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Abstract. We apply the concept of Asymptotic Preserving (AP) schemes [17] to the linearized
p−system and discretize the resulting elliptic equation using standard continuous Finite Elements
instead of Finite Differences. The fully discrete method is analyzed with respect to consistency, and
we compare it numerically with more traditional methods such as Implicit Euler’s method. Numerical
results indicate that the AP method is indeed superior to more traditional methods.

1. Introduction. We consider the p−system [12] with a linear pressure function
p(v) := − 1

ε2 v and a right-hand side g,

vt − ux = 0 ∀(x, t) ∈ Ω× R+ (1.1)

ut + p(v)x = g(x, t) ∀(x, t) ∈ Ω× R+ (1.2)

on a domain Ω ⊂ R subject to suitable initial and boundary values, where for sim-
plicity we choose the latter to be

v(x) = 0 ∀x ∈ ∂Ω.

In a (simplified) physical application, u and v could denote velocity and (variations
of) the specific volume of the fluid.

Obviously, the equation can be written as

wt + f(w)x = G(x, t) ∀(x, t) ∈ Ω× R+ (1.3)

for w := (v, u)T , f(w) := (−u,− 1
ε2 v)T and G(x, t) := (0, g(x, t))T .

The eigenvalues of the Jacobian of the flux function f are ± 1
ε , and so a fully

explicit Finite-Volume scheme will not be feasible for small values of ε, as the time-
step will decrease with ε. Inspired by Asymptotic Preserving Schemes (AP), we
develop a new solver for (1.1)-(1.2) based on a combination of Finite Volumes and
Finite Elements. Its (fully discrete) consistency is investigated, and it is compared
with more traditional numerical schemes with respect to error versus mesh size. We
put this in the simple framework of the p−system because it was on a similar system
that Jin [17] derived his famous asymptotic preserving schemes for the first time, and
because it is simple (but not too simple), so that each step can be easily computed,
which is not the case for more involved systems such as Euler’s equations.

As already mentioned, the concept of asymptotic preserving schemes that we
pursue in this publication has been introduced by Jin [17], building on joint work
with Pareschi and Toscani [18]. In these publications, a scheme is called asymptotic
preserving if

• it is for ε → 0 a consistent scheme for the multiscale limiting equations of
(1.1)-(1.2) and

• is stable with a cfl-number independent of ε.
This class of schemes has since been extended to various kinds of equations, such as,
e.g., Euler’s equation [13, 3], Shallow-water equations [2] and many more.
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The current paper is a first attempt to extend the schemes, which have been
presented for Finite-Volume discretizations, to Galerkin-type schemes. Based on a
flux-splitting, we derive an elliptic equation whose diffusion coefficient is dependent
on ε and ∆t. This equation is solved by continuous Finite-Element methods, and not,
as usual, by finite-difference schemes. The approach, though it can of course also be
written in terms of finite differences, has the advantage that we can investigate the
elliptic equation and its discretization in a rigorous setting in the context of Sobolev
spaces. In a first step, we show that the elliptic equation is well-posed and uniformly
well-conditioned for all values of ε and ∆t. This is achieved by introducing problem-
dependent spaces and norms. In a second step, we restrict ourselves to ’small’ ε and
’large’ ∆t, i.e., 0 < ε ≤ ε0 < 1 and ∆t ≥ ε, as it is only in this setting that we can use
standard Finite-Element schemes [6, 15] instead of stabilized ones [5]. Also for this
setting, we can derive rigorous and uniform (in ε) stability and consistency bounds.

Solutions to (1.1)-(1.2) that allow for a limit solution as ε → 0 have a certain
structure (see (2.6)-(2.7) in Sec. 2). Our consistency analysis for the fully discrete
algorithm heavily relies on this structure, and we believe that it is only in this setting
that one can derive suitable bounds on the consistency error that do not behave like
O(ε−1) or even worse. As an easy consequence, we can indeed show that the proposed
scheme is AP. This is different to other authors [13, 2] who show that their scheme is
asymptotic preserving by a Taylor series argument on the semi-discrete stage.

Having presented our scheme, we compare it numerically with two other schemes.
The surprising outcome is that the scheme to be presented performs better by orders
of magnitude in comparison to more traditional schemes.

The outline of the paper is as follows: In Sec. 2.1, we derive the multiscale limit
solution of the linearized p−system for ε → 0. In Sec. 2.2, we split the conservative
flux f into a stiff f̃ and a non-stiff f̂ . Based on this splitting, we derive a semi-
discretization in Sec. 2.3. This yields an elliptic equation, which is investigated in Sec.
2.4. Finally, in Sec. 2.5, we formulate the fully discrete algorithm and investigate its
consistency in Sec. 2.6. In Sec. 3, we show numerical results. Sec. 4 offers conclusions
and outlook.

