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Abstract

We present a comparison between hybridized and non-hybridized discontin-

uous Galerkin methods in the context of target-based hp-adaptation. Using

a discrete-adjoint approach, sensitivities with respect to output functionals

are computed to drive the adaptation. From the error distribution given

by the adjoint-based error estimator, h- or p-refinement is chosen based on

the smoothness of the solution which can be quantified by properly-chosen

smoothness indicators. Numerical results are shown for inviscid subsonic and
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1. Introduction

During the last years, discontinuous Galerkin (DG) methods (see, e.g.,

[5, 9, 1]) have become increasingly popular. This is indisputably due to their

advantages — high-order accuracy on unstructured meshes, a variational

setting, and local conservation, just to name a few.

However, the use of discontinuous function spaces is at the same time

the reason for a major disadvantage: unlike in continuous Galerkin (CG)

methods, degrees of freedom are not shared between elements. As a conse-

quence, the number of unknowns is substantially higher compared to a CG

discretization. Especially for implicit time discretization this imposes large

memory requirements, and potentially leads to increased time-to-solution.

In order to avoid these disadvantages, a technique called hybridization

may be utilized (see [11, 8, 10, 19, 18, 20]), resulting in hybridized discontin-

uous Galerkin (HDG) methods. Here, the globally coupled unknowns have

support on the mesh skeleton, i.e. the element interfaces, only. This reduces

the size of the global system and coincidentally improves the sparsity pattern.

However, aiming at industry applications, e.g. turbulent flow around

a complete airplane or within an aircraft engine, hybridization alone does

most likely not provide a sufficiently successful overall algorithm. In these

applications one is usually interested in certain quantities only, for example

lift or drag coefficients in aerospace, instead of the solution quality per se.

Thus, it might be beneficial to distribute the degrees of freedom within the

computational domain in such a way that the solution to the discretized

problem is close to optimal with respect to the accuracy of these quantities.

To achieve this goal, target-based error control methods have been developed
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(see [15, 24, 25, 13, 12]). One such method is based on the adjoint solution of

the original governing equations with respect to the target functional. In this

method, an additional linear system of partial differential equations is solved

which then gives an estimate on the spatial error distribution contributing to

the error in the target functional. This estimate can be used as a criterion for

local adaptation. Within the context of low order schemes, mesh refinement

is used for adaptation [24, 25]. Using DG (or HDG), however, offers the

additional possibility of varying the polynomial degree within each element.

For smooth solutions, this is more efficient compared to mesh refinement, as

it yields exponential convergence. Combining both methodologies results in

so-called hp-adaptation.

In [23], we presented a discretization method for nonlinear convection-

diffusion equations. The method is based on a discontinuous Galerkin dis-

cretization for convection terms, and a mixed method using H(div) spaces for

the diffusive terms. Furthermore, hybridization is used to reduce the number

of globally coupled degrees of freedom. Its adjoint consistency was shown in

[22]. In [27, 2], we extended our computational framework to include HDG

schemes, as well as adjoint-based h- and hp-adaptation. In the current paper,

we compare our HDG method with a standard DG method in the context

of hp-adaptation for stationary compressible flow, mainly with the aim to

assess the efficiency of both methods.

This paper is structured as follows. We briefly cover the governing equa-

tions, namely the compressible Euler and Navier-Stokes equations, in Sec. 2.

After that we introduce our discretization and describe the concept of hy-

bridization in Sec. 3. In Sec. 4 we establish the adjoint formulation and show
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how hybridization can be applied to the dual problem. Then we show its

efficiency and robustness with examples from compressible flow, including

inviscid subsonic and transonic, and subsonic laminar flow, in Sec. 5. Fi-

nally, we offer conclusions and outlook on future work in Sec. 6.

2. Governing Equations

We consider systems of partial differential equations

∇ · (fc(w)− fv(w,∇w)) = s (w,∇w) (1)

with convective and diffusive fluxes

fc : Rm → Rm×d and fv : Rm × Rm×d → Rm×d, (2)

respectively, and a state-dependent source term

s : Rm × Rm×d → Rm. (3)

(Potentially, some of these quantities could be zero.) We denote the spatial

dimension by d and the number of conservative variables by m. Boundary

conditions can be applied to the conservative variables w ∈ Rm and to the

diffusive flux fv.

