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F–31062 Toulouse, France.

2
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Abstract

We introduce a cellular automaton model coupled with a transport equation
for flows on graphs. The direction of the flow is described by a switching process
where the switching probability dynamically changes according to the value of the
transported quantity in the neighboring cells. A motivation is pedestrian dynamics
in a small corridor where the propagation of people in a part of the corridor can be
either left or rightgoing. Under the assumptions of propagation of chaos and mean-
field limit, we derive a master equation and the corresponding meanfield kinetic
and macroscopic models. Steady–states are computed and analyzed analytically
and exhibit the possibility of multiple meta-stable states and hysteresis.

Acknowledgements: This work has been supported by KI-Net NSF RNMS grant No.
1107291, grants HE5386/7-1, DAAD 54365630, and the french ’Agence Nationale pour la
Recherche (ANR)’ in the frame of the contract ’MOTIMO’ (ANR-11-MONU-009-01). MH
and JGL are greatful for the opportunity to stay and work at University Paul–Sabatier
Toulouse in fall 2012, under sponsorship of Centre National de la Recherche Scientifique
and University Paul–Sabatier.

Key words: Key words. Master equation, cellular automata, pedestrian dynamics,
networks

AMS Subject classification: 35Q20, 82C40, 82C31

1



1 Introduction

We are interested in the prediction of qualitative properties and large time behavior of
cellular automata (CA) as appearing for example in research on traffic and pedestrian
flow [38, 39]. A typical CA is described by a finite set of states lying on a regular lattice
and some rules on how to change those within a given time step. In contrast to existing
approaches [1, 19, 38, 39], we investigate more general graph geometries and we couple
this dynamic to a deterministic flow equation for an additional quantity, for example a
density. The flow rates in the additional equation depend on the states of the CA and
vice versa. Specifically, we assume that the density sweeps from one cell to one of the
neighboring cells according to the state of the CA, hence the terminology of ‘sweeping
network’. On the other hand, the cell-states can switch from one state to another one,
according to a probability which depends on an average of the sweeping quantity over the
neighboring cells.

Several examples of applications of such sweeping networks can be envisioned. Our
first motivation is the modeling of pedestrian flows in corridors. There, the sweeping
quantity is the density of pedestrians in a cell whereas the CA is the ensemble of the
cell-states describing in which direction (left or right) pedestrians can move (here in this
simple example, we assume that all the subjects in a given cell are forced to move in the
direction dictated by the state of the CA but more complex dynamics will be investigated
in future work).

Another example consists of traffic or information networks whose characteristics
change with load or occupation. In this case, the sweeping quantity is the load or oc-
cupation of the network: it obeys a flow equation whose flow direction is given by the
state of the CA at each node. Here, the state of the CA at one node is the index of the
neighboring nodes towards which the outgoing flow from the considered node is directed.
Hence, the state of the CA does not belong to the set {−1, 1} but it is still a finite set
(which may differ from one node to the next). Therefore, the corresponding dynamical
system is not a CA in the restricted sense but shares similar features with CA such as
the discreteness of the cell-states. For simplicity, we will still refer to it as a CA.

One more example is that of supply networks. Such networks are used to describe
the flow of parts along a fabrication chain. In some instances, there may exist several
suppliers or several clients and the procedure by which the supplier or the client is chosen
corresponds to the state of the network. This state may be influenced by the some
variables attached to the nodes of the network (such as again, loads, delays, financial
reliability, etc.). The choice of the flow direction may in turn determine the flow of
products or money along the network. Further applications include molecular transport
in cell biology or bacterial motion [20].

In this paper we present a unified approach to such coupled problems. We consider a
CA coupled to a transport equation for a density attached to each cell of the CA where the
flux function in the transport is dictated by the CA cell-states locally. Further, the CA
cell-states may switch randomly from one value to another one according to a switching
rate which depends on an average of the density over the neighboring nodes. We first
investigate a simple one-dimensional system, where the nodes are arranged along a line
and have a periodic structure. Then, the cell-states are just the variable zj ∈ {−1, 1},
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where j is the cell index and zj = +1 (resp zj = −1) corresponds to sweeping the density
towards the neighboring node to the right (resp. to the left), while the j-th cell density
is denoted by ρj ∈ R+.

From the discrete dynamics, we derive a master equation using a similar presentation
as in [11]. The master equation provides the deterministic time evolution of the joint N -
cell probability distribution function (pdf) F(z1, . . . zN , ρ1, . . . ρN , t), where N is the total
number of cells of the CA. One distinctive feature of the dynamical systems investigated
here lies in the coupling of a stochastic system (the dynamics of the states zj of the
CA) with that of a deterministic system (the transport equation for the cell-densities ρj).
However, the stochasticity of the CA makes the dynamics of the cell-densities random as
well. This is why the resulting master equation is posed on the large dimensional space
(z1, . . . zN , ρ1, . . . ρN) ∈ {−1, 1}N × R

N
+ which encompasses both the cell-state random

variables zj and the cell densities ρj. This master equation takes the form of a transport
equation in the continuous density variables (ρ1, . . . ρN) and rate equations for the the
discrete CA cell-state variables (z1, . . . zN). To our knowledge, this form of a master
equation has not been found elsewhere.

The master equation is posed on a huge dimensional space when N is large and leads
to overwhelming numerical complexity for practical use. Additionally, it is difficult to
retrieve direct qualitative information, such as analytical solutions, asymptotic behavior
of the system, etc., from this complex equation. This is the reason why lower dimensional
reductions of this equation are desirable. The goal of this paper is to derive a hierarchy of
lower dimensional descriptions of the system. This requires some simplifying assumption,
which, in model cases, can be rigorously proven, but which, for the present complex
problem, can only be assumed at this stage.

The first model reduction consists in averaging the N -cell pdf over N − 1 vari-
ables, keeping only information on the state of a single cell j by means of the 1-cell
pdf f j(zj, ρj, t). We do not assume cell-indistinguishability so that the 1-cell pdf of differ-
ent cells may be different. An equation for fj is easily deduced from the master equation
by integrating it over all cell variables (zk, ρk) for k = 1, . . . , N except k = j. However,
this operation does not lead to a closed equation for fj unless a suitable Ansatz is made
for the N -cell pdf. This Ansatz is the so-called “propagation of chaos” which assumes
that the cell-states have independent probabilities from each other, i.e.

F(z1, . . . zN , ρ1, . . . ρN , t) ≈
N
∏

j=1

fj(zj, ρj , t).

The resulting equation for fj has a similar form as the master equation: it comprises a
transport equation in ρj and a rate equation for the zj-dependence. But, in contrast to
the master equation, it is posed on the low dimensional space (zj, ρj) ∈ {−1, 1} × R+.
Propogation of chaos can be proved in model cases, such as the Boltzmann equation
[27, 30, 31], its caricature proposed by Kac̆ [26] and models of swarming behavior [11, 12]
(see also [41]).

The second and last model reduction is to take the limit of an infinite number of cells,
i.e. taking the cell-spacing h to zero, while looking at large time-scales, of order h−1. This
has several consequences. The first one is to legitimate the use of a mean field formula for
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the switching probabilities for the cell-states. Indeed, as the cell-spacing goes to zero, more
and more neighboring cells are included in the computation of the switching probability,
leading, through a law of large numbers, to a mean-field evaluation. The second one,
related to the change of time-scale is to make the dynamics in ρ-space instantaneously
convergent to a deterministic dynamics, i.e. the pdf f becomes a Dirac delta in ρ at its
mean value ρ̄(x, t) which evolves at the macroscopic time scale according to a classical
continuity equation. The flux in this density equation can be expressed in terms of a
mean velocity, whose evolution is dictated by an ordinary differential equation derived
from the mean-field equation for the switching probabilities.

The resulting model is a deterministic system of partial differential equation from
which all the stochasticity of the original model has disappeared. It bears similarities
with the Euler equations of compressible fluid dynamics in that it comprises a continuity
equation for the cell density and an evolution equation for the mean velocity. However,
there is an important difference in that the velocity equation is a pure ordinary differential
equation expressing a relaxation towards a local velocity obtained through some non-local
density average. The fact that there is no transport in the velocity equation originates
from the fact that the direction of the flux in the sweeping process is purely determined
from local quantities at the considered time. Again, we have not found a similar model
elsewhere. It is likely though, that adding a time delay in the evaluation of the switching
probabilities would restore the spatial transport in the velocity equation. This point will
be investigated in future work.

These general results are then applied to a model of a pedestrian flow. The steady-
states of the corresponding fluid model are analyzed. According to the strength of the
coupling between the density and the cell-states, we may get multiple steady-states and
various kinds of phase transitions (either continuous or discontinuous) between them
leading to hysteresis phenomenon. Metastable states and hysteresis are well-documented
phenomena in car traffic [6] and in pedestrian traffic [24]. This allows to establish some
qualitative properties analytically. In particular, the occurrence of phase transitions is
reminiscent of similar phenomena arising in consensus formation models [17]. The model
also bears analogies with the locust model of [19] but the consideration of cell-states in
the present work is original.

Finally, the presented technique is further refined to treat the case of connected nodes
and flows on graphs. Under the propagation of chaos assumption a similar equation for
the 1-cell pdf is obtained. However, the large N limit is not considered because this
would necessitate the passage from a discrete network to a continuous space. This limit
is outside the scope of the present paper. Still the equation for the discrete 1-cell pdf is
interesting, as it couples the pdf of the neighboring nodes within the flux of the transport
term in density space, a feature which we have not observed before.

CA are widely used models in car traffic [13, 33, 37, 38, 39, 40] and pedestrian traffic
[8, 9, 10, 34]. Standard supply chain models are Discrete Event Simulators [5] which bear
strong analogies with CA.

