
Tree Adaptive Approximation in the

Hierarchical Tensor Format

Jonas Ballani∗ and Lars Grasedyck

Bericht Nr. 367 Juni 2013

Key words: hierarchical tensor format, hierarchical Tucker format,
tensor train, matrix product states,
black box approximation, tree adaptivity

AMS Subject Classifications: 15A69, 65F99

Institut für Geometrie und Praktische Mathematik

RWTH Aachen

Templergraben 55, D–52056 Aachen (Germany)

∗
Financial support from the DFG SPP–1324 under grant GR 3179/2-2 gratefully acknowledged.

Tree Adaptive Approximation in the

Hierarchical Tensor Format

Jonas Ballani ∗, Lars Grasedyck

June 24, 2013

The hierarchical tensor format allows for the low-parametric representation
of tensors even in high dimensions d. The efficiency of this representation
strongly relies on an appropriate hierarchical splitting of the different direc-
tions 1, . . . , d such that the associated ranks remain sufficiently small. This
splitting can be represented by a binary tree which is usually assumed to
be given. In this paper, we address the question of finding an appropriate
tree from a subset of tensor entries without any a priori knowledge on the
tree structure. We propose an agglomerative strategy that can be combined
with rank-adaptive cross approximation techniques such that tensors can be
approximated in the hierarchical format in an entirely black box way. Nu-
merical examples illustrate the potential and the limitations of our approach.

1 Introduction

High-dimensional problems are encountered in many areas of practical interest, as e.g.
in stochastics, quantum chemistry, or optimization. In many cases, the solution to a
high-dimensional problem can be represented or approximated by a tensor

A ∈ R
n1×···×nd

of order (or dimension) d ∈ N with n1, . . . , nd ∈ N. As soon as the order d is large
enough, the explicit representation of A in terms of all its entries A(i1,...,id), iµ = 1, . . . , nµ,
µ = 1, . . . , d, becomes prohibitively expensive. This has motivated the development of
data-sparse tensor representations that can be applied even in high dimensions d. For a
detailed introduction to tensor representations we refer the reader to [9, 7, 6].

A quite general framework for the low-parametric representation of tensors has been
introduced in [8] which we further analyzed in [4]. In the so-called hierarchical tensor

(or hierarchical Tucker) format, a tensor is represented by a number of parameters

∗Financial support from the DFG SPP-1324 under grant GR 3179/2-2 gratefully acknowledged.

1

that scales only linearly in the dimension d. As a key ingredient, this format relies on an
appropriate hierarchy of subspaces which can be related to specific matrix representations
of a given tensor. Based on this strong connection to matrices, powerful tools have been
developed that allow for (approximate) arithmetic operations with tensors even in high
dimensions d.

The efficiency of the hierarchical tensor format crucially depends on an appropriate
splitting of the different directions 1, . . . , d in a hierarchical way. At the top level t =
D := {1, . . . , d}, the index set t is subdivided into disjoint subsets t1, t2 ⊂ D with
t = t1 ∪ t2. Afterwards, the subdivision process is recursively continued with t1 and t2
until the bottom level of singletons t = {µ}, µ ∈ D, has been reached. The splitting can
be represented by a binary tree TD which is usually assumed to be given.

Once a tree TD has been chosen, each node t ∈ TD with t ⊂ D is associated to a rank
kt ∈ N that results from a specific matrix representation of A depending on t. It turns
out that the storage complexity for the representation of A in the hierarchical tensor
format lies in O(dk3 + dkn) where k := maxt∈TD

kt, n := maxµ∈D nµ. Since the ranks kt
strongly depend on the index sets t ⊂ D, the storage complexity of a given tensor may
be very sensitive to the choice of the tree TD, cf. [5].

In some cases, the complexity for the representation of tensors in the hierarchical
format does not depend on the choice of the tree TD. In particular, any tensor A given
in CP format (canonical polyadic, CANDECOMP/PARAFAC) with

A =
r

∑

j=1

u1,j ⊗ . . .⊗ ud,j , uµ,j ∈ R
nµ ,

can be represented in the hierarchical format where all ranks kt are bounded by r for any
tree, cf. [8]. Nevertheless, it might be advantageous to represent A in the hierarchical
format as one can have kt ≪ r for most t ∈ TD, cf. [8]. Moreover, the hierarchical
representation can be exploited in order to perform efficient (approximate) arithmetics
with tensors that do not suffer from the structural weakness of the CP format (non-
closedness of the representation, cf. [3]).

A special instance of the hierarchical tensor format is the so-called TT format (tensor
train, matrix product states) from [12, 10] where the tree TD is restricted to a linear
structure. This means that one only needs to find a suitable permutation of the in-
dices 1, . . . , d which facilitates the construction of an appropriate dimension tree. Note,
however, that one can construct examples for which there exists a representation in the
hierarchical format where all ranks are bounded by kt ≤ k whereas the ranks in the TT
format can only be bounded by klog2(d)/2−1 for any permutation, cf. [5].

In this paper, we aim at finding an appropriate tree TD for a given tensor A without
any a priori knowledge on the tree structure. The tensor A is then approximated with
respect to TD up to some (heuristic) target accuracy ε by a black box strategy which we
introduced in [1]. Black box approximation strategies tailored to the TT format have
also been developed in [11].

Since the number of possible trees scales exponentially in the dimension d, a global
optimization of the storage cost over all TD is mostly too expensive. Instead, we propose

2

to construct a tree in a bottom up way by a successive agglomeration of disjoint subsets
of D. Although this strategy is known from hierarchical clustering algorithms, we cannot
directly apply them to our problem since we are not aware of a suitable distance function
measuring the closeness of arbitrary subsets t1, t2 ⊂ D. As an alternative, we introduce
a cluster criterion that completely relies on the ranks kt which depend on A and the
subsets t ⊂ D.