2. Asymptotic Preserving Discretization.

2.1. Multiscale limit of the equation. In this section, we follow a multiscale
approach to obtain the limiting equations of (1.3). To this end, we assume that our
unknown solution (v, u) admits a two-scale expansion as

v(x, t) = v(0)(x, t) + εv(1)(x, t) + ε2v(2)(x, t) +O(ε3) (2.1)

u(x, t) = u(0)(x, t) + εu(1)(x, t) + ε2u(2)(x, t) +O(ε3). (2.2)

Note that this approach does not include fast waves, i.e., contributions depending
on 1

ε , so one has a uniform limit as ε → 0. Plugging (2.1)-(2.2) into (1.1)-(1.2) and

balancing the powers of ε yields that both v(0)(x, t) and v(1)(x, t) are independent of
x. Therefore, v(1)(x, t) can be absorbed into v(0)(x, t), and (2.1) reduces to

v(x, t) = v(0)(t) + ε2v(2)(x, t). (2.3)

The remaining limiting equations can be easily seen to be

v
(0)
t − u(0)

x = 0 ∀(x, t) ∈ Ω× R+ (2.4)

u
(0)
t − v(2)

x = g(x, t) ∀(x, t) ∈ Ω× R+ . (2.5)
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A suitable algorithm approximating (1.1)-(1.2) for small values of ε should, in the
vanishing ε−limit, be a consistent approximation to (2.4)-(2.5). In reference [17],
such a consistency requirement is called asymptotic preserving.

For a general conservation law, it is nontrivial to obtain more precise results
concerning v(0) and u(0), see, e.g., [19] for results in the context of Euler’s equations.
However, in the very simple setting of the linearized p−system, we can clarify even
more the relation between v and u. Due to the boundary conditions, it can be easily
shown that the only admissible functions are

v(x, t) = ε2(tξ(x) + η(x)) +O(ε3) (2.6)

u(x, t) = u(0)(t) + εu(1) + ε2

∫ x

d

ξ(y) dy +O(ε3) (2.7)

with a suitable definition of g(x, t) := ut(x, t) − vx(x, t) and arbitrary functions
ξ, η, u(0) and constants u(1), d ∈ R. Especially, both v(x, t) and ux(x, t) are of or-
der O(ε2), which will help performing a consistency analysis.

2.2. Flux Splitting. The way of splitting the flux into stiff and non-stiff parts
has an influence on the final algorithm. We choose our splitting according to the
following definition:

Definition 2.1. Let the flux function f be split into f(w) = f̂(w) + f̃(w). We
consider such a splitting to be admissible if for all 0 < ε < 1

• both f̂(w) and f̃(w) induce a hyperbolic system, i.e., the eigenvalues of both

f̂ ′(w) and f̃ ′(w) are distinct and real,

• the eigenvalues of f̂ ′(w) are of order one,

• f̂(w) approaches f(w) as ε→ 1, and

• f̃(w) approaches f(w) for ε→ 0 in the sense that limε→0 ε
2
(
f̃(w)− f(w)

)
=

0.
f̂(w) is called the ’non-stiff’, and f̃(w) the ’stiff’ part of the flux function for obvious
reasons.

To identify stiff and non-stiff parts of the flux function, we make the following
ansatz:

f(w) = f̂(w) + f̃(w) =:

(
−α(ε)u

−β(ε)
ε2 v

)
+

(
−(1− α(ε))u

− 1−β(ε)
ε2 v

)
.

Both α(·) and β(·) are yet unknown. One reasonable requirement is α(1) = β(1) = 1,
and α(0) = β(0) = 0, so that one has no stiff contribution given that ε is one, and no
non-stiff contribution given that ε vanishes. We make the simple ansatz of α(ε) = εa,
β(ε) = εb. An easy computation shows that for a, b > 0, a+ b = 2, the eigenvalues of

f̂ ′(w) are independent of ε. A particularly simple choice is a = b = 1, which we will
use throughout this work. In summary, for this choice of a and b, we have

f̂(w) =

(
−εu
− 1
εv

)
, f̃(w)=

(
−(1− ε)u
− 1−ε

ε2 v

)
with corresponding eigenvalues of the Jacobians

λ̂ = ±1, λ̃ = ±1− ε
ε

.
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2.3. Semi-Discretization. We start the description of our algorithm with a
discretization in time only. For simplicity, we assume that we work on space-time slabs
of (uniform) size ∆t, although uniformity is not a necessary condition. Throughout
this work, we will use standard notation and set wn := w(tn), where tn := n∆t.
Based on the flux splitting defined in Sec. 2.2, we obtain a first-order implicit /
explicit semidiscretization of (1.3) in time, given by

wn+1 − wn

∆t
+ f̂(wn)x + f̃(wn+1)x = Gn. (2.8)

or, in terms of (v, u),

vn+1 − vn

∆t
= εunx + (1− ε)un+1

x (2.9)

un+1 − un

∆t
=

1

ε
vnx +

1− ε
ε2

vn+1
x + gn. (2.10)

