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THE NITSCHE XFEM-DG SPACE-TIME METHOD AND ITS
IMPLEMENTATION IN THREE SPACE DIMENSIONS

CHRISTOPH LEHRENFELD ∗

Abstract. We consider a standard model for mass transport across an evolving interface. The
solution has to satisfy a jump condition across an evolving interface. In the recent paper [C. Lehrenfeld,
A. Reusken, SIAM J. Num. Anal., 51 (2013)] a new finite element discretization method for this
mass transport problem is presented and analyzed. This method is based on a space-time approach
in which a discontinuous Galerkin (DG) technique (in time) is combined with an extended finite
element method (XFEM). The jump condition is satisfied in a weak sense by using the Nitsche
method. While the emphasis in that paper was on the analysis and one dimensional numerical
experiments the main contribution of this paper is the discussion of implementation aspects for the
spatially three dimensional case. As the space-time interface is typically given only implicitly as the
zero-level of a level-set function, we construct a piecewise planar approximation of the space-time
interface. This discrete interface is used to divide the space-time domain into its subdomains. An
important component within this decomposition is a new method for dividing four-dimensional prisms
intersected by a piecewise planar space-time interface into simplices. Such a subdivision algorithm is
necessary for numerical integration on the subdomains as well as on the space-time interface. These
numerical integrations are needed in the implementation of the Nitsche XFEM-DG method in three
space dimensions. Corresponding numerical studies are presented and discussed.
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1. Introduction. Let Ω ⊂ Rd, d = 2, 3, be a convex polygonal domain that con-
tains two different immiscible incompressible phases. The (in general time dependent)
subdomains containing the two phases are denoted by Ω1, Ω2, with Ω̄ = Ω̄1 ∪ Ω̄2. For
simplicity we assume that ∂Ω1 ∩ ∂Ω = ∅, i.e. the phase in Ω1 is completely surrounded
by the one in Ω2. The interface Γ := Ω̄1 ∩ Ω̄2 is assumed to be sufficiently smooth. A
model example is a (rising) droplet in a flow field. The fluid dynamics in such a flow
problem is often modeled by the incompressible Navier-Stokes equations combined
with suitable conditions at the interface which describe the effect of surface tension.
For this model we refer to the literature, e.g. [3, 8, 16, 9]. By w we denote the velocity
field resulting from these Navier-Stokes equations. We assume that div w = 0 holds.
Furthermore, we assume that the evolution of the interface is determined by this
velocity field, in the sense that VΓ = w ·n holds, where VΓ is the normal velocity of the
interface and n denotes the unit normal at Γ pointing from Ω1 into Ω2. We consider a
standard model which describes the transport of a dissolved species u in a two-phase
flow problem. In strong formulation this model is as follows:

∂u

∂t
+ w · ∇u− div(α∇u) = f in Ωm(t), m = 1, 2, t ∈ [0, T ], (1.1)

[α∇u · n]Γ = 0, (1.2)

[βu]Γ = 0, (1.3)

u(·, 0) = u0 in Ωm(0), m = 1, 2, (1.4)

u(·, t) = 0 on ∂Ω, t ∈ [0, T ]. (1.5)
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For a sufficiently smooth function v, [v] = [v]Γ denotes the jump of v across Γ, i.e.
[v] = (v1)|Γ − (v2)|Γ, where vm = v|Ωm

is the restriction of v to Ωm. In (1.1) we have
standard parabolic convection-diffusion equations in the two subdomains Ω1 and Ω2.
In many applications one has a homogeneous problem, i.e. f ≡ 0. The diffusion
coefficient α = α(x, t) is assumed to be piecewise constant:

α = αm(t) > 0 in Ωm(t).

In general we have α1 6= α2. The interface condition in (1.2) results from the
conservation of mass principle. The condition in (1.3) is the so-called Henry condition,
cf. [23, 22, 4, 3]. In this condition the coefficient β = β(x, t) is strictly positive and
piecewise constant:

β = βm(t) > 0 in Ωm(t).

In general we have β1 6= β2, since species concentration usually has a jump discontinuity
at the interface due to different solubilities within the respective fluid phases. Hence, the
solution u is discontinuous across the (evolving) interface. Both for the mathematical
analysis and numerical treatment of this transport problem there is a big difference
between the case with a stationary interface and the one with a non-stationary interface.
In this paper we discuss several aspects of the finite element discretization method
proposed in [20] for a non-stationary interface problem.
In recent years it has been shown that for such a transport problem with an (evolving)
interface the Nitsche-XFEM method is very well suited [10, 21]. In [11, 12, 13, 1, 5]
the application of the Nitsche-XFEM to other classes of problems is studied. In [10]
this method is analyzed for a stationary heat diffusion problem (no convection) with a
conductivity that is discontinuous across the interface (α1 6= α2) but with a solution
that is continuous across the interface (β1 = β2). In [21, 19] the method is studied
for the parabolic problem described above, with β1 6= β2 (discontinuous solution),
and with a (dominating) convection term in (1.1). In all these papers, and in other
literature that we know of, the Nitsche XFEM method is analyzed for a two-phase
transport as in (1.1)-(1.5) with a stationary interface.
In [20] an analysis for the case of a non-stationary interface is presented. In that
paper the restriction to the diffusion dominated case is made, i.e., no stabilization
w.r.t. convection is needed.
For the weak formulation of the parabolic mass transport problem (1.1)-(1.5) with
a non-stationary interface a space-time variational formulation is most natural, cf.
chapter 10 in [9]. This suggests an XFEM approach combined with a suitable space-
time discontinuous Galerkin method. The main result in [20] is a full (i.e. in space
and time) discretization that has (proven) second order accuracy (in space and time)
for a transport problem as (1.1)-(1.5), with a solution that is discontinuous across an
evolving interface. The space-time XFEM-DG method is an Eulerian method in the
sense that the spatial triangulation is not fitted to the interface. The idea of combining
space-time and extended finite elements has already been presented in [6] and applied
to spatially one dimensional conservation equations without any analysis.
In implementations of the spatially three dimensional case one has to deal with four
dimensional geometries. In the literature space-time discretizations which explicitly
construct four dimensional triangulations are rare. In [2] a decomposition of four
dimensional prisms into simplices is applied to achieve real space-time adaptivity within
one time slab. More global four dimensional simplex triangulations are considered in
[18, 17].
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The main new contributions of this paper are the following two:
1. A strategy to decompose the space-time domain which is intersected by an

implicitly defined space-time interface into simplices and
2. numerical studies for the Nitsche XFEM-DG method in three space dimension.

structure and content of this paper. In section 2 we present the discretization
method that is considered in the analysis in [20]. This method is often not feasible
in practice, due to the fact that it is assumed that volume integrals close to the
space-time interface and surface integrals over the space-time interface are evaluated
exactly. In practice a strategy for approximating these integrals will be necessary.
Implementation aspects are discussed in section 3. Especially a strategy to construct
a piecewise planar space-time interface approximation and corresponding polygonal
approximations of the space-time subdomains is presented. A crucial point in this
strategy is the decomposition of prisms (intersected by a piecewise planar interface)
into (uncut) simplices. In the spatially three dimensional case this involves four
dimensional geometries. A main contribution of this paper is a solution algorithm
for this problem that is presented separately in section 5. In section 4 numerical
experiments in three spatial dimensions are presented and discussed.