The rest of this paper is organized as follows. In Section 2, we recall the main ingre-
dients of the hierarchical tensor format. In Section 3, we introduce our new clustering
strategy based on a successive agglomeration of disjoint subsets t ⊂ D. Since one mostly
does not know the ranks kt in advance, Section 4 is devoted to rank estimation tech-
niques. In Section 5, we shortly analyze the complexity of our strategy in terms of the
number of required tensor evaluations. Finally, we study the prospects and limitations
of our approach in Section 6 by a number of numerical examples.

2 Hierarchical Tensor Format

Given d ∈ N and n1, . . . , nd ∈ N, let Iµ := {1, . . . , nµ} for µ = 1, . . . , d and define

I := I1 × · · · × Id.

We first introduce a matrix representation of a tensor A ∈ R
I .

Definition 1 (matricization). Let D := {1, . . . , d}. Given a subset t ⊂ D with comple-
ment s := D \ t, the matricization

Mt : R
I → R

It ⊗ R
Is , It :=×

µ∈t

Iµ, Is :=×
µ∈s

Iµ,

of a tensor A ∈ R
I is defined by its entries

Mt(A)(iµ)µ∈t,(iµ)µ∈s
:= A(i1,...,id), iµ ∈ Iµ, µ ∈ D.

In order to allow for a structured and data-sparse representation of tensors, subsets
t ⊂ D which can be organized as a binary tree are of special interest.

Definition 2 (partition tree, dimension tree). Let J be an arbitrary index set with
#J < ∞ and denote its power set by P(J). A tree TJ ⊂ P(J) is called a partition tree

(for J) if the following three conditions hold:

(a) the index set J is the root of the tree TJ ,

(b) all vertices t ∈ TJ are non-empty subsets t ⊂ J ,

(c) every vertex t ∈ TJ with #t ≥ 2 has two sons t1, t2 ∈ TJ with the property

t = t1 ∪ t2, t1 ∩ t2 = ∅.

3

The set of leaves of TJ is defined by L(TJ) := {t ∈ TJ : #t = 1}. For all t ∈ TJ \ L(TJ),
we denote the set of sons of t by sons(t). A partition tree TD for the particular index
set J = D = {1, . . . , d} is called a dimension tree.

In the next example, we introduce two important special cases of dimension trees.

Example 3. (a) In a balanced binary tree TD, each node t ∈ TD \ L(TD) with t =
{µ1, . . . , µq} ⊂ D, q > 1, has two sons t1, t2 ∈ TD of the form

t1 = {µ1, . . . , µr}, t2 = {µr+1, . . . , µq}, r := ⌈q/2⌉.

An example for d = 7 is depicted in Figure 1. The balanced tree is of minimal depth
⌈log2 d⌉.
(b) In the so-called TT format introduced in [12, 10], the dimension tree is a simple
linear tree, where all nodes t ∈ TD are of the form

t = {q} or t = {q, . . . , d}, q = 1, . . . , d.

An example for d = 7 is depicted in Figure 1. The TT tree is of maximal depth d− 1.

{1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4} {5, 6, 7}

{1, 2} {3, 4} {5, 6} {7}

{1} {2} {3} {4} {5} {6}

{1, 2, 3, 4, 5, 6, 7}

{2, 3, 4, 5, 6, 7}

{3, 4, 5, 6, 7}

{4, 5, 6, 7}

{5, 6, 7}

{6, 7}

{1}

{2}

{3}

{4}

{5}

{6} {7}

Figure 1: Left: Balanced binary tree. Right: Linear TT tree.

Based on the concept of the matricization of tensors and the definition of a dimension
tree, we can now introduce the hierarchical tensor format.

Definition 4 (hierarchical rank, hierarchical format). Let TD be a dimension tree. The
hierarchical rank k := (kt)t∈TD

of a tensor A ∈ R
I is defined by

kt := rank(Mt(A)), t ∈ TD.

For a given hierarchical rank k := (kt)t∈TD
, the hierarchical format H(TD,k) is defined

by
H(TD,k) := {A ∈ R

I : rank(Mt(A)) ≤ kt, t ∈ TD}.

4

Given a tensor A ∈ H(TD,k), the subspaces Ut := image(Mt(A)) ⊂ R
It, t ∈ TD, fulfil

the so-called nestedness property

Ut ⊂ Ut1 ⊗ Ut2 , t ∈ TD \ L(TD), sons(t) = {t1, t2}. (1)

This allows for a recursive representation of A by the relation

(Ut)·,j =

kt1
∑

j1=1

kt2
∑

j2=1

(Bt)j,j1,j2(Ut1)·,j1 ⊗ (Ut2)·,j2 , j = 1, . . . , kt,

for all t ∈ TD \ L(TD) with sons(t) = {t1, t2} where Bt ∈ R
kt×kt1×kt2 and Ut ∈ R

It×kt

such that A = (UD)·,1.
As a consequence, one only needs to store the matrices Ut ∈ R

Iµ×kt in the leaves
t = {µ} ∈ L(TD) and the transfer tensors Bt ∈ R

kt×kt1×kt2 for all inner nodes t ∈
TD \ L(TD) in order to represent a tensor in H(TD,k). The storage complexity for this
representation then sums up to

Nstorage(H(TD,k)) :=
∑

t∈TD\L(TD)

sons(t)={t1,t2}

ktkt1kt2 +

d
∑

µ=1

k{µ}nµ. (2)

In the special case nµ = n for all µ = 1, . . . , d and kt ≤ k for all t ∈ TD, the storage
complexity lies in

O
(

dk3 + dnk
)

.

Remark 5. In the TT format, for each node t ∈ TD \L(TD) with sons(t) = {t1, t2} one
either has t1 ∈ L(TD) or t2 ∈ L(TD). Hence, either kt1 ≤ n or kt2 ≤ n which leads to
the bound

O
(

dnk2
)

.

Note that the last term in (2) does not depend on the choice of the particular tree TD.
This results from the fact that for a given tensor A ∈ R

I the rank tuple (kµ)µ∈D with

kµ := rank(M{µ}(A)), µ ∈ D,

represents the Tucker rank of A which does not depend on the splitting of the directions
1, . . . , d. In order to represent a tensor in the hierarchical format with minimal storage
cost one therefore has to solve the following minimization problem.

