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SUMMARY

A well-balanced stable generalized Riemann problem (GRP) scheme under triangular meshes is proposed to
solve shallow water equations (SWEs) involving irregular bottom topography, with the goal of the balance
between flux gradients and bed slope source term, numerical stability, and high-performance computation.
This scheme consists of two parts: an updated GRP evolution and adaptive mesh movement. The former
is a second-order version Godunov method by evaluating the stability-preserving time-derivatives solutions
along the exterior normal direction of the cell boundaries and by incorporating suitable central discretization
of the bed source term. The latter is to move triangular meshes by iteratively solving Euler-Lagrange
equations and remapping solutions on new meshes through geometrical conservative interpolations, which
realizes still flat water property when the free surface is chosen as the interpolation variable. Three test cases
were conducted to verify the performance of this updated scheme on the well-balanced stability-preserving
property, predictive accuracy, spatial resolution, and computational efficiency. The results revealed two
attractive features: (1) this scheme could preserve static flow by balancing bed slope and flux gradients
through the application of unstructured triangular meshes with more stability through a modification of
GRP time derivative calculation; (2) it could significantly improve the predictive accuracy and resolution of
local features where gradients of flow variables are sharp, with a relatively lower computational cost.

KEY WORDS: Shallow water equations; generalized Riemann problem; adaptive unstructured meshes;
well-balanced scheme; hydrodynamic process.

1. INDRODUCTION

Numerical scheme has become one of interesting topics for solving shallow water equations (SWEs)
with shock-capturing capacity [1, 2, 3, 4, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. To
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achieve high-order predictive accuracy, a generalized Riemann problem (GRP) scheme, originally
designed for gas-dynamics [18, 19, 20], was developed as a second-order version Godunov scheme
by evaluating the time-derivatives of variables on cell interface and incorporating the initial data
MUSCL linear reconstruction for one dimensional case. This scheme has been widely applied in
reaction flow [19], the motion of elastic string [21], open channel flow [22] and so on. Recently, a
direct-Eulerian GRP method [15] was proposed under structured meshes for both Euler equations
and shallow water equations with bottom topography [23, 24]. It adopted the main ingredient of
Riemann invariants to decompose the nonlinear waves into a form of their simple super position,
leading to resolving rarefaction waves analytically in a straight forward way. However, it is difficult
to discretize complex domains using structured meshes; the GRP scheme needs to be extended to
the application of unstructured triangular meshes. Moreover, when the time derivative of solution at
cell interfaces solving by a linear system directly, the previous GRP scheme [15] becomes unstable
for quasi-stationary states because that the water depth differences, small values for quasi-stationary
states, between the two sides of cell interfaces are used as denominators and common factors for the
linear system for the calculation of time derivatives. Therefore, it is essential to update the direct-
Eulerian GRP method that applies unstructured meshes to provide stability-preserving solutions for
SWEs with complex physical domain.

Recently, researchers have also demonstrated several important questions toward numerical
schemes for SWEs, such as maintaining well-balanced property over complex topography [25,
26, 27], and positivity of water depth at the wet-dry interface [28, 29, 30, 30]. With regard to the
first question, Russo [11] modified the Roe solver to preserve steady state [25]. Zhou et al. [14]
developed a robust and well-balanced scheme based on a Godunov-type method and surface gradient
method (SGM) for initial data reconstruction. Xu [31] proposed a well-balanced kinetic scheme for
SWEs with a geometrical source term. Audusse et al. [1] designed a fast and stable well-balanced
scheme by a hydrostatic reconstruction plus an additional correction of the source term, and it is also
extended to two dimension case [2]. Noelle et al. [3] extended the scheme of [1] to arbitrary order
of accuracy using numerical extrapolation. In one dimensional case, a high-order well-balanced
finite volume WENO schemes for shallow water equation with moving water has been designed
in [32]. To cope with the second question, Brufau et al. [28] proposed a modified approach to the
wet-dry interface, including the normal velocity at the cell edge to achieve zero numerical errors.
Audusse and Bristeau [2] as well as its cited references introduced a second-order local hydrostatic
reconstruction that preserves positivity properties, which is simple to implement and entails none
of the special treatment required by previous models. Therefore, it is necessary to explain whether
GRP scheme to be updated for SWEs satisfies well-balanced positivity-preserving properties under
unstructured meshes.

