‖+ ‖|χϕh|‖

=
(
‖πh(χϕh)− χϕh‖2L2(Ω) + h‖u · ∇(πh(χϕh)− χϕh)‖2Th + ‖πh(χϕh)− χϕh‖2F

) 1
2

+
(
‖χϕh‖2L2(Ω) + h‖u · ∇(χϕh)‖2Th + ‖χϕh‖2F

) 1
2

=
(
‖πh(χϕh)− χϕh‖2L2(Ω) + h‖u · ∇(πh(χϕh)− χϕh)‖2Th + ‖πh(χϕh)− χϕh‖2F

) 1
2

+
(
‖χϕh‖2L2(Ω) + h‖(u · ∇χ)ϕh + (u · ∇ϕh)χ‖2Th + ‖χϕh‖2F

) 1
2

≤
(
C2

1h
2 + ‖u‖2L∞(Ω)C

2
2 + C2

3h
) 1

2 ‖ϕh‖L2(Ω)

+
(
χ2

2‖ϕh‖2L2(Ω) + 2hχ2
3‖ϕh‖2L2(Ω) + 2hχ2

2‖u · ∇ϕh‖2Th + χ2
2‖ϕh‖2F

) 1
2

≤c‖|ϕh|‖.

Now consider the function ψ∗h = δ1hu · ∇ϕh + δ2πh(χϕh).

Lemma 3.10. Let ψ∗h = ψ∗h(ϕh) = δ1hu ·∇ϕh+δ2πhχϕh, ϕh ∈ Vk,DG
h,0 . δ1, δ2 can

be chosen independent of h such that for h small enough there are positive constants
c1 and c2 independent of h such that

ah(ϕh, ψ
∗
h(ϕh)) ≥ c1‖|ϕh|‖2 ∀ϕh ∈ Vk,DG

h,0 (3.31)

and‖|ψ∗h(ϕh)|‖ ≤ c2‖|ϕh|‖ ∀ϕh ∈ Vk,DG
h,0 . (3.32)

Proof. To prove (3.31) we need (3.19) and (3.29).

ah(ϕh, ψ
∗
h) =δ1ah(ϕh, hu · ∇ϕh) + δ2ah(ϕh,πh(χϕh))

≥δ1
1

2
h‖u · ∇ϕh‖2L2(Ω) + (δ2α− δ1C)‖ϕh‖2ah

Any choice for δ1 and δ2 such that δ2α− δ1C > 0 concludes the proof of (3.31). It is
convenient to choose δ1 = 2 and δ2 = 1+2C

α . Then, c1 = 1. With these choices for δ1
and δ2 (3.32) follows directly form (3.22) and (3.30).

Now, we can proof the following theorem.
Theorem 3.11. For h small enough there exists a constant C > 0 independent

of h such that the following inf-sup-condition holds:

C‖|ϕh|‖ ≤ sup
ψh∈Vk,DG

h

ah(ϕh, ψh)

‖|ψh|‖
∀ϕh ∈ Vk,DG

h,0 . (3.33)

Proof. Let ψ∗h = 2hu ·∇ϕh+ 1+2C
α πhχϕh be the test function defined in the proof

of Lemma 3.10. Then, Lemma 3.10 holds with c1 = 1. Define c := c2, where c2 is the
constant in (3.32). We obtain

‖|ϕh|‖ ≤
ah(ϕh, ψ

∗
h)

‖|ϕh|‖
≤ ca

∗
h(ϕh, ψ

∗
h)

‖|ψ∗h|‖
≤ c sup

ψh∈Vk,DG
h

ah(ϕh, ψh)

‖|ψh|‖

We conclude by setting C = c−1.
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3.3. Error bound for the Ritz-projection. In this section we analyze the
fully discrete problem. The error between the exact solution and the fully discrete
solution is decomposed into a projection error and the error between the projection
of the exact solution and the fully discrete solution. This difference is a function in
Vk,DG
h . Therefore we refer to this error as the discrete error. The projection we need

is the Ritz-projection defined in Definition 3.12 below. We derive an error bound for
the projection error of the Ritz-projection and the discrete error in suitable norms.
Applying these results to the fully discrete scheme we obtain an error bound of order
hk+ 1

2 +∆t2. The idea of this approach is common in analyses of finite element methods
for parabolic problems. A similar derivation for the standard Galerkin method with
backward Euler or Crank-Nicolson in time can be found in [Tho97], Chap. 1.