2. The Nitsche XFEM-DG discretization. In this section we present the
discretization method. This method will have the form of a variational problem
in a certain space-time finite element space. The space-time domain is denoted by
Q = Ω × (0, T ] ⊂ Rd+1. A partitioning of the time interval is given by 0 = t0 <
t1 < . . . < tN = T . By considering the time slabs Qn = Ω× In with In := (tn−1, tn]
one after another, the computational complexity is comparable to other (implicit)
time-stepping schemes. In the following we will consider the problem on one time slab
Qn, we will therefore omit the superscript n.
Corresponding to the time interval In := (tn−1, tn] we assume a given shape regular
simplicial triangulation T of the spatial domain Ω. In general this triangulation is
not fitted to the interface Γ(t). Note, that for different time slabs this triangulation
T is allowed to change (cf. figure 2.1). Corresponding to the triangulation of Ω
into d-dimensional simplices T = {T}, we have a canonical triangulation of Q into
d+ 1-dimensional prisms. This triangulation is denoted by T ∗ = {QT } where for each
prism we have QT = T × In for a corresponding d-dimensional simplex T .
In the discretization the same space is used for both trial and test functions. We
introduce the method for the case of piecewise bilinear space-time functions (linear in
space and linear in time). Let Vh be the finite element space of continuous piecewise
linear functions on T with zero boundary values on ∂Ω. The spatial mesh size
parameter corresponding to Vh is denoted by h. Corresponding space-time finite
element spaces on the time slab Q are given by

W := { v : Q→ R | v(x, t) = φ0(x) + tφ1(x), φ0, φ1 ∈ Vh } (2.1)

In the time slab Q we define the subdomains Qm :=
⋃
t∈In Ωm(t), m = 1, 2. We

introduce corresponding canonical restrictions Rm on L2(Q) given by Rmv = v|Qm
.

We will also use the notation vm := Rmv. The space-time XFEM spaces are given by

WΓ∗ := R1W ⊕R2W (2.2)

The symbol Γ∗ denotes the space-time interface in Q, i.e., Γ∗ := ∪t∈InΓ(t). Note that
Γ∗ depends on the time interval In.
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Fig. 2.1. Sketch of the space-time domains Qn
m. Note that within each time slab the triangulation

has a tensor product structure T × [tn−1, tn]. The triangulation is allowed to change between the
time slabs.

We will treat the Henry condition [βu]Γ = 0 using the Nitsche technique (in space-time).
For this we need suitable averages and jumps across Γ∗, that we now introduce. Take
t ∈ In, T ∈ T and let QTm := QT ∩Qm. We define the weights

κm|QT :=
|QTm|
|QT |

and the corresponding averaging operator on the space-time interface

{v}Γ∗(x, t) := κ1(v1)|Γ∗ + κ2(v2)|Γ∗ , (x, t) ∈ Γ∗.

Remark 2.1. The choice for κm|QT is slightly different from the one in [20]. As κm|QT

is time-independent within one element QT it is better suited for implementation.
One can easily check that the theoretical results in [20] carry over with only minor
adjustments.
We use a similar notation for the jump operators:

[v]Γ∗(x, t) = (v2)|Γ∗ − (v1)|Γ∗ , (x, t) ∈ Γ∗.

In the discontinuous Galerkin method we need jump terms across the end points of the
time intervals In = (tn−1, tn]. We define un−1

+ (·) := limε↓0 u(·, tn−1 + ε) and introduce
the notation

vn(x) := v(x, tn), [v]n(x) := vn+(x)− vn(x), 0 ≤ n ≤ N − 1, with v0(x) := 0.

On the cross sections Ω× {tn}, 0 ≤ n ≤ N , of Q we use a weighted L2 scalar product

(u, v)0,tn :=

∫
Ω

β(·, tn)uv dx =

2∑
m=1

βm

∫
Ωm(tn)

uv dx.

This scalar product is uniformly (w.r.t. n and N) equivalent to the standard scalar
product in L2(Ω). Note that we use a weighting with β in this scalar product, which
is not reflected in the notation.
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In the Nitsche bilinear form introduced below we also use another weighted L2 scalar
product. Related to this we note that the surface measure both on Γ(t) ⊂ Rd and on
Γ∗ ⊂ Rd+1 play a role. Both measures are denoted by ds. The following transformation
formula holds:∫ T

0

∫
Γ(t)

f(s, t) ds dt =

∫
Γ∗

f(s)
(
1 + (w · nΓ)2

)− 1
2 ds =:

∫
Γ∗

f(s)ν(s) ds,

with ν(s) =
(
1 + (w · nΓ)2

)− 1
2 and w the (interface) velocity. We assume that the

space-time interface is sufficiently smooth such that there is a constant c0 > 0 with

c0 ≤ ν(s) ≤ 1 for all s ∈ Γ∗.

Below in the Nitsche bilinear form we use a weighting with ν.

The notation introduced above is used to define a bilinear form B(·, ·), which consists
of three parts, namely a term a(·, ·) that directly corresponds to the partial differential
equation, a term b(·, ·) which weakly enforces continuity with respect to t at the time
interval end points tn−1, and a term NΓ∗(·, ·) which enforces in a weak sense the Henry
condition [βu]Γ∗ = 0. We now define the bi- and linear forms:

a(u, v) =

2∑
m=1

∫
Qm

(∂um
∂t

+ w · ∇um
)
βmvm + αmβm∇um · ∇vm dx dt,

NΓ∗(u, v) = −
∫

Γ∗

ν{α∇u · n}Γ∗ [βv]Γ∗ ds−
∫

Γ∗

ν{α∇v · n}Γ∗ [βu]Γ∗ ds

+λh−1
T

∫
Γ∗

ν[βu]Γ∗ [βv]Γ∗ ds,

b(u, v) = (un−1
+ , vn−1

+ )0,tn−1 ,

f(v) =

∫
Qn

fβ v dx dt,

c(ū; ·) = (un−1, vn−1
+ )0,tn−1

.

where ū should emphasize that un−1 is given (initial) data for the computations in
time interval In, e.g. for n = 1, un−1 is the initial data u0 of (1.4). In NΓ∗(·, ·) the
parameter λ ≥ 0 has to be chosen sufficiently large. These bi- and linear forms are
well-defined on the space-time XFEM space WΓ∗ and the problem within one time
slab reads as: Find u ∈WΓ∗ , s.t.

B(u, v) := a(u, v) + b(u, v) +NΓ∗(u, v) = f(v) + c(ū, v) ∀ v ∈WΓ∗ (2.3)

Note that the solution of (2.3) is the result of one time step within a time stepping
scheme. In [20] it has been shown, that the presented method is a stable discretization
scheme and a second order (in time and space) error bound for the L2(Ω(T ))-norm
has been proven.

3. Implementation aspects. In order to implement the method presented in
section 2 one has to compute the matrices and vectors representing the bi- and linear
forms. In section 3.1 we explain which types of integrals need to be calculated for that.
In practice the space-time interface Γ∗ is typically not given explicitly, but implicitly,
e.g. as the zero-level of a level-set function. In our application the level-set function
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is a piecewise quadratic function in space, and typically only given at discrete time
levels tn. In order to apply quadrature on the space-time objects, we want to have an
explicit representation of the space-time interface. As this is practically not feasible,
we construct an appropriate approximation Γ∗,h which has an explicit representation.
Such an approximation is discussed in section 3.2. A different approach is presented
in the recent paper [15] where quadrature rules for implicitly given domains by means
of moment-fitting are derived.
The special tensor product structure of each time slab is reflected in the construction
and representation of finite element shape functions. A short discussion on the shape
functions, especially w.r.t. XFEM can be found in section 3.3.
Once, the (space-time) geometries and finite element shape functions are defined
one needs suitable quadrature rules for (regular) prisms and simplices. As these are
discussed in many standard references (e.g. [24]) for the case d+ 1 ≤ 3, but only rarely
in the 3 + 1-dimensional case, section 3.4 and section 3.5 address this issue. In section
3.4 tensor product quadrature rules for prisms are applied for elements that are not
intersected. The more involved situation when elements are cut by Γ∗,h make use of
the decomposition of an intersected d+ 1-prism into d+ 1-simplices. This is discussed
in 3.5.