Another demand exists for additional researches on high-performance computation to capture
discontinuous or nearly singular solutions efficiently in local features with higher spatial resolution
but less unstructured meshes. Traditionally, fixed fine meshes are required to reproduce these small-
scale features, which inevitably increase computational cost. In practice, it is desirable to apply
adaptive meshes for improving the predictive accuracy of local features and maintaining high
computational efficiency. Adaptive mesh methods can be applied to either refined or moving meshes.
Adaptive refined meshes generate a desirable local high-resolution mesh obtained by repeatedly
superimposing the grid with a grid in a higher subdivision level [33]. Unlike the AMR method [33],
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the adaptive moving mesh (AMM) shift the fixed number of mesh points and redistribute the position
of meshes to the desired regions [34, 35, 36, 36, 37, 38, 39]. For example, Tang and Tang [40]
developed a general adaptive moving mesh method applying structured meshes, which can easily
be applied to SWEs [41] with satisfaction of the stationary states property. Chen et al. [42] extended
Tang and Tang’s [40] method to two-dimensional compressible multi-material flows. Han et al. [43]
presented a second-order accurate adaptive GRP scheme for one and two dimensional compressible
fluid flows, Han et al. [44] also check the accuracy order of their scheme numerically. However, no
work extends AMM method [42, 43, 41] to solve SWEs under unstructured meshes or proves its
still flat water preserving property.

As an extension of previously works [42], this paper proposes a well-balanced stable GRP scheme
for SWEs under adaptive-moving triangular meshes, with the goal of the balance between flux
gradients and bed slope source term, stability-preserving time derivative calculation, and high-
performance computation. The paper is organized as follows. Section 2 describes the general form
of shallow water equations. Section 3 presents the updated GRP scheme under triangular meshes
by modifying GRP time derivative evaluation and proving its well-balance property. Section 4
describes an adaptive moving mesh under triangular meshes with emphasis upon its proof of
still flat water preserving property. Three benchmark cases are proposed in section 5 to verify
the performance of our updated scheme in the numerical stability, predictive accuracy, spatial
resolution, and computational efficiency.

2. SHALLOW WATER EQUATIONS

Ignoring Coriolis effects, viscous terms and surface stresses, two-dimensional depth-averaged
SWEs, which approximate the depth and horizontal momentum of the flow , can be expressed as a
hyperbolic conservative{

wt +∇ · (hu) = 0,

hu +∇ · (hu⊗ u) +∇
(

1
2gh

2
)

= −gh∇b,
(1)

where t denotes time,∇ = ( ∂
∂x ,

∂
∂y )> is the vector of derivatives with respect to x and y coordinates,

h is the water depth, u = (u, v) is the flow velocity vector, g is the gravitational acceleration
constant, b is the bed elevation, and w = h+ b is the free surface elevation.

In practice, an essential part for the SWEs (1) is required for steady state solutions in which the
flux gradients should be exactly balanced by the source term. The general steady state solutions of
the SWEs are given by 

∇ · (hu) = 0,

∇p−∇× u

(
v

u

)
= 0,

(2)

where is constant along streamlines and in irrotational areas, that is

p =
|u|2

2
+ g(h+ b) (3)
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Taking one-dimensional case for example, Noelle et al. [32] present a very high-order accurate,
exactly well-balanced finite volume scheme for moving flow equilibria. Due to the complexity of
the general equilibria in two-dimensional case, a still water steady state is applied to replace by

u = 0 and h+ b = C, (4)

where C is a constant, which plays a important role in the design of numerical schemes. Therefore,
if the scheme can exactly preserve this property (4), it is well-balanced.

3. WELL-BALANCED STABLE GRP SCHEME FOR TRIANGULAR MESHES

In this section, the well-balanced property and stability-preserving time derivative would be exactly
realized, leading to the update of previous GRP solver [15] for SWEs with bed topography under
triangular meshes. Let Ei denotes the i th unstructured triangular element for the two-dimensional
domain Ωp ⊂ R2 (Fig. 1). For the element Ei, we denote xij = (xij , yij) its jth vertex, Eij its jth
neighboring element, lij its jth edge, j = 1, 2, 3, and nij its exterior normal vector on lij from Ei

to Eij . We denote by Un
i as the integral average of flow variables U = (w, hu, hv) over Ei,

Ui =
1

|Ei|

∫
Ei

U(x, t)dx. (5)

We also replace the bottom function b(x) with a continuous and piecewise linear approximation.
Let b(xij) denote the value of b at the vertex xij , then a linear function bi(x) over the element Ei is
uniquely determined such that bi(xij) = b(xij).

Figure 1. Schematic diagram of the unstructured triangular element. Ei is the ith triangle of the triangulation.
For the element Ei, we denote xij = (xij , yij) is the jth vertex, Eij is the jth neighboring element, lij is

the jth edge, j = 1, 2, 3, and nij is the exterior normal vector on lij .