One way of dealing with such a system of implicit equations that has become a
standard ingredient in asymptotic preserving schemes, is to equivalently reformulate
(2.9)-(2.10) in such a way that one obtains an equation for either vn+1 or un+1 alone.
We have decided to formulate an equation for vn+1. To this end, we note that (2.10)
is equivalent to

un+1 = un + ∆t

(
1

ε
vnx +

1− ε
ε2

vn+1
x + gn

)
, (2.11)

and plug this into (2.9):

vn+1 = vn + ∆t

(
εunx + (1− ε)

(
un + ∆t

(
1

ε
vnx +

1− ε
ε2

vn+1
x + gn

))
x

)
(2.12)

= vn + ∆t unx + ∆t2(1− ε)
(

1

ε
vnxx +

1− ε
ε2

vn+1
xx + gnx

)
(2.13)

= vn + ∆t unx +
∆t2(1− ε)

ε
vnxx +

∆t2(1− ε)2

ε2
vn+1
xx + ∆t2(1− ε)gnx . (2.14)

Rearranging terms yields an elliptic equation for vn+1:

−∆t2(1− ε)2

ε2
vn+1
xx + vn+1 = vn + ∆t unx +

∆t2(1− ε)
ε

vnxx + ∆t2(1− ε)gnx . (2.15)

Remark 2.2. Using standard theory of partial differential equations, it is easy
to see that (2.15) is a well-posed equation for ∆t > 0 and 0 < ε < 1. However, in
standard Sobolev norms, one can see that only for ∆t � 0 and ε � 1, one obtains
uniform bounds on the condition number of the problem. We will show in Sec. 2.4
that one can put the equation in a framework that allows for a uniform bound on
the condition number of (2.15), however, in a norm that depends on the diffusion

coefficient λ := ∆t2(1−ε)2
ε2 . (Which is, of course, not surprising.)

The weak formulation of (2.15) can be cast in a variational framework as

a(vn+1, ϕ) = ι(ϕ) ∀ϕ ∈ H1
0 (Ω), (2.16)
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where

a(vn+1, ϕ) :=

∫
Ω

(
∆t2(1− ε)2

ε2
vn+1
x ϕx + vn+1ϕ

)
dx and (2.17)

ι(ϕ) :=

∫
Ω

(vn + ∆t unx)ϕ−∆t2(1− ε)
(
vnx
ε

+ gn
)
ϕx dx. (2.18)

Boundedness and coercivity properties of a(·, ·) will be discussed in the next sections.
What concerns ι, we can state the following lemma:

Lemma 2.3. Let us assume that un ≡ u(tn) and vn ≡ v(tn) are functions in
H1(Ω); gn ≡ g(tn) is a function in L2(Ω); and 0 < ε < 1. Then ι ∈ H1

0 (Ω)′.

Proof. It is enough to show that both vn + ∆t unx and ∆t2(1 − ε)
(
vnx
ε + gn

)
are

functions in L2(Ω), which is correct because of the assumptions on un, vn and gn.

2.4. A note on the elliptic equation. Let us now turn to the operator equa-
tion (2.16). To make it a well-defined and a uniformly well-conditioned problem for
all 0 < ε ≤ 1, we put it in a variational framework with weighted Sobolev spaces as
follows:

Definition 2.4. Let the coefficient of the viscous term of (2.16) be denoted by
λ, i.e.,

λ :=
∆t2(1− ε)2

ε2
. (2.19)

We define a weighted norm ‖ · ‖λ as

‖ϕ‖2λ := ‖ϕ‖2L2 + λ‖ϕx‖2L2 (2.20)

and a corresponding ’Sobolev-space’

Vλ(Ω) := C∞0 (Ω)
‖·‖λ

. (2.21)

Corollary 2.5. For λ > 0, i.e., ε < 1, the weighted norm ‖ · ‖λ is equivalent
to the standard Sobolev norm, as can be seen form a Poincaré-Friedrichs inequal-
ity. However, the equivalence constants gets worse as ε approaches one. With this
equivalence in mind, it is easy to see that

Vλ(Ω) =

{
H1

0 (Ω), ε < 1

L2(Ω), ε = 1
, (2.22)

as λ = 0 for ε = 1 and λ > 0 for 0 < ε < 1.
Remark 2.6. The weighted norm ‖ · ‖λ is the energy norm associated to (2.16),

i.e.,

‖ϕ‖2λ = a(ϕ,ϕ). (2.23)

Furthermore, for λ = 0, the problem (2.16) is not well-posed in H1
0 (Ω) any more, so

the choice of Vλ(Ω) is actually very natural.
The following lemma computes both coercivity and boundedness constants of

a(·, ·) on Vλ(Ω):
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Lemma 2.7. The bilinear form a(·, ·) as defined in (2.17) is coercive on Vλ(Ω)×
Vλ(Ω) with ellipticity constant one, and bounded on Vλ(Ω)× Vλ(Ω) with boundedness
constant also one.