3.1. Integral types. Every bi- and linear form in (2.3) has a natural decompo-
sition into its element contributions, e.g. a(u, v) =

∑
QT∈T ∗ aT (u, v). We consider

the task of computing the element contributions of the (bi-)linear forms a(·, ·), b(·, ·),
NΓ∗(·, ·), f(·) and c(ū; ·).
As we need to calculate (approximations of) integrals of different kinds, we categorize
these integrals before we discuss their numerical treatment. We distinguish those
integrals in terms of the sets S we are integrating on. The cases are denoted as case

(m,n,o) where m is the dimension of S, n is the co-dimension of S and o ∈ {c, n}
describes if the set S is intersected by the space-time interface Γ∗ (o=c) or not (o=n).
We recall the notation for a prism QT = T×In . Accordingly we define QTm = QT ∩Qm.

3.1.1. a(·, ·), f(·): d+ 1-dimensional measure, co-dimension 0. Integrals
appearing on each element for a(·, ·) are integrals on d+ 1-dimensional objects like∫

QT
m

f dx =

∫ tn

tn−1

∫
Tm(t)

f dx , with Tm(t) = T ∩ Ωm(t)

We distinguish two different situations: The prism QTm is not intersected by the
(approximated) interface, i.e. the prism is completely in one phase and thus the
volume to integrate on is the prism itself. We consider this as case (d+1,0,n) where
numerical integration can exploit the tensor product structure. If on the other hand
the prism QTm is intersected by the (approximated) interface, the geometry QmT is much
more difficult to handle. In that case d+1-dimensional quadrature on subsimplices
has to be applied. This is denoted by case (d+1,0,c).

3.1.2. b(·, ·), c(û, ·): d-dimensional measure, co-dimension 0. The integrals
in the element contributions of b(·, ·) and c(ū; ·) have the form∫

Tm(tn−1)

f dx

and thus are d-dimensional measures. Also here, we distinguish the case of a one phase
element (i.e. an element which is not intersected), denoted by case (d,0,n) and the
case of an intersected element, case (d,0,c).
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3.1.3. NΓ∗(·, ·): d-dimensional measure, co-dimension 1. For the space-
time integrals stemming from the Nitsche stabilization bilinear form NΓ∗(·, ·) on each
element we get terms like ∫

ΓT
∗

ν · ds.

where ΓT∗ = Γ∗ ∩ QT . Some terms also depend on the normal direction nΓ. These
integrals only appear on elements that are intersected. The measure is d-dimensional
on the manifold Γ∗ with co-dimension 1. This case is denoted as case (d,1,c).

3.2. Approximation of the space-time interface Γ∗ and the space-time
volumes Qm. For the integration of space-time volumes and the space-time interface
a discrete approximation of Γ∗ and Qm which is feasible for numerical integration has
to be found. This is relevant for the integration cases (d+1,0,c) and (d,1,c).
Note that case (d,0,c) is an integral on a d-dimensional simplex T . To deal with
those we follow the strategies (for d ≤ 3) discussed in [9, Section 7.3]. In order to
get approximations Γ∗,h and Qm,h to the space-time interface and volumes (case
(d+1,0,c)) we proceed similarly as in lower (d) dimensions.
We consider the prism QT with a characteristic spatial length of T (e.g. diameter)
h and the time step size ∆t = tn − tn−1. We apply regular subdivisions in time and
space. Each edge of T is divided into ms parts of equal length and the time interval
is divided into mt parts (see Figure 3.1). We get mt ·md

s smaller prisms {Qi} with
spatial resolution h/ms and temporal resolution ∆t/mt.

→ →

mt = 1, ms = 1 mt = 2, ms = 1 mt = 2, ms = 2

Fig. 3.1. An intersected prism in d+ 1 dimensions, with d = 2. The original prism (left), the
prisms after uniform subdivision in time (middle) and after subdivision in space and time (right).

Each (smaller) prism Qi is subdivided into d+ 1 (d+1)-simplices {Pj} (cf. section
5.2). On Pj the level-set function is interpolated as a linear function in space-time (by
simply evaluating the vertex values only). As the level-set function is now represented
as a linear function on each simplex, the according approximation of the zero-level of
the level-set function is piecewise planar.

3.3. Finite elements. We briefly explain the construction of the basis functions
for WΓ∗ . Let JW = {(i, k), i ∈ {1, .., NV }, k = 1, 2} with NV the number of vertices
of the spatial mesh denote the index set corresponding to the basis functions qi,j in
W . Then the index set of basis functions in the space-time finite element space W
“close to the interface” is given by

JΓ∗ := { (i, k) ∈ JW | measd
(
Γ∗ ∩ supp(qi,k)

)
> 0}.
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Let HΓ∗ be the characteristic function corresponding to Q2, i.e. HΓ∗(x, t) = 1 if
(x, t) ∈ Q2 and zero otherwise. For each space-time node index (i, k) ∈ JΓ∗ we have
an additional basis function which is defined as follows:

qΓ∗
i,k(x, t) := qi,k(x, t) · (HΓ∗(x, t)−HΓ∗(xi, tn−2+k)), (j, k) ∈ JΓ∗ (3.1)

It is ensured that qΓ∗
i,1(xi, tn−1) = 0, qΓ∗

i,2(xi, tn) = 0 holds for all vertices xi. The
characterization

WΓ∗ = W ⊕ span
{
qΓ∗
i,k | (i, k) ∈ JΓ∗

}
shows that the XFEM space WΓ∗ is obtained by adding to the standard space W new
basis functions that are discontinuous across the space-time interface Γ∗.
Let the local index set of the local standard basis functions on one prism QT be
J T = {(i, k), i = 1, .., 4, k = 1, 2}. The according shape functions are

qi,k(x, t) := φi(x)ψk(t), (i, k) ∈ J T

with φi(x) = λi where λj denotes the barycentric coordinate corresponding to vertex
j inside of tetrahedron T and ψ1(t) = 1

∆t (t
n − t), ψ2(t) = 1

∆t (t− t
n−1).

3.4. Numerical integration on non-intersected (space-time) volumes
(case (d+1,0,n)). Whenever a (tetrahedral) element T is not intersected by the
interface Γ(t) for the whole time interval (tn−1, tn] the volume integrals of a(·, ·) and
f(·) act on (the complete) prismatic element QT . Consider for example the diffu-
sion part on QT . One corresponding matrix entry for I = (i, k), J = (j, l) ∈ JW is
GTI,J := gT (qi,k, qj,l) with gT (u, v) :=

∫
QT αmβm∇u∇v dx dt can be computed using

iterated integrals:

gT (qi,k, qj,l) =

∫ tn

tn−1

∫
T

αmβm(∇φi)ψk(∇φj)ψl dx dt

=

∫ tn

tn−1

ψkψldt

∫
T

αmβm∇φi∇φjdx = ∆t Mk,l

∫
T

αmβm∇φi∇φjdx

where {Mk,l}k,l=1,2 is the one-dimensional mass matrix

M =

(
1/3 1/6
1/6 1/3

)
.

Thus, in this case the quadrature problem is reduced to a standard problem in d
dimensions. For the convection or r.h.s. term the velocity w and the source term f are
not necessarily separable (in terms of t and x). Nevertheless applying interpolation in
time for f and w, e.g.

f∆t = f(tn−1, x) · ψ1(t) + f(tn, x) · ψ2(t) =

2∑
k=1

f(tk, x) · ψk(t)

or tensor product quadrature rules, e.g.

hT (qi,k, qj,l) :=

∫ tn

tn−1

∫
T

βm(∇φi)ψk(w · ∇φj)ψl dx dt

≈
Nip∑
i=0

ωiψk(ti)ψl(ti)

∫
T

βm(∇φi)(w(ti) · ∇φj)ψl dx dt

8



where Nip, ti and ωi are the information of the (1D) quadrature rule, the complexity
of the quadrature problem is basically d-dimensional.