Among Individual-Based models, i.e. models which follow each agent in the course of
time, alternatives to CA are particle models such as Follow-the-Leader models in car traffic
[21] and pedestrian traffic [28], or more complex models based on behavioral heuristics
[32]. Kinetic models provide a statistical (and consequently coarser) description of the
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ensemble of agents. They have been proposed for car traffic in [36] and for pedestrian
traffic in e.g. [25]. Finally, fluid models provide the coarsest - and consequently least
computationally intensive - description of traffic systems and has been developed in car
traffic in [3, 29, 35]. They have been recently adapted to pedestrian traffic in [1]. We
refer the reader to [23] and [14] for reviews on traffic and pedestrian dynamics on the one
hand and on supply chain modeling on the other hand.

The question of proving a rigorous connection between Individual-Based, Kinetic and
Fluid models has been treated in e.g. [4, 23] in car traffic, [16, 22] in pedestrian traffic
and [2, 18] in supply chain modeling. In connection with CA of traffic, it has been
investigated in particular in [13, 19]. But, to our knowledge, the present paper provides
the first derivation of a fluid model for a CA coupled with the deterministic evolution of
a sweeping variable.

The paper is organized as follows. In section 2, we present our sweeping model in one
dimension and derive its master equation. In section 3, we use the propagation of chaos
and mean-field assumptions to derive a single-particle closer of the kinetic equation and
the hydrodynamic model in the limit of large number of particles and cells. Section 4
is devoted to an application to pedestrian traffic where meta-stable multiple equilibria
and phase transitions are examplified. Section 5 is concerned with the extension of the
model to a general graph topology. Finally, section 6 provides a conclusion and some
perspectives.

2 A one-dimensional sweeping model and its master

equation

2.1 The one-dimensional sweeping model

We are interested in a one-dimensional network consisting of connected cells j = 1, . . . , N .
Each cell contains a certain density ρj ≥ 0 of a given quantity (people, animals, data,
goods, particles . . . ) which are able to move or sweep by one cell to the next one. For
the simplicity of the presentation, we assume a periodic domain of size equal to 1, each
cell being of size 1/N . Each cell has a state zj ∈ {−1, 1} describing the possible direction
of the flow (from left to right (zj = 1) or from right to left (zj = −1)). For simplicity
we assume that all particles in cell j move according to the state of the cell j at discrete
times tn = n∆t, with a time-step ∆t and for n ∈ N. Hence, the flow of particles Ψj+ 1

2

across the cell boundary with the j + 1-th cell is given by

Ψn
j+ 1

2

= ρnj max{znj , 0}+ ρnj+1 min{znj+1, 0}, (2.1)

where the superscript n indicates that the associated quantities are evaluated at time tn.
In order to simplify the following discussion, we consider a periodic setting ρnj+N = ρnj .

We assume the cell j changing state according to a Poisson process with rate γn
j

where γn
j depends on all the cell-states (zni )i=1,...,N and cell-densities (ρni )i=1,...,N . To be

more precise, within a given time interval ∆t the probability to change the state of cell j
is 1− exp

(

− γn
j ∆t

)

, i.e.

zn+1
j = znj ζ

n
j (2.2)
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where ζnj is a random variable taking values in {−1, 1} with probability:

P (ζnj = 1) = e−γn
j ∆t and P (ζnj = −1) = 1− e−γn

j ∆t. (2.3)

Given some initial data z0j and ρ0j for j = 1, . . . , N , the microscopic model for n ∈ N is
given by

ρn+1
j = ρnj +N∆t(Ψn

j− 1

2

−Ψn
j+ 1

2

), ρnj+N = ρnj . (2.4)

The factor N in front highlights the fact that the densities change over one time step by
an O(N∆t) quantity. This choice is consistant with the choice of the kinetic time scale
for the evolution of the cell-states zn which will be made below.

We note that the total number of particles is conserved:

N
∑

j=1

ρnj =
N
∑

j=1

ρ0j .

The particle density ρnj is non-negative as soon as the initial density ρ0j is so, provided
that the time step satisfies the CFL condition N∆t ≤ 1/2.

Remark 2.1 Many practical networks have finite capacity. This means that the magni-
tude of the flux is bounded by a maximal value Ψ∗ > 0 and that the expression (2.1) must
be cut-off by this maximal value when it exceeds it. The modifications of the present theory
induced by such a cut-off will be discussed in future work.

We now derive a master equation for this process using the weak formulation as in [11].
Here, the number N of cells will be kept fixed. Later on, we will make N → ∞ in the
resulting master equation. In a first section, we derive the master equation for the cell-
states, ignoring the dependences of the rates upon the cell densities.

2.2 A simple cellular automaton for the cell-states and corre-

sponding master equation

In this section, we first restrict ourselves to the case where the rates γn
j are independent of

the cell-densities (ρni )i=1,...,N . In this case, the dynamics of the cell-states is independent
of the cell-densities and the latter can be ignored in the determination of the master
equation for the former. Therefore, the random variables are only the states of the cells
znj at time tn and the framework is that of a CA. The discrete state-space at any time for
N cells is therefore ΣN with Σ := {−1, 1}. We denote by ~z = (zi)

N
i=1 an element of ΣN .

A measure φ on ΣN is defined by the discrete duality with a test function ϕ as

〈φ, ϕ〉ΣN :=
N
∑

i=1

∑

zi∈{−1,1}
φ(~z)ϕ(~z). (2.5)

The model is a Markov process. We adapt the classical Markov transition operator for-
malism to derive the Master equation (see e.g. [11]). The probability distribution function
(pdf) of ~z at time tn is denoted by Fn(~z). Let ϕ be any smooth test function on ΣN with
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values in R and let E be the expected value of a random variable. By definition the
expectation of the random variable ϕ(~zn) for all realizations of ~zn with distribution Fn is
therefore

E {ϕ(~zn)} = 〈Fn, ϕ〉ΣN . (2.6)

We denote the Markov transition operator from state ~zn to ~zn+1 by Q. By definition,
it is a bounded non-negativity preserving linear operator on ℓ2(ΣN) with the function
ϕ(~z) ≡ 1 as a fixed point. The operator Q applied on the test function ϕ from tn to tn+1

and evaluated at state ~z is given by:

Qϕ(~z) = E
{

ϕ(~zn+1)
∣

∣ ~zn = ~z
}

, (2.7)

where the expectation is to be taken over all random processes leading from the known
state ~zn to ~zn+1. Hence, Qϕ(~zn) is a random variable for all realizations of ~zn with
distribution Fn. Therefore, its expectation is

E {Qϕ(~zn)} = 〈Fn, Qϕ〉ΣN = 〈Q∗Fn, ϕ〉ΣN ,

where Q∗ is the ℓ2 adjoint operator to Q. Due to the property of the conditional expec-
tation, we also have

E {Qϕ(~zn)} = E
{

E
{

ϕ(~zn+1)
∣

∣ ~zn
}}

= E
{

ϕ(~zn+1)
}

= 〈Fn+1, ϕ〉ΣN .

Combining and noting that the previous equations hold for all functions ϕ, we have:

Fn+1(~z) = Q∗Fn(~z). (2.8)

We will show that (Q∗ − Id)F = O(N∆t). Therefore, the rate of change of the pdf over
one time-step is

Fn+1 −Fn

N∆t
(~z) =

1

N∆t
(Q∗ − Id)Fn(~z) = O(1).

In the limit N∆t → 0, with nN∆t → t, we have Fn(~z) → F(~z, t) with

∂F
∂t

(~z, t) = lim
N∆t→0

1

N∆t
(Q∗ − Id)F(~z, t) = L∗F(~z, t). (2.9)

This is the so-called time-continuous master equation of the process and the operator L
(the adjoint to L∗) is called the Markov generator. This choice of time scale is called the
kinetic time scale. It corresponds to each particle colliding in the average once during one
time step ∆t.

Proposition 2.1 The master equation for the time-continuous version of the CA de-
scribed in section 2.1 when the rates γj are independent of the cell-densities (ρi)i=1,...,N is
given, at the kinetic time-scale, by

∂

∂t
F(~z, t) =

1

N

N
∑

j=1

(γj(−zj , ẑj)F(−zj, ẑj , t)− γj(zj, ẑj)F(zj, ẑj , t)). (2.10)

where F(~z, t) is the time-continuous joint pdf of the cell-states and where we denote by
ẑj = (z1, . . . , zj−1, zj+1, . . . , zN) and for a function φ(~z), φ(zj, ẑj) = φ(~z) and φ(−zj, ẑj) =
φ(z1, . . . , zj−1,−zj , zj+1, . . . , zN).
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The operator at the right-hand side of (2.10) contains two terms. The first term is
positive and describes the increase of the pdf due to cells which reach the state ~z after
switching from a different state (namely from the j-th cell state −zj). The increase occurs
at rate γj(−zj, ẑj). The second term is negative and describes the decrease of the pdf due
to cells which leave the state ~z for a different one (namely the j-th cell state zj). The
decrease occurs with rate γj(zj, ẑj). The resulting expression has to be summed up over
all possible cells j ∈ [1, N ]. The weighting factor 1

N
is there to ensure that the proper time

scale has been chosen to ensure the finiteness of the right-hand side in the limit N → ∞.
This is the so-called kinetic time scale, where, on average, a given cell changes state only
a finite number of times over a finite time interval.