2.1. Two-Dimensional Euler Equations

The Euler equations are comprised of the inviscid compressible continuity,

momentum and energy equations. They are given in conservative form as

∇ · fc(w) = 0 (4)
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with the vector of conserved variables

w = (ρ, ρu, ρv, E)T (5)

where ρ is the density, u and v are the components of the velocity vector

ŵ := (u, v)T , and E the total energy. The convective flux is given by

fc,1 =
(
ρu, p+ ρu2, ρuv, u(E + p)

)T
(6)

fc,2 =
(
ρv, ρuv, p+ ρv2, v(E + p)

)T
. (7)

Pressure is related to the conservative flow variables w by the equation

of state

p = (γ − 1)

(
E − 1

2
ρ
(
u2 + v2

))
(8)

where γ = cp/cv is the ratio of specific heats, generally taken as 1.4 for air.

Along wall boundaries we apply the slip boundary condition

U(w) = (u, v) · n = 0. (9)

We also define a boundary function which satisfies U(w∂Ω(w)) = 0 as

w∂Ω(w) =


1 0 0 0

0 1− n2
x −nxny 0

0 −nxny 1− n2
y 0

0 0 0 1

w. (10)

2.2. Two-Dimensional Navier-Stokes Equations

The Navier-Stokes equations in conservative form are given by

∇ · (fc(w)− fv(w,∇w)) = 0. (11)
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The convective part fc of the Navier-Stokes equations coincides with the

Euler equations. The viscous flux is given by

fv,1 = (0, τ11, τ21, τ11u+ τ12v + kTx)
T (12)

fv,2 = (0, τ12, τ22, τ21u+ τ22v + kTy)
T . (13)

The temperature is defined via the ideal gas law

T =
µγ

k · Pr

(
E

ρ
− 1

2

(
u2 + v2

))
=

1

(γ − 1)cv

p

ρ
(14)

where Pr = µcp
k

is the Prandtl number, which for air at moderate conditions

can be taken as a constant with a value of Pr ≈ 0.72. k denotes the thermal

conductivity coefficient. For a Newtonian fluid, the stress tensor is defined

as

τ = µ

(
∇ŵ + (∇ŵ)T − 2

3
(∇ · ŵ) Id

)
. (15)

The variation of the molecular viscosity µ as a function of temperature is

determined by Sutherland’s law as

µ =
C1T

3/2

T + C2

(16)

with C1 = 1.458× 10−6 kg

ms
√

K
and C2 = 110.4 K.

Along wall boundaries, we apply the no-slip boundary condition, i.e.

(u, v) = 0. (17)

with corresponding boundary function

w∂Ω(w) = (ρ, 0, 0, E)T (18)

Furthermore, one has to give boundary conditions for the temperature. In

the present work we use the adiabatic wall condition, i.e.

∇T · n = 0 (19)
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Combining both no-slip and adiabatic wall boundary conditions, gives a con-

dition for the viscous flux, namely

fv,∂Ω(fv) =

0 τ11 τ21 0

0 τ12 τ22 0

T

. (20)

3. Discretization

3.1. Notation

We tesselate the domain Ω into a collection of non-overlapping elements,

denoted by Th, such that
⋃
K∈Th K = Ω. For the element edges we consider

two different kinds of sets, ∂Th and Γh, which are element-oriented and edge-

oriented, respectively. The first is the collection of all element boundaries,

which means that every edge appears twice. The latter, however, includes

every edge just once. The reason for this distinction will become clear later.

Please note that neither of these sets shall include edges lying on the domain

boundary; the set of boundary edges is denoted by Γbh.

We denote by Πp(D) the set of polynomials of degree at most p on some

domain D. We will need discontinuous function spaces for the domain and

the mesh skeleton:

Vh = {v ∈ L2 (Ω) : v|K ∈ ΠpK (K), K ∈ Th}m×d (21)

Wh = {w ∈ L2 (Ω) : w|K ∈ ΠpK (K), K ∈ Th}m (22)

Mh = {µ ∈ L2 (Γh) : µ|e ∈ Πpe(e), e ∈ Γh}m. (23)

Thus, v ∈ Vh, w ∈ Wh and µ ∈ Mh are piecewise polynomials of degree

p which can be discontinuous across edges (for v, w) or vertices (for µ),

respectively.
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Usually, the polynomial degree between elements and interfaces does not

vary. If, however, two neighboring elements have different polynomial degrees

pK− and pK+ , the polynomial degree on the interface shared by both elements

is taken to be the higher one, i.e. pe = max {pK− , pK+}. This way, both

optimal order of consistency in each element and stability can be ensured.