3.5. Numerical integration on intersected space-time volumes and the
space-time interface (case (d+1,0,c) and case (d,1,c)). If QT is intersected
some simplices Pj within the decomposition QT = {Pj} (see section 3.2) are intersected
by a planar approximation of the interface. Using the simplex and the (hyper-) plane

one can find a decomposition of Pj into simplices {P(k)
j } which are no longer intersected

and form a decomposition of Pj , Pj =
⋃
k P

(k)
j . Furthermore the plane intersecting

one simplex Pj can also be decomposed into uncut d-dimensional simplices. As this
decomposition is neither obvious nor standard for the case d = 3 a solution strategy is
presented in detail in section 5. Thus one can achieve an explicit decomposition of QTm
into uncut (d+1)-dimensional simplices and of Γ∗h into d-dimensional simplices. Once
this decomposition is determined the integration can be applied simplex by simplex.
Quadrature rules of high order for simplices can be found in standard references (see
e.g. [24]) if the dimension of the simplex is d+ 1 ≤ 3. For d = 3, i.e. the simplex is
four-dimensional (a pentatope) this is no longer standard. In the literature only a few
integration rules can be found (see eg. [2] and [24]). In appendix A we quote lower
order rules and strategies to generate higher order ones. Further in appendix B we
comment on the computation of the weighting factor ν.

3.6. Numerical integration on intersected space volumes. For the treat-
ment of the cases (d,0,n) and (d,0,c) we refer to [9, Section 7.3].

4. Numerical examples. In this section we present results of numerical experi-
ments. Different from the experiments in [20], where only spatially one-dimensional
situations have been considered, we consider spatially three-dimensional cases to assess
the convergence behavior of the method. In this setting we restrict ourselves to
piecewise linear (in time and space) finite element approximations. In all examples
we consider the L2(Ω(T ))-error for different space and time resolutions. The time
interval [0, T ] is divided into nt time slabs. The spatial domain is always a cube which
is uniformly divided into (ns)

d smaller cubes which are then divided into tetrehedra.
The error behaviour is investigated w.r.t. refinements, i.e. series of ns and nt. For
all computations we used a third order rule for the numerical integration on the
(sub-)pentatopes (see also section A.2).

4.1. Moving plane, quasi-1D. This case is the three-dimensional counterpart
to the one-dimensional test case in [20]. The domain is the cube Ω = [0, 2]3. The “inner”
phase is contained in the domain Ω1(t) = {x ∈ Ω : |x1 − q(x2, x3) − r(t)| ≤ D/2},
where q : [0, 2]2 → [0, 2] is the graph describing the shape of the domain Ω1 and
r : [0, T ] → R the function describing the time-dependent shift of the interface in
x1-direction. D = 2

3 is the width of the domain in x1-direction. The complementary
domain is Ω2(t) = Ω \ Ω1(t).
The velocity field is given as w = (∂r∂t (t), 0, 0). As boundary conditions we apply
periodicity in all directions, u(xi=0) = u(xi=2), i = 1, 2, 3. This renders the problem
essentially one-dimensional if q(x2, x3) = const.
We prescribe the r.h.s. source term f , such that the solution is given by

u(x, t) = sin(kπt) · Um(x1 − q(x2, x3)− r(t)), x ∈ Ωm(t), m = 1, 2

with U1(y) = ay + by3 and U2(y) = sin(πy) where a and b are chosen such that
the interface conditions hold.

9



w

x1

q

y

U1/2

Γ Γ

Fig. 4.1. Sketch of the geometrical setup of the numerical example in section 4.1 (left) , Ω1 is
blue and Ω2 is green. The time-independent part of the solution U1/2 is also sketched (right).

The diffusivities are (α1, α2) = (1, 2) and the Henry weights (β1, β2) = (1.5, 1), resulting
in a ≈ 1.02728 and b ≈ 6.34294. The problem is considered in the time interval [0, T ]
with T = 1.

4.1.1. Planar (in space and time) interface. We choose q(x2, x3) = 1 and
r(t) = 0.25t, hence the space-time interface is planar. Thus the proposed method for
the approximation of the space-time interface is exact for every mt,ms ≥ 1, where mt

and ms are the number of subdivisions in time and each space direction, respectively,
cf. section 3.2. We choose ms = mt = 1.

1 2 4 8 16 32 64
10−4

10−3

10−2

10−1

100

nt

nx = 8
nx = 16
nx = 32
nx = 64
nx = 128

order 1,2,3

8 16 32 64 128

10−3

10−2

10−1

nx

nt = 4
nt = 8
nt = 16
nt = 32
nt = 64

order 1,2

Fig. 4.2. Convergence in L2(Ω(T ))-norm w.r.t. refinements in time (left) and space (right) for
test case in section 4.1.1.

In Table 4.1 and Figure 4.2 we give the resulting error ‖uh−uref‖L2(Ω(T )) for different
mesh and time step sizes. Similar to the results in [20] we observe a third order
convergence w.r.t. time step size ∆t and a second order convergence w.r.t. the mesh
size.
Remark 4.1. In [25, Theorem 12.7] for the corresponding DG-FEM method applied
to the standard heat equation an error bound with third order convergence w.r.t. ∆t
has been derived. Note however that the analysis does not carry over for the case of
the Nitsche-XFEM discretization.

4.1.2. Nonlinear moving interface. We consider q(x2, x3) = 7
8 + 1

4x
2
2(2−x2)2

and r(t) = 1
4π sin(2πt) which leads to a space-time interface which is no longer

planar. The geometrical approximation of the space-time interface in this paper is
piecewise planar, i.e. the maximum distance between Γ∗ and its approximation Γ∗,h
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nt \ ns 8 16 32 64 128 eoct
1 0.6826 0.7005 0.72760 0.73301 0.742317
2 0.2809 0.3138 0.32771 0.33260 0.334165 1.15
4 0.0624 0.0603 0.07139 0.07557 0.076649 2.12
8 0.0755 0.0165 0.00840 0.01132 0.012328 2.64

16 0.0831 0.0233 0.00524 0.00103 0.001585 2.96
32 0.0844 0.0247 0.00646 0.00147 0.000261 2.6

64 0.0846 0.0249 0.00667 0.00168 0.000403 -0.63

eocs 1.76 1.90 1.99 2.06
Table 4.1

‖uh − uref‖L2(Ω(T )) for different refinements in time and space for test case in section 4.1.1.

The last column shows the estimated order of convergence w.r.t. time (eoct) using the finest spatial
resolution (ns = 128), the last row shows the estimated order of convergence w.r.t. space (eocs)
using the finest temporal resolution (nt = 64).

converges with second order w.r.t. increasing nt ·mt, ns ·ms. In Table 4.2 the error
‖uh−uref‖L2(Ω(T )) on a fixed (fine) spatial grid with resolution 64×64×64 for different
numbers of time steps is listed. In order to investigate the impact of the approximation
of Γ∗ we performed the computation with different numbers of subdivisions ms, mt.
The results, shown in Table 4.2, indicate an error bound behaviour of the form

nt 1 2 4 8 16 32 64

ms = 1,mt = 1 2.50 2.89 0.547 0.137 0.0342 0.00879 0.00317

eoct -0.21 2.40 2.00 2.00 1.96 1.49

ms = 1,mt = 2 2.49 0.817 0.168 0.0374 0.00878 0.00301 0.00241

eoct 1.61 2.28 2.17 2.09 1.54 0.32

ms = 1,mt = 4 0.520 0.481 0.0985 0.0167 0.00284 0.00219 0.00236

eoct 0.11 2.29 2.56 2.56 0.37 -0.11

ms = 1,mt = 8 0.491 0.412 0.0910 0.0143 0.00189 0.00212 0.00236

eoct 0.25 2.18 2.67 2.92 -0.17 -0.15

ms = 4,mt = 8 0.491 0.412 0.0909 0.0142 0.00179 0.00207

eoct 0.25 2.18 2.68 2.99 -0.20
Table 4.2

Error ‖uh − uref‖L2(Ω(T )) for different temporal refinements and quadrature subdivisions on a
regular 64×64×64 tetrahedral mesh for the test case in section 4.1.2.