Problem 6. Let A ∈ R
I and let kt := rank(Mt(A)) for all t ⊂ D. Among all possible

dimension trees TD find a minimizer of
∑

t∈TD\L(TD)

sons(t)={t1,t2}

ktkt1kt2 . (3)

Unfortunately, the determination of the global optimum of Problem 6 results to be
prohibitively expensive since the number of possible dimension trees grows exponentially
in the dimension d. We therefore suggest to apply an agglomerative strategy known from
hierarchical clustering in order to construct a suitable dimension tree in a bottom up
way.

5

3 Agglomerative Clustering

Hierarchical clustering strategies are used to subdivide a set of data points into nested
subsets of similar points (the clusters) by means of an appropriately chosen similarity
measure. In a top down approach, one starts with the full set of data points which is
successively refined until only atomic sets — possibly consisting of single data points
— remain. In a bottom up approach, one starts with a partition into clusters of single
data points which are successively joined until a single cluster containing the whole set
of data points is reached. Typically, the similarity of clusters is measured by a given
distance function which is assumed to fulfil the triangle inequality.

For the construction of a dimension tree, it is natural to consider the directions 1, . . . , d
as data points that need to be clustered in a hierarchical way. This directly leads to
the question of either using a top down or a bottom up approach and to the choice
of an appropriate similarity measure for clusters t ⊂ D := {1, . . . , d}. Since we aim at
minimizing the sum (3), we need to take the ranks kt into account. Note that this means
that we cannot simply use strategies known from hierarchical clustering as the clusters
t ⊂ D do not naturally possess properties that fulfil the triangle inequality.

Let A ∈ R
I with kt := rank(Mt(A)) for all t ⊂ D. What we know in advance is that

whenever kt is small, a cluster t ⊂ D can be well separated from D \ t. This means that
we can regard two disjoint clusters t1, t2 ⊂ D as closely related whenever the associated
rank kt for t := t1 ∪ t2 is small. Conversely, we can split a given cluster t ⊂ D into two
loosely related clusters t1, t2 with t = t1 ∪ t2, t1 ∩ t2 = ∅, whenever both kt1 and kt2 are
small.

The first observation leads to a bottom up strategy. Starting with initial clusters
{1}, . . . , {d}, we successively could try to join a subset of clusters to a new cluster
t ⊂ D such that the associated rank kt remains small. The second observation would
lead to a top down approach. Starting with the single cluster D containing all possible
directions, we could try to split a cluster into subclusters such that the associated ranks
for all subclusters remain small. However, the top down approach suffers from a severe
difficulty. Already for the initial set D, one obtains a number of possible splittings into
two disjoint subsets that scales exponentially in the dimension d. We therefore prefer to
use an agglomerative bottom up strategy that avoids this exponential complexity.

Pairwise Clustering

Assume that we are given a partion P = {t1, . . . , tr} of D with clusters tν ⊂ D. In order
to keep the sum (3) as small as possible, we would like to combine two clusters s1, s2 ∈ P
to a new cluster s := s1 ∪ s2 such that the associated rank ks is as small as possible.
Another strategy is motivated by the nestedness property (1). Since ks1 , ks2 are the
dimensions of the subspaces Us1 ,Us2 from (1), we could measure the quality of the new
subspace Us by the ratio ks/(ks1ks2). We demonstrate the effect of both strategies by
the following examples.

Example 7. Let D := {1, . . . , 8} and let TD be a balanced dimension tree as defined
in Example 3. Moreover, let k = (kt)t∈TD

be a rank tuple defined by kt := 2 for all

6

t ∈ TD \D, and kD := 1. Assume that A ∈ H(TD,k) ⊂ R
I , I := {1, 2}8, is a random

tensor fulfilling kt = rank(Mt(A)) for all t ∈ TD. The dimension tree is visualized in
Figure 2 left where we use subscripts in order to indicate the rank kt at a cluster t.
For all subsets t ⊂ D with t /∈ TD, we generically assume that the associated ranks
kt = rank(Mt(A)) are maximal under the condition that A ∈ H(TD,k).

We now apply our agglomerative strategy to A, ignoring our knowledge on the struc-
ture of the tree TD. Starting with the initial partition

P0 := {{1}, . . . , {8}},

the lowest rank kt = 2 is obtained by the union t := t1 ∪ t2 of one of the pairs t1 =
{2µ− 1}, t2 = {2µ} for µ ∈ {1, . . . , 4}. By agglomeration, we find a new partition of the
form, e.g.,

P1 := {{1, 2}, {3}, . . . , {8}}.

As the combination of the cluster {1, 2} with one of the clusters {3}, . . . , {8} corresponds
to a rank of 4, afterwards we would again combine one of the pairs t1 = {2µ − 1}, t2 =
{2µ} for µ ∈ {2, . . . , 4}. Two possible partitions are therefore given by

P ′
2 := {{1, 2}, {3, 4}, {5}, {6}, {7}, {8}}, P ′′

2 := {{1, 2}, {3}, {4}, {5, 6}, {7}, {8}}.

One easily checks that also in the following steps only clusters are joined that correspond
to the original structure of the dimension tree from Figure 2 left. However, since the
agglomeration order is not fixed in advance, one may also end up with a tree of the
shape shown in Figure 2 right.

{1, . . . , 8}1

{1, . . . , 4}2 {5, . . . , 8}2

{1, 2}2 {3, 4}2 {5, 6}2 {7, 8}2

{1}2{2}2{3}2{4}2{5}2{6}2{7}2{8}2

{1, . . . , 8}1

{1, 2}2 {3, . . . , 8}2

{1}2{2}2 {3, 4}2 {5, . . . , 8}2

{3}2{4}2 {5, 6}2 {7, 8}2

{5}2{6}2{7}2{8}2

Figure 2: Left: original dimension tree for d = 8 with subscripts kt at clusters t. Right:
possible dimension tree after pairwise clustering.

Note that in this example the result of the agglomerative cluster strategy would have
been the same if we had used the minimum of the ratios kt/(kt1kt2) ∈ {1/2, 1} as a
decision criterion. In the next example, we study what can go wrong for this simple
pairwise strategy.