Proof. It is easy to see that

a(ϕ,ϕ) = λ‖ϕx‖2L2 + ‖ϕ‖2L2 = ‖ϕ‖2λ, (2.24)

so the bilinear form is elliptic with ellipticity constant one. Furthermore, using
Cauchy-Schwartz inequality (this is possible because of (2.23)), one has

a(ϕ,ψ) ≤ ‖ϕ‖λ‖ψ‖λ. (2.25)

The following theorem guarantees that (2.16) is, for the full range of 0 < ε ≤ 1,
a well-conditioned problem:

Theorem 2.8. The equation (2.16) is well-conditioned in Vλ(Ω) independently
of ε, i.e., for two functionals ι, ι̃ ∈ Vλ(Ω)′, and their corresponding solutions v and ṽ,
one has the relation

‖v − ṽ‖λ
‖v‖λ

≤
‖ι− ι̃‖V ′

λ

‖ι‖V ′
λ

. (2.26)

Proof. It is a classical result from the theory of elliptic pde that the quotient
of boundedness constant and ellipticity constant is indeed the condition number with
respect to a perturbation of the functional ι. Nevertheless, for convenience, we give a
sketch of the proof. From ellipticity, we can conclude

‖v − ṽ‖2λ = a(v − ṽ, v − ṽ) = ι(v − ṽ)− ι̃(v − ṽ) ≤ ‖ι− ι̃‖V ′
λ
‖v − ṽ‖λ (2.27)

and from boundedness

‖ι‖V ′
λ

= sup
u∈Vλ(Ω),‖u‖λ=1

ι(u) = sup
u∈Vλ(Ω),‖u‖λ=1

a(v, u) ≤ ‖v‖λ. (2.28)

(2.27)-(2.28) yields (2.26).

2.5. Full discretization. In this section, we introduce a fully discrete method.
To this end, we assume that our spatial domain Ω is subdivided into cells Ωk as

Ω =

Nx⋃
k=1

Ωk :=

Nx⋃
k=1

[xk, xk+1] (2.29)

with midpoints xk. For the ease of presentation (but without loss of generality), we
consider a uniform discretization, i.e., ∆x := xk+1 − xk is constant. Using standard
conventions, we define wni to be (an approximation to) w(xi, t

n). By now, we have
all the ingredients of formulating a fully discrete algorithm for the approximation of
(1.1)-(1.2) for each timestep.

The algorithm relies on the following steps:

• Compute an approximate solution to (2.16) with (linear) Finite-Elements.
• Update u according to (2.11).
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Let us make this more precise: The right-hand side ι of (2.16) includes derivatives
of both u and v at time tn. These derivatives are approximated using a standard
numerical flux function f̂num for the non-stiff part f̂ of the flux f , in the sense that

(−ε(uni )x,−
1

ε
(vni )x)T ≈ 1

∆x

(
f̂num(wni , w

n
i+1)− f̂num(wni−1, w

n
i )
)

(2.30)

As we have to plug functions in Ω into ι, we assume that the derivatives are piecewise
constant on each cell. (A better reconstruction is left for future publication, see also
Rem. 2.9.) Plugging these quantities into ι yields an approximation ιh. Using this
approximation ιh, one computes a Finite-Element solution to the elliptic equation,
i.e., one computes a solution vn+1

h ∈ Vh to

a(vn+1
h , ϕh) = ιh(ϕh) ∀ϕh ∈ Vh, (2.31)

where

Vh := {ϕh ∈ C0(Ω)|ϕh|Ωk is linear for all k;ϕh(0) = ϕh(1) = 0}. (2.32)

Subsequently, un+1 is updated using formula (2.11), employing the approximations of
both (uni )x and (vni )x.

Remark 2.9. In this work, we use a first-order Finite-Volume scheme with a
local Lax-Friedrichs flux, given by fnum ≡ fLF with

fLF (ul, ur) :=
1

2
(f(ul) + f(ur))−

α

2
(ur − ul). (2.33)

As usual, α denotes the spectral radius of the local Jacobian (which is, in this simple
setting, a constant). We have decided to put our investigations in this simple frame-
work to allow for a fair comparison, which is not influenced by the choice of limiter
or time-integration scheme.

Remark 2.10. Note that for ε = 1, the elliptic equation (2.16) becomes a triv-
iality and does not have to be solved. In this case, the scheme reduces to a standard
Finite-Volume scheme with numerical flux function f̂num. Therefore, we assume ε < 1
in the following.