The integral form of Eq. (1) over Ei is:

|Ei|
dUi

dt
= −

3∑
j=1

∫
lij

Fnij
(U)ds +

∫
Ei

S(U)dx, (6)

in which |Ei| denotes the triangle area, ds is the edge length, Fnij
(U) represents the flux along

the direction nij = (nxij ,n
y
ij)

T. S(U) = (0,−ghbx,−ghby)T denotes the source term. All the
integrations in Eq. (6) can be approximated using the central scheme. The central difference method
can be used to update the flow variables to a new time step, as follows:

Un+1
i = Un

i −
∆t

|Ei|

3∑
j=1

Fnij (U)
n+1/2
ij |lij |+ ∆tS(U)

n+1/2
i (7)

where the superscript n denotes the time level, ∆t is the time step, |lij | denotes the length of the
edge lij , Fnij

(U)
n+1/2
ij and S(U)

n+1/2
i are the approximate values of flux Fnij

(U) and bed slope
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source term S(U) respectively, which are evaluated at mid-time tn + ∆t/2 and the cell center xlij
of edge lij respectively:

Fnij
(U)

n+1/2
ij = Fnij

(U
n+1/2
ij ), (8)

and

S(U)
n+1/2
i = − 1

|Ei|

3∑
j=1

(
0

g
h
n+1/2
ij +h̄

n+1/2
i

2 (bij − bi) |lij |nij

)
, (9)

where U
n+1/2
ij is evaluated by the Taylor expansion up to first order in time as

U
n+1/2
ij = U(xlij , tn +

∆t

2
) ≈ Un

ij +
∆t

2

(
∂U

∂t

)n
ij

, (10)

and

h̄
n+1/2
i =

1

3

3∑
j=1

h
n+1/2
ij , (11)

Estimations of Fnij (U)
n+1/2
ij and S(U)

n+1/2
i require the computations of Un

ij and (∂U∂t )nij . After the
second order initial data reconstruction for spatial resolution, Un

ij are calculated from the associated
Riemann problem for the homogeneous conservation. Unlike the approach of previous work [15],
the solver of time derivative (∂U∂t )nij needs to be more stable for the quasi-stationary states. After
obtaining Fnij (U)

n+1/2
ij and S(U)

n+1/2
i , the flow variables Un+1

i can be computed using Eq. (7).
The well-balanced property will also be exactly preserved.

3.1. Initial data reconstruction

To obtain a second-order accurate approximation of the initial data, we reconstruct a piecewise
linear function for primitive variable vector W = (h+ b, u, v)> over element Ei,

W(x) = Wn
i + ϕi∇Wn

i · r, (12)

where ∇Wn
i is the gradient of W obtained using Green’s theorem from the average values over

three adjacent elements. ϕ ∈ [0, 1] is a chosen limiter function; if ϕi is equal to zero, then the flow
variables are approximated as a piecewise constant function and spatial accuracy is only first-order.
If ϕi is equal to 1, spatial accuracy is second-order accurate. A slope limiter is required to control
instability and to prevent oscillation around the vicinity of the shock; ϕ can be derived using an
upwind type limiter as follows:

ϕi =


min(1,

Wmax
j −Wi

WL
ij−Wi

), if WL
ij −Wi > 0,

min(1,
Wmin

j −Wi

WL
ij−Wi

), if WL
ij −Wi < 0,

1, if WL
ij −Wi = 0.

(13)

3.2. Stability-preserving GRP time derivative calculation

For the convenience of writing without reading confusion, we still use x and y instead of the
coordinate variables along the local normal and tangential direction of edge lij , and use u and
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v instead of the normal velocity unxij + vnyij and tangential velocity −unyij + vnxij , respectively.
Because of the rotational invariance, the governing equations along the exterior normal direction of
edge lij take this form as follows

∂

∂t

 w

hu

hv

+
∂

∂x

 hu

hu2 + 1
2gh

2

hv

 =

 0

−ghbx
0

 , (14)

the corresponding initial data given by (12) is

W(x, t = 0) =

{
W− + x · δW−, x < 0,

W+ + x · δW+, x > 0.
(15)

where W− and W+ denote the left and right limit values at point xlij , δW− and δW+ are the
corresponding left and right limit slop values along exterior normal direction at point xlij .

After the calculation of U0 = R(0;W−,W+) using the homogeneous Riemann problem without
the effect of the bed slop source term, the time derivative ∂U

∂t 0
is obtained by direct GRP method

including the influence of the initial and bed slops in (15). The main point is to obtain ∂h
∂t 0

and ∂u
∂t 0

by solving a linear system including two variables:{
a1
−
(
∂h
∂t

)
0

+ a2
−
(
∂u
∂t

)
0

= d−,

a1
+

(
∂h
∂t

)
0

+ a2
+

(
∂u
∂t

)
0

= d+,
(16)

where a1
−, a2

− and d− (a1
+, a2

+ and d+) are constants that depend on W−, δW−, b and δb− ( W+,
δW+, b, and δb+) and the associate Riemann solver W∗ = R(0;W−,W+). To shorten the length
of this paper, the deduce details of GRP solver are not appeared in this paper but could be found
in the second author’s previous work [15]. Here we only give the expression for a typical case,
e.g., the left rarefaction wave resolution and right shock wave resolution, because the other cases
could be addressed similarly. And the linear system for the GRP time derivative calculation will be
modified to become more stable. The change from physical coordinates to characteristic coordinates
plays important role for the calculation of the left rarefaction wave resolution. According to [15],
the coefficients a1