7

Example 8. Let D := {1, . . . , 16} and let TD be a balanced dimension tree as defined
in Example 3. Moreover, let k = (kt)t∈TD

be a rank tuple defined by

kt :=































2, t = {µ}, µ = 1, . . . , 16,

4, t = {2µ − 1, 2µ}, µ = 1, . . . , 8,

4, t = {4µ − 3, . . . , 4µ}, µ = 1, . . . , 4,

4, t = {8µ − 7, . . . , 8µ}, µ = 1, 2,

1, t = D.

Assume that A ∈ H(TD,k) ⊂ R
I , I := {1, 2}16, is a random tensor fulfilling kt =

rank(Mt(A)) for all t ∈ TD. The dimension tree and the ranks kt are visualized in
Figure 3. As before, we assume for all subsets t ⊂ D with t /∈ TD that the associated
ranks kt = rank(Mt(A)) are maximal under the condition that A ∈ H(TD,k).

{1, . . . , 16}1

{1, . . . , 8}4 {9, . . . , 16}4

{1, 2, 3, 4}4 {5, 6, 7, 8}4 {9, 10, 11, 12}4 {13, 14, 15, 16}4

{1, 2}4 {3, 4}4 {5, 6}4 {7, 8}4 {9, 10}4 {11, 12}4 {13, 14}4 {15, 16}4

{1}2 {2}2 {3}2 {4}2 {5}2 {6}2 {7}2 {8}2 {9}2 {10}2{11}2{12}2{13}2{14}2{15}2{16}2

Figure 3: Original dimension tree for d = 16 with subscripts kt.

We now apply our agglomerative strategy to A, ignoring our knowledge on the struc-
ture of the tree TD. Starting with the initial partition

P0 := {{1}, . . . , {16}},

all pairs of disjoint clusters t1, t2 ∈ P0 lead to the minimal rank kt = 4, t := t1 ∪ t2.
Hence, after eight agglomerative steps, we may have reached a partition of the form

P1 = {{µ, µ + 8} : µ = 1, . . . , 8}.

Now, all combinations of disjoint clusters t1, t2 ∈ P1 lead to the minimal rank kt = 16,
t := t1 ∪ t2. After four agglomerative steps, we may have reached a partition of the form

P2 = {{µ, µ + 4, µ + 8, µ + 12} : µ = 1, . . . , 4}.

Now, all combinations of disjoint clusters t1, t2 ∈ P2 lead to the minimal rank kt = 256,
t := t1 ∪ t2. This results in a possible partition

P3 = {{µ, µ + 2, µ + 4, µ + 6, µ + 8, µ + 10, µ + 12, µ + 14} : µ = 1, 2}

8

{1, . . . , 16}1

{1, 3, 5, 7, 9, 13, 15}256 {2, 4, 6, 8, 10, 12, 14, 16}256

{1, 5, 9, 13}16 {3, 7, 11, 15}16 {2, 6, 10, 14}16 {4, 8, 12, 16}16

{1, 9}4 {5, 13}4 {3, 11}4 {7, 15}4 {2, 10}4 {6, 14}4 {4, 12}4 {8, 16}4

{1}2 {9}2 {5}2 {13}2 {3}2 {11}2 {7}2 {15}2 {2}2 {10}2 {6}2 {14}2 {4}2 {12}2 {8}2 {16}2

Figure 4: Dimension tree for d = 16 and pairwise clustering with subscripts kt.

for which we eventually obtain P4 = {D}. The final dimension tree is depicted in Figure
4. Note that the result would have been the same if we had used the ratios kt/(kt1kt2) = 1
in each step.

Example 8 shows that both strategies did not lead to an appropriate dimension tree.
One reason for this is that the optimal splitting of the directions 1, 2, 3, 4 from 5, 6, 7, 8
and 9, 10, 11, 12 from 13, 14, 15, 16 could not be detected by the combination of pairs
of clusters. Therefore, a possible generalization is to allow the combination of a larger
number of clusters in each agglomerative step.

Generalized Clustering

Let P = {t1, . . . , tr} be again a partition of D with clusters tν ⊂ D. For p ≥ 2, the set

Cp(P) := {C ∈ P(P) : 2 ≤ #C ≤ p}

contains the collection of possible combinations of at most p clusters from P . Among all
C ∈ Cp(P), we can still try to minimize the associated rank ks, s :=

⋃

t∈C t. Analogously,
we could measure the ratio of the rank ks corresponding to the new cluster s :=

⋃

t∈C

with respect to the given ranks kt, t ∈ C. The following remark illustrates what we need
to take into account when we want to compare ratios for different cardinalities of sets
C ∈ Cp(P).

Remark 9. Let t1, t2, u1, u2 ∈ P be pairwise disjoint clusters with t := t1 ∪ t2, u :=
u1∪u2, and s := t∪u. Assume that the associated ranks are given by kt1 = kt2 = ku1 =
ku2 = kt = ku = 2 and ks = 4. If we allow a combination of up to p = 4 clusters, we
encounter that

ks
kt1kt2ku1ku2

=
4

24
=

1

4
<

1

2
=

kt
kt1kt2

.

This means that the union of the clusters t and u would be rated better than the natural
combination of t1 and t2. However, we find that ks/(ktku) = 1 which does not indicate
any preference of joining t and u.

9

To overcome this problem, we suggest to use the following normalized ratio as a
decision criterion.

Definition 10 (rank ratio). Let P be a partition of D and let C ⊂ P . The ratio

̺(C) :=
(

ks/
∏

t∈C

kt

)1/(#C−1)

is called the rank ratio with respect to C where s :=
⋃

t∈C t.

In Remark 9, we find that ̺({s}) = (1/4)1/3 > 1/2 = ̺({t}) such that the combination
of t and u is not given any preference. We now come back to Example 8 and compare
our agglomerative clustering strategy based on the absolute values of the ranks to the
strategy using the rank ratios with p = 4.