2.6. (Order of) Consistency and some stability considerations. In this
section, we show that our method is consistent, and we determine its order of consis-
tency. We have decided to put this investigation into the more classical framework of
standard H1

0 spaces and norms (instead of using Vλ), because in this setting we can use
classical Finite-Element spaces and do not have to rely on stabilized Finite-Elements
such as SUPG. This, however, comes at the price of restricting ε to 0 < ε ≤ ε0 < 1
and ∆t ≥ ε. Nevertheless, as we are interested in the ε → 0 limit for a moderate
time-step ∆t, this is not a severe restriction.

To prove consistency of our scheme, we have to bound the following error parts:

e1 := ‖v(tn+1)− vn+1‖L2 (2.34)

e2 := ‖vn+1 − vn+1‖L2 (2.35)

e3 := ‖vn+1 − vn+1
h ‖L2 . (2.36)

The overall consistency error in v, e := ‖v(tn+1)− vn+1
h ‖L2 , can then be bounded by

the sum of the ei. Let us remind the reader of the following definitions:

7



• v(tn+1) denotes the exact solution v to (1.3) at time tn+1.
• vn+1 denotes the exact solution to the elliptic equation, see (2.16).
• vn+1 denotes the solution to the elliptic equation (2.16) with right-hand side
ιh instead of ι, see Sec. 2.5.

• vn+1
h denotes the Finite-Element solution to the elliptic equation, see (2.31).

Let us make the following important assumption which is motivated by our in-
vestigations concerning the multiscale expansion, see (2.6)-(2.7):

Assumption 2.11. We assume that v is given by

v(x, t) = ε2v(2)(x, t) +O(ε3). (2.37)

and that the spatial derivative of u is given by

ux(x, t) = ε2u(2)
x (x, t) +O(ε3). (2.38)

Remark 2.12. Without this assumption, it will not be possible to perform a
consistency analysis for the small ε limit, because there is no limit function as ε→ 0.
This is very similar to the observation in [19] that the initial data has to be divergence
free to allow for an incompressible limit.

We start by bounding e1.
Lemma 2.13. The temporal discretization yields the following asymptotic error:

e1 := ‖v(tn+1)− vn+1‖L2 = O(ε2∆t2).

Proof. By checking the order of consistency of (2.9), one obtains (tn ≤ ξ1, ξ2 ≤
tn+1):

1

∆t

(
v(tn+1)− v(tn)

)
− εux(tn)− (1− ε)ux(tn+1)

=
1

∆t

(
∆t vt(t

n) +
∆t2

2
vtt(ξ1)

)
− εux(tn)− (1− ε) (ux(tn) + ∆t uxt(ξ2))

=vt(t
n) +

∆t

2
vtt(ξ1)− ux(tn)− (1− ε)∆t uxt(ξ2)

(1.1)
=

∆t

2
vtt(ξ1)− (1− ε)∆t uxt(ξ2)

Ass.2.11
= O(ε2∆t),

which yields indeed the desired order of accuracy.
Let us continue by bounding e2. wn denotes the (assumed smooth) exact solution

w = (v, u)T at time tn. By wnx , we denote the exact derivative of w at time tn, and
by w̃nx , we denote the approximation of the derivative by numerical flux functions. It
is known that

‖wnx − w̃nx‖L2 = O(ε2∆x), (2.39)

which, again, is a consequence of Ass. 2.11.
Before considering the full approximation error, we have to turn to the operator

equation (2.16) again in the context of classical Sobolev-spaces. Following standard
convention, we define the H1

0−norm to be

‖ϕ‖H1
0

:= ‖ϕx‖L2 , (2.40)
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and remind the reader of Poincaré-Friedrich’s inequality

‖ϕ‖L2 ≤ CPF ‖ϕ‖H1
0
. (2.41)

We start with the following theorem that guarantees that (2.16) is, also for small ε,
’easy’ to solve.

Theorem 2.14. For a given ε0 < 1, let 0 < ε ≤ ε0, and ∆t ≥ ε. The equation
(2.16) is well-conditioned in H1

0 independently of ε, i.e., for two functionals ι, ι̃ ∈
H1

0 (Ω)′, and the corresponding solutions v and ṽ, one has the relation

‖v − ṽ‖H1
0

‖v‖H1
0

≤ M

γ

‖ι− ι̃‖H1
0
′

‖ι‖H1
0
′
, (2.42)

and M
γ can be bounded uniformly in terms of ε.