Definition 3.12. Let ψ ∈ H1(Ω). The Ritz-projection πDGh ψ ∈ Vk,DG
h is defined

by

ah(πDGh ψ − ψ, vh) = 0 ∀ vh ∈ Vk,DG
h . (3.34)

Theorem 3.13. Let ψ ∈ Hk+1(Ω) with ψ = 0 on ∂Ωin. Then, the following holds
with a constant C independent of ψ and h:

‖|πDGh ψ − ψ|‖ ≤ Chk+ 1
2 ‖ψ‖Hk+1(Ω) (3.35)

Proof. Denote with πh the L2-projection to Vk,DG
h . Then,

‖|πDGh ψ − ψ|‖ ≤ ‖|πDGh ψ − πhψ|‖︸ ︷︷ ︸
:=‖|eh|‖

+ ‖|ψ − πhψ|‖︸ ︷︷ ︸
:=‖|ph|‖

(3.36)

First, we consider the L2-projection error. Due to Corollary 3.3 we obtain

‖|ph|‖2 =‖ph‖2L2(Ω) + h‖u · ∇ph‖2Th + ‖ph‖2F
≤C̃h2k+1|ψ|2Hk+1(Ω) (h+ c+ c̃) ≤ C2h2k+1|ψ|2Hk+1(Ω)

Thus,

‖|ph|‖ ≤ Chk+ 1
2 |ψ|Hk+1(Ω) ≤ Chk+ 1

2 ‖ψ‖Hk+1(Ω).

Now consider eh. According to Theorem 3.11 the inf-sup-condition (3.33) holds for

every ψh ∈ Vk,DG
h,0 . Note that eh = πDGh ψ−πhψ ∈ Vk,DG

h,0 as eh = 0 on ∂Ωin, because
ψ = 0 on ∂Ωin. Thus, we can apply Theorem 3.11 to eh and get

‖|eh|‖ ≤ c sup
vh∈Vk,DG

h

ah(eh, vh)

‖|vh|‖
.

Furthermore,

ah(eh, vh) = ah(πDGh ψ − πhψ, vh)
def
= ah(ψ − πhψ, vh) = ah(ph, vh).

We will show that

ah(ph, vh) ≤ Chk+ 1
2 ‖ψ‖Hk+1(Ω)‖|vh|‖. (3.37)
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This implies

‖|eh|‖ ≤ Chk+ 1
2 ‖ψ‖Hk+1(Ω),

which concludes the proof.
Now we prove (3.37). As ph = 0 on the inflow boundary we obtain

ah(ph, vh) = −(ph,u · ∇vh)Th +
∑
e∈F0

∫
e

u · [[vh]] {ph}+
1

2
|un| [[vh]] · [[ph]] ds.

Due to the Cauchy-Schwarz inequality and Corollary 3.3

|(ph,u · ∇vh)Th | ≤ Chk+1|ψ|Hk+1(Ω)‖u · ∇vh‖Th .

Furthermore, with the Cauchy-Schwarz inequality, equality (3.2) and the estimates in
(3.16) we obtain

|
∑
e∈F0

∫
e

u · [[vh]] {ph}+
1

2
|un| [[vh]] · [[ph]] ds|

≤
∑
e∈F0

‖u · [[vh]] ‖e‖{ph}‖e +
1

2
‖|un| [[vh]] ‖e‖ [[ph]] ‖e

≤c
√∑
e∈F0

‖|un|
1
2 [[vh]] ‖2e

√∑
e∈F0

‖{ph}‖2e +

√∑
e∈F0

‖ [[ph]] ‖2e


≤Chk+ 1

2 |ψ|Hk+1(Ω)‖vh‖F .

Combining these estimates, we obtain

ah(ph, vh) ≤ Chk+ 1
2 ‖ψ‖Hk+1(Ω)‖|vh|‖.

Hence, (3.37) holds.