Example 11. Assume first that in each agglomerative step the clusters contained in
C ∈ Cp(P) are joined such the rank ks, s :=

⋃

t∈C t, is minimal. In Example 8, the
minimum ks over all C ∈ C4(P0) is 4. Therefore, one cannot distinguish if it is better
to join two arbitrary clusters from P0 or, e.g., the clusters {1}, {2}, {3}, {4}. As a
consequence, one may successively arrive at the partition P1. Afterwards, the minimum
ks over all C ∈ C4(P1) is again 4 and one may end up at the partition P2 as before. Once
the partition P2 is obtained, the rank 256 is unavoidable for some cluster in the final
dimension tree.

Secondly, we use the rank ratio in order to decide which clusters we would like to join.
The minimal ratio for all C ∈ C4(P0) is obtained by, e.g., C = {{1}, {2}, {3}, {4}} for
which ̺(C) = (4/24)1/3 = (1/4)1/3 < 1. Note that for all C ∈ C3(P0) we have ̺(C) = 1.
In the next step, the minimal ratio is also obtained by C = {{1, 2, 3, 4}, {5}, {6}, {7}}
since ks = 8, s :=

⋃

t∈C t, such that ̺(C) = (8/(4 · 23))1/3 = (1/4)1/3. Afterwards, the
minimal ratio is obtained for C = {{1, . . . , 7}, {8}} (only) since ̺(C) = 4/(8 ·2) = 1/4 <
(1/4)1/3. Therefore, the splitting of the directions 1, . . . , 8 from 9, . . . , 16 is detected
even in the worst case scenario. The maximal rank appearing at all clusters in the final
dimension tree is 8.

The preceding example clearly indicates that it can be advantageous to use a relative
cluster criterion like the rank ratio from Definition 10 instead of an absolute one. Let
us now assume that for a given partition P of D an optimal set C ′ ∈ Cp(P) has been
identified by either of the two strategies. We then need to update P by a new partition

P ′ := (P \ C ′) ∪
{

∪t∈C′t
}

. (4)

The clusters t ∈ C ′ still need to be organized as a binary tree. Due to Problem 6, we
have to solve the following (local) minimization problem.

Problem 12. Let P be a partition of D and let C ⊂ P . For all τ ∈ P(C) let kτ := ks,
s :=

⋃

t∈τ t. Among all possible partition trees TC find a minimizer of
∑

τ∈TC\L(TC)

sons(τ)={τ1,τ2}

kτkτ1kτ2 .

10

As long as the cardinality of C ′ is small, one can try out all possibilities for TC′ in order
to solve Problem 12. Once an optimal tree TC′ has been determined, we need to update
the set of nodes T ⊂ P(D) from the previous step. The elements of C ′ = {t1, . . . , tr},
tν ⊂ D, are already contained in T such that we only need to add subsets s ⊂ D to
T for which there exists an inner node τ ∈ TC′ \ L(TC′) with s =

⋃

t∈τ t. The update
procedure is visualized for C ′ = {t1, . . . , t4} in Figure 5.

t1 t2 t3 t4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

T

{t1, . . . , t4}

{t1, t2} {t3, t4}

{t1} {t2} {t3} {t4}

TC′

t1 ∪ . . . ∪ t4

t1 ∪ t2 t3 ∪ t4

t1 t2 t3 t4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

T ′

Figure 5: Agglomeration of nodes from T to T ′ by means of a local tree TC′ .

We have summarized our strategy in Algorithm 1.

Algorithm 1 T = BuildTree(d, p)

Define P := T := {{1}, . . . , {d}}
while #P > 1 do

Choose C ′ ∈ Cp(P) with C ′ := argminC∈Cp(P) ̺(C)
Find an optimal partition tree TC′ according to Problem 12
Update P := (P \ C ′) ∪ {

⋃

t∈C′ t}
Update T := T ∪ {

⋃

t∈τ t : τ ∈ TC′ \ L(TC′)}
end while

return T

4 Rank Estimation

In the previous section, we have assumed an exact knowledge of the ranks kt for all
t ⊂ D. If the ranks are not known a priori, one has to determine them numerically. As
long as #I is comparatively small, we can assume that a tensor A ∈ R

I is available
in its full representation such that we can perform standard rank revealing techniques
for matrices applied to the matricizations Mt(A). For large #I, we have to base a
rank estimate on a subset of tensor entries of A. This in turn means that in general
— even with exact numerical computations — all rank estimation techniques for the
matricizations of A need to remain heuristic.

For matrices M ∈ R
I×J , the adaptive cross approximation [2] is a well-known tech-

11

nique for the construction of low-rank approximations of the form

M ≈ Xj := US−1V ⊤, (5)

with matrices
U = M |I×Q, S = M |P×Q, V = M |J×P ,

and sets of pivots P ⊂ I, Q ⊂ J with #P = #Q = j. The approximations Xj can be
found in an incremental way by adding rank one updates to Xj−1 which are constructed
from the remainder Rj := M − Xj−1, cf. [2]. In each approximation step, the pivot
sets P and Q are updated by a row and column index for which the modulus of the
corresponding entry in Rj is as large as possible. The number of entries required from
M then lies inO((#I+#J)k) where k corresponds to the rank of the final approximation
Xk.

Let t ⊂ D, s := D \ t, and M := Mt(A) ∈ R
It×Is . As we have pointed out in [1],

the cross approximation technique can be used to find low-rank approximations to M
by two modifications:

1. The matrices U and V from (5) are never formed explicitly. The low-rank repre-
sentation is used to compute entries of the remainder Rj directly.

2. Pivot elements are not sought in full rows or columns but only on so-called fibers

A(i1,...,iµ−1,·,iµ+1,...,id) ∈ R
Iµ .

It can be shown that the construction of the pivot sets P and Q requires the evaluation
of O(dnk2) entries from A, n := maxµ∈D nµ, where the rank k of M is determined with
respect to some (heuristic) target accuracy ε with ‖M −Xk‖2 . ε‖M‖2.