Proof of Proposition 2.1. Let ϕ be a smooth test function. We have:

〈(Q∗ − Id)Fn, ϕ〉ΣN = E
{

E
{

ϕ(~zn+1)− ϕ(~zn)
∣

∣ ~zn
}

~zn
}

=
〈

Fn(~z),
N
∑

j=1

(ϕ(−zj, ẑj)− ϕ(zj, ẑj))(1− e−γj(~z)∆t)
∏

i 6=j

e−γi(~z)∆t
〉

ΣN

+O((N∆t)2) (2.11)

= ∆t

N
∑

j=1

〈 Fn(zj, ẑj), (ϕ(−zj, ẑj)− ϕ(zj, ẑj)) γj(zj, ẑj) 〉ΣN +O((N∆t)2)

= ∆t 〈
N
∑

j=1

{γj(−zj, ẑj)Fn(−zj, ẑj)− γj(zj, ẑj)Fn(zj, ẑj)}, ϕ(~z) 〉ΣN +O((N∆t)2).

To derive (2.11), we note that the probability that a given k-tuple of cells switch states is
O
(

∆tk
)

but there are O(Nk) possible k-tuple of cells. Hence, the total probability that
k cells change is O((N∆t)k). Therefore, the probability that there are strictly more than
one change is O((N∆t)2) while that of only one change is O(N∆t). We note that the
probability of no change is dropped out by the subtraction. Then, we have:

Fn+1(~z)−Fn(~z)

N∆t
=

1

N

N
∑

j=1

(γj(−zj, ẑj)Fn(−zj, ẑj)− γj(zj, ẑj)Fn(zj, ẑj)) +O(N∆t),

and, in the limit N∆t → 0, we get (2.10).

In the next section, we consider the full process where the rates γn
j depend on the

cell-densities (ρni )i=1,...,N .

2.3 The master equation for the sweeping process

We now consider the full sweeping process as described in section 2. The random variables
are now the states of the cells zi ∈ {−1, 1} and the number of particles within each cell
ρi ∈ R+. The discrete state space for N cells is therefore A

N with A := {−1, 1} × R+.
We still denote by ~z = (zi)

N
i=1 and similarly for ~ρ = (ρi)

N
i=1. A measure φ on A

N is defined
by its action on a continuous function ϕ on A

N by:

〈φ, ϕ〉AN =
∑

~z∈{−1,1}N

∫

~ρ∈RN
+

φ(~z, ~ρ)ϕ(~z, ~ρ) dρ1 . . . dρN .
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We also denote γi = γi(zi, ẑi, ~ρ), ~Ψ+ = (Ψ1+ 1

2
, . . . ,Ψi+ 1

2
, . . . ,ΨN+ 1

2
), ~Ψ− = (Ψ1− 1

2
, . . . ,

Ψi− 1

2
, . . . ,ΨN− 1

2
). Then, the vector version of the density update is

~ρn+1 − ~ρn +N∆t (~Ψn
+ − ~Ψn

−) = 0. (2.12)

Proposition 2.2 The master equation for the time-continuous version of the sweeping
process described in section 2.1 when the rates γj depend on both the cell-states (zi)i=1,...,N

and the cell-densities (ρi)i=1,...,N is given, at the kinetic time-scale, by
( ∂

∂t
F −∇~ρ ·

((

~Ψ+ − ~Ψ−
)

F
)

)

(~z, ~ρ, t)

=
1

N

N
∑

j=1

(γj(−zj, ẑj , ~ρ, t)F(−zj, ẑj , ~ρ, t)− γj(zj, ẑj , ~ρ, t)F(zj, ẑj , ~ρ, t)), (2.13)

in strong form or

〈∂F
∂t

, ϕ〉AN = −〈F ,∇~ρϕ ·
(

~Ψ+ − ~Ψ−
)

〉AN

+
1

N

N
∑

j=1

〈

F(zj, ẑj , ~ρ), γj(zj, ẑj , ~ρ) {ϕ(−zj, ẑj , ~ρ)− ϕ(~z, ~ρ)}
〉

AN , (2.14)

for any smooth test function ϕ on A
N with values in R, in weak form. We have noted

∇~ρϕ · ~g =
∑N

j=1 gj∂ρjϕ and ∇~ρ · ~g ϕ = ϕ
∑N

j=1 ∂ρjgj for any functions ϕ(~ρ) and ~g(~ρ) =
(gj(~ρ))j=1,...,N .

The right-hand side of (2.13) has the same structure as that of (2.10). We refer the
reader to the paragraph following Prop. 2.1 for its interpretation. The time-derivative at
the left-hand side is now supplemented with a first order differential term in ~ρ space (the

second term). Due to (2.1), the coefficient
(

~Ψ+ − ~Ψ−
)

inside this derivative couples the
neighboring nodes of each cell j. It expresses how the density evolves as a consequence
of the density in cell j sweeping to one of its neighboring cells, and the density in the
neighboring cells sweeping into the j-th cell. Because the stochasticity of the dynamics
of the cell-states zj is propagated to the densities ρj, the description of the densities is
through the pdf F . Therefore, the density evolution translates into a transport equation
in density space for the pdf.

Proof: Let ϕ be any smooth test function on A
N with values in R. We write

〈Fn+1 −Fn, ϕ〉AN = E
{

E
{

ϕ(~zn+1, ~ρn+1)− ϕ(~zn, ~ρn)
∣

∣ (~zn, ~ρn)
}

(~zn, ~ρn)
}

= E
{

E
{

ϕ(~zn+1, ~ρn+1)− ϕ(~zn+1, ~ρn)
∣

∣ (~zn, ~ρn)
}

(~zn, ~ρn)
}

+E
{

E
{

ϕ(~zn+1, ~ρn)− ϕ(~zn, ~ρn)
∣

∣ (~zn, ~ρn)
}

(~zn, ~ρn)
}

= I + II, (2.15)

together with (2.12). Then, we have:

I = E

{

E
{

∇~ρϕ(~z
n+1, ~ρn)(~ρn+1 − ~ρn)

∣

∣ (~zn, ~ρn)
}

(~zn, ~ρn)
}

+O((N∆t)2)

= −N∆tE
{

E
{

∇~ρϕ(~z
n+1, ~ρn)(~Ψn

+ − ~Ψn
−)

∣

∣ (~zn, ~ρn)
}

(~zn, ~ρn)
}

+O((N∆t)2)

= −N∆tE
{

E
{

∇~ρϕ(~z
n, ~ρn)(~Ψn

+ − ~Ψn
−)

∣

∣ (~zn, ~ρn)
}

(~zn, ~ρn)
}

+O((N∆t)2), (2.16)
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where for the second equality, we have used (2.12). For the third one, we note that
the probability for no state change is given by

∏N

j=1 exp(−γn
j ∆t) = 1 − O(N∆t) and

therefore, the probability for at least one change is O(N∆t). Then, we can remove the
inner expectation in (2.16) because there is no change involved. Using the definition of
the outer expectation, we can recast (2.16) as follows:

I = −N∆t 〈Fn,∇~ρϕ · (~Ψ+ − ~Ψ−) 〉AN +O((N∆t)2) (2.17)

= N∆t 〈∇~ρ ·
(

(~Ψ+ − ~Ψ−)Fn
)

, ϕ〉AN +O((N∆t)2). (2.18)

For the second term, the algebra proceeds exactly like in section 2.2. Details are
omitted. As an outcome we get:

II = ∆t
N
∑

j=1

〈

Fn(zj, ẑj , ~ρ), γj(zj, ẑj , ~ρ) {ϕ(−zj, ẑj , ~ρ)− ϕ(~z, ~ρ)}
〉

AN +O((N∆t)2) (2.19)

= ∆t
〈

N
∑

j=1

{γj(−zj, ẑj , ~ρ)Fn(−zj , ẑj, ~ρ)− γj(zj, ẑj , ~ρ)Fn(zj, ẑj , ~ρ)}, ϕ(~z, ~ρ)
〉

AN

+O((N∆t)2). (2.20)

Inserting (2.18) and (2.20) into (2.15) leads to:

〈F
n+1 −Fn

N∆t
, ϕ〉AN = −〈Fn,∇~ρϕ · (~Ψ+ − ~Ψ−) 〉AN

+
1

N

N
∑

j=1

〈

Fn(zj, ẑj , ~ρ), γj(zj, ẑj , ~ρ) {ϕ(−zj, ẑj , ~ρ)− ϕ(~z, ~ρ)}
〉

AN +O(N∆t). (2.21)

Now, letting N∆t → 0 in (2.21) and nN∆t → t, we find the weak form (2.14) of the
master equation. Then, since the test function ϕ is arbitrary, using (2.17), (2.19) and the
same ∆t → 0 limit and passage to the kinetic time-scale as for the weak form, we get the
strong form (2.13) of the master equation.

3 Single-particle closure and macroscopic model

3.1 Goal

The description of the system by means of the N -cell pdf is too complicated and cannot
be practically used, neither numerically nor analytically. The goal of this section is to
propose a reduction of the system to a 1-cell pdf (i.e. the 1-cell marginal of the pdf
F(~z, ~ρ, t)), and to compute its time evolution. A straightforward integration of the master
equation does not lead to a closed equation for the 1-cell pdf. The goal of this section is
to propose a closure of this equations by assuming that propagation of chaos holds. Then,
we investigate the limit of N → ∞ and postulate that the rates can be approximated by
mean-field approximation. In this limit, we find a system of hydrodynamic equations.

We first define the marginals of the pdf as follows:
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Definition 3.1 For any j ∈ {1, 2 . . . , N}, we define the marginal density fj on A by

fj(zj, ρj , t) = 〈F(zj, ẑj , ρj, ρ̂j, t), 1〉Âj
, (3.1)

where 〈·, ·〉
Âj

denotes the duality between measures and functions of the variables (ẑj, ρ̂j)

in A
N−1 (and A

N−1 is denoted by Âj when such a duality is considered).