−, a2
− and d− takes this values,

(a−, b−) = (µ∗ − λ∗)∇(h,u)s∗ ·A−1
∗ ,

d− =
(
∂t(0,β∗)
∂α

)−1
∂s(0,β∗)
∂α − λ∗∇(h,u)s∗ ·A−1

∗ ·
∏

(0),
(17)

where β and α are the first and last characteristic coordinates corresponding the eigenvalues,

λ = u−
√
gh and µ = u+

√
gh. (18)

Other variables are

s = u+ 2
√
gh,

∏
= (0,−gb′(x))T and A =

(
u h

g u

)
. (19)
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The Rankine-Hugoniot jump relation is the key for the right shock resolution. The coefficients a1
+,

a2
+ and d+ were given by

(a+, b+) = ∇(h,u)G(h∗, u∗) · (A(h∗, u∗)− γ∗I)A−1(h∗, u∗),

d+ = ∇(h+,u+)G(h∗, u∗) · (A(h+, u+)− γ∗I) · (δh+, δu+)

−γ∗∇(h,u)G(h∗, u∗) ·A−1(h∗, u∗)
∏

(0)−∇(h+,u+)G ·
∏

(0),

(20)

where
G(h, u, h+, u+) = hh+(u− u+)2 − g

2
(h+ h+)(h− h+)2 (21)

and it gradients with respect to (h, u) and (h+, u+) are

∇(h,u)G = (h− h+)
(
− g

2h (2h2 + h2
+ + hh+), 2hh+

u−u+

h−h+

)
,

∇(h+,u+)G = (h+ − h)
(
− g

2h+
(2h2

+ + h2 + hh+), 2hh+
u−u+

h−h+

)
,

(22)

γ∗ = γ(0) is the initial shock speed. Notice that the difference between h∗ and h+ will be the
denominator and the factor in the coefficients a1

+, a2
+ and d+ when substitute the above two gradient

formulas into (20). While the depth difference becomes small for the quasi-stationary states and even
equals zero for stationary states. The small values will make the linear system (16) degradation
and even singular for stationary states. This will make the calculation of time derivative unstable.
Therefore, the coefficients in the linear system (20) are modified through two steps. First, the
coefficient (u∗ − u+)/(h∗ − h+) is replaced as

u∗ − u+

h∗ − h+
=

√
g(h∗ + h+)

2h∗h+
, (23)

using Rankine-Hugoniot condition G(h∗, u∗, h+, u+) = 0; second, the common factor h∗ − h+ is
removed from both sides in the second equation of (16). Finally, the calculation of linear system
will become more stable where no coefficients become singular.

3.3. Well-balanced property

We also provide an algebraic proof to explain the updated GRP scheme applying unstructured
triangular meshes satisfies the well-balanced property, i.e. hni + bni = C, uni = 0 implies hn+1

i +

bn+1
i = C, un+1

i = 0 for all i. From the reconstruction (12), the local GRP initial data (15) in local
coordinates on every edge satisfy

h− + b = h+ + b = C, u− = u+ = 0, (24)

and
δh− + δb− = δh+ + δb+ = 0, δu− = δu+ = 0. (25)

The associate Riemann solver R(0;W−,W+) implies that

h0 + b = C and u0 = 0. (26)
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Applying the above stable GRP method where the linear system are modified, the time derivative of
primitive variables are (

∂h

∂t

)
0

=

(
∂u

∂t

)
0

= 0 (27)

resulting in the predicted values on every edge as

h
n+1/2
ij + bij = C and u

n+1/2
ij = 0. (28)

By substituting the above values for the numerical fluxes (8) and bed slop source terms (9), the mass
flux becomes zero on every edge. Using the first equation of (7), the updated free surface is

wn+1
i = hn+1

i + bi = C. (29)

The update of the momentum using the second and third components of vector equations (7) is given
by

|Ei|
∆t

((hu)n+1
i − (hu)ni ) = −

3∑
j=1

g
(
h
n+1/2
ij

)2

2
|lij |nij −

3∑
j=1

g
h
n+1/2
ij + h̄

n+1/2
i

2
(bij − bi) |lij |nij .

(30)
Merging the common factors, the above formula becomes,

|Ei|
∆t

((hu)n+1
i − (hu)ni ) = −

3∑
j=1

g
(
h
n+1/2
ij

)2

2
+ g

h
n+1/2
ij + h̄

n+1/2
i

2
(bij − bi)

|lij |nij . (31)

Adding the following expression into the right hand side of the above expression,

3∑
j=1

g
(
h̄
n+1/2
i

)2

2
|lij |nij =

g
(
h̄
n+1/2
i

)2

2

3∑
j=1

|lij |nij = 0, (32)

where h̄n+1/2
i = 1

3

∑3
k=1 h

n+1/2
ik , we get the update formula for momentum,

|Ei|
∆t

((hu)n+1
i − (hu)ni ) = −

3∑
j=1

g
(
h
n+1/2
ij

)2

2
−
g
(
h̄
n+1/2
i

)2

2
+ g

h
n+1/2
ij + h̄

n+1/2
i

2
(bij − bi)

 |lij |nij .
(33)

After some simple calculation, we have

|Ei|
∆t

((hu)n+1
i − (hu)ni ) = −

3∑
j=1

g
h
n+1/2
ij + h̄

n+1/2
i

2

(
(h
n+1/2
ij + bij)− (h̄

n+1/2
i + bi)

)
|lij |nij .