Proof. It is easy to see that a(·, ·) fulfills, for ε < 1, an ellipticity condition on H1
0

with ellipticity-constant γ, and it is a bounded bilinear form with stability constant
M . Both γ and M can be explicitly given as

γ =
∆t2(1− ε)2

ε2
, M = γ + C2

PF . (2.43)

The rest of the proof goes along the lines of Thm. 2.8. Note that the quotient M
γ is

bounded for all ε ≤ ε0 < 1.
Remark 2.15. Thm. 2.14 is an important result that can not be taken for

granted. Standard codes will suffer from instabilities when small parameters, such
as ε, occur. Note that a Finite-Element approximation of (2.16) inherits the stabil-
ity properties of the continuous problem, so one obtains a stability constant that is
independent of the small ε limit.

Let us return to our overall algorithm. Computing an approximate solution, we
introduce two errors: One error from using a Finite-Element space instead of the whole
Sobolev space, and one from considering ιh instead of ι. We start by computing the
difference between the latter two:

Lemma 2.16. For a given ε0 < 1, let 0 < ε ≤ ε0. Furthermore, let ι and ιh be
defined as in Sec. 2.5. Its difference can be bounded in terms of ∆t and ∆x as

‖ι− ιh‖H1
0
′ = O

(
ε2∆t∆x+ ∆x∆t2ε

)
. (2.44)

Proof. From (2.39) and Ass. 2.11, we can conclude that

|ι(ϕ)− ιh(ϕ)| =
∣∣∣∣∫

Ω

∆t (unx − ũnx)ϕ− ∆t2(1− ε)
ε

(vnx − ṽnx )ϕx dx

∣∣∣∣ (2.45)

≤ C
(

∆t+
∆t2

ε

)
‖wnx − w̃nx‖L2‖ϕ‖H1

0
(2.46)

= O
(
ε2∆t∆x+ ∆x∆t2ε

)
‖ϕ‖H1

0
(2.47)

for a constant C ∈ R.
The following lemma bounds the error that occurs when using only the approxi-

mate right-hand side ιh instead of ι:
Lemma 2.17. For a given ε0 < 1, let 0 < ε ≤ ε0 < 1. Furthermore, let vn+1 and

vn+1 denote the solutions to

a(vn+1, ϕ) = ιh(ϕ) ∀ϕ ∈ H1
0 (Ω), (2.48)

a(vn+1, ϕ) = ι(ϕ) ∀ϕ ∈ H1
0 (Ω). (2.49)

9



One can estimate the difference as

e2 = ‖vn+1 − vn+1‖L2 = O

(
ε4 ∆x

∆t
+ ε3∆x

)
. (2.50)

Proof. The difference between vn+1 and vn+1 can be computed by

γ‖vn+1 − vn+1‖2H1
0
≤ a(vn+1 − vn+1, vn+1 − vn+1) (2.51)

= ιh(vn+1 − vn+1)− ι(vn+1 − vn+1) (2.52)

≤ ‖ιh − ι‖H1
0
′‖vn+1 − vn+1‖H1

0
, (2.53)

and, subsequently,

‖vn+1 − vn+1‖L2 ≤ CPF ‖vn+1 − vn+1‖H1
0

(2.54)

≤ CPF
γ
‖ιh − ι‖H1

0
′ = O

(
ε4 ∆x

∆t
+ ε3∆x

)
(2.55)

because of La. 2.16 and γ−1 = O( ε2

∆t2 ) for ε,∆t→ 0.
Corollary 2.18. A simple consequence of the proof is that

‖vn+1 − vn+1‖H1
0

= O

(
ε4 ∆x

∆t
+ ε3∆x

)
. (2.56)

It is well-known that, in order to get stable schemes, one needs to link both ∆t
and ∆x. In our example, this can be done in two ways, based on either the non-stiff
flux f̂ or the total flux f . Let us therefore make the following definition:

Definition 2.19. The stiff and non-stiff cfl−numbers c̃fl and ĉfl are defined by

c̃fl :=
∆t

∆x
λmax, ĉfl :=

∆t

∆x
λ̂max, (2.57)

respectively. Note that λmax = ε−1 and λ̂max = 1.

In our analysis, we rely on the non-stiff cfl−number ĉfl, so the cfl number that is
independent on ε. Let us therefore state the following assumption:

Assumption 2.20. We assume that

∆t = ĉfl∆x (2.58)

for a ĉfl ∈ R (which we usually choose to be ĉfl = 0.8).
Remark 2.21. This directly yields

e2 = O
(
ε4 + ε3∆x

)
. (2.59)

Having bounded e2, we continue by bounding e3.
Lemma 2.22. Let vn+1

h be the Finite-Element solution to (2.31), and let vn+1 be
the solution to (2.48). Then,

e3 = ‖vn+1 − vn+1
h ‖L2 = O

(
ε6

∆x2
+ ε4 + ε2∆t2

)
.