‖uh − uref‖L2(Ω(T )) ≤ C1∆t3 + C2 (∆t/mt)
2

+ C3(h)

where C1 is independent of the approximation of Γ∗. C2 is directly related to the
interface approximation errors. If the interface approximation is exact (as in the
last section) C2 is zero. C3(h) describes the spatial error due to the method and
the piecewise linear interface approximation for the numerical integration. In this
examples C3(h) ≈ 0.002. Furthermore, we observe that in this example C3 is essentially
independent of ms.
For mt sufficiently large, i.e. mt >

√
C2/(C1∆t) and h sufficiently small, the first term

dominates the error, such that one observes a third order in time convergence. This
does not hold if mt is too small. Especially for ms=mt=1, the error is converging
with (only) second order, due to a dominating interface approximation error.
Remark 4.2. In order to investigate the additional effort within one time step due
to additional XFEM unknowns, we consider the ratio between the maximum number
of extended (XFEM) unknowns and standard (space-time) finite element unknowns
within one time slab. In Figure 4.3 a sketch of the corresponding situation is shown. If
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the interface is well resolved, the number of unknowns close to the interface increases
with 2d−1 for one uniform (spatial) refinement whereas the overall number of unknowns
increases with 2d. Thus the ratio decreases linearly with the spatial resolution. In
Table 4.3 the corresponding numbers for this test case are given which are in agreement
with the expected behaviour.

x

t

Γ∗ standard d.o.f. XFEM d.o.f. x

t

Γ∗ standard d.o.f. XFEM d.o.f.

x

t

Γ∗ standard d.o.f. XFEM d.o.f. x

t

Γ∗ standard d.o.f. XFEM d.o.f.

Fig. 4.3. Sketch of different spatial and temporal resolutions for a spatially one-dimensional
problem. Standard and XFEM degrees of freedom are marked. For nt = 2, ns = 4 (upper left) the
highest ratio between XFEM unknowns and standard unknowns within one time slab is 80%, for
nt = 8, ns = 4 (lower left) the ratio is also 80%, for nt = 2, ns = 16 (upper right) the ratio is 59 %
and for nt = 8, ns = 16 (lower right) the ratio is 41%.

Std. unkn. 1024 8192 65536 524288 4194304

nt \ ns 8 16 32 64 128

1 736 (72%) 3648 (45%) 19328 (30%) 119808 (23%) 813056(19%)
2 656 (64%) 3008 (37%) 14336 (22%) 78848 (15%) 479232(11%)
4 656 (64%) 3008 (37%) 14336 (22%) 78848 (15%) 479232(11%)
8 656 (64%) 2880 (35%) 13056 (20%) 67072 (13%) 383488 (9%)

16 640 (63%) 2624 (32%) 11136 (17%) 52992 (10%) 275456 (7%)
32 640 (63%) 2496 (30%) 10368 (16%) 45824 (9%) 198656 (5%)
64 640 (60%) 2496 (30%) 9856 (15%) 41472 (8%) 182784 (4%)

Table 4.3
Number of standard (space-time) unknowns (first row) and maximal number of additional XFEM

unknowns for one time slab for different spatial and temporal resolutions for test case in section
4.1.2. In brackets the ratio between XFEM and standard unknowns is added.

Remark 4.3. To decrease the (space-time) interface approximation error one can
either choose smaller time steps or a larger refinement factor mt for the construction
of Γ∗,h. The computation with a fixed ∆t = ∆t̃ and mt = m̃t > 1 is cheaper than a
computation with ∆t = ∆t̃/m̃t and mt = 1. In Figure 4.4 a sketch of both strategies is
shown. For mt > 1 additional effort due to the decomposition strategy and quadrature
within one time step is required. However if the interface is resolved, this is only
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required for a small number of elements (cf. Remark 4.2). The number of time steps
and thereby the number of linear systems that have to be solved however is reduced
by a factor of m̃t. Note that the solution of linear systems is typically the most time
consuming part.

x

t

tn

tn−1

Γ∗ Γ∗,h

standard d.o.f. XFEM d.o.f.

subtriangulation for approximating Γ∗
x

t

tn

tn−1

Γ∗ Γ∗,h

standard d.o.f. XFEM d.o.f.

subtriangulation for approximating Γ∗

Fig. 4.4. Sketch of geometry approximation and degrees of freedom for the case mt = 1 and
∆t = ∆t̃/4 (left) and for the case mt = 4 and ∆t = ∆t̃ (right). Note that the approximation quality
of the piecewise planar interface is the same.

4.2. Rotational symmetric solution on a moving sphere. As a last example
we consider a more realistic geometrical configuration. We consider a rotational
symmetric solution for a stationary sphere and then translate it with a time-dependent
velocity. The time interval is [0, T ] with T = 0.5 and the domain is the cube Ω = [0, 2]3.
One phase is contained in the domain Ω1(t) = {x ∈ Ω : ‖x− (p0 + r(t) · e1)‖ ≤ R},

w

y

y

U1/2

Γ Γ

Fig. 4.5. Sketch of geometrical setup (left) for test case in section 4.2, Ω1 is blue and Ω2 is
green. And sketch of the time-independent part of the solution U1/2 (right).

where p0 is the center of the initial sphere and r(t) the motion of the interface in
x1-direction, e1 is the corresponding unit vector. R = 1

3 is the radius of the sphere.
The complementary domain is Ω2(t) = Ω \ Ω1(t).
The velocity field w is given as w = (∂r∂t (t), 0, 0). As boundary conditions we apply
suitable Dirichlet boundary conditions everywhere.
We prescribe these boundary conditions and the r.h.s. source term f , such that the
solution is given by

u(x, t) = sin(kπt) · Um(‖x− (p0 + r(t) · e1)‖), x ∈ Ωm(t), m = 1, 2

with

U1(y) = a+ by2 and U2(y) = cos(πy),
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where a and b are chosen s.t. the interface conditions hold. The diffusivities are
(α1, α2) = (10, 20) and the Henry weights (β1, β2) = (2, 1) resulting in a ≈ 1.1569
and b ≈ −8.1621. The problem is considered in the time interval [0, T ] with T = 0.5.
We choose p0 = (0.5, 1, 1)T and r(t) = 1

4π sin(2πt). For the approximation of the
space-time interface we consider ms = mt = 1. We observe an error behaviour which
is of (at least) second order in time and space (O(h2 + ∆t2)) (see Figure 4.6). For the
finest spatial resolution (ns = 64) we observe an order around 2.5 for the convergence in
time. In contrast to the previous test cases the spatial error dominates the overall error
already for coarse temporal resolutions. We expect that for finer spatial resolutions
and better geometry approximations (mt > 1,ms ≥ 1) one could retain the third order
convergence in time.

1 2 4 8 16 32 64

10−2

10−1

nt

nx = 8
nx = 16
nx = 32
nx = 64
order 1
order 2
order 3

nt\ns 8 16 32 64

1 0.185 0.1929 0.2202 0.22794
2 0.180 0.0520 0.0607 0.06760
4 0.201 0.0440 0.0113 0.01409
8 0.208 0.0509 0.0113 0.00268
16 0.209 0.0527 0.0131 0.00293
32 0.209 0.0530 0.0135 0.00332
64 0.209 0.0530 0.0136 0.00340

Fig. 4.6. Convergence in L2(Ω(T ))-norm w.r.t. refinements in time and space as a plot and as
tabulated values for test case in section 4.2.