We will distinguish between element-oriented inner products and edge-

oriented inner products

(v, w)Th =
∑
K∈Th

∫
K

vw dx,

〈v, w〉∂Th =
∑
K∈Th

∫
∂K

vw dσ, 〈v, w〉Γh
=
∑
e∈Γh

∫
e

vw dσ.

3.2. Weak Formulation

We can rewrite general convection-diffusion equations as a first-order sys-

tem by introducing an additional unknown representing the gradient of the

solution

q = ∇w

∇ · (fc (w)− fv (w, q)) = s (w, q) .

By multiplying the strong, mixed form with appropriate test functions

(τh, ϕh) ∈ Vh × Wh and integrating by parts, we obtain a standard DG

discretization in mixed form

0 = (τh, qh)Th + (∇ · τh, wh)Th − 〈τh · n, ŵ〉∂Th
− (∇ϕh, fc(wh)− fv(wh, qh))Th − (ϕh, s(wh, qh))Th +

〈
ϕh, f̂c − f̂v

〉
∂Th

+NDG
h,∂Ω (qh, wh; τh, ϕh)
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where the numerical trace ŵ and the numerical fluxes f̂c, f̂v have to be cho-

sen appropriately to define a stable and consistent method. Furthermore,

the boundary conditions, here denoted by NDG
h,∂Ω (qh, wh; τh, ϕh), have to be

discretized appropriately.

In contrast to a DG discretization, where the numerical trace ŵ is defined

explicitly in terms of wh and qh, it is treated as an additional unknown in an

HDG method. This additional unknown is called λh and has support on the

skeleton of the mesh only In order to close the system the continuity of the

numerical fluxes across edges is required in a weak sense, resulting in a third

equation.

The weak formulation of the hybrid system, comprised of equations for

the gradient qh, the solution itself wh and its trace on the mesh skeleton λh,

is then given by:

Find (qh, wh, λh) ∈ Xh := (Vh,Wh,Mh) s.t. ∀(τh, ϕh, µh) ∈ Xh

0 = Nh (qh, wh, λh; τh, ϕh, µh)

:= (τh, qh)Th + (∇ · τh, wh)Th − 〈τh · n, λh〉∂Th
− (∇ϕh, fc(wh)− fv(wh, qh))Th − (ϕh, s(wh, qh))Th +

〈
ϕh, f̂c − f̂v

〉
∂Th

+
〈
µh,

r
f̂c − f̂v

z〉
Γh

+Nh,∂Ω (qh, wh; τh, ϕh) .

Please note the use of ∂Th in the weak formulation of the mixed form, and

Γh in the last equation defining λh. This perfectly resembles the character of

these equations, being element- and edge-oriented, respectively. The terms

tested against τh and ϕh are called local solvers, meaning they do not depend

on the solution within neighboring elements but only on the trace of the

solution which is approximated by λh. The coupling between elements is
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then introduced by weakly enforcing the normal continuity of the numerical

fluxes across interfaces.

We choose numerical fluxes comparable to the Lax-Friedrich flux and to

the LDG flux for the convective and diffusive flux, respectively, i.e.

f̂c (λh, wh) = fc (λh) · n− αc (λh − wh) (24)

f̂v (λh, wh, qh) = fv (λh, qh) · n+ αv (λh − wh) (25)

The stabilization introduced can be given by a tensor; in our work, however,

we restrict ourselves to a constant scalar α = αc + αv which seems to be

sufficient for a wide range of test cases.

3.2.1. Boundary Conditions

In order to retrieve an adjoint-consistent scheme, special care has to be

taken when discretizing the boundary conditions (see Schütz and May [22]).

The boundary conditions have to be incorporated by using the boundary

states w∂Ω and boundary fluxes fv,∂Ω, i.e.

Nh,∂Ω (qh, wh; τh, ϕh) := 〈τh · n,w∂Ω (wh)〉Γb
h

+ 〈ϕh, (fc (w∂Ω (wh))− fv,∂Ω (fv (w∂Ω (wh) , qh))) · n〉Γb
h
.

We would like to emphasize that λh does not occur in this boundary term as

it is only defined on interior edges.