3.4. Error analysis for the fully discrete problem. Now, let φ denote the
exact solution of problem (2.2) and let φh denote the exact solution in time of the
system of ODEs that results from the spatial discretization by means of the DG
method. Let φ0

h = φ0,h = πDGh φ0 be the approximation of φ0 in Vk,DG
h,0 . Consider

the time steps tn = n∆t, where ∆t is the step size. tN = T is the final time. Hence,
φ(tn) denotes the exact solution at tn and φh(tn) denotes the semi-discrete solution
at time tn. Accordingly, φnh denotes the fully discrete solution at the n-th time step.
The fully discrete scheme for solving the level set equation with DG in space and
Crank-Nicolson in time is given by (2.11). The next estimate will be applied to the
discrete error θn := φnh − πDGh φ(tn). Similar derivations are presented in [Tho97],
Theorem 1.6, p.15 and [Bur10].

Lemma 3.14. For a given initial function ψ0 ∈ Vk,DG
h and given source terms

{gn}Nn=0, gn ∈ L2(Ω), let {ψn}Nn=0, ψn ∈ Vk,DG
h , be the sequence that satisfies

(
ψn − ψn−1

∆t
, vh)L2(Ω) + ah(

ψn + ψn−1

2
, vh) = (gn, vh)L2(Ω) (3.38)

for all vh ∈ Vk,DG
h , n = 1, ..., N . Then,

‖ψn‖L2(Ω) ≤ ‖ψ0‖L2(Ω) + ∆t

n∑
m=1

‖gm‖L2(Ω) for all n = 1, ..., N (3.39)
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Proof. Note that

‖ψn‖2L2(Ω) − ‖ψ
n−1‖2L2(Ω) +

∆t

2
‖ψn + ψn−1‖2F

=∆t(
ψn − ψn−1

∆t
, ψn + ψn−1)L2(Ω) + ∆tah(

ψn + ψn−1

2
, ψn + ψn−1)

=∆t(gn, ψn + ψn−1)L2(Ω)

As ∆t
2 ‖ψ

n + ψn−1‖2F is positive, the estimate

‖ψn‖2L2(Ω) − ‖ψ
n−1‖2L2(Ω) ≤ ∆t‖gn‖L2(Ω)(‖ψn‖L2(Ω) + ‖ψn−1‖L2(Ω))

holds due to the Cauchy-Schwarz inequality. Dividing through the common factor
(‖ψn‖L2(Ω) + ‖ψn−1‖L2(Ω)) and adding ‖ψn−1‖L2(Ω) yields

‖ψn‖L2(Ω) ≤ ‖ψn−1‖L2(Ω) + ∆t‖gn‖L2(Ω)

Estimate (3.39) follows via mathematical induction.
Theorem 3.15. For N ∈ N let {φnh}Nn=0, be the solution of (2.11) and φ the

exact solution of (2.2). Assume that φ is sufficiently smooth. Then,

‖φnh − φ(tn)‖L2(Ω) ≤ C(hk+ 1
2 + ∆t2). (3.40)

Proof. From

φnh − φ(tn) = φnh − πDGh φ(tn)︸ ︷︷ ︸
:=θn

+πDGh φ(tn)− φ(tn)︸ ︷︷ ︸
:=ηn

we obtain

‖φnh − φ(tn)‖L2(Ω) ≤ ‖θn‖L2(Ω) + ‖ηn‖L2(Ω)

The estimate for ‖ηn‖L2(Ω) is given by Theorem 3.13 as ‖ · ‖L2(Ω) ≤ ‖| · |‖. Hence,

‖ηn‖L2(Ω) ≤ Chk+ 1
2 .

To estimate ‖θn‖L2(Ω) we first derive a sequence {ωn}Nn=1 such that

(
θn − θn−1

∆t
, vh)L2(Ω) +ah(

θn + θn−1

2
, vh) = (ωn, vh)L2(Ω) ∀ vh ∈ Vk,DG

h , n = 1, ..., N

holds. Furthermore, we use the decomposition ωn = ωn1 +ωn2 +ωn3 and derive estimates
for each summand ωnj , j = 1, 2, 3 in terms of time-derivatives of the exact solution φ.
Analog approaches can be found in [Tho97], Chap. 1 and [Bur10].