We note that (3.1) is equivalent to saying that for any smooth function ϕj(zj, ρj) of
the single variables (zj, ρj) ∈ A, we have

〈F(zj, ẑj , ρj, ρ̂j , t), ϕj(zj, ρj)〉AN = 〈fj(zj, ρj, t), ϕj(zj, ρj)〉A. (3.2)

To get an equation for fj at the kinetic time-scale, we use the master equation in weak
form (2.14) with a test function ϕj(zj, ρj) of the single variables (zj, ρj) ∈ A. The resulting
equation is given in section 3.2. It is not a closed equation because its coefficients depend
on the full joint pdf F .

In order to obtain a closed system of equations, we make the assumption of propagation
of chaos. Here, in the perspective of letting N → ∞, we introduce a spatial variable
xj = j/N and the cell-size h = 1

N
. We write fj(z, ρ, t) = fh(xj, z, ρ, t), where (z, ρ) ∈ A.

With these notations, the assumption of propagation of chaos reads:

Assumption 3.1 We assume that the joint pdf F(~z, ~ρ, t) is written as:

F(~z, ~ρ, t) =
N
∏

j=1

fh(xj, zj , ρj , t). (3.3)

This assumption states that the cell-states and densities at different points are statis-
tically independent. As a result, we obtain a closed kinetic equation for the one-particle
marginal fh(xj, zj , ρj, t) for a fixed number of cells N in section 3.3. The next step is to
make the number of cells N → ∞ or equivalently, the cell-spacing h = 1

N
→ 0. For this

purpose, we make the following mean-field assumption for the rates:

Assumption 3.2 We assume that as h → 0 (or N → ∞), and for any fixed x and any
subsequence xj = j

N
such that xj → x, the following limit γ̄h(xj, z, ρ, t) → γ̄(x, z, ρ, t)

exists, where

γ̄h(xj, zj, ρj , t) :=
〈

∏

i∈{1,...,N},i 6=j

fh(xi, zi, ρi, t), γj
〉

Âj
. (3.4)

With these assumptions, we can first derive equations for the moments of the one-
particle marginal in section 3.4, and then prove the convergence of the one-particle
marginal distribution to a Dirac delta modeling a monokinetic distribution function in
section 3.5. The final result is stated below:
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Theorem 3.2 We consider the one-particle marginal distribution f̃h(x, z, ρ, t) = fh
(

x, z, ρ,
t
h

)

and let h → 0. We assume that f̃h → f̃ where f̃ is a measure of (x, z, ρ, t) and that the
convergence is as smooth as needed. We also assume the propagation of chaos assumption
(Assumption 3.1) and the mean-field limit assumption for the rates (Assumption 3.2).
Then, formally, we have

f̃(x,±1, ρ, t) = p±(x, t) δ(ρ− ρ̄(x, t)),

where ρ̄(x, t) and p±(x, t) satisfy the following system:

∂tρ̄+ ∂x(ρ̄ u) = 0, (3.5)

∂tu = γt(ucoll − u), (3.6)

with

γt = γ̃− + γ̃+, ucoll =
γ̃− − γ̃+
γ̃− + γ̃+

, (3.7)

γ̃±(x, t) = γ̄(x,±1, ρ̄(x, t), t), (3.8)

and with γ̄ given by Assumption 3.2, i.e.

γ̄h(xj, z, ρ, t) → γ̄(x, z, ρ, t) as h → 0,

γ̄h(xj, zj, ρj , t) :=
〈

∏

i∈{1,...,N},i 6=j

pzi(xi, t) δ(ρi − ρ̄(xi, t)), γj
〉

Âj
. (3.9)

Additionally, we have

p+ =
1 + u

2
, p− =

1− u

2
. (3.10)

The time rescaling (i.e. t replaced by t/h in the 1-cell pdf) is needed to find the
correct time-scale over which the pdf relaxes to an equilibrium. This time-scale is called
the hydrodynamic time-scale, because it gives rise to the hydrodynamic model (3.5), (3.6)
(see comment below). It is a longer time-scale than the kinetic time-scale considered so
far. This is because this relaxation is very slow and requires much longer time units to
be observable. This hydrodynamic rescaling is classical in kinetic theory (see e.g. the
review [15]).

Theorem 3.2 states that in the limit h → 0, the 1-cell pdf f̃h(x, z, ρ, t) observed at the
hydrodynamic time-scale converges to a deterministic pdf in the density variable ρ, i.e.
a Dirac delta located at the mean density ρ̄. Both values of the pdf for the cell states
+1 and −1 are proportional to the same Dirac delta, with proportionality coefficients p±
meaning that among the ρ̄(x, t) dx particles located in the neighborhood dx of position
x at time t, a proportion p+(x, t) (resp. p−(x, t)) corresponds to right-going (resp. left-
going) pedestrians (with p+(x, t) + p−(x, t) = 1). Both the mean density ρ̄ and the
proportions p± depend of (x, t). Their evolution is described by System (3.5), (3.6). The
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mean velocity u is given by (3.10) which shows that it is proportional to the imbalance
between the right and left going pedestrians u = p+ − p−.

Eq. (3.5) is a classical continuity equation. It expresses that the total mass M[a,b](t)

contained in the interval [a, b] at time (t) and given by M[a,b](t) =
∫ b

a
ρ(x, t) dx evolves

due to particles leaving or entering [a, b] through its boundaries. Indeed, integrating (3.5)
with respect to x ∈ [a, b], we get that

d

dt
M[a,b](t) = (ρu)(a, t)− (ρu)(b, t).

The quantities (ρu)(a, t) and (ρu)(b, t) are the particles fluxes respectively through a and
b. These particle fluxes (counted positive if they are directed in the positive x direction)
contribute to an increase of the mass at a and a decrease of the mass at b. Therefore, (3.5)
describes a simple particle budget.

By contrast, Eq. (3.6) is a simple ordinary differential equation describing the relax-
ation of the local velocity u(x, t) to a velocity ucoll(x, t) expressing a collective consensus.
We will refer to this velocity as the collective consensus velocity. It depends on the state
of the CA in a possibly large neighborhood of x at time t. It is computed through (3.7)
in terms ot the switching rates of the cell corresponding to point x. More preciserly,
ucoll(x, t) depends on the normalized difference between the switching rates for switching
from state −1 to state +1 and for switching from state +1 to state −1. Indeed, this differ-
ence is the phenomenon producing a non-zero collective consensus velocity. There might
be multiple solutions of the equation u = ucoll. These multiple solutions are associated
to collective decision makings about the direction of the motion which can be according
to the state of the CA, either left-going or right-going. In general, the actual velocity u
is different from the collective consensus velocity ucoll and Eq. (3.6) states that u relaxes
to ucoll at rate γt equal to the sum of the switching rates. We will provide examples of
these features in the next section. The fact that there is no spatial transport in (3.6)
results from the instantaneous evaluation of the switching rates within the original CA.
More sophisticated CA may result in the restoration of spatial transport in (3.6). Such
dynamics will be studied in future work.

The following sections are devoted to the proof of this theorem.

3.2 Equation for the single-particle marginal distribution

We remind that, in order to get an equation for fj at the kinetic time-scale, we use the
master equation in weak form (2.14) with a test function ϕj(zj, ρj) of the single variables
(zj, ρj) ∈ A. We have the following proposition, the proof of which is immediate and left
to the reader:

Proposition 3.3 Define:

∆Ψj(t) fj(t) := 〈F(t),Ψj+ 1

2
−Ψj− 1

2
〉
Âj
, (3.11)

γ̄h
j (t) fj(t) := 〈F(t), γj〉Âj

. (3.12)
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The functions ∆Ψj(t) and γ̄h
j (t) are functions of (zj, ρj) only. Then, the equation for the

marginal fj is written in weak form:

〈∂fj
∂t

, ϕj〉A = −〈fj,∆Ψj ∂ρjϕj 〉A +
1

N
〈 fj, γ̄h

j {ϕj(−zj, ρj)− ϕj(zj, ρj)}
〉

A
, (3.13)

and in strong form

( ∂

∂t
fj − ∂ρj

(

∆Ψj fj
)

)

(xj, zj , ρj, t)

=
1

N

(

γ̄h
j (xj,−zj , ρj, t)fj(xj,−zj , ρj, t)− γ̄h

j (xj, zj , ρj, t)fj(xj, zj , ρj, t)
)

. (3.14)

We introduce the following definition of moments and velocity:

Definition 3.4 The probabilities of having right-going (respectively left-going) particles
at (x, t) is denoted by p+(x, t) (resp. p−(x, t)). The average right-going (respectively left-
going) particle density at (x, t) is denoted by ρ̄+(x, t) (resp. ρ̄−(x, t)). They are defined
by:

p±(x, t) =

∫ ∞

0

f(x,±1, ρ, t) dρ, ρ̄±(x, t) =

∫ ∞

0

f(x,±1, ρ, t) ρ dρ. (3.15)

The average velocity of the particles at (x, t) is defined by:

u(x, t) = (p+ − p−)(x, t). (3.16)

We note that p± and ρ̄± are non-negative quantities and that p+ + p− = 1. We define
ρ̄ = ρ̄+ + ρ̄− the total particle density at (x, t).

In the following section, we use the propagation of chaos assumption to close the
kinetic equation (3.14) for the one-particle marginal distribution.

3.3 Propagation of chaos assumption and closed kinetic equa-

tion for the one-particle marginal distribution

We now make the propagation of chaos assumption (Assumption 3.1). With this assump-
tion we can simplify the expressions of the flux (3.11). We have the following:

Lemma 3.5 Under the chaos assumption (Assumption 3.1), the flux (3.11) is given by:

∆Ψj(t) = ∆Ψj(ρj, t) = ρj − ρ̄−(xj + h, t)− ρ̄+(xj − h, t), (3.17)
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Proof: By direct computation from (2.1), we have

Ψj+ 1

2
−Ψj− 1

2
= ρj + ρj+1min{zj+1, 0} − ρj−1max{zj−1, 0}.