3.2.2. Shock-Capturing

In non-smooth parts of the solution, for example shocks in compressible

flows, a stabilization term has to be introduced. We use the shock-capturing

approach by Nguyen and Peraire [17] which is based on an artificial viscosity
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term incorporating the local dilatation of the flow. It is worth mentioning,

that we discretize the shock-capturing term, given by ∇ · (ε (w,∇w)∇w),

only with the volume integral contribution of the weak formulation (thus ne-

glecting the surface integral due to the integration by parts), i.e. we augment

the discretization with the term

Nh,sc (wh;ϕh) := − (∇ϕh, ε (wh,∇wh)∇wh)Th . (26)

In the viscous case, where the gradient is explicitly given, ∇wh can be re-

placed by qh yielding

Nh,sc (qh, wh;ϕh) := − (∇ϕh, ε (wh, qh) qh)Th . (27)

Please note, that this term enters only the local part of the discretization.

3.3. Relaxation

In order to solve the nonlinear system of equations that defines the HDG

method, the Newton-Raphson method is applied. Beginning with an initial

guess x0
h := (q0

h, w
0
h, λ

0
h), one iteratively solves the linear system

N ′h [xnh] (δxnh;yh) = −Nh (xnh;yh) ∀yh ∈ Xh (28)

and updates the solution as

xn+1
h = xnh + δxnh (29)

until the residual Nh (xnh;yh) has reached a certain threshold. Please note,

that we have grouped qh, wh and λh, and the test functions into xh :=

(qh, wh, λh) and yh := (τh, ϕh, µh), respectively. N ′h denotes the Fréchet

derivative of Nh with respect to xnh.
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This routine can, however, lead to stability problems if the starting value

x0
h is too far away from the solution xh. Therefore, an artificial time is

introduced and a backward Euler method is applied, which yields a slight

modification of the linear system given in Eq. (28), namely(
ϕh,

1

∆tn
δwnh

)
Th

+N ′h [xnh] (δxnh;yh) = −Nh (xnh;yh) . (30)

Please note that by choosing ∆tn →∞, a pure Newton-Raphson method is

obtained. Usually the time step is kept finite for a few initial steps to ensure

stability. As soon as the residual is lower than a certain threshold, i.e. the

current approximation xnh is thought to be sufficiently close to the solution

xh, we let the time step go towards infinity.

As we are interested in steady-state problems, we can use local time-

stepping in order to accelerate the computation. For each element, we apply

a time step based on a global CFL number, the element volume and an

approximation of the flux Jacobian’s spectral radius, i.e.

∆tnK = CFLn
|K|

λc + 4λv
. (31)

Here λc and λv represent approximations to the maximum eigenvalue of the

convective and diffusive flux, respectively (see Mavriplis and Jameson [16]).

3.4. Hybridization

Using an appropriate polynomial expansion for δqh, δwh and δλh, the

linearized global system is given in matrix form as
A B R

C D S

L M N



δQ

δW

δΛ

 =


F

G

H

 (32)
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where the vector [δQ, δW, δΛ]T contains the expansion coefficients of δxh with

respect to the chosen basis.

In order to carry on with the derivation of the hybridized method, we

want to formulate that system in terms of δΛ only. Therefore we split it into A B

C D

 δQ

δW

 =

 F

G

−
 R

S

 δΛ (33)

and [
L M

] δQ

δW

+NδΛ = H. (34)

Substituting Eq. (33) into Eq. (34) yields the hybridized systemN − [ L M
] A B

C D

−1  R

S

 δΛ = H−
[
L M

] A B

C D

−1  F

G


(35)

The workflow is as follows: First, the hybridized system is assembled and

then being solved for δΛ. Subsequently, δQ and δW can be reconstructed

inside the elements via Eq. (33). It is very important to note that it is not

necessary to solve the large system given by Eq. (33). In fact, the matrix

in Eq. (33) can be reordered to be block diagonal. Each of these blocks is

associated to one element. Thus, both the assembly of the hybridized matrix

in Eq. (35) and the reconstruction of δQ and δW can be done in an element-

wise fashion. In order to save computational time, the solutions to Eq. (33)

can be saved after the assembly of the hybridized system and reused during

the reconstruction of δQ and δW .