(
θn − θn−1

∆t
, vh)L2(Ω) + ah(

θn + θn−1

2
, vh)

Def. of πDG
h= (−πDGh φ(tn)− πDGh φ(tn−1)

∆t
+
φnh − φ

n−1
h

∆t
, vh)L2(Ω)

+ ah(
φnh + φn−1

h

2
− φ(tn) + φ(tn−1)

2
, vh)
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By adding and subtracting φ(tn)−φ(tn−1)
∆t , we obtain

(
θn − θn−1

∆t
, vh)L2(Ω) + ah(

θn + θn−1

2
, vh)

= (−πDGh φ(tn)− πDGh φ(tn−1)

∆t
+
φ(tn)− φ(tn−1)

∆t
, vh)L2(Ω)

+ (
φnh − φ

n−1
h

∆t
− φ(tn)− φ(tn−1)

∆t
, vh)L2(Ω)

+ ah(
φnh + φn−1

h

2
− φ(tn) + φ(tn−1)

2
, vh).

Now we use the consistency of the method, i.e. for the exact solution φ

(
φnh − φ

n−1
h

∆t
, vh)L2(Ω) + ah(

φnh + φn−1
h

2
, vh) = (

1

2
(f(tn) + f(tn−1)), vh)L2(Ω)

= (f(tn−
1
2 ), vh)L2(Ω) = (

∂

∂t
φ(tn−

1
2 ), vh)L2(Ω) + ah(φ(tn−

1
2 ), vh)

holds for all vh ∈ Vk,DG
h . Note that φ is continuous. Thus, the jumps are zero and the

inner boundary integrals vanish. We use the alternative representation of ah (3.10)
to verify that ah(φ, vh) = (u · ∇φ, vh)L2(Ω). Applying this result yields

(
θn − θn−1

∆t
, vh)L2(Ω) + ah(

θn + θn−1

2
, vh)

(−πDGh φ(tn)− πDGh φ(tn−1)

∆t
+
φ(tn)− φ(tn−1)

∆t
, vh)L2(Ω)

+ (
∂

∂t
φ(tn−

1
2 )− φ(tn)− φ(tn−1)

∆t
, vh)L2(Ω)

+ ah(φ(tn−
1
2 )− φ(tn) + φ(tn−1)

2
, vh).

Thus,

ωn1 =− (πDGh − id)
φ(tn)− φ(tn−1)

∆t

ωn2 =− (
φ(tn)− φ(tn−1)

∆t
− ∂

∂t
φ(tn+ 1

2 ))

ωn3 =u · ∇φ(tn−
1
2 )− 1

2
u · ∇φ(tn)− 1

2
u · ∇φ(tn−1).

Now, we can apply Lemma 3.14, i.e.

‖θn‖L2(Ω) ≤‖θ0‖L2(Ω) + ∆t

n∑
m=1

‖ωm‖L2(Ω)

≤∆t

n∑
m=1

(‖ωm1 ‖L2(Ω) + ‖ωm2 ‖L2(Ω) + ‖ωm3 ‖L2(Ω))

(3.41)

as θ0 = 0 due to the definition of φ0
h. We derive estimates for ∆t

∑n
m=1 ‖ωmi ‖L2(Ω),

i = 1, 2, 3.

∆t‖ωm1 ‖L2(Ω) =‖(πDGh − id)(φ(tm)− φ(tm−1))‖L2(Ω)

≤Chk+ 1
2 ‖φ(tm)− φ(tm−1)‖Hk+1(Ω)
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due to Theorem 3.13. Furthermore,

φ(tm)− φ(tm−1) =

∫ tm

tm−1

∂

∂t
φ(s) ds

Thus,

∆t

n∑
m=1

‖ωm1 ‖L2(Ω) ≤ chk+ 1
2

∫ tn

t0
‖ ∂
∂t
φ(s)‖Hk+1(Ω) ds ≤ chk+ 1

2

Define

g2(t) :=
1

2
((t− tm−1)2χ

[tm−1,tm−
1
2 ]

+ (t− tm)2χ
[tn−

1
2
,tm ]

)

Then,

ωm2 =
1

∆t

∫ tm

tm−1

g2(s)
∂3

∂t3
φ(s) ds

As |g2(t)| ≤ 1
4∆t2, we get

∆t

n∑
m=1

‖ωm2 ‖L2(Ω) ≤
1

4
∆t2

∫ tm

tm−1

‖ ∂
3

∂t3
φ(s)‖L2(Ω) ds ≤ C∆t2

To estimate ωm3 define g3(t) := 1
2 (−(t− tm−1)χ

[tm−1,tm−
1
2 ]

+ (t− tm)χ
[tm−

1
2 ,tm]

).