10



Proof. We are using linear Finite-Elements on a symmetric problem, so one can
use the Aubin-Nitsche trick (see, e.g., [6]). As it is crucial for our analysis that we
get the correct dependency of the constant ε, we perform this ’trick’ here explicitly.
Let us define the dual solution z and its Finite-Element approximation zh by

a(z, ϕ) =

∫
Ω

(
vn+1 − vn+1

h

)
ϕdx ∀ϕ ∈ H1

0 (Ω),

a(zh, ϕh) =

∫
Ω

(
vn+1 − vn+1

h

)
ϕh dx ∀ϕh ∈ Vh.

One can conclude

‖vn+1 − vn+1
h ‖2L2 = a(z, vn+1 − vn+1

h ) = a(z − zh, vn+1 − vn+1
h )

≤M‖z − zh‖H1
0
‖vn+1 − vn+1

h ‖H1
0

≤M∆x2|z|2|vn+1|2

≤ CM∆x2

γ2
‖vn+1 − vn+1

h ‖L2‖ιh‖H1
0
′

= ‖vn+1 − vn+1
h ‖L2‖ιh‖H1

0
′O(

ε4

∆x2
+ ε2)

≤ ‖vn+1 − vn+1
h ‖L2O(ε2 + ∆t2)O(

ε4

∆x2
+ ε2)

≤ ‖vn+1 − vn+1
h ‖L2O

(
ε6

∆x2
+ ε4 + ε2∆t2

)
.

|v|2 denotes the second Sobolev semi-norm, and can be bounded by the right-hand side
of the equation, if the viscosity coefficient is unity.

Corollary 2.23. In a similar way, we can deduce that

‖vn+1 − vn+1
h ‖H1

0
= O

(
ε6

∆x3
+

ε4

∆x
+ ε2∆t

)
. (2.60)

We are now ready to state the final theorem that assures that v is approximated
consistently.

Theorem 2.24. Let vn+1
h be the approximate solution according to the algorithm

in Sec. 2.5 with exact initial data wn ≡ w(tn). Under Ass. 2.11 and 2.20, we have

‖vn+1
h − v(tn+1)‖L2 = O

(
ε2∆t2 + ε4 + ε3∆x+

ε6

∆x2

)
. (2.61)

Proof. We can just collect previous results:

‖v(tn+1)− vn+1
h ‖L2 ≤ e1 + e2 + e3 (2.62)

= O(ε2∆t2) +O
(
ε4 + ε3∆x

)
+O

(
ε6

∆x2
+ ε4 + ε2∆t2

)
(2.63)

= O

(
ε2∆t2 + ε4 + ε3∆x+

ε6

∆x2

)
(2.64)
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Remark 2.25. Given that ε ≤ ∆t, one can see that vn+1
h is a consistent approx-

imation to v(tn+1), and ‖v(tn+1)− vn+1
h ‖L2 = O(∆t4).

By now, we have shown that vn+1
h is a consistent approximation to v(tn+1). It

remains to show that also un+1
h is a consistent approximation to u(tn+1). Thereby,

un+1
h denotes the function that is obtained by evaluating (2.11) with vn+1

h instead of
v(tn+1).

Theorem 2.26. Let un+1
h be the approximate solution that is obtained using

(2.11) with vn+1
h instead of v(tn+1); and with exact initial data wn ≡ w(tn) elsewhere.

Under Ass. 2.11 and 2.20, we have

‖un+1
h − u(tn+1)‖L2 = O

(
∆t2 +

ε4

∆x2
+ ε2

)
. (2.65)

Proof. We can directly compute, exploiting what we have already show:

‖un+1
h − u(tn+1)‖L2 ≤ ‖un+1 − u(tn+1)‖L2 + ‖un+1

h − un+1‖L2 (2.66)

≤ O(∆t2) + ‖∆t1− ε
ε2

(
vn+1
h − vn+1

)
x
‖L2 (2.67)

≤ O(∆t2) +
∆t

ε2

(
‖vn+1 − vn+1‖H1

0
+ ‖vn+1

h − vn+1‖H1
0

)
(2.68)

(2.56),(2.60)
= O(∆t2) +O

(
ε2∆t+ ε∆x2

)
+O

(
ε4

∆x2
+ ε2 + ∆t2

)
(2.69)

= O

(
∆t2 +

ε4

∆x2
+ ε2

)
. (2.70)

There are a few remarks in order:
Remark 2.27. The solution of the elliptic equation gets more and more difficult

with decreasing time-step ∆t, as the elliptic coefficient vanishes in this case. So basi-
cally, the method will only perform well as long as ε ≤ ∆t (i.e., for the cfl number of
the whole system there holds cfl ≤ ε), which is a reasonable assumption. (Otherwise,

one would use explicit methods instead.) However, choosing ∆t = O(ε
1
p ) for some

p ≥ 1, one can observe that

‖wn+1
h − w(tn+1)‖L2 = O

(
∆t2

)
.

This directly shows that the method works also for the ε = 0 case.