The hybridized matrix is a nf × nf block matrix, where nf = |Γh| is

the number of interior edges. In each block row there is one block on the
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diagonal and 2d off-diagonal blocks in the case of simplex elements. These

blocks represent the edges of the neighboring elements of one edge. Each

block is dense and has O
(
m2 · p2(d−1)

)
entries. Please recall that p is the

polynomial degree of the ansatz functions, d is the spatial dimension of the

domain Ω and m is the number of partial differential equations (m = 4 for

the 2-dimensional Euler or Navier-Stokes equations). This structure is very

similar to that of a normal DG discretization, whereas the blocks in the

latter have O
(
m2 · p2d

)
entries and thus are considerably bigger for higher

polynomial order p. The size of the system matrix does not only play a big

role in terms of memory consumption but also for the iterative solver. Here,

a major portion of the overall workload goes into matrix-vector products

which are of course faster, if the problem dimensions are smaller. In our

code we use an ILU(n)-preconditioned GMRES which is available through

the PETSc library [4, 3].

4. Adaptation Procedure

In the context of adjoint-based (also referred to as target- or output-

based) error estimation, one is interested in quantifying the error of a specific

target functional Jh : Xh → R, i.e.

eh := Jh (x)− Jh (xh) , (36)

where xh is the approximation to x in Xh. This target functional can for ex-

ample represent lift or drag coefficients in aerospace applications. In general,

the target functional is an integrated value, where integration can be both

on a volume or along the boundary. For the derivation of the adjoint-based
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error estimate we expand the target functional in a Taylor series as follows

Jh (x)− Jh (xh) = J ′h [xh] (x− xh) +O
(
‖x− xh‖2

)
. (37)

We proceed in a similar manner with the error in the residual, i.e.

Nh (x;yh)−Nh (xh;yh) = N ′h [xh] (x− xh;yh) +O
(
‖x− xh‖2

)
. (38)

As our discretization is consistent the first term Nh (x;yh) vanishes.

Substituting Eq. (38) into Eq. (37) and neglecting the quadratic terms

yields

eh ≈ η := −Nh (xh; zh) (39)

where zh is defined by the so-called adjoint equation

N ′h [xh] (yh; zh) = J ′h [xh] (yh) ∀yh ∈ X̃h. (40)

The adjoint solution zh =
(
q̃h, w̃h, λ̃h

)
∈ X̃h represents the link between

variations in the residual and in the target functional.

The global error estimate η can then be restricted to a single element to

yield a local indicator to drive an adaptation procedure, i.e.

ηK :=
∣∣Nh (xh; zh)

∣∣
K

∣∣ (41)

so that |η| ≤
∑

K∈Th ηK holds.

Please note, that the functionals Nh and Jh and their jacobians have to be

evaluated in a somewhat richer space than Xh, namely X̃h ⊃ Xh. Otherwise

the weighted residual Nh (xh; zh) would be identical zero as

Nh (xh;yh) = 0 ∀yh ∈ Xh. (42)
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This can be achieved by either mesh refinement or a higher polynomial degree

of the ansatz functions. In our setting, especially when using a hierarchical

basis, the latter is advantageous with respect to implementational effort and

efficiency.

4.1. Hybridization

In matrix form, the adjoint system (see Eq. (40)) reads as follows
A B R

C D S

L M N


T 

Q̃

W̃

Λ̃

 =


F̃

G̃

H̃

 (43)

Please note, that in our formulation H̃ = 0 as λh is not defined on the

boundary and thus the target functional depends only on wh and qh.

As the overall structure of the adjoint equation is similar to the primal

system (see Eq. (35)), one can also apply static condensation to the adjoint

system which then yields its hybridized form:N − [ L M

] A B

C D

−1  R

S

T

Λ̃ = −
[
RT ST

] A B

C D

−T  F̃

G̃


It is interesting to note that the hybridized adjoint system matrix is also

the transpose of the hybridized primal system matrix. This is very beneficial

for the implementation as the routines for the assembly of this matrix are

already available.

The adjoint solution within each element can then be computed with the

aid of the adjoint local system, given by A B

C D

T  Q̃

W̃

 =

 F̃

G̃

− [ L M
]T

Λ̃ (44)
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where the matrix is also the transpose of the primal local matrix (see Eq. (33)).