As the velocity field does not depend on time, we can switch the time-derivative and
the operator u · ∇. Thus,

‖ωm3 ‖L2(Ω) =‖
∫ tm

tm−1

g3(s)u · ∇ ∂2

∂t2
φ(s) ds‖L2(Ω)

≤
∫ tm

tm−1

‖g3(s)u · ∇ ∂2

∂t2
φ(s)‖L2(Ω) ds

As |g3(t)| ≤ ∆t, we get

∆t‖ωm3 ‖L2(Ω) ≤ ∆t2
∫ tm

tm−1

‖u · ∇ ∂2

∂t2
φ(s)‖L2(Ω) ds

And thus,

∆t

n∑
m=1

‖ωm3 ‖L2(Ω) ≤ ∆t2
∫ tn

t0
‖u · ∇ ∂2

∂t2
φ(s)‖L2(Ω) ds ≤ C∆t2

Combining these results yields

∆t

n∑
m=1

‖ωn‖L2(Ω) ≤ chk+ 1
2 + C∆t2

and, thus, (3.40).
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Fig. 4.1: initial (light gray) and final (dark gray) position of interface

4. Numerical Results. The DG method (A.1) in space and the Crank-Nicolson
scheme in time is applied to the original level set equation (2.1) to solve a test problem.

The computational domain is the unit cube [0, 1]3. The initial interface Γ(0) is
the sphere ∂Br(m(0)) with the radius r = 0.2 and center m(0) = (0.5, 0.25, 0.5). The
initial level set function φ0 is the signed distance function to Γ(0) and the boundary
conditions are φ(x, t) = φ0(x) on ∂Ωin. The velocity field is the constant translation
in x2-direction u = (0, 0.2, 0). We compute the movement of the level set function
until T = 2.5. Thus, the exact solution at T is given by the signed distance function
to Γ(T ) = ∂Br(m(T )) with m(T ) = (0.5, 0.75, 0.5) in U(T ) = Ω \ Ωin(T ) and φ0 in
Ωin(T ). Ωin(T ) denotes the subset of Ω where the boundary conditions influence the
solution, i.e. [0, 1]× [0, 0.5]× [0.1].

For the spatial discretization the cube Ω is divided into 83 sub-cubes and each
sub-cube in 6 tetrahedra. This gird is regularly refined and l = 0, 1, 2, 3 gives the level
of refinement. The initial numerical level set function φ0,h is the L2-projection of the
signed distance function.

The theoretical estimate for the discretization error holds only for a sufficiently
smooth exact solution. As in this example the exact solution is not globally smooth,
we compute the discretization error in a subset U(T ) of Ω, where it is smooth.

The discretization error is computed in the L2-norm ‖ · ‖Th . The discretization
error at t = 0 is the L2-projection error, and thus, of order three for quadratic finite
elements. We compute the discretization error at t = 0 in a subset U(0) ⊂ Ω which
has the same structure and size as U(T ) and covers a part of φ0,h that is comparable to
the part of φh(T ) that is covered by U(T ). Hence we can compare the discretization
error at t = T to the discretization error at t = 0. Table 4.1 shows the discretization
error at t = 0 and t = T for different levels of refinement. The time step size is
chosen small enough such that only the spatial error is observed. The initial error is
almost of order 3 which reflects the L2-projection error as the polynomial degree is
2. At t = T the discretization error is approximately 5 times bigger.The order is 3
again. Although only an order of 2.5 is obtained theoretically, in practice the optimal
order is observed often. In this case this might be due to the simple, constant velocity
field and the convex shape of the initial interface. To examine the order of the time

19



U(0)

qm(0)

U(T ) qm(T )

Fig. 4.2: 2D sketch of U(0) and U(T ) for the grid of level 1

t = 0 t = T
level error order error order

0 3.9114 e-5 - 2.0653 e-4 -
1 5.5861 e-6 2.81 2.1782 e-5 3.25
2 7.0731 e-7 2.98 2.6894 e-6 3.02
3 8.8908 e-8 2.99 e-

Table 4.1: Discretization error ‖φh − φ‖L2(U(t))

integration we fix the spatial resolution to h(2) = 1
32 . We halve the time step size ∆t

several times until ∆t is smaller than h1 1
4 . Table 4.2 shows the discretization error at

t = T . We observe the order ∆t2 as long as ∆t is bigger than 1, 19 · h1 1
4 . For smaller

∆t the discretization error converges to the corresponding value in Table 4.1, where
a very small time step size was used.