So, now,

〈

F(t),Ψj+ 1

2
−Ψj− 1

2

〉

Âj
= f(xj, zj , ρj, t)

〈

f(xj−1, zj−1, ρj−1, t)f(xj+1, zj+1, ρj+1, t),

ρj + ρj+1 min{zj+1, 0} − ρj−1max{zj−1, 0}
〉

Aj−1⊗Aj+1
, (3.18)

where 〈·, ·〉Aj−1⊗Aj+1
denotes the duality between measures and functions on A

2 with re-
spect to the variables (zj−1, ρj−1, zj+1, ρj+1). Then, using the definitions of the moments
(3.15), the evaluation of the right-hand side of (3.18) leads to (3.17).

As in the previous section we index the one-particle marginal distribution by h = 1
N

and denote it by fh and similarly we denote by ∆Ψ
h
(xj, z, ρ, t) = ∆Ψj(ρ, t). With Lemma

3.5, we can get a closed equation for fh . More precisely, we have the following:

Proposition 3.6 Under the propagation of chaos assumption (Assumption 3.1), the single-
particle marginal distribution function fh satisfies the closed kinetic equation:

( ∂

∂t
fh − ∂ρ

(

∆Ψh fh
)

)

(xj, z, ρ, t)

= h
(

γ̄h(xj,−z, ρ, t)fh(xj,−z, ρ, t)− γ̄h(xj, z, ρ, t)f
h(xj, z, ρ, t)

)

. (3.19)

with rates given by (3.4).

Now we make a change of time scale to the macroscopic time scale. We let t′ = ht.

The rationale for this change is that both ∆Ψ
h
and the right-hand side of (3.19) formally

tend to zero as h → 0. In order to recover a meaningful dynamics for the one-particle
marginal, we have to observe it on a time interval of length 1/h. Performing this change
of variable in (3.19) and dropping the primes for simplicity, we are led to the following
problem:

( ∂

∂t
fh − ∂ρ

(1

h
∆Ψ

h
fh
)

)

(xj, z, ρ, t)

= γ̄h(xj,−z, ρ, t)fh(xj,−z, ρ, t)− γ̄h(xj, z, ρ, t)f
h(xj, z, ρ, t). (3.20)

In the next section, we investigate the h → 0 limit. A key assumption will be that the
rates converge to their mean-field limit, as stated in Assumption 3.2.

3.4 Large cell-number mean-field limit and macroscopic mo-

ments

In this section, we make the formal limit of a large number of cells N → ∞ or h → 0.
We assume that fh → f where f is a measure of (x, z, ρ, t) and that the convergence is
as smooth as needed. The goal of this section is to compute the dynamics of f . For
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this purpose, we need Assumption 3.2 which assumes that the rates converge to their
mean-field limit. This assumption will be shown for some example in section 4 below. We
first consider the equations for the total density ρ̄ given by (3.15) and the mean velocity
u(x, t) given by (3.16). We have the:

Lemma 3.7 When h → 0, we formally have ρ̄h → ρ̄ and uh → u where ρ̄ and u satisfy:

∂tρ̄+ ∂x(ρ̄ u) = 0, (3.21)

∂tu = γt(ucoll − u), (3.22)

with

γt = γ
(0)
− + γ

(0)
+ , ucoll =

γ
(0)
− − γ

(0)
+

γ
(0)
− + γ

(0)
+

, (3.23)

defining,

γ
(k)
± (x, t) =

∫∞
0

γ̄(x,±1, ρ, t)f(x,±1, ρ, t) ρk dρ
∫∞
0

f(x,±1, ρ, t) ρk dρ
. (3.24)

We note that the denominator of the expression (3.24) with k = 0 of γ
(0)
± is p± and that:

p+ =
1 + u

2
, p− =

1− u

2
. (3.25)

Proof: By Taylor expansion and since ρ̄ = ρ̄+ + ρ̄−, we have:

1

h
∆Ψh

j (ρj, t) =
1

h

(

ρj − ρ̄(xj, t)
)

+ ∂x(ρ̄+ − ρ̄−)(xj, t) + o(h), (3.26)

Inserting this expansion into (3.14) and using the mean field assumption for rates (As-
sumption 3.2), we have

( ∂

∂t
fh − ∂ρ

(

∂x(ρ̄+ − ρ̄−) f
h
)

)

(x, z, ρ, t) =
1

h
∂ρ

(

(

ρ− ρ̄(x, t)
)

fh
)

(x, z, ρ, t)

+γ̄(x,−z, ρ, t)fh(x,−z, ρ, t)− γ̄(x, z, ρ, t)fh(x, z, ρ, t) + o(h). (3.27)

Now, multiplying (3.27) by ρ and integrating with respect to ρ ∈ R+ fixing z to the values
z = +1 and z = −1 successively, we get:

( ∂

∂t
ρ̄h+ + ph+

(

∂x(ρ̄+ − ρ̄−)
)

)

(x, t) = −1

h

(

ρ̄h+ − ph+ρ̄
)

(x, t)

+
(

γ
(1)
− ρ̄h− − γ

(1)
+ ρ̄h+

)

(x, t) + o(h),
( ∂

∂t
ρ̄h− + ph−

(

∂x(ρ̄+ − ρ̄−)
)

)

(x, t) = −1

h

(

ρ̄h− − ph−ρ̄
)

(x, t)

+
(

γ
(1)
+ ρ̄h+ − γ

(1)
− ρ̄h−

)

(x, t) + o(h).
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Adding and subtracting these two equations, we get:

( ∂

∂t
ρ̄h + ∂x(ρ̄+ − ρ̄−)

)

(x, t) = o(h), (3.28)

( ∂

∂t
(ρ̄h+ − ρ̄h−) + (ph+ − ph−)

(

∂x(ρ̄+ − ρ̄−)
)

)

(x, t) = −1

h

(

ρ̄h+ − ρ̄h− − (ph+ − ph−)ρ̄
)

(x, t)

+2
(

γ
(1)
− ρ̄h− − γ̄

(1)
+ ρ̄h+

)

(x, t) + o(h), (3.29)

Now, letting h → 0 in (3.29), leads to

ρ̄+ − ρ̄− = (p+ − p−)ρ̄ = uρ̄

and inserting it into (3.28) leads to the conservation equation (3.21).
Now, multiplying (3.27) by 1, integrating with respect to ρ ∈ R+ fixing z to the value

z = 1 and letting h → 0, we get:

∂

∂t
p+(x, t) =

(

γ
(0)
− p− − γ

(0)
+ p+

)

(x, t) + o(h).

Now, using that p− = 1− p+, simple algebraic manipulations lead to (3.22). Finally, eqs.
(3.25) are obvious from what precedes. This ends the proof.

So far, system (3.21), (3.22) is not closed because we are lacking a simple expression

of γ
(0)
± in terms of ρ̄ and u. In the next section, we provide such a closure relation by

taking the limit h → 0 in the kinetic equation (3.27).

3.5 Local Equilibrium closure and macroscopic model

We now consider (3.27) and let h → 0 in it. We have the following:

Lemma 3.8 Let f = limh→0 f
h. Then, f is written

f(x, 1, ρ, t) = p+(x, t) δ(ρ− ρ̄(x, t)), f(x,−1, ρ, t) = p−(x, t) δ(ρ− ρ̄(x, t)), (3.30)

where p± and ρ̄ are the moments defined at Definition 3.4. This leads to the following

expression of γ
(0)
± :

γ
(0)
± (x, t) =

1

p±(x, t)
γ̄(x,±1, ρ̄(x, t), t). (3.31)

Proof: Taking h → 0 in (3.27), we are led to the fact that f satisfies:

∂ρ

(

(

ρ− ρ̄
)

f
)

= 0,

which implies, since f must be a positive measure, that

f(x, z, ρ, t) = p(x, z, t)δ(ρ− ρ̄(x, t)), (3.32)
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with a convenient p(x, z, t). Additionally, if we focus on the leading order term, we can
consider the simplified problem:

∂

∂t
fh − 1

h
∂ρ

(

(

ρ− ρ̄
)

fh
)

= 0,

This is a first order partial differential equation which can be solved by characteristics.
We denote by ρ(t) an arbitrary characteristics. It is obtained by solving the equation.

ρ̇(t) = −1

h

(

ρ− ρ̄
)

,

Its solution converges in exponential time with time-scale O(h) towards the fixed point
ρ̄. Therefore, fh itself converges in exponential time towards a distribution of the form
(3.32). Now, by taking the moments of (3.32), we realize that the LE has necessarily the
form (3.30). Inserting this expression into (3.24) (with k = 0) leads to (3.31).

This lemma completes the proof of Theorem 3.2.

4 Example: a model for pedestrian flow in corridors

Here, we are interested in pedestrian dynamics within a corridor. We assume that the
corridor is decomposed into small stretches (the cells) and that within a given cell, the
flow of pedestrians is either left or right-going. The orientation of the flow in this cell is
described by the variable znj (znj = +1 if the flow is right-going, and znj = −1 if the flow
is left-going). The orientation of the flow is controlled by which of these two flows is the
largest. If the right-going flux is larger than the left-going one, then the probability that
the state of the cell is given by z = +1 increases, i.e. if the state is already z = +1, it
will have a larger probability to stay at this value, while if the state is originally z = −1,
the probability for a state-change to the value z = +1 increases.