It is also relevant to study the accuracy of the method w.r.t. the interface condition.
Therefore, in Table 4.4 we consider the error

‖ν 1
2 [βuh]‖L2(Γ∗,h) =

(∫ T

0

∫
Γh(t)

[βuh]2 ds dt

) 1
2

under space and time refinement and also observe an O(h2 + ∆t2) behaviour.

nt \ ns 8 16 32 64 eoct
2 0.0495 0.00700 0.0198 0.0587
4 0.0430 0.00384 0.00567 0.0227 1.37
8 0.0417 0.00253 0.00164 0.00517 2.13

16 0.0414 0.00205 0.000716 0.00117 2.14
32 0.0413 0.00190 0.000523 0.000275 2.10

64 0.0413 0.00186 0.000477 0.000131 1.07

eocs 4.48 1.96 1.86
Table 4.4

Interface error ‖ν
1
2 [βuh]‖L2(Γ∗,h) for different refinements in time and space for the test case

in section 4.2. The last column shows the estimated order of convergence w.r.t. time (eoct) using
the finest spatial resolution (ns = 64), the last row shows the estimated order of convergence w.r.t.
space (eocs) using the finest temporal resolution (nt = 64).

5. A strategy to decompose intersected 4-prisms into pentatopes. In
this section we introduce a decomposition strategy that allows for a decomposition of
four dimensional prisms into pentatopes as needed in section 3.5. This approach is
new.
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Firstly, we introduce the definitions of relevant four dimensional geometries in section
5.1. The decomposition of a 4-prism into four pentatopes is presented in section 5.2.
This is already needed to construct (via interpolation of the level-set function) the
piecewise planar space-time interface in section 3.2.
In section 5.4 a strategy is presented that allows us to decompose a pentatope which is
intersected by a hyperplane (representing an approximation of the space-time interface)
into pentatopes which are not intersected. Figure 5.1 sketches the algorithmic structure
of the decomposition strategy. In this algorithm we need a particular geometrical
object, that we call hypertriangle, which can be decomposed into six pentatopes
following the decomposition rule in section 5.3.
Remark 5.1. The resulting pentatopes/tetrahedra in this decomposition can have
arbitrary small angles. Note that this does not lead to stability problems as we are
using the decomposition only for numerical integration.

one cut
4-prism

four
pentatopes

cut
pentatope
(sec. 5.4)

uncut
pentatope

case 1
(sec. 5.4.1)

case 2
(sec. 5.4.2)

one uncut
pentatope

one
4-prism

four uncut
pentatopes

one hyper-
triangle

six uncut
pentatopes

(sec. 5.2)

(sec. 5.2)

(sec. 5.3)

cut geometries uncut geometries uncut pentatopes

Fig. 5.1. Algorithmic structure of the decomposition strategy proposed in section 5.

5.1. Definition of simple geometries in four dimensions. By ei ∈ Rn we
denote the i-th unit vector with (ei)j = δi,j for i = 1, .., n and e0 := 0.
Definition 5.1 (4-simplex / pentatope). Let xi ∈ R4 for i = 1, .., 5 and di,j := xi−xj .
Iff the vectors di,1 for i = 2, .., 5 are linearly independent, we call the convex hull
P = conv({xi}i=1,..,5) the 4-simplex or pentatope.
Remark 5.2 (reference pentatope). Every pentatope P can be represented as an
affine transformation applied to the reference pentatope P̂ = conv({ei}i=0,..4). The
transformation has the form

Φ : P̂ → P, (x̂1, x̂2, x̂3, x̂4)→
5∑
i=1

λ̂ix
i,
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where λ̂i(x̂1, x̂2, x̂3, x̂4) are the barycentric coordinates of P̂ w.r.t. vertex ei−1.
Definition 5.2 (4-prism). Let xi ∈ R4 for i = 1, .., 4 and y ∈ R4. Iff {xi}i=1,..,4

defines a 3-simplex (tetrahedron) T = conv({xi}i=1,..,4) and y is linearly independent
of {di,1}i=2,..,4, with di,j := xi − xj, the set

Q = conv({xi}i=1,..,4, {xi + y}i=1,..,4) = {x + αy,x ∈ conv({xi}i=1,..,4), α ∈ [0, 1]}

is called 4-prism.
Remark 5.3 (reference 4-prism). Every 4-prism can be represented as an affine
linear transformation applied to the reference 4-prism Q̂ = conv({ei}i=0,..,3}, {ei +
e4}i=0,..,3}). The transformation has the form

Φ : Q̂ → Q, (x̂1, x̂2, x̂3, x̂4)→
4∑
i=1

µ̂ix
i + x̂4y,

where µ̂i(x̂1, x̂2, x̂3) are the barycentric coordinates of the reference tetrahedron T̂ =
conv({ei}i=0,..3). The next geometry is a little bit more complex. It later occurs as

x1

x3

x2

x4

x1

x3

x2

x4

x1

x3

x2

x4

Fig. 5.2. Sketch of reference geometries. Reference 4-prism Q̂ (left), reference pentatope P̂
(center) and reference hypertriangle Ĥ (right).

one part of a pentatope cut by a hyperplane.
Definition 5.3 (hypertriangle). We define the reference hypertriangle as

Ĥ := {(x1, x2, x3, x4) ∈ R4
+, x1 + x2 ≤ 1, x3 + x4 ≤ 1}

= conv({x̂i,j}i=1,..,3,j=1,..,3) = K̂ × K̂

where K̂ ⊂ R2 denotes the reference triangle K̂ = conv({χ1, χ2, χ3}) ⊂ R2 with
χi = ei−1 ∈ R2, i = 1, 2, 3 and x̂i,j = (χi, χj) ∈ R4, i, j = 1, 2, 3. Now, let xi,j ∈
R4, i, j = 1, 2, 3. The convex hull H = conv({xi,j}i,j=1,2,3) is called a hypertriangle
iff there exists a transformation

Φ : Ĥ → R4, (x̂1, x̂2, x̂3, x̂4)→
3∑
i=1

3∑
j=1

ρ̂i(x̂1, x̂2)ρ̂j(x̂3, x̂4)xi,j ,

where ρ̂i(x̂1, x̂2) is the barycentric coordinate of the reference triangle K̂corresponding
to the vertex χi. There holds Φ(Ĥ) = H.
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5.2. Decomposition of a 4-prism into four pentatopes. We consider an
arbitrary prism element QT = T × In with a tetrahedral element T and a time
interval In. For each QT there exists a linear transformation Φ mapping from the
reference 4-prism Q̂ to QT which is of the form Φ(x̂, t̂) = (Φx(x̂),Φt(t̂))

T with the
time transformation Φt(t̂) = t̂ · tn + (1− t̂) · tn−1 and the space transformation Φx(x̂)
mapping from the reference tetrahedron T̂ to T .
It is sufficient to consider the decomposition of the reference 4-prism Q̂ into four
pentatopes as applying Φ to each pentatope of this decomposition results in a valid
decomposition of Q into four pentatopes. With xi := ei−1 and yi := ei−1 + e4 for
i = 1, .., 4 for the reference 4-prism there holds Q̂ = conv({xi}i=1,..,4, {yi}i=1,..,4).