(34)
Because of Eq. (28), we know that

h̄
n+1/2
i + bi =

1

3

3∑
k=1

(h
n+1/2
ik + bik) =

1

3

3∑
k=1

C = C, (35)
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therefore
|Ei|
∆t

((hu)n+1
i − (hu)ni ) = 0. (36)

The updated momentums on the new time level then satisfy

(hu)n+1
i = 0, (37)

then the updated velocity vector will be zero,

un+1
i = 0, (38)

The formulas (29) and (38) indicate that the updated GRP scheme can exactly preserve the well-
balanced property under unstructured triangular meshes.

4. ADAPTIVE MOVING MESH METHOD FOR UNSTRUCTURED TRIANGULAR CELLS

Extending on a previously-developed method [40, 42], we adopt an adaptive moving mesh method
for SWEs under triangular meshes, in which still flat water property will also be proved as preserved
explicitly while triangular meshes moving. The method involves two steps: mesh movement and
conservative interpolation. Before explaining these steps in the following sections, let Ωl denote the
logical domain at Cartesian coordinates ξ = (ξ, η). The initial partition Tl of Ωl share the same data
structure with partition T of the physical domain Ωp of the flow variables.

4.1. Mesh movement based on the variational principle

To adapt the meshes to the desired positions, it is necessary to solve mesh partial differential
equations (PDEs), which define a mapping function from the logical domain to the physical domain
as x = x(ξ), where ξ ∈ Ωl is based on the variational principle. To minimize an energy functional
equations [40, 42] , mesh PDEs can be transferred to Euler-Lagrange equations, as follows:

∇̃ · (ω∇̃x) = 0 (39)

where ∇̃ = ∇ξ = ( ∂∂ξ ,
∂
∂η ) are gradient operators with respect to the logical coordinates ξ. ω is the

monitor function related to the solution and the gradient of the solution, that is; ω = ω(U
[ν]
i , ∇̃U[ν]

i ).
[ν] is the iteration step. First, consider mesh movement in the inner region. The integral form of
Eq. (39) over the dual cell in logical domain results in a finite volume discrete system as follows:

N(i)∑
j=1

ωij

∣∣∣l̂ij∣∣∣xij − xi
|ξijξi|

= 0 (40)

Generally, the above equation is a nonlinear system because it depends on ωij = ω(U(ξij)). To
simplify the calculation, this system is linearized and solved using a relaxed Jacobi iteration,
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resulting in: 
x̂i =

∑N(i)
j=1 $ijx

[ν]
ij /
∑N(i)

j=1 x
[ν]
ij

x
[ν+1]
i = µix̂i + (1− µi)x

[ν]
ij

ν = 0, 1, · · · (41)

in which

$ij =
∆τ

|Vi|
ωij

∣∣∣l̂ij∣∣∣/|ξijξi|, µi = max


N(i)∑
j=1

$ij , σ

 (42)

where x
[ν]
ij is an adjacent node of x̂i, N(i) was the number of all adjacent nodes; ∆τ and control

the quality of the cells, determined in this study to be ∆τ = 0.5 and σ = 0.3. Because the goal
of mesh movement is to adjust the cell positions to enhance the resolution of modified SWEs, it
is not necessary to solve mesh PDEs completely.

∣∣∣x[ν+1]
i − x

[ν]
i

∣∣∣ ≤ 10−6 or ν = 5 were chosen as
the criterion to end the iterations. Additionally, the boundary mesh points should be redistributed
simultaneously along with inner mesh movement, because discontinuity in the regions of interest
could interact with the boundaries. A detailed explanation of this boundary mesh movement can be
found in Chen et al. [42].

Figure 2. Schematic diagram of triangular mesh movement from E
[ν]
i to E

[ν+1]
i . Note: x[ν]

i1 , x[ν]
i2 and x

[ν]
i3

are the nodes in E
[ν]
i while x

[ν+1]
i1 , x[ν+1]

i2 and x
[ν+1]
i3 are the nodes in E

[ν+1]
i ; Dij is the region scanned

by the edge l
[ν]
ij .

4.2. Geometrical conservative interpolation

After obtaining the new cell position x
[ν+1]
ij , the average value U

[ν+1]
i on the new meshes can be

obtained using conservative interpolation based on U
[ν]
i defined for the old meshes [40, 45, 42].