4.2. Marking Elements for Refinement

After having obtained a localized error estimate, we have to choose a set

of elements to be refined. This can be done in many different ways. Often the

so-called fixed-fraction approach is chosen [12]. Here, a user-defined fraction

of elements which contribute the most to the overall error are marked. The

only parameter necessary is θ ∈ (0, 1) which determines the size of this

set relative to the total number of elements (θ = 1 corresponds to uniform

refinement and θ = 0 to no refinement at all).

4.3. Choosing between h- and p-Adaptation

The final step in the adaptation procedure is the decision between mesh

refinement and order enrichment. There exist several ways to make this

decision. Ceze and Fidkowski [7] solve local adjoint problems for both options

and then decide which one is more efficient with respect to degrees of freedom

or the non-zero entries in the system matrix. We, however, adopt the strategy

by Wang and Mavriplis [26]. They used a smoothness sensor devised by

Persson and Peraire [21] for an artificial viscosity approach. This sensor

exploits the fact that the decay of the expansion coefficients of the solution is

closely linked to its smoothness. For smoother solutions, decay is faster. This

can be exploited to check the regularity of the solution. On each elements,

the smoothness sensor is defined as

SK :=
(w − w̃, w − w̃)K

(w,w)K
(45)

where w̃ is the projection of w to the next smaller polynomial space. Hence,

w − w̃ represents the higher order components of the solution (see Fig. 1).
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As we use an orthogonal basis this projection is very cheap. First promising

results for this approach are given in [2].

5. Results

In the following we compare our in-house HDG and DG solvers in terms

of degrees of freedom and runtime. The DG discretization is based on the

Lax-Friedrich and the BR2 [6] fluxes for convective and viscous terms, re-

spectively. Boundary conditions and target functionals are evaluated in an

adjoint-consistent manner [14]. Both solvers share the same computational

framework, so we believe that our comparison is meaningful.

We apply both solvers to compressible flow problems, including inviscid

subsonic and transonic, and subsonic laminar flow. In all cases we show

results for pure mesh-adaptation (p = 1 . . . 4) and hp-adaptation (p = 2 . . . 5).

However, before we turn our attention to the adaptive computations, we

want to compare runtimes for both methods on a fixed mesh for several

polynomial orders. This way, we can a priori learn which improvement can

be expected. In Fig. 2 runtimes for both HDG and DG can be seen for a

Euler and a Navier-Stokes computation on a mesh with 2560 elements. We

used polynomial orders from p = 0 to p = 6. Usually, there are more faces

than elements. Hence, for p = 0 and p = 1 DG is faster than HDG. However,

already for p = 2 HDG catches up. At p = 6 there is a ratio of 2 for the

Euler test case and 1.8 for the Navier-Stokes test case.
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5.1. Subsonic Inviscid Flow over the NACA 0012 Airfoil

In the first test case, we consider subsonic inviscid flow over the NACA 0012

airfoil which is defined by

y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4

)
(46)

with x ∈ [0, 1]. Using this definition, the airfoil would have a finite trailing

edge thickness of .252 %. In order to obtain a sharp trailing edge we modify

the x4 coefficient, i.e.

y = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
. (47)

The flow is characterized by a free stream Mach number of Ma∞ = 0.5

and an angle of attack of α = 2◦. In Fig. 3 the baseline mesh for the Euler

test cases (subsonic and transonic) can be seen. It consists of 719 elements

and its far field is over a 1000 chords away.

Admissible target functionals defined on the boundary for the Euler equa-

tions are given by the weighted pressure along wall boundaries, i.e.

J(w) =

∫
∂Ω

ψ · (pn) dσ (48)

where n is the outward pointing normal. By using ψ = 1
C∞

(cosα, sinα)T

or ψ = 1
C∞

(− sinα, cosα)T along wall boundaries and otherwise 0, the

functional represents the pressure drag coefficient cD or the pressure lift

coefficient cL, respectively. C∞ is a normalized reference value defined by

C∞ = 1
2
γMa2

∞p∞l. Here, l is the chord length of the airfoil.

For the purely h-adaptive runs, θ = 0.02 showed the best performance.

In case of hp-adaptation, we used θ = 0.1. In order to compute the error
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p 1 2 3 4 hp

tDG/tHDG 0.885 1.364 1.267 1.417 1.582

Table 1: Runtime ratios for a fixed error level (Ma∞ = 0.5, α = 2◦)

in the drag coefficient, a reference value was obtained on a hp-adapted mesh

with approximately 2.6 · 105 degrees of freedom.