To model this rule, we assume that the rate of change for cell j at time tn can be given
by

γn
j := γj(z

n
j , ẑ

n
j , ρ

n) = γ0 + b|znj − 〈z〉nj |α (4.1)

where

〈z〉nj =

1
N

N
∑

i=1

zni w
(

i−j

N

)

π(ρni )

1
N

N
∑

i=1

w
(

i−j

N

)

π(ρni )

. (4.2)

The coefficients γ0 and b are supposed to be non–negative (and might as well depend on
j and n). We assume that α ≥ 0 and that the density-sensing function π is supposed to
be monotone increasing with π(0) = 0. The weight w : [0, 1] → R+ is a smooth function.
We note that, because znj = ±1, −1 ≤ 〈z〉nj ≤ 1.

The rationale for (4.1), (4.2) is as follows. The quantity 〈z〉nj describes the state of
the given cell and the neighbouring ones, defined by those which are in the support of the
function w. This average weights the cells with a large density more strongly than those
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with a low density thanks to the density-sensing function π. Now, the probability for a
cell-state change is decreased if the actual state variable znj is close to the average 〈z〉nj ,
while it incerases if the distance to the average 〈z〉nj increases. This increase is linear if
α = 1 and super-linear if α > 1. A super-linear increase triggers self-organization as we
will see below, while a linear increase does not. In addition to cell-state changes due to
pedestrians interaction as just described, we add a certain level of fluctuations described
by a constant rate of cell-state changes equal to γ0. Many modeling choices for the kernel
w can be envisioned. For instance, a symmetric weighting function w parameterized by a
sensing radius r > 0 of the form:

w(x) = wr(x) =
1√
π r

exp(−x2

r2
), (4.3)

can be chosen. Here, r is kept fixed and O(1).
In this example, we verify the mean-field assumption for the rates (Assumption 3.2),

as shown in the following:

Lemma 4.1 In the limit h → 0, we formally have γ̄h(xj, z, ρ, t) → γ̄(xj, z, t) with

γ̄(x, z, t) = γ0 + b

∣

∣

∣

∣

∣

z −
∑

ζ=±1

∫

(y,ξ)∈[0,1]×R+
ζ w(y − x) π(ξ) f(y, ζ, ξ, t) dξ dy

∑

ζ=±1

∫

(y,ξ)∈[0,1]×R+
w(y − x) π(ξ) f(y, ζ, ξ, t) dξ dy

∣

∣

∣

∣

∣

α

.

(4.4)

In particular, γ̄(x, z, t) does not depend on ρ.

Proof: Formula (3.4) can be written as

γ̄h(xj, zj , ρj, t) =

=
∑

ẑj∈{−1,1}N−1

∫

(x̂j ,ρ̂j)∈([0,1]×R+)N−1

(

γ0 + b
∣

∣

∣
zj −

1
N

∑N

i=1 zi w
(

xi − xj

)

π(ρi)
1
N

∑N

i=1 w
(

xi − xj

)

π(ρi)

∣

∣

∣

α)

×

N
∏

k=1,k 6=j

fh(xk, zk, ρk, t) dx̂j dρ̂j

The numerator and denominator of the fraction inside the integral are mean values of the
functions (y, ζ, ξ) ∈ [0, 1]× {−1, 1} ×R+ → ζ w(y− x) π(ξ) and (y, ζ, ξ) → w(y− x) π(ξ)
respectively, over N − 1 independent identically distributed random variables (xi, zi, ρi)
drawn according to the probability distribution f = limh→0 f

h. Therefore, for largeN , they
converge to the average value of these functions respectively, which make the numerator
and denominator of (4.4). Then by formal manipulation, we deduce (4.4). The proof of
this result, which requires the central limit theorem is outside the scope of this paper.

Within this example, Theorem 3.2 holds true with u = p+ − p− and

γ̃+(x, t) = γ0 + b
∣

∣ 1− 〈u〉(x, t)
∣

∣

α
, γ̃−(x, t) = γ0 + b

∣

∣ − 1− 〈u〉(x, t)
∣

∣

α
, (4.5)

〈u〉(x, t) =
∫

y∈[0,1] w(y − x) π(ρ̄(y, t)) u(y, t) dy
∫

y∈[0,1] w(y − x) π(ρ̄(y, t)) dy
. (4.6)
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In the case α = 2, we note that γt = 2(γ0 + b(1 + 〈u〉2)) and ucoll =
2b〈u〉

γ0+b(1+〈u〉2) . If we
restrict ourselves to spatially homegeneous solutions, then ρ̄ is uniform and constant and
〈u〉 = u only depends on time. Furthermore, 〈u〉 is independent of π. Then, inserting this
into (4.5) leads to the third order differential equation:

∂tu = 2bu
[

1− γ0
b
− u2

]

. (4.7)

The parameter γ0/b, which describes the ratio of the noise to consensus force can be
seen as a bifurcation parameter for this Ordinary Differential Equation. This ODE has
a pitchfork bifurcation with critical point γ0/b = 1. Indeed, the equilibrium solutions of
this equation when t → ∞ are u∞ = 0 or u2

∞ = b−γ0
b

. Therefore, if γ0 > b, u∞ = 0
is the only stationary equilibrium and it can be seen that it is a stable one (the right-
hand side of (4.7) has opposite sign to u). By contrast if γ0 < b, two other stationary

equilibria exist: u∞ = ±
√
b−γ0√
b

. Then, it is readily seen by inspection of (4.7) that the

equilibrium u∞ = 0 is unstable while the two equilibria u∞ = ±
√
b−γ0√
b

are stable. In this
case, the stable equilibrium describes the formation of a consensus about one direction of
motion. This consensus is obeyed by all the more people that the random state-change
frequency γ0 is close to 0. This analysis shows that there exists a phase transition from
disordered to ordered motion when b (which describes the consensus force) crosses γ0.
The bifurcation diagram is shown in Fig. 1 (left). The upper half of the curve (which
provides the order parameter |u∞| versus the noise level γ0/b) can be regarded as the
standard phase-transition diagram. In this case, this diagram indicates a second-order
(or continuous) phase-transition with critical exponent 1/2.

u∞ = −
(

1− γ0

b

)1/2

1

u∞ =
(

1− γ0

b

)1/2

u∞

γ0

b

−1

+1

( γ0

b

)

c

γ0

b

−1

+1

( γ0

b

)

s

u∞

Figure 1: Left: pitchfork bifurcation diagram for the stationary equilibrium solution u∞
for α = 2. Right: sub-critical pitchfork bifurcation diagram for the stationary equilibrium
solution u∞ for α > 6. The arrows highlight the hysteresis loop.

By contrast, in the case α = 1, we find γ̄t = 2(γ0 + b) and ucoll =
b〈u〉
γ0+b

. If a spatially
homogeneous solution is sought, it is given by

∂tu = −2γ0u. (4.8)

Then, the stationary equilibrium solution u∞ = 0 is the only solution. There is no
possibility of ordered motion. The motion stays disordered whatever the value of the
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consensus force b is. Therefore, an exponent strictly larger than 1 is necessary for the
appearance of consensus.

In the case α ≥ 1 and for spatially homogeneous problems, a general formulation of
the equation for u is available as follows:

∂tu = 2bu
[

− γ0
b
+ (1− u2)

(1 + u)α−1 − (1− u)α−1

2u

]

. (4.9)

We recover (4.8) and (4.7) in the cases α = 1 and α = 2 respectively. For integers
α = 3 up to α = 5, the behavior is the same as for α = 2 with the critical point becoming
(γ0/b)c = α−1. For integers α > 6, there is another critical point (γ0/b)s > (γ0/b)c = α−1
and the bifurcation diagram shows a sub-critical pitchfork bifurcation as depicted in Fig.
1 (right). Arrows in Fig. 1 (right) indicate the existence of a hysteresis loop. As before,
the upper half of this diagram provides the phase-transition diagram giving the order
parameter |u∞| as a function of the noise level γ0/b. In this case, this diagram indicates
a first-order (or discontinuous) phase-transition as shown by the occurrence of a jump at
the value (γ0/b)s.

5 Networks

5.1 Graph framework

The goal of this section is to extend the previous CA and its associated mean-field and
hydrodynamic limits to more general network topologies. We consider a network as a
graph (J ,A) where A is the set of graph edges and J = {1, . . . , J} is the set of graph
nodes. We denote by J = CardJ . We define the adjacency matrix (ajk)j,k∈J , i.e., the
matrix such that ajk = akj = 1 when node j is connected to node k and 0 otherwise.
We assume that the nodes are not connected to themselves ajj = 0. We denote by dj the
degree of node j, i.e. dj =

∑

k∈J ajk. We assume that the graph is connected, i.e. for any
pair of nodes (j, k), with k 6= j, there exists a path withing the graph which connects j
and k. For each node j, we define the set Nj of nodes connected to it, i.e.

Nj = {k ∈ J | ajk = 1},
with CardNj = dj.

Each node j ∈ J contains the density ρj ≥ 0 of the sweeping quantity. Indeed,
this quantity is able to sweep from node j to any other (directly) connected node k (i.e.
such that ajk = 1). We assume that the whole quantity ρj sweeps entirely to one of the
neighboring nodes. Of course, a more complex model can be envisionned but we wish
to keep the setting as simple as possible for this presentation. We denote by Ψn

jk the
outgoing flux from j to k at time tn. Each node carries the index of the neighboring node
to which it sweeps zj ∈ Nj. Then, the outgoing flow (counted algebraically) from j to k,
denoted by Ψn

jk is given by
Ψn

jk = ρnj δzj k − ρnkδzk j, (5.1)

where δij is the Kronecker index: δij = 1 if i = j and 0 otherwise. The convention is that
the flux between j and k is positive when it is outgoing from j and negative when it is
incoming. With this convention, we have Ψn

kj = −Ψn
jk.
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Now, node j changes state according to a Poisson process with rate γn
j depending on

the states and densities of the nodes in the vicinity of j. Within a given time interval ∆t
the probability to change the state of node j is 1 − exp

(

− γn
j ∆t

)

, and the change from
state zj to any other state z′j ∈ Nj \ {zj} occurs with uniform probability. This means:

zn+1
j =

{

znj with probability e−γn
j ∆t,

z′j ∈ Nj \ {zj} uniformly in Nj \ {znj } each with probability 1−e
−γnj ∆t

dj−1
.