Geometrical interpolation updates the conservative variables by summing the total mass over the
old mesh, and the mass fluxes over the scanned region Dij of edge lij :

|E[ν+1]
i |U[ν+1]

i = |E[ν]
i |U

[ν]
i +

∑3
j=1 F̂(UL

ij ,U
R
ij)

F̂(UL
ij ,U

R
ij) = max{|Dij |, 0}UL

ij + min{|Dij |, 0}UR
ij

(43)

where mass flux F̂(UL
ij ,U

R
ij) is the approximate integration of U over domain Dij , and UL

ij and
UR
ij are the reconstructed values from U

[ν]
i using Eq. (12). To obtain the mass flux, it is essential to

calculate the signed area |Dij | such that it is positive if lij scans to the right, and vice versa. This
can easily be computed for triangular mesh; for example, |Di0| can be calculated by:

|Di0| =
1

2

[
(x

[ν+1]
i3 − x[ν]

i2 )(y
[ν]
i3 − y

[ν+1]
i2 )− (y

[ν+1]
i3 − y[ν]

i2 )(x
[ν]
i3 − x

[ν+1]
i2 )

]
(44)

Mass flux calculation is essentially an upwind method because it is greater than zero if an
edge moves away from the element, and vice versa. Certainly, mass flux satisfies F̂(UL

ij ,U
R
ij) =

−F̂(UR
ij ,U

L
ij), resulting in the conservative property of flow variables within the interpolation step.
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4.3. Still flat water preserving property

Similar with well-balanced property in the last section, we consider the still flat water preserving
property while the meshes is moving, i.e. h[ν]

i + b
[ν]
i = C and u

[ν]
i = 0 implies h[ν+1]

i + b
[ν+1]
i = C

and u
[ν+1]
i = 0 for all i. After initial data reconstruction (12) , we obtained hLij + bij = hRij + bij =

C and uLij = uRij = 0. Flux F̂(UL
ij ,U

R
ij) was equal to |Dij |(C, 0, 0)T, so Eq. (43) can be updated as

follows:

|E[ν+1]
i |U[ν+1]

i =

(
|E[ν]
i |+

3∑
j=1

|Dij |

)
U

[ν]
i . (45)

According to the calculation of signed area |Dij |, we have:

|E[ν+1]
i | = |E[ν]

i |+
3∑
j=1

|Dij |, (46)

Substitute the above formula into (45), the updated U
[ν+1]
i is then equal to U

[ν]
i , resulting in

h
[ν+1]
i + b

[ν+1]
i = C and u

[ν+1]
i = 0, which indicates that the proposed adaptive moving meshes

can preserve the still flat water.

5. SOLUTION ALGORITHM

To facilitate use of the well-balanced stable GRP scheme, source code was developed in FORTRAN
language with double precision following the general solution algorithm:

Step 1 : Input the initial data. Give the initial mesh
{
x0
i

}
and

{
ξ0
i

}
for both the physical domain and

logical domain , respectively. Calculate the average value Un
i for the conservative variable U

over every physical control volume; let n = 0.

Step 2 : Adaptive moving of triangular meshes. Letν := 0, x[0]
i := xni , and U

[0]
i := Un

i .

A1 . Adjust the cells x[ν] to the new position x[ν+1] by solving the mesh movement equations
using (41).

A2 . Update the conservative flow variables U[ν+1]
i over the new meshes according to (43).

A3 . If
∣∣∣x[ν+1]
i − x

[ν]
i

∣∣∣ is not greater than 10−6 or ν = 5, then set xn+1
i := x

[ν+1]
i , Un

i :=

U
[ν+1]
i and go to step 3, otherwise set ν := ν + 1 and progress to B1.

Step 3 : Solve the SWEs over the new meshes.

B1 . Solve the SWEs for the fixed meshes {xn+1
i } using the stable GRP finite volume method

given in Section 3.2, to achieve the numerical solution Un+1
i at the time t = tn+1.

B2 . If tn+1 < TSTOP , where TSTOP is simulation of time, then let n := n+ 1 and go back
to step 2. Otherwise, export the solution xn+1

i and Un+1
i and exit the program.
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6. RESULTS AND DISCUSSION

A series of model tests were performed to verify the well-balanced stable GRP scheme under
adaptive triangular meshes outlined above; model predictions were compared with alternative
numerical solutions in terms of the well-balanced stability-preserving property and computational
features. Three test cases were performed: (i) a partial dam-break flow problem over flat bed,
(ii)still water flow over a smooth bed, (iii)still water with a small perturbation over a smooth
bed. For all tests, g is constant at 9.8m/s2, respectively. Computations for the numerical
examples presented below were performed on an Intelr CoreTM i5 CPU M480 @ 2.67GHz
with 3 GB RAM. The initial triangular meshes were generated by EASYMESH (http://
www-dinma.univ.trieste.it/nirftc/research/easymesh/). Because choosing a
monitor function was not the main goal of this study, we applied the traditional method of
an arclength-type monitor (AL-monitor), such as ωi =

√
1 + αω̃2

i (β, h+ b), where α and β ∈
(0, 1] are problem-dependent nonnegative constants, ω̃i represents the physical variables; that is,
ω̃i(β, h+ b) =: min

{
1, |∇ξ(h+ b)|i

/
βmax

i
|∇ξ(h+ b)|i

}
, Here, β is constant at 0.25 [42].