In Fig. 4a, a purely h-adapted mesh can be seen. The most refined regions

are the leading and trailing edge. The first is of importance as the flow

experiences high gradients towards the stagnation point. Refinement of the

latter is necessary as the flow is singular at this point due to the sharp trailing

edge and the slip-wall boundary conditions. As soon as the error in these

two regions is sufficiently low, other elements close to the airfoil get refined

as well. For the hp-adapted mesh (see Fig. 4b) the leading and trailing edge

are refined as well. All other regions, however, undergo mostly p-enrichment.

In terms of degrees of freedom, both HDG and DG show similar results

(please note, that ndof = ndofw as this is a good measure for the resolution).

For all computations it takes some adaptations until the critical regions,

leading and trailing edge, are resolved. From this point on, one can see the

benefit of a higher order discretization: the error drops significantly faster

with respect to degrees of freedom and computational time (see Fig. 5 and

6).

In Tbl. 1, we give the runtime ratios for a fixed error level (we always

choose the minimum level attained). Here, we can see that HDG is already

faster from p = 2 on. This is due to the fact, that the adjoint is approximated

with p = 3 so that the computation of the dual solution is faster using HDG.
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5.2. Transonic Inviscid Flow over the NACA 0012 Airfoil

Next, we turn our attention to transonic flow which develops more com-

plex features (e.g. compression shocks) compared to the subsonic regime.

The flow is characterized by a free stream Mach number of Ma∞ = 0.8 and

an angle of attack of α = 1.25◦.

As this flow has more features then the subsonic test case before, we chose

higher parameters for adaptation, namely θ = 0.05 for both mesh-adaptation

and hp-adaptation. The reference value for the drag coefficient was obtained

on a hp-adapted mesh with approximately 2.3 · 105 degrees of freedom.

In Fig. 7a a purely h-adapted mesh can be seen. The adjoint sensor

detects all regions of relevance for the drag: the upper shock, the lead-

ing and trailing edge, and the lower weak shock. Further refinement is

added upstream of the shock, where the adjoint has steep gradients and thus

needs higher resolution. In the case of hp-adaptation, the mesh-refinement

is stronger confined to the shock region and the trailing edge. The other

features undergo p-enrichment.

As expected, both methods show a similar accuracy for a given number

of degrees of freedom. The computations with p = 2 . . . 4 outperform p = 1

but are comparable to each other. Hp-adaptation shows very good results

which is due to the accurate prediction of the solution smoothness (see Fig. 8

and 9).

Again, HDG is faster than DG from p = 2 on (see Tbl. 2). The hp-

adaptive run is nearly 2.5 times faster.
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p 1 2 3 4 hp

tDG/tHDG 0.57 1.309 1.669 1.708 2.492

Table 2: Runtime ratios for a fixed error level (Ma∞ = 0.8, α = 1.25◦)

5.3. Subsonic Laminar Flow over the NACA 0012 Airfoil

Finally, we consider viscous flow in the subsonic regime. The free stream

Mach number is Ma∞ = 0.5, the angle of attack α = 1◦ and the Reynolds

number Re = 5000. Due to the latter, a thin boundary layer develops around

the airfoil.

The baseline mesh for the Navier-Stokes test case is more refined around

the airfoil such that the boundary layer is correctly captured (see Fig. 10).

It consists of 1781 elements and its far field is over a 1000 chords away.

Admissible target functionals defined on the boundary for the Navier-

Stokes equations are given by the weighted boundary flux along wall bound-

aries, i.e.

J (w,∇w) =

∫
∂Ω

ψ · (pn− τn) dσ (49)

where n is the outward pointing normal. Here ψ is non-zero only on wall

boundaries. By using ψ = 1
C∞

(cosα, sinα)T or ψ = 1
C∞

(− sinα, cosα)T

along wall boundaries and otherwise 0, the functional represents the viscous

drag coefficient cD or the viscous lift coefficient cL, respectively.

For this test case we use θ = 0.05 during mesh-adaptation and θ = 0.1

during hp-adaptation. The reference value for the drag coefficient was ob-

tained on a hp-adapted mesh with approximately 2.5 ·105 degrees of freedom.