An alternative approach is to first determine a random subset of row indices I ⊂ It
and a random subset of column indices J ⊂ Is such that #I and #J are small. We can
then apply rank-revealing strategies to the submatrixM := Mt(A)|I×J . Since we mostly
do not know an appropriate size of M in advance, we suggest to adaptively enlarge the
size of M by the following simple strategy.

For ℓ = 0, ..., ℓmax, we construct a sequence of random index sets Iℓ ⊂ It, Jℓ ⊂ Is
of size sℓ := #Iℓ = #Jℓ until the matrix Mℓ := Mt(A)|Iℓ×Jℓ has reached some level of
redundancy that indicates the (heuristic) size of the rank of Mt(A). First, we start with
small initial random pivot sets I0 ⊂ It, J0 ⊂ Is, of size s0 := #I0 = #J0 (say s0 = 10).
We can then estimate the rank k0 of M0 := Mt(A)|I0×J0 by means of the standard
adaptive cross approximation. If at step ℓ = 0, ..., ℓmax we have that kℓ < 2sℓ, we stop
the iteration and return kℓ as a good rank estimate. Otherwise, we set sℓ+1 := 3kℓ and
proceed to the next step. By means of this strategy we aim at approaching the true rank
of Mt(A) from the bottom. The number of entries required from A then lies in O(sk)
where s and k correspond to the size and the rank of the final submatrix M , respectively.

5 Complexity

In a short complexity analysis, we focus on a comparison of the computational cost for
the proposed adaptive setup of a dimension tree with the cost for the final black box

12

approximation of a tensor by, e.g., [1]. In particular, we would like to compare the
number of tensor evaluations arising from a combination of the two approaches.

In order to estimate the complexity of Algorithm 1, first note that each computation
of ̺(C), C ∈ Cp(P), corresponds to the determination of a rank ks, s :=

⋃

t∈C t, for
which we assume a still abstract complexity of Nrank tensor evaluations. For the initial
partition P = {{1}, . . . , {d}}, we have

#Cp(P) =

(

d

2

)

+ . . .+

(

d

p

)

= O(dp).

The computation of ̺(C) for all C ∈ Cp(P) for the first time therefore requiresO(dpNrank)
tensor evaluations. After an agglomerative step, the partition P is updated to P ′ ac-
cording to (4) such that the values ̺(C) need only be computed for all C ∈ P ′ for which
s ∈ C, s :=

⋃

t∈C′ t. This requires at most O(dp−1Nrank) tensor evaluations. As there
are at most d agglomerative steps, we again arrive at a complexity of O(dpNrank).

The local optimization from Problem 12 does not require any tensor evaluations since
all necessary ranks are already available. The combinatorial complexity is determined
by the number of labeled full binary trees with p leaves which is given by p!Cp−1 where
Cp denotes the p-th Catalan number. As long as p ≤ d/2, we can hence estimate

p!Cp−1 =
p!(2p − 2)!

p!(p− 1)!
=

p−2
∏

j=0

(p+ j) < dp−1.

This means that in each agglomerative step the combinatorial complexity for the local
minimization is also bounded by O(dp−1). This leads to an overall bound of O(dp) which
does not exceed the number of O(dpNrank) tensor evaluations.

Assume now that Nrank = O(k2) where k is the maximal rank of all matricizations
considered in the agglomerative strategy. This bound can, e.g., be achieved by applying
the rank estimation technique based on random submatrices as introduced in the last
section. We then have to evaluate O(dpk2) tensor entries to construct a dimension tree
by our adaptive strategy. This needs to be compared with the black box strategy from
[1] which requires the evaluation of O(dk3 + d2k2n) tensor entries. We can easily see
that for p = 2, 3 both strategies may lead to comparable costs whereas for p ≥ 4 the cost
for the construction of the tree will dominate. This effect was also observed (though not
rigorously analyzed) in the numerical examples presented in the next section.

6 Numerical Examples

In the numerical part, we are interested in the following questions:

1. How well can we recover a known tree structure by our clustering strategy?

2. How much do we have to invest for the estimation of the ranks kt in order to reach
a given target accuracy?

13

3. How large is the impact of the choice of the maximal cluster size p on the quality
of the final tree?

Throughout this section, we restrict ourselves to tensors A ∈ R
I with #Iµ := n for

all µ = 1, . . . , d. In order to compare the storage complexity of tensors A ∈ H(TD,k)
with respect to different trees TD, we introduce the effective rank keff as the positive real
solution of

(d− 1)k3eff + dnkeff = Nstorage(H(TD,k))

where Nstorage was defined in (2). A low value of keff then corresponds to a low storage
complexity of a tensor with respect to TD.

As discussed in Section 4, we heuristically estimate the rank of the matricization of
a tensor by the rank of an appropriately chosen random submatrix for a prescribed
accuracy εest. Once a tree TD has been determined by our (deterministic) clustering
strategy, we approximate a given tensor with respect to TD by the black box strategy
from [1] with a prescribed (heuristic) target accuracy εfinal. Since the determination
of the ranks involves a random component, we perform 100 runs for each example and
report the resulting average effective rank kavgeff and the worst effective rank kworsteff of the
final approximation over all runs. Our first example is motivated by Example 8.

Example 13. Given d ∈ N, let TD be a balanced dimension tree as defined in Example
3(a). For n = 2, let A ∈ H(TD,k) ⊂ R

I be a random tensor with ranks

kt :=











1, t = D,

2, t ∈ L(TD),

4, otherwise,

such that the singular values of the matricizations Mt(A) at each node t ∈ TD decay
approximately like 2−j , j = 1, . . . , kt. We now permute the indices of A such that the
original structure of the tree TD becomes invisible. We then apply our algorithm with
a prescribed accuracy of εest = εfinal = 10−4 in dimension d = 8, 16, 32 for different
values of the maximal cluster size p = 2, 3, 4. For all runs, the accuracy of the final
approximation was close to the presribed error tolerance.

The average and best effective rank for the adaptive strategy can be compared in
Table 1 with the original effective rank korigeff which we had obtained taking into account
the knowledge of the hidden tree structure. Moreover, we report the effective ranks kbaleff

and klineff which we obtain for a fixed (unpermuted) balanced and linear dimension tree,
respectively, without taking into account our adaptive strategy.