∆t error order
1
4 7.6183 e-4 -
1
8 1.8917 e-4 2.01
1
16 4.5304 e-5 2.06
1
32 1.1548 e-5 1.97
1
64 3.8799 e-6 1.57
1

128 2.7737 e-6 0.48

Table 4.2: Discretization error ‖φh − φ‖L2(U(T )), h = 1
32

Appendix A. Appendix. Analog to the derivation of the DG method for (2.2),
one can derive a DG method for problem (2.1). This DG discretization of the level
set equation is already known in the literature, e.g. it was used in [MRC06, PFP06,
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FK08]. With the notation introduced above this DG-level set method is:

find φh ∈ C1([0, T ]; Vk,DG
h ) such that for all vh ∈ Vk,DG

h

(
∂

∂t
φh, vh)L2(Ω)−(φh,u·∇vh)Th +(φh, vhun)F∂out +(ûφh

uw
, vh)F0 = −(φD,h, vh)F∂in ,

(A.1)
where φh is not zero on the inflow boundary, but fulfills φh|∂Ωin

= φD,h. We proof
that the two DG methods based on (2.1) and (2.2), respectively, are equivalent. Let

φD,h ∈ Vk,DG
h be a continuous approximation of the extension φD. For instance, take

the nodal interpolation, where the values are φD,h in the nodes, that lie on the inflow
boundary, and zero in the remaining nodes. Consider the DG method derived of the
transformed problem:

(
∂

∂t
Ψh, vh)L2(Ω) − (Ψh,u · ∇vh)Th + (Ψh, vhun)F∂out + (ûΨh

uw
, vh)F0

=− (
∂

∂t
φD,h + u · ∇φD,h, vh)L2(Ω)

φh := Ψh + φD,h

Now, we substitute Ψh by φh−φD,h, use the definition of the upwind flux and integrate
the divergence term in the right hand side by parts:

(
∂

∂t
φh − φD,h, vh)L2(Ω) − (φh − φD,h,u · ∇vh)Th

+ (φh − φD,h, vhun)F∂out + ( ̂u(φh − φD,h)
uw

, vh)F0

=(
∂

∂t
φh, vh)L2(Ω) − (φh,u · ∇vh)Th + (φh, vhun)F∂out

− (
∂

∂t
φD,h, vh)L2(Ω) + (φD,h,u · ∇vh)Th

− (φD,h, vhun)F∂out +
∑
e∈F0

∫
e

u · [[vh]] {φh − φD,h}+
1

2
|un| [[vh]] ·

[
[φh − φD,h]

]
ds

=− (
∂

∂t
φD,h + u · ∇φD,h, vh)L2(Ω)

=− (
∂

∂t
φD,h, vh)L2(Ω) + (φD,h,u · ∇vh)Th −

∑
e∈F0

∫
e

u ·
[
[φD,hvh]

]
ds

− (φD,h, vhun)F∂out − (φD,h, vhun)F∂in

The volume integrals and the integrals over the outflow boundary for φD,h cancel,
thus we obtain:

(
∂

∂t
φh, vh)L2(Ω) − (φh,u · ∇vh)Th + (φh, vhun)F∂out

+
∑
e∈F0

∫
e

u · [[vh]] {φh − φD,h}+
1

2
|un| [[vh]] ·

[
[φh − φD,h]

]
ds

=−
∑
e∈F0

∫
e

u ·
[
[φD,hvh]

]
ds− (φD,h, vhun)F∂in .

As φD,h is continuous and the jump and the average are linear, the method can be
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reduced to

(
∂

∂t
φh, vh)Th − (φh,u · ∇vh)Th + (φh, vhun)F∂out

+
∑
e∈F0

∫
e

u · [[vh]] {φh}+
1

2
|un| [[vh]] · [[φh]] ds−

∑
e∈F0

∫
e

u · [[vh]]φD,h ds

= −
∑
e∈F0

∫
e

u · [[vh]]φD,h ds− (φD,h, vhun)F∂in ,

which is equivalent to

(
∂

∂t
φh, vh)L2(Ω) − (φh,u · ∇vh)Th + (φh, vhun)F∂out + (ûφh

uw
, vh)F0

=− (φD,h, vhun)F∂in .

Due to the definition of the upwind flux this is exactly the DG discretization based
on the original formulation of the level set equation.
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