Both the h-adapted mesh (see Fig. 11a) and the hp-adapted mesh (see

Fig. 11b) undergo refinement within the boundary layer and the wake region.
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p 1 2 3 4 hp

tDG/tHDG 2.069 1.458 1.204 1.541 2.453

Table 3: Runtime ratios for a fixed error level (Ma∞ = 0.5, α = 1◦, Re =

5000)

The mesh refinement for the hp-adaptive run is however more restricted to the

leading edge region where the boundary layer develops. Further downstream,

p-enrichment is used as soon as the necessary mesh-resolution is reached.

In terms of accuracy versus degrees of freedom HDG does a slightly better

job than DG. This is most probably due to the better approximation of

the gradient. The overall behavior is however the same. The higher the

polynomial degree the more accurate and efficient the computations are for

both HDG and DG (see Fig. 12 and 13). The difference between p = 3, p = 4

and hp is not as big, though. This might lead to the conclusion that isotropic

mesh refinement is not longer efficiently applicable in cases involving strong

gradients. Hence, the efficiency of the adaptation procedure is rather limited

by the mesh refinement strategy.

Concerning the timings, we can see a similar trend as in the previous

test cases (see Tbl. 3). For p = 1, however, HDG is twice as fast which

is again caused by the approximation of the gradient (for a p = 1 DG dis-

cretization the gradient is an element-wise constant). For higher polynomial

degree, the runtime ratios drop to reasonable numbers. The hp-adative HDG

computation is 2.5 times as fast compared to the DG run.
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6. Conclusion and Outlook

We presented an adjoint-based hp-adaptation methodology and compared

it for hybridized and non-hybridized discontinuous Galerkin methods. Using

hp-adaptation proved to be superior to pure h-adaptation if discontinuous or

singular flow features were involved. In all cases, a higher polynomial degree

turned out to be beneficial.

We showed that one can expect HDG to be faster than DG from p = 2 on.

For viscous test cases, HDG yields more accurate lift and drag coefficients

for the same number of degrees of freedom due to the better approximation

of the gradient.

We plan to extend our computational framework to three dimensional

problems. Then, adaptivity will play an even more crucial role, as the prob-

lem size increases drastically compared to the two dimensional case.

Furthermore, compressible flows are often dominated by anisotropic fea-

tures, such as shocks or very thin boundary layers. Thus, taking this anisotropy

into account during adaptation is crucial.
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(a) Coarse mesh

(b) Adapted mesh

Figure 1: Smoothness sensor for a transonic test case
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Figure 2: Runtime comparison of the hybridized and non-hybridized DG

method for a fixed mesh and varying polynomial degree

Figure 3: Baseline mesh with 719 elements for inviscid computations
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(a) Pure h-adapation (p = 2)

(b) hp-adapation (p = 2 . . . 5)

Figure 4: Adapted meshes for the subsonic Euler test case (Ma∞ = 0.5,

α = 2◦)
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Figure 5: Drag convergence with respect to degrees of freedom (Ma∞ = 0.5,

α = 2◦)
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Figure 6: Drag convergence with respect to time (Ma∞ = 0.5, α = 2◦)
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(a) Pure h-adaptation (p = 2)

(b) hp-adaptation (p = 2 . . . 5)

Figure 7: Adapted meshes for the transonic Euler test case (Ma∞ = 0.8,

α = 1.25◦)
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Figure 8: Drag convergence with respect to degrees of freedom (Ma∞ = 0.8,

α = 1.25◦)

10−2 10−1 100 101 102 103

10−6

10−4

10−2

t/t0

∆
c
D

p = 1

p = 2

p = 3

p = 4

hp

(a) HDG

10−2 10−1 100 101 102 103

10−6

10−4

10−2

t/t0

∆
c
D

p = 1

p = 2

p = 3

p = 4

hp

(b) DG

Figure 9: Drag convergence with respect to time (Ma∞ = 0.8, α = 1.25◦)
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Figure 10: Baseline mesh with 1781 elements for viscous computations
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(a) Pure h-adaptation (p = 2)

(b) hp-adaptation (p = 2 . . . 5)

Figure 11: Adapted meshes for the Navier-Stokes test case (Ma∞ = 0.5,

α = 1◦, Re = 5000)
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Figure 12: Drag convergence with respect to degrees of freedom (Ma∞ = 0.5,

α = 1◦, Re = 5000)
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Figure 13: Drag convergence with respect to time (Ma∞ = 0.5, α = 1◦,

Re = 5000)
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