We can see that the ranks kbaleff and klineff rapidly increase with increasing d. For d = 32,
we could not even meet the given target accuracy assuming a maximal number of 3000
pivot elements in (5). When applying our adaptive strategy, the original tensor structure
tends to be the better resolved the more we increase the maximal cluster size p for all
d = 8, 16, 32. However, with increasing d it gets more and more difficult to recover the
original tree structure for all p = 2, 3, 4.

14

d korigeff kbaleff klineff p = 2 p = 3 p = 4

8 3.0 4.8 4.5 4.3 / 4.3 3.1 / 3.2 3.0 / 3.0
16 3.2 19.5 19.2 8.8 / 13.0 4.1 / 4.9 4.0 / 4.0
32 3.3 > 200 > 200 26.5 / 35.1 13.7 / 34.0 5.2 / 8.3

Table 1: Random tensors with n = 2 with original effective ranks korigeff . Ranks kbaleff and
klineff for fixed balanced and linear dimension trees. Average and worst effective
ranks kavgeff / kworsteff for different values of the maximal cluster size p.

This example indicates that an appropriate splitting of the directions 1, . . . , d may
not be discovered on the level of pairwise combinations such that we need to apply our
algorithm with p > 2. In the next example, we study the behaviour of our method
with respect to different accuracies for the construction of the tree and for the final
approximation.

Example 14. Given d = 16, let TD be a balanced dimension tree as defined in Example
3(a). For n = 20, let A ∈ H(TD,k) ⊂ R

I be a random tensor with ranks kt = 20
for all t ∈ TD \ D such that the singular values of the matricizations Mt(A) at each
node t ∈ TD decay approximately like 2−j , j = 1, . . . , kt. Again, we permute the
indices of A such that the original structure of the tree TD becomes invisible. We now
apply our algorithm with a maximal cluster size of p = 2 for different accuracies of
εest, εfinal ∈ {10−3, 10−4, 10−5, 10−6}, εfinal ≤ εest. For all runs, the accuracy of the final
approximation was close to the presribed error tolerance.

The average and best effective rank for the adaptive strategy can be compared in
Table 2 with the original effective rank korigeff which we had obtained taking into account
the knowledge of the hidden tree structure. Moreover, we report the effective ranks kbaleff

and klineff which we obtain for a fixed (unpermuted) balanced and linear dimension tree,
respectively, without taking into account our adaptive strategy.

εfinal korigeff kbaleff klineff εest = 1e-03 εest = 1e-04 εest = 1e-05 εest = 1e-06

1e-03 2.9 7.1 7.2 3.7 / 5.9 – – –
1e-04 5.4 33.3 35.2 10.7 / 21.9 5.6 / 6.9 – –
1e-05 7.9 – – 22.9 / 44.6 8.3 / 11.7 7.9 / 7.9 –
1e-06 10.7 – – 42.5 / 68.8 11.8 / 21.6 10.7 / 10.7 10.7 / 10.8

Table 2: Random tensors in d = 16 with n = 20 and original effective ranks korigeff . Ranks
kbaleff and klineff for fixed balanced and linear dimension trees. Average and worst
effective ranks kavgeff / kworsteff for different values for the accuracy εest controlling
the generation of the tree and for the final approximation accuracy εfinal.

Given a fixed tree, the ranks kbaleff and klineff rapidly increase with the accuracy εfinal.
For a too crude choice of the accuracy εest, the original tree structure cannot be resolved
up to the final target accuracy εfinal. If however εest ≈ εfinal, the original structure can
be identified.

15

In a third example, we study the behaviour of our method for a tensor generated by
a smooth function.

Example 15. Given d = 16, let Q ∈ R
d×d and define

f(x) := exp(−1
2x

⊤Qx), x ∈ Ω := [−2, 2]d.

In order to control the separability of the function f with respect to the variables
x1, . . . , xd, we first introduce standard Givens rotations G(i, j, ϕ) ∈ R

d×d, ϕ ∈ R, by

G(i, j, ϕ)k,ℓ :=































cosϕ, k = i, ℓ = i, or k = j, ℓ = j,

sinϕ, k = i, ℓ = j,

− sinϕ, k = j, ℓ = i,

1, ℓ = k 6= i, j,

0, otherwise.

Let now

Q :=





3
∏

i=0

3
∏

j=1

G(4i + 1, 4i + j + 1, ϕ)





3
∏

j=1

G(1, 4j + 1, ϕ).

Note that for ϕ = 0, we have Q = Id such that the function f is separable with respect
to x1, . . . , xd. With increasing ϕ, we expect a stronger coupling between the directions
linked through the Givens rotations.

For n = 32, let A ∈ R
I be the discretization of f on an equidistant tensor grid on Ω

of size n in each direction. As in the preceding examples, we permute the indices of A
and apply our algorithm with maximal cluster sizes of p = 2, 3, 4 for different accuracies
εfinal = εest. In Table 3 (top), we compare the results to the effective rank korigeff obtained
by using a balanced binary tree for an unpermuted tensor with ϕ = π/16. We report
the results of the same experiment with ϕ = π/8 in Table 3 (bottom).

As expected, a larger value of ϕ leads to a stronger coupling of f with respect to
x1, . . . , xd which is reflected by higher effective ranks in all examples. Moreover the
original tensor structure tends to be better resolved if we increase the maximal cluster
size up to p = 4. Note however that already for p = 2 moderate effective ranks could be
obtained in all examples.

In the last example, we apply our algorithm to the discretization of a two-dimensional
function using a tensorization approach.

Example 16. Let α ∈ R and define a function g : R× R → R by

g(x, y) := (|y − αx|+ 1)−1.

Given d ∈ N, let N := 2d and define an equidistant grid on [−1, 1) of mesh size h := 2/N
by

ξℓ = ℓh− 1, ℓ = 0, . . . , N − 1.