6.1. Partial dam-break flow over flat bottom

We used a classical two-dimensional partial dam-break flow case to validate the shock-capturing
and computational efficiency of our proposed numerical scheme for flat bed. This test case has
been widely used in the literature [46, 47, 48], however, no analytical solution is available. The
model domain was composed of a 200m× 200m basin over a flat, fixed, and frictionless bed. Water
depths were 10m and 5m on the left and right sides of the dam wall, respectively; Fig.3 A lists
size parameters. The left and right sides of the computational domain were infiltrative while other
boundaries were reflex.

In the current study, we used α = 10. Model domains were divided into 7, 409 and 29, 217

triangular cells for coarse and fine meshes, respectively, and mesh redistribution was based on coarse
triangular cells. Table I lists the other parameters of the triangular meshes and CPU times for the
GRP scheme under fixed coarse meshes, fixed fine meshes, and adaptive moving meshes. At t = 0,
a breach with a width of 75m centered at y = 132.5m formed instantly. After the dam broke, a
shock wave formed and propagated downstream, while a depression wave spread upstream. Fig.3
presents the predicted free surface elevation and the associated mesh at t = 7.2; the results support
previously-developed models [46, 47, 48]. However, numerical solutions applying adaptive moving
meshes were distinct from those of coarse and fixed meshes, even when they had the same number of
cells. Unlike when coarse fixed mesh was applied in the initial state (Figs.3A and 3D), the adaptive
moving mesh method efficiently clustered mesh points at t = 7.2 to relatively local regions where
gradients in free surface elevation varied significantly (Fig.3C), including two non-convex regions
and right-moving shock waves. Mesh points were sparsely redistributed when gradients of free
surface elevation were relatively lower. Therefore, the predictive accuracy and spatial resolution
were relatively higher in non-convex regions and right-moving shock waves Fig.3F

Although the fixed fine meshes applied four times of cells (29,217, Fig.3B), its predictive accuracy
and spatial resolution were inferior to those of the adaptive moving meshes method (Fig.3E).
Additionally, the CPU time required at t = 7.2 was 251s for the GRP scheme using fixed fine
mesh, consuming 206 more CPU time than adaptive moving meshes. Figure 5 shows solutions

http://www-dinma.univ.trieste.it/nirftc/research/easymesh/
http://www-dinma.univ.trieste.it/nirftc/research/easymesh/
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Figure 3. Numerical solutions and the associated meshes of adaptive GRP scheme for a partial dam-break
flow problem at t = 7.2. Contour lines of free surface elevation for fixed coarse, fixed fine, and adaptive

moving meshes were illustrated.

Algorithm # cells # nodes max/min |lij | max/min |Ei| CPU time(s)
Fixed coarse meshes 7409 14396 3.02/1.84 3.55/1.70 30

Fixed fine meshes 29217 57592 1.60/0.71 0.94/0.27 251
Adaptive moving meshes 7409 14396 4.71/0.60 5.14/0.36 122

Table I. Mesh parameters and CPU time of a partial dam-breach flow problem computed under fixed coarse,
fixed fine, and adaptive moving meshes. The simulation time is 7.2. |lij | and |Ei| are the edge length and

triangle area, respectively.

at the same times along the line y = 132.5m. Mean, range, and standard deviation of the absolute
value of the discrepancy between the numerical solutions of fixed fine and adaptive moving meshes
were 0.015, 0.165, and 0.016, respectively, while the corresponding values between fine and coarse
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meshes were 0.030, 0.585, and 0.057 (Fig.4), respectively. This finding reflects the fact that the
free surface elevation simulated applying adaptive moving meshes was similar to that applying
fixed fine meshes, especially in the local region where the free surface gradient was relatively
large. However, the solution derived using the GRP scheme applying fixed coarse mesh differed
significantly from adaptive moving mesh. Interestingly, the grid never appeared to be twined during
the adaptive redistribution of triangular meshes from t = 0 to 7.2, which is an essential condition
for numerical approximation of the SWEs under the adaptive moving meshes model.
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Figure 4. Comparison of the free surface elevations along the line y = 132.5m at t = 7.2 between fixed
coarse, fixed fine, and adaptive moving meshes. Note: |(h+ b)F2−AMM| is the absolute value of the
discrepancy between the numerical solutions of fixed fine and adaptive moving meshes while |(h+ b)F2−
F1| is that between fine and coarse meshes; the Box-Whisker plot presented the mean, confident interval

(0.05), and range of the discrepancies.