(5.2)

Given some initial data z0j and ρ0j for j ∈ J , the discrete time update algorithm for ρnj is
given at any discrete time index n ∈ N by:

ρn+1
j = ρnj − J∆t

∑

k∈Nj

Ψn
jk. (5.3)

Remark 5.1 In the one-dimensional case of section 2, the vertices of the graph are the
centers of the cells.

Now, we have the following proposition, which shows that the total number of particles
is conserved:

Proposition 5.1 (i) The total number of particles is conserved, i.e.

∑

j∈J
ρnj =

∑

j∈J
ρ0j .

(ii) (Positivity preservation) Introduce d = maxj∈J dj the maximal degree of the nodes.
Suppose that the CFL condition J∆t ≤ 1

d
is satisfied. Then, we have

ρnj ≥ 0, ∀j ∈ J =⇒ ρn+1
j ≥ 0, ∀j ∈ J . (5.4)

Proof. The proof of (i) follows immediately from the antisymmetry of the flux Ψn
jk. To

prove (ii), we notice that when Ψn
jk > 0, it takes the value ρnj and when Ψn

jk < 0, it takes
the value −ρnk . Then, we have

ρn+1
j = ρnj − J∆t

(

∑

k∈Nj ,Ψn
jk>0

ρnj −
∑

k∈Nj ,Ψn
jk<0

ρnk

)

= ρnj

(

1− J∆t
∑

k∈Nj ,Ψn
jk>0

1
)

+ J∆t
∑

k∈Nj ,Ψn
jk<0

ρnk

Now, since
∑

k∈Nj ,Ψn
jk>0 1 ≤ dj, the first term is nonnegative under the CFL condition.

The second term is nonnegative by assumption. This ends the proof.
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5.2 A simple cellular automaton on networks

Again, like in section 2.2, we first consider the case where the rates γn
j are independent

of the node-densities (ρnj )j∈J . Then, the node-densities can be ignored. The random
variables consist of the node states zj for j ∈ J and the discrete state-space is given by
ΣJ =

∏

j∈J Nj. We denote by ~z = (zj)j∈J an element of ΣJ . A measure φ on ΣJ is
defined like in section 2.2 by

〈φ, ϕ〉ΣJ :=
∑

~z∈ΣJ

φ(~z)ϕ(~z). (5.5)

The probability distribution function (pdf) of ~z at time tn is still denoted by Fn(~z). Let
ϕ be a smooth test function on ΣJ with values in R. As before, the expectation of the
random variable ϕ(~zn) for all realizations of ~zn with distribution Fn is given by (2.6)
(with N replaced by J). We define the Markov transition operator Q from state ~zn to
~zn+1 by (2.7) and we get (2.8) (again with N replaced by J). In the limit J∆t → 0, with
nJ∆t → t, we have Fn(~z) → F(~z, t) where F(~z, t) satisfies the time-continuous master
equation (2.9) associated to the adjoint operator Q∗ to Q. It is written

∂F
∂t

(~z, t) = L∗F(~z, t), (5.6)

with

L∗ = lim
J∆t→0

1

J∆t
(Q∗ − Id) and Qϕ(~z) = E

{

ϕ(~zn+1)
∣

∣ ~zn = ~z
}

. (5.7)

We write the master equation explictly in the next proposition:

Proposition 5.2 The master equation for the time-continuous version of the CA de-
scribed above when the rates γj are independent of the node-densities (ρj)j∈J is given
by

∂

∂t
F(~z, t) =

1

J

∑

j∈J

1

dj − 1

∑

z′j∈Nj\{zj}

(

γj(z
′
j, ẑj)F(z′j, ẑj, t)− γj(zj, ẑj)F(zj, ẑj , t)

)

, (5.8)

where we denote by ẑj the vector of length J − 1 collecting all node states but that cor-
responding to node j and by (z′j, ẑj) a state vector where the state of the j-th node is
z′j ∈ Nj \ {zj} and the states of the other nodes are given by ẑj.

This equation has a similar form and meaning as (2.10) (except that now more than 2
nodes may be connected to a given node) and we refer to the paragraph following Prop.
2.1 for its interpretation.

Proof of Prop. 5.2. The proof follows the same strategy as that of Prop. 2.1. Let ϕ
be a smooth test function. Again the probability that a given k-tuple of cells switch states
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is O
(

(J∆t)k
)

. Therefore, the probability that there are strictly more than one change is
O
(

(J∆t)2
)

while that of only one change is O(J∆t). This leads to:

〈(Q∗ − Id)Fn, ϕ〉ΣJ = E
{

E
{

ϕ(~zn+1)− ϕ(~zn)
∣

∣ ~zn
}

~zn
}

=
〈

Fn(~z) ,
∑

j∈J

1

dj − 1

∑

z′j∈Nj\{zj}

(

ϕ(z′j, ẑj) − ϕ(zj, ẑj)
)

(1− e−γj(zj ,ẑj)∆t)
∏

i 6=j

e−γi(zj ,ẑj)∆t
〉

ΣJ
+ O

(

(J∆t)2
)

Using (5.5), Taylor expansion when J∆t ≪ 1 and the fact that the restriction to Nj \{zj}
in the second sum can be removed since the added term is simply zero, we get:

〈(Q∗ − Id)Fn, ϕ〉ΣJ = ∆t
∑

~z∈ΣJ

∑

j∈J

1

dj − 1

∑

z′j∈Nj

(

ϕ(z′j, ẑj) − ϕ(zj, ẑj)
)

γj(zj, ẑj) Fn(zj, ẑj) + O
(

(J∆t2)
)

.

Now, pulling the summation over j out and decomposing the summation over ~z in a
summation over ẑj and a summation over zj, we get:

〈(Q∗ − Id)Fn, ϕ〉ΣJ = ∆t
∑

j∈J

1

dj − 1

∑

ẑj∈ΣJ\{j}

∑

zj∈Nj

∑

z′j∈Nj

(

ϕ(z′j, ẑj) − ϕ(zj, ẑj)
)

γj(zj, ẑj) Fn(zj, ẑj) + O
(

(J∆t2)
)

.

We can now exchange zj and z′j in the first term and obtain:

〈(Q∗ − Id)Fn, ϕ〉ΣJ = ∆t
∑

j∈J

1

dj − 1

∑

ẑj∈ΣJ\{j}

∑

zj∈Nj

∑

z′j∈Nj

ϕ(zj, ẑj)

(

γj(z
′
j, ẑj) Fn(z′j, ẑj) − γj(zj, ẑj) Fn(zj, ẑj)

)

+ O
(

(J∆t2)
)

.

Collecting the summation over ẑj and over zj into a summation over ~z, pulling this
summation out and using again (5.5), we finally find:

〈(Q∗ − Id)Fn, ϕ〉ΣJ

= ∆t
〈

∑

j∈J

1

dj − 1

∑

z′j∈Nj

(

γj(z
′
j, ẑj) Fn(z′j, ẑj) − γj(zj, ẑj) Fn(zj, ẑj)

)

, ϕ(~z)
〉

ΣJ

+O
(

(J∆t2)
)

.

which ends the proof.

In the next section, we consider the case where the rates γn
j depend on the node-

densities (ρnj )j∈J .
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5.3 The master equation for the sweeping process on networks

We now consider the full sweeping process on the network as described above. The random
variables are now the node states ~z ∈ ΣJ and the node densities ~ρ = (ρj)j∈J with ρj ∈ R+.
The discrete state space for J nodes is therefore A

J = ΣJ × R
J
+. A measure φ on A

J is
defined by its action on a continuous function ϕ on A

J by:

〈φ, ϕ〉AJ =
∑

~z∈ΣJ

∫

RJ
+

φ(~z, ~ρ)ϕ(~z, ~ρ) d~ρ.

We also denote γj = γj(~z, ~ρ) and ~Ξn = (ξnj )j∈J , with

ξnj =
∑

k∈Nj

Ψn
jk.

Then, the vector version of the density update is

~ρn+1 − ~ρn + J∆t ~Ξn = 0. (5.9)

In the limit J∆t → 0, we have the following proposition, whose proof is identical to that
of Proposition 2.2 and is left to the reader.

Proposition 5.3 The master equation for the time-continuous version of the sweeping
process described above when the rates γj depend on both the node-states ~z and densities
~ρ is given by
( ∂

∂t
F −∇~ρ ·

(

~ΞF
)

)

(~z, ~ρ, t)

=
1

J

∑

j∈J

1

dj − 1

∑

z′j∈Nj\{zj}

(

γj(z
′
j, ẑj, ~ρ)F(z′j, ẑj , ~ρ, t)− γj(zj, ẑj , ~ρ)F(zj, ẑj, ~ρ, t)

)

, (5.10)

in strong form or

〈∂F
∂t

, ϕ〉AJ = −〈F ,∇~ρϕ · ~Ξ 〉AJ

+
〈

F(~z) ,
1

J

∑

j∈J

1

dj − 1
γj(zj, ẑj , ~ρ)

∑

z′j∈Nj

(

ϕ(z′j, ẑj, ~ρ) − ϕ(zj, ẑj , ~ρ)
) 〉

AJ , (5.11)

for any smooth test function ϕ on A
J with values in R, in weak form, where we recall that

~Ξ = (ξj)j∈J , with ξj =
∑

k∈Nj

Ψjk, (5.12)

Ψjk = ρjδzj k − ρkδzk j. (5.13)

We have noted ∇~ρϕ ·~g =
∑

j∈J gj∂ρjϕ and ∇~ρ ·~g ϕ = ϕ
∑

j∈J ∂ρjgj for any functions ϕ(~ρ)
and ~g(~ρ) = (gj(~ρ))j∈J .