16

εfinal korigeff kbaleff klineff p = 2 p = 3 p = 4

1e-03 2.3 2.8 2.5 2.4 / 2.8 2.4 / 2.6 2.4 / 2.7
1e-04 3.9 7.5 6.5 5.1 / 6.6 4.7 / 6.7 4.7 / 6.5
1e-05 4.7 11.8 10.0 5.6 / 7.4 5.1 / 6.6 4.6 / 5.5
1e-06 6.9 22.3 17.7 8.7 / 12.2 7.3 / 10.3 6.8 / 9.4
1e-07 9.1 – – 11.7 / 14.1 9.2 / 11.5 8.2 / 9.7
1e-08 11.0 – – 15.3 / 24.8 13.5 / 17.2 10.8 / 13.7

εfinal korigeff kbaleff klineff p = 2 p = 3 p = 4

1e-03 4.5 10.6 8.8 6.1 / 8.7 5.7 / 8.5 5.6 / 7.8
1e-04 7.8 25.4 19.7 10.0 / 14.1 8.6 / 13.8 7.8 / 11.7
1e-05 11.0 49.8 38.0 14.5 / 19.7 12.1 / 19.8 10.2 / 13.7
1e-06 14.7 71.4 46.7 20.0 / 30.7 16.7 / 26.5 13.8 / 19.5
1e-07 18.9 – – 30.4 / 47.4 25.3 / 38.8 18.8 / 27.8
1e-08 22.9 – – 35.7 / 48.4 28.6 / 42.0 21.5 / 32.3

Table 3: Function generated tensor from Example 15 for ϕ = π/16 (top) and ϕ = π/8
(bottom). Ranks kbaleff and klineff for fixed balanced and linear dimension trees.
Average and worst effective ranks kavgeff / kworsteff for different values of the accu-
racy εfinal = εest and of the maximal cluster size p.

The points ξℓ may equally be indexed by a tuple (i1, . . . , id) ∈ {0, 1}d, i.e.,

ξ(i1,...,id) := ξℓ, ℓ =
d

∑

µ=1

iµ2
µ−1.

We now consider a tensor A ∈ R
I , I := {0, 1}2d, defined by

A(i1,...,i2d) := g(ξ(i1,...,id), ξ(id+1,...,i2d)), iµ ∈ {0, 1}, µ = 1, . . . , 2d.

For d = 8, we can store all entries of A and perform standard singular value decompo-
sitions of the matricizations of A in order to determine their ranks up to an accuracy of
εest = εfinal = 10−8. We now perform our algorithm with p = 2 for different values of α
and compare the resulting effective ranks to the approximation with respect to a fixed
balanced and fixed linear tree in Table 4. A visualization of the corresponding trees
produced by our algorithm is depicted in Figure 6.

For non-trivial values of α, the adaptive strategy allows for a much better resolution
of the tensor structure than a fixed choice of the dimension tree. As Figure 6 illus-
trates, the tensor from the given example tends to be optimally represented by a linear
structure. The corresponding (non-trivial) permutations of the directions 1, . . . , 2d could
be identified by our algorithm. They indicate a typical pattern of the coupling of the
components of the variables x and y in dependence on α.

17

α kbaleff klineff kadapeff

0 2.5 2.4 2.4
1/4 11.6 9.8 3.8
1/2 16.7 14.9 3.8
3/4 20.4 19.0 4.7
1 23.6 22.6 3.9

Table 4: Tensorization of a two-dimensional function with 256× 256 points. SVD-based
rank estimation with accuracy εfinal = 10−8. Ranks kbaleff and klineff for fixed

balanced and linear dimension trees. Ranks kadapeff with adaptively generated
dimension trees for different values of α.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

α = 0

1 2 3 9 4 10 5 11 6 12 7 13 16 15 8 14

α = 1
4

3 10 2 9

1 4 11 5 12 6 13 16 8 15 7 14

α = 1
2

1 2 9 3 10 4 11 5 12 6 13 7 15 8 14 16

α = 3
4

2 10 1 9

3 11 4 12 5 13 6 14 8 16 7 15

α = 1

Figure 6: Tensorization of a two-dimensional function. Dimension trees for different
values of α with components in x numbered from 1 to 8 (blue) and components
in y numbered from 9 to 16 (green).

7 Conclusion

In this paper, we have introduced a strategy for the detection of an appriopriate di-
mension tree for tensors that can be represented in the hierarchical tensor format. Our

18

algorithm is based on an agglomeration of clusters in a bottom up way controlled by the
relative reduction of the corresponding ranks in each step. By means of the numerical
experiments, we verified that in many cases a reasonable tree structure could already
be revealed by the combination of pairs of clusters. However, we also pointed out that
one can find examples for which the combination of a higher number of clusters needs
to be considered. On the one hand, this leads to higher computational costs for the
construction of the tree in a setup step. On the other hand, one can benefit from the
improved structure of the final representation in follow up computations.

References

[1] J. Ballani, L. Grasedyck, and M. Kluge. Black box approximation of tensors in
hierarchical Tucker format. Linear Algebra Appl., 438(2):639–657, 2013.

[2] M. Bebendorf. Approximation of boundary element matrices. Numer. Math.,
86(4):565–589, 2000.

[3] V. De Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best low-rank
approximation problem. SIAM J. Matrix Anal. Appl., 30:1084–1127, 2008.

[4] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix

Anal. Appl., 31:2029–2054, 2010.

[5] L. Grasedyck and W. Hackbusch. An introduction to hierarchical (H-) rank and
TT-rank of tensors with examples. Comput. Methods Appl. Math., 11(3):291–304,
2011.

[6] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor
approximation techniques. Preprint, ANCHP, MATHICSE, EPF Lausanne, 2013.

[7] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin,
2012.

[8] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. J. Fourier
Anal. Appl., 15(5):706–722, 2009.

[9] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM

Review, 51(3):455–500, 2009.

[10] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–
2317, 2011.

[11] I. V. Oseledets and E. E. Tyrtyshnikov. TT-cross approximation for multidimen-
sional arrays. Linear Algebra Appl., 432:70–88, 2010.

[12] G. Vidal. Efficient classical simulation of slightly entangled quantum computations.
Phys. Rev. Lett., 91(14), 2003.

19