3. Numerical Results. We compare our scheme with an Implicit-Euler scheme,
and an Implicit/Explicit scheme. Implicit-Euler scheme discretizes

wn+1 − wn

∆t
+ f(wn+1) = Gn+1 (3.1)

using a Lax-Friedrichs flux. The Implicit/Explicit scheme proceeds in two steps,
discretizing

ŵn − wn

∆t
+ f̂(wn)x = Gn (3.2)

explicitly, and

wn+1 − ŵn

∆t
+ f̃(wn+1)x = 0 (3.3)

implicitly, again both steps with Lax-Friedrichs flux.
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Fig. 3.1. Convergence results for the smooth test case. In dependency on ε, cfl was set to
cfl = 0.8

ε
. Left to right, top to bottom: ε = {10−1, 10−2, 10−4, 10−8}.

3.1. Smooth test case. As a first, simple test case, we consider a smooth
solution on domain Ω = [0, 1], given by

v(x, t) = ε2t sin(2πx) (3.4)

u(x, t) = sin(20πt)− ε2

2π
cos(2πx). (3.5)

For all methods, we use a (stiff) cfl number of c̃fl = 0.8
ε . Note that this corresponds

to a cfl number of ĉfl = 0.8 with respect to the non-stiff flux f̂ . If a method is able to
cope with such a cfl number, it is called uniformly asymptotically stable. In Fig. 3.2,
convergence of the l2−error at time T = 0.1 versus number of cells (Nx) is shown for
all three methods under consideration. One can first observe that all three methods
are stable for this unusally large cfl number, as expected. Furthermore, asymptotically
(in Nx), all methods converge with order one toward the true solution (u, v), except
for the Implicit Euler scheme for ε = 10−8. We suspect that this is because the linear
system of equations to be solved in each time-slab is extremely ill-conditioned. We use
Matlab’s in-house exact solver for linear systems of equations, which actually yields a
corresponding warning. Furthermore, ε2 = 10−16 is close to machine zero. Note that
this does not happen to the Asymptotic Preserving scheme, as its condition number
is bounded for ε → 0. The really surprising outcome of this research is that the AP
scheme performs so much better than Implicit Euler and the mixed Implicit / Explicit
scheme: Its error is up to four orders of magnitude smaller than that of the other two
schemes. We can only suspect that ’traditional’ Finite-Volume schemes do not take
advantage of the smooth behaviour of the solution as much as the Finite-Element
method does.

3.2. Testcase with a kink. To assess whether the good performance of the
asymptotic preserving method is due to the smoothness of the solution, we perform a
numerical study on a test case with a kink, more precisely, we consider again domain
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Fig. 3.2. Convergence results for the test case with a kink. In dependency on ε, cfl was set to
cfl = 0.8

ε
. Left to right, top to bottom: ε = {10−1, 10−2, 10−4, 10−8}.

Ω = [0, 1] and the solution

v(x, t) = ε2t

{
x x < 0.5

−x+ 1 x ≥ 0.5
(3.6)

u(x, t) = 1 + ε2

{
x2

2 x < 0.5

−x
2

2 + x− 1
4 x ≥ 0.5

. (3.7)

Again, we use a (stiff) cfl number of c̃fl = 0.8
ε . In Fig. 3.2, convergence of the l2−

norm at time T = 0.1 versus Nx is plotted. One can observe that the schemes converge
with order one up to 10−10, which is about machine zero (note that the error has to
be scaled with ε2), except for the ε = 10−8, where Implicit Euler fails to converge for
this large cfl number. For large values of ε, the schemes nearly perform equally well,
while, for ε = 10−4, the AP scheme really performs better by orders of magnitude.
For ε = 10−8, both the AP and Implicit / Explicit scheme perform about equally
well. Nevertheless, as ε2 = 10−16 is close to machine zero, these results are not too
reliable.

4. Conclusions and Outlook. We have compared the recently developed AP
schemes versus more traditional Finite-Volume schemes for the p−system. It was
demonstrated that the AP schemes outperform both Implicit Euler and an Implicit /
Explicit scheme by orders of magnitude if there is a small parameter ε.

We are interested in the use of high-order methods, also in the context of asymp-
totic preserving schemes. In particular, our interest lies in the use of Discontinuous
Galerkin method [10, 9, 8, 7, 11, 4, 16, 1, 14, 20]. Future work will therefore treat an
asymptotic preserving discontinuous Galerkin scheme applied to (1.1)-(1.2) for var-
ious orders of consistency, and also compare performance of the AP schemes versus
Diagonally-Implicit-Runge-Kutta (DIRK). It is to be expected that the high order of
consistency will reduce the effect that we could observe in this publication. Neverthe-
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less, the use of AP schemes has some inherent advantages, such as the occurence of
an elliptic equation, which is generally easier to solve than a hyperbolic problem. To
conclude, we are positive that there will still be a benefit of using AP schemes.
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