We decompose Q̂ into four pentatopes P̂1, P̂2, P̂3, P̂4, which are defined as follows:

P̂1 := conv({x1,x2,x3,x4,y4}), P̂2 := conv({x1,x2,x3,y3,y4})
P̂3 := conv({x1,x2,y2,y3,y4}), P̂4 := conv({x1,y1,y2,y3,y4})

A sketch of those can be found in Figure 5.3. One can easily show that the pentatopes

pentatope P̂1:

x2

x3

x1

x4

pentatope P̂2:

x2

x3

x1

x4

pentatope P̂3:

x2

x3

x1

x4

pentatope P̂4:

x2

x3

x1

x4

Fig. 5.3. Sketch of pentatopes P̂1, P̂2, P̂3, P̂4 which form a valid decomposition of the reference
4-prism Q̂.

are disjoint (except for a part with measure zero) and sum up to the reference
prism:

⋃
P̂i = Q̂. Note further that the measure of all pentatopes are the same, i.e.

meas4(Pi) = 1/24.

5.3. Decomposing the reference hypertriangle. Let ui = x̂1,i, vi = x̂2,i,
wi = x̂3,i, i = 1, .., 3 with x̂i,j as in definition 5.3. We decompose Ĥ into six pentatopes
which are defined as follows:

D̂u= conv({u1,u2,u3,v2,w3}), D̂v = conv({u1,v1,v2,v3,w3})
D̂w= conv({u1,v2,w1,w2,w3}), D̂1 = conv({u1,v1,v2,w1,w3})
D̂2 = conv({u1,u2,v2,w2,w3}), D̂3 = conv({u1,u3,v2,v3,w3})

Note that there is a simple structure behind this decomposition. We define the
“diagonal triangle” as K̂diag = conv(u1,v2,w3). To the three vertices of K̂diag we

add the missing vertices (underlined) of one of the following six triangles

K̂u = conv({u1,u2,u3}), K̂v = conv({v1,v2,v3}), K̂w = conv({w1,w2,w3}),
K̂1 = conv({u1,v1,w1}), K̂2 = conv({u2,v2,w2}), K̂3 = conv({u3,v3,w3}).
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pentatope D̂u:

x2

x3

x1

x4

pentatope D̂v:

x2

x3

x1

x4

pentatope D̂w:

x2

x3

x1

x4

pentatope D̂1:

x2

x3

x1

x4

pentatope D̂2:

x2

x3

x1

x4

pentatope D̂3:

x2

x3

x1

x4

Fig. 5.4. Sketch of pentatopes D̂u, D̂v , D̂w, D̂1, D̂2, D̂3 which form a valid decomposition of
the reference hypertriangle Ĥ. The edges of K̂diag are highlighted in red, whereas the triangles

K̂u, K̂v , K̂w, K̂1, K̂2, K̂3 are filled with the corresponding color. The triangle corresponding to each
pentatope is highlighted especially.

A sketch of those pentatopes is given in Figure 5.4. Also here, one can easily show that
the pentatopes are disjoint (except for a part with measure zero), and sum up to Ĥ.

5.4. Decomposition of a pentatope intersected by the space-time inter-
face. We assume that the space-time interface is approximated in a piecewise planar
fashion, s.t. within each pentatope the space-time interface is a (hyper-)plane. This
plane divides a pentatope into two parts. Note that due to the pentatope being a
convex set each of the two parts will still be convex. We now consider a pentatope
P which is cut by the plane G = {x ∈ R4 : x · nG = c} which represents the local
approximation of the space-time interface. Each vertex v is marked corresponding
to one of the two halfspaces. Vertices with v · nG < c are marked with a plus (+),
all others with a minus (-). Note that this classification includes the cases where the
space-time interface hits vertices (v · nG = c). We thus can only have two non-trivial
situations:

Case 1: One vertex has a sign that is different from all the others or
Case 2: Two vertices have a sign that is different from the other three vertices.

In the following we will consider these cases separately and construct a decomposition
of the parts into pentatopes. Without loss of generality we assume that the vertices in
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the smaller group of vertices are those marked with a plus (+).

5.4.1. Case 1: Decomposition into one pentatope and one 4-prism.
We consider the case where one vertex of a pentatope, say x5, is marked with
a plus (+). All other vertices (x1,x2,x3,x4) are marked with a minus (-). The
cutting points of the hyperplane G with the edges are b1 := x1x5 ∩ G,b2 :=
x2x5 ∩ G,b3 := x3x5 ∩ G,b4 := x4x5 ∩ G. The geometry containing the separated
vertex is the pentatope P+ := conv({b1,b2,b3,b4,x5}) while the remainder is
Q− := conv({x1,x2,x3,x4,b1,b2,b3,b4}). Consider the mapping

Φ : Q̂ → Q−, (x̂1, x̂2, x̂3, x̂4)→
4∑
i=1

µi(x̂1, x̂2, x̂3)(x̂4b
i + (1− x̂4)xi)

with µ̂(x̂1, x̂2, x̂3) the barycentric coordinates of the reference tetrahedron T̂ . The
decomposition of the reference 4-prism Q̂ into the four pentatopes P̂i, i = 1, .., 4 as
described in section 5.2 can be used as a triangulation of Q̂. Let Φh be the (pentatope-)
piecewise linear interpolation of Φ at the vertices of this triangulation. One can show
that Φh is an isomorphism between Q̂ and Q− and furthermore for each pentatope P̂i
the image Φh(P̂i) is again a pentatope. Thus the decomposition rule for the reference
4-prism can also be applied here and we get a valid decomposition by taking the four
pentatopes

P1 =Φh(P̂1) = conv({x1,x2,x3,x4,b4}), P2 =Φh(P̂2) = conv({x1,x2,x3,b3,b4})
P3 =Φh(P̂3) = conv({x1,x2,b2,b3,b4}), P4 =Φh(P̂4) = conv({x1,b1,b2,b3,b4}).

Decomposition of the space-time interface into tetrahedra for case 1. The triangu-
lation of the interface is trivially obtained with the tetrahedron

P ∩ G = I = conv({b1,b2,b3,b4}).

5.4.2. Case 2: Decomposition into one 4-prism and one hypertriangle.
Let us consider the case where two vertices of a pentatope are marked with a plus (+),
these are (w.l.o.g.) vertices x4 and x5. All other vertices (x1,x2,x3) are marked with
a minus (-). The cutting points of the hyperplane G with the edges are c1 := x1x4 ∩G,
c2 := x2x4 ∩G, c3 := x3x4 ∩G, d1 := x1x5 ∩G, d2 := x2x5 ∩G, d3 := x3x5 ∩G. Thus
we have to decompose the two parts H− and Q+ into pentatopes with

H− := conv({x1,x2,x3, c1, c2, c3,d1,d2,d3}),
Q+ := conv({c1, c2, c3,d1,d2,d3,x4,x5}).

Let us start with the decomposition of H−. Consider the mapping

Φ : Ĥ → H−, (x̂1, x̂2, x̂3, x̂4)→
3∑
i=1

3∑
j=1

ρi(x̂1, x̂2)ρj(x̂3, x̂4)qi,j

with qi,1 = xi, qi,2 = ci and qi,3 = di where ρi(x̂1, x̂2) are the barycentric coordinates
of the reference triangle K̂ ⊂ R2. Following section 5.3, we have a triangulation
of Ĥ into pentatopes {D̂i}. One can show that the (pentatope-) piecewise linear
interpolation Φh of Φ is an isomorphism between Ĥ and H− and each image Φh(D̂i)
is again a pentatope. Therefore we can apply the decomposition of the reference

19



hypertriangle Ĥ into pentatopes to get the six pentatopes

Du = Φh(D̂u) = conv({x1,x2,x3, c2,d3}),
Dv = Φh(D̂v) = conv({x1, c1, c2, c3,d3}),
Dw = Φh(D̂w) = conv({x1, c2,d1,d2,d3}),
D1 = Φh(D̂1) = conv({x1, c1, c2,d1,d3}),
D2 = Φh(D̂2) = conv({x1,x2, c2,d2,d3}),
D3 = Φh(D̂3) = conv({x1,x3, c2, c3,d3}.