Again, the form and meaning of (5.10) is the same as that of (2.13) and we refer to the
paragraph following Prop. 2.2 for its interpretation. The only remark worth being made
is that now, the total flux ξj at node j does not take the form of a simple difference of
neighboring fluxes, like in (2.13), but has the more complex expression (5.12). However,

it is readily seen that this expression reduces to ~Ψ+ − ~Ψ− in the one-dimensional case.
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5.4 Single particle closure for networks

The goal of this section is again to compute a closed system of equations for the one-
particle marginals of F(~z, ~ρ, t). We define the marginals according to:

Definition 5.4 For any j ∈ J , we define the marginal density fj on A by duality by

〈fj(zj, ρj, t), ϕj(zj, ρj)〉AJ = 〈F(zj, ẑj , ρj, ρ̂j , t), ϕj(zj, ρj)〉AJ , (5.14)

where ρ̂j is a J − 1-dimensional vector collecting all ρm for m ∈ J , with m 6= j, and with
any test function ϕj(zj, ρj) of the single variables (zj, ρj). Equivalently, we have:

fj(zj, ρj , t) = 〈F(zj, ẑj , ρj, ρ̂j, t), 1〉Âj
, (5.15)

where 〈·, ·〉
Âj

denotes the duality between measures and functions of the variables (ẑj, ρ̂j)

in A
J−1 (and A

J−1 is denoted by Âj when such a duality is considered).

To get an equation for fj, we use the master equation in weak form (5.11) with a test
function ϕj(zj, ρj) of the single variables (zj, ρj). The resulting equation is given by the
following proposition:

Proposition 5.5 Define:

ξj(t) fj(t) := 〈F(t), ξj〉Âj
, (5.16)

γ̄j(t) fj(t) := 〈F(t), γj〉Âj
. (5.17)

The functions ξj(t) and γ̄j(t) are functions of (zj, ρj) only. Then, the equation for the
marginal fj is written in weak form:

〈∂fj
∂t

, ϕj〉Aj
= −〈fj, ξj(t) ∂ρjϕj 〉Aj

+
1

J

1

dj − 1
〈 fj, γ̄j(zj, ρj, t)

∑

z′j∈Nj

(

ϕj(z
′
j, ρj)− ϕj(zj, ρj)

) 〉

Aj
, (5.18)

where Aj = Nj × R+, and in strong form

( ∂

∂t
fj − ∂ρj

(

ξj(t) fj
)

)

(zj, ρj , t)

=
1

J

1

dj − 1

∑

z′j∈Nj

(

γ̄j(z
′
j, ρj , t)fj(z

′
j, ρj , t)− γ̄j(zj, ρj, t)fj(zj, ρj, t)

)

. (5.19)

We now make the propagation of chaos assumption, which in the network framework
reads as follows:
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Assumption 5.1 We assume that the joint pdf F(~z, ~ρ, t) is written as:

F(~z, ~ρ, t) =
∏

j∈J
fj(zj, ρj , t). (5.20)

With this assumption, we can simplify the expressions of the flux (5.16). We have the
following:

Lemma 5.6 Under the chaos assumption (Assumption 5.1), the flux (5.16) is given by:

ξj(zj, ρj, t) = ρj −
∑

k∈Nj

∫ ∞

0

ρk fk(j, ρk, t) dρk (5.21)

Proof. From equation (5.16), we have

ξj(zj, ρj, t) fj(zj, ρj, t) = 〈
∏

ℓ∈J
fℓ(zℓ, ρℓ, t), ξj〉Âj

,

Inserting (5.12), (5.13) into this equation leads to

ξj(zj, ρj, t) = 〈
∏

ℓ∈J , ℓ6=j

fℓ(zℓ, ρℓ, t),
∑

k∈Nj

(ρjδzj k − ρkδzk j)〉Âj
.

Interchanging the summation over k and over Âj, we get:

ξj(zj, ρj , t) =
∑

k∈Nj

〈
∏

ℓ∈J , ℓ6=j

fℓ(zℓ, ρℓ, t), (ρjδzj k − ρkδzk j)〉Âj
. (5.22)

The term ρjδzj k only depends on the state of the j-th node. Therefore, it can be

taken out of the bracket over Âj. There remains 〈∏ℓ∈J , fℓ(zℓ, ρℓ, t), 1〉Âj
which is equal to

1 because each fℓ is a probability density. Therefore, the positive term at the right-hand
side of (5.22) reduces to ρj

∑

k∈Nj
δzj k. Since, there is only one node k ∈ Nj such that

the state zj of node j is equal to k, we have
∑

k∈Nj
δzj k = 1. Finally, the production term

reduces to ρj.
The expression of the negative term at the right-hand side of (5.22), follows from the

fact that
∑

k∈Nj

〈
∏

ℓ∈J , ℓ6=j

fℓ(zℓ, ρℓ, t), ρkδzk j〉Âj
=

=
∑

k∈Nj

∑

ẑj∈ΣJ−1

∫

ρ̂j∈RJ−1
+

ρkδzkj
∏

ℓ6=j,ℓ∈J
fℓ(zℓ, ρℓ, t) dρ̂j

In the previous formula, only the sum over zk and integral over ρk is different from 1
because again, each fℓ is a probability on the state space (zℓ, ρℓ). Now, because of the
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muliplication by δzkj, the sum over zk has only one non-zero contribution, that corre-
sponding to zk = j. The resulting value of the sink term is therefore equal to

∑

k∈Nj

〈
∏

ℓ∈J , ℓ6=j

fℓ(zℓ, ρℓ, t), ρkδzk j〉Âj
=

∑

k∈Nj

∫

ρk∈R+

ρk fk(j, ρk, t) dρk

Collecting the calculations of the production and sink terms, we are led to (5.21), which
ends the proof.

Now collecting the results of Proposition 5.5 and Lemma 5.6, we can state the following
theorem:

Theorem 5.7 Under the closure assumption (5.20), the equation for the marginal fj is
written in weak form:

〈∂fj
∂t

, ϕj〉Aj
= −〈fj,

(

ρj −
∑

k∈Nj

∫ ∞

0

ρk fk(j, ρk, t) dρk
)

∂ρjϕj 〉Aj

+
1

J

1

dj − 1
〈 fj, γ̄j(zj, ρj, t)

∑

z′j∈Nj

(

ϕj(z
′
j, ρj)− ϕj(zj, ρj)

) 〉

Aj
, (5.23)

where Aj = Nj × R+, and in strong form

( ∂

∂t
fj − ∂ρj

((

ρj −
∑

k∈Nj

∫ ∞

0

ρk fk(j, ρk, t) dρk
)

fj
)

)

(zj, ρj , t)

=
1

J

1

dj − 1

∑

z′j∈Nj

(

γ̄j(z
′
j, ρj , t)fj(z

′
j, ρj , t)− γ̄j(zj, ρj, t)fj(zj, ρj, t)

)

. (5.24)

Here, γ̄j(zj, ρj , t) is given by

γ̄j(t) = 〈
∏

ℓ∈J , ℓ6=j

fℓ(zℓ, ρℓ, t), γj〉Âj
. (5.25)

Eq. (5.24) provides the evolution of the 1-node pdf in the phase space consisting of
the j-th cell state space Nj for zj and the density space R+ for ρj. It takes the form of a
transport equation in the ρj variable (the left-hand side), with a collision term describing
the rate of change of the j-th cell states zj (the right-hand side). The collision operator
has a similar form and meaning as the right-hand side of Eq. (2.10) or (5.8) (but for the
passage from the J-node pdf to the 1-node pdf) and we refer to the paragraph following
Prop. 2.1 for its interpretation. The interesting feature in (5.24) is the transport operator.
Indeed, the flux term (inside the ∂ρj derivative) in the j-th cell pdf is given in terms of the
average density in neighboring cells. This average density is obtained through integrating
the neighboring cell pdf fk over the density variable ρk. Therefore, the various pdf are
coupled altogether by this flux term in an integral fashion. To some extent, this coupling
resembles a mean-field coupling like in Vlasov-type models. Another source of coupling
of the various 1-cell pdf is through the evaluation of the switching rates γ̄j, which depend
on the pdf of some of the neighboring cells through the mean-field evaluation (5.25).
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6 Summary and perspectives

We present a derivation of macroscopic equations for the large–time behavior of micro-
scopic sweeping processes coupled to density evolutions. Within the derivation a general
master equation is considered and under a meanfield assumption kinetic equations are de-
rived. We applied the general calculus to an example of pedestrian flow in small corridors.
An extension of the ideas towards flows on networks has also been presented.

In future work we discuss equations arising from a Chapman–Enskog like expansion for
the cell-width going to zero. Further, it would be interesting to analyze a Taylor expan-
sion of the rate equation (4.4) for strongly confined kernels w. Another open problem is
the combination of the meanfield assumption and kernel localized within a finite number
of cells (such as e.g. a nearest neighbor interaction) leading to possibly correlated particle
distributions. Physically more sophisticated CA may be envisionned. For instance, we
could introduce different particle densities for left and right going particles, and accord-
ing to the state of the cell, move one of the population while the other population stays
immobile. Other improvements would consist of taking into account finite network ca-
pacity or more generally, more complex rules for the computation of the switching rates.
For instance, time delays could be introduced to model the finiteness of the information
propagation speed. Finally, the hypotheses made here, i.e. propagation of chaos and
mean-field limit need to be validated by intensive numerical simulations.
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