6.2. Still water flow over a smooth bed

This test case validates the ability of the proposed scheme to satisfy the well-balanced stability-
preserving property as introduced in . Bed topography is defined as:

B (x, y) = 0.8 exp
{
−50

[
(x− 0.5)

2
+ (y − 0.5)

2
]}

, (x, y) ∈ [0, 1]× [0, 1] , (47)

the initial state was set as h (x, y) = 1−B (x, y), u (x, y, 0) = 0 and v (x, y, 0) = 0. When the
triangular meshes was generated, we choose α = 50. The initial quasi-uniform triangulation of
the physical domain, as well as the logical domain, was generated with a horizontal (and vertical)
boundary partition of 5, 816 cells with 3, 009 nodes. The simulation was performed until a simulation
time of t = 1.7. Discrepancies between the exact solutions and numerical solutions using the
updated GRP scheme under both fixed meshes and moving meshes (h+ b, u and v) were within
the limits of round off error (Table II), demonstrating that the updated GRP scheme under both
fixed and adaptive moving meshes exactly satisfied the well-balanced property. Compared with the
numerical results (|h+ b− 1|, |u| and |v|) using the original GRP scheme in [15], our new numerical
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schemes are significantly stable due to two-step modification for time derivative evaluation.

Algorithm |h+ b− 1| |u| |v|
GRP scheme in [15] on fixed meshes 1.49E-09 6.60E-08 6.43E-08
updated GRP scheme on fixed meshes 2.00E-15 4.06E-14 4.44E-14

updated GRP scheme on moving meshes 7.22E-15 1.39E-14 1.77E-14
Table II. Numerical solutions of GRP scheme under both fixed and moving meshes (t = 1.7) with 3, 009
nodes and 5, 816 cells. Note: h+ b, u, and v are the free surface elevation, flow velocities along x− and
y−directions, respectively; The discrepancies between the numerical and exact solutions of above current
updated GRP scheme and Moving meshes scheme were within the limits of machine error while the the

original GRP scheme in [15] is only 1E-08.

6.3. Still water with a small perturbation

This test case validated the high-resolution predictive ability of the proposed scheme, as first
introduced by [9]. The two-dimensional bottom topography consists of an elliptic hump, as follows:

B (x, y) = 0.8 exp
{
−5(x− 0.9)

2
+ 50(y − 0.5)

2
}
, (x, y) ∈ [0, 2]× [0, 1] . (48)

The initial free surface elevation was set as:

h (x, y) =

{
1+ε−B (x, y) , if x ∈ [0.05, 0.15] m,

1−B (x, y) , Otherwise,
(49)

where u (x, y, 0) = 0 and v (x, y, 0) = 0. The free surface elevation was flat except for 0.05 ≤ x ≤
0.15m, where the surface was perturbed with ε = 0.01m. Transmissive boundaries appeared on the
right and left sides of the rectangular domain. In this study, we used α = 20. Model domains were
divided into 14, 064 triangular cells with 8, 210 nodes for adaptive moving mesh. At t = 0, the left
propagating pulse had already left the domain because of the transmissive boundary conditions.
When t = 0.12, only the right-going portion of the disturbance was observed when it propagated
over the hump (Fig. 5). Wave speed decreased above the hump due to the reduced water depth,
resulting in a distortion of the initially planar perturbation.

To elucidate the high-resolution predictive capabilities, Fig. 5 shows a series of snap-shots of free
surface elevation contours for shock propagation and the corresponding meshes at t = 0.12, 0.24,
0.36, and 0.48. Compared with the numerical results from previous studies [9, 49], the solutions
obtained here exhibit higher-resolution shock-capturing with less meshes. The updated scheme can
exactly preserve the well-balanced property and significantly improve the small-scale resolution of
local features in regions with sharp flow gradient variables.

Certainly, in order to verify our updated GRP scheme, only bed slope source term was considered
within SWEs system in this paper, which is same as previous works [14]. Therefore, the current
proposed well-balanced scheme is only suitable for SWEs involving wet bed topography. Other
source terms, such as bottom friction, wind force, Coriolis force, and viscosity force, should
be partly or totally included in the SWEs to verify the capability of this scheme in field-scale
applications in future work.
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Figure 5. Numerical solutions of adaptive GRP scheme for a still water with a small perturbation. Contour
lines (left side) of free surface elevation and the corresponding meshes (right side) at t = 0.12, 0.24, 0.36,

and 0.48 were illustrated.

7. CONCLUSIONS

This study developed a well-balanced stable GRP scheme to solve SWEs under adaptive
unstructured triangular meshes, which stably and efficiently simulated the well-balanced
hydrodynamic processes of shallow waters involving bed topography. Three two-dimensional
examples demonstrated the shock-capturing and computational advantages of this scheme. The main
features of this updated scheme can be summarized as follows:

(1) This updated scheme can solve the SWEs under triangular meshes by evaluating solutions
along the exterior normal direction of the cell boundaries and by incorporating suitable central
discretization of the bed source term, resulting in high-resolution simulations to balance the
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bed slope and flux gradients with more stability through a modification of GRP time derivative
calculation and proof of well-balance property.

(2) This scheme can dynamically approximate the gradient distribution of physical variables by
iteratively solving Euler-Lagrange equations and remapping them through geometrical conservative
interpolations of the free surface on new mesh with satisfaction of still flat water property; it also
significantly improves the predictive ac-curacy and resolution of local features with relatively lower
computational cost.
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