We now turn over to Q+. For notational convenience define c4 := x4 and d4 := x5.
Thus Q+ = conv({c1, c2, c3, c4,d1,d2,d3,d4}). Now the structure is similar to the
situation for Q− in Case 1 and we can apply the same procedure and get a valid
decomposition

⋃
Pi = Q+ with

P1 =ΦQh (P̂1) = conv({c1, c2, c3,x4,x5}), P2 =ΦQh (P̂2) = conv({c1, c2, c3,d3,x5})
P3 =ΦQh (P̂3) = conv({c1, c2,d2,d3,x5}), P4 =ΦQh (P̂4) = conv({c1,d1,d2,d3,x5})

with ΦQh the corresponding piecewise linear transformation for the 4-prism.
Decomposition of the space-time interface into tetrahedra for case 2. With sim-

ilar techniques as done for the four dimensional volume, we can proceed with the
triangulation of the interface which is isomorph to a 3-prism resulting in tetrahedra Ii:

I1 =conv({c1, c2, c3,d3}), I2 =conv({c1, c2,d2,d3}), I3 =conv({c1,d1,d2,d3})

Conclusion. The method presented and analysed in [20] is applied to a spatially
three dimensional mass transport problem with a moving discontinuity. A strategy for
constructing a piecewise planar approximate space-time interface and corresponding
polygonal space-time domains is presented. For the integration on the polygonal
space-time domains a method which decomposes the domain into a set of simplices
is presented. Furthermore the construction of the tensor product space-time finite
elements and the (non-standard) issue of quadrature rules in four space dimensions is
addressed. Results of numerical experiments reveal third order in time convergence as
long as the error related to the approximation of Γ∗ - which is of second order accuracy
- is not dominating.

Acknowledgement. The author wants to thank Arnold Reusken for comments
that greatly improved the manuscript. Financial support from the German Science
Foundation (DFG) within the Priority Program (SPP) 1506 “Transport Processes at
Fluidic Interfaces” is gratefully acknowledged.

Appendix A. Quadrature rule(s) on pentatopes. We shortly review lower
order quadrature rules on pentatopes and discuss how to achieve higher order rules
using tetrahedron rules, Duffy transformation and 1D Gauss-Jacobi integration rules.
Integration rules are given for the reference pentatope P̂.

A.1. First order rule. There holds
∫
P̂ 1 dx̂ = 1/24 and

∫
P̂ q(x̂) dx̂ = 1/120 for

q(x̂) ∈ {x̂1, x̂2, x̂3, x̂4}, s.t. the following rule is obviously exact for all polynomials up
to degree one:

I1(f) = 1/120

4∑
i=0

f(ei)

20



y

t

1

1

0 ≤ t ≤ 1, 0 ≤ y ≤ 1− t

t̃= t,
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Fig. A.1. Sketch of the Duffy transformation for d = 1

A.2. Third order rule. A third order rule, taken from [2], is as follows:

I3(f) = 1/120

5∑
i=1

f(si) with λj(s
i) = α for i 6= j and λj(s

i) = β for i = j

with α = 0.118350341907227374 and β = 0.526598632371090503.

A.3. Higher order rules using the Duffy transformation. A more general
approach to derive integration rules for pentatopes is based on the Duffy transformation
[7]. Let ŷ = (ŷ1, ŷ2, ŷ3) ∈ R3, and x̂ = (ŷ, t) ∈ R4. The problem to compute∫
P̂ f(x̂) dx̂ =

∫
P̂ f(ŷ, t) d(ŷ, t) can be transformed using the transformation (ŷ, t)→

(1/(1− t)ŷ, t) = (ỹ, t) (see also Figure A.1 for a sketch):∫
P̂
f(ŷ, t) d(ŷ, t) =

∫ 1

0

∫ 1−t

0

∫ 1−t−ŷ1

0

∫ 1−t−ŷ1−ŷ2

0

f(ŷ, t) dŷ3 dŷ2 dŷ1 dt

[ỹ = 1/(1− t)ŷ]

=

∫ 1

0

(1− t)3

∫ 1

0

∫ 1−ỹ1

0

∫ 1−ỹ1−ỹ2

0

f((1− t)ỹ, t) dỹ3 dỹ2 dỹ1 dt

=

∫ 1

0

(1− t)3

∫
T̂

f̃(ỹ, t) dỹ dt =

∫ 1

0

(1− t)3g̃(t) dt

with f̃(ỹ, t) = f((1 − t)ỹ, t) and g̃(t) =
∫
T̂
f̃(ỹ, t) dỹ . In this form one can apply a

one-dimensional integration rule of the form

∫ 1

0

(1− t)3g̃(t) dt ≈
N∑
k=0

ωig̃(ti)

where ωi and ti are weights and points of the corresponding quadrature rule. In
order to approximate g̃(ti) at every integration point ti a standard 3D quadrature
rule can be applied. Let’s assume this 3D quadrature rule has order q accuracy. The
highest order for the pentatope rule at lowest costs is achieved if a Gauss-Jacobi rule
(corresponding to the weight (1− t)3) of order q is used for the numerical integration
w.r.t. t. The resulting quadrature rule is positive, but not symmetric. In principle
also the quadrature rule for the tetrahedron can be derived from lower dimensional
quadrature rules applying the idea recursively. This generic procedure generates
quadrature rules which have slightly more points than symmetric Gauss rules. For
that reason, we use symmetric Gauss rules for the tetrahedron.
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Appendix B. Computing the weighting factor ν. The weighting factor ν in the
Nitsche XFEM-DG method can be computed using the space-time normal nΓ∗ of the
space-time interface. One can show that there holds

ν = (1 + (w · nΓ)2)−
1
2 = ‖(n1, .., nd)

T ‖

with nΓ∗ = (n1, .., nd+1)T the space-time normal at the interface.
As we use a piecewise planar approximation of the space-time interface consisting of
d-simplices in d+ 1 dimensions we have to compute a normal to the d-simplex. It is
known that for d = 2 one can use the standard cross-product to compute the normal.
In the next section we quote a generalized cross-product which allows to do the same
if d = 3.

B.1. Computing normals to tetrahedra in 4 dimensions. In [14] a gener-
alization of the cross-product is given. Given three vectors u1,u2,u3 ∈ R4 one can
compute the cross-product v = X(u1,u2,u3), s.t.

• X(u1,u2,u3) = 0 iff u1,u2,u3 are linear dependent.
• Iff u1,u2,u3 are linear independent then for v = X(u1,u2,u3), there holds:

v ⊥ ui, i = 1, .., 3.
• αX(u1,u2,u3) = X(αu1,u2,u3) = X(u1, αu2,u3) = X(u1,u2, αu3), α ∈ R
• X(u1,u2,u3) = sign(π)X(uπ(1),uπ(2),uπ(3)), where π is a permutation, i.e.

changing the order of the arguments switches the sign.
This cross-product can be used to compute normals to tetrahedra. The computation
is given below:
Given u,v,w ∈ R4. Compute z = X(u,v,w) ∈ R4 as follows:

a1,2= u1 · v2 − u2 · v1,
a1,3= u1 · v3 − u3 · v1,
a1,4= u1 · v4 − u4 · v1,
a2,3= u2 · v3 − u3 · v2,
a2,4= u2 · v4 − u4 · v2,
a3,4= u3 · v4 − u4 · v3,

z1= w2 · a3,4 − w3 · a2,4 + w4 · a2,3

z2= −w1 · a3,4 + w3 · a1,4 − w4 · a1,3

z3= w1 · a2,4 − w2 · a1,4 + w4 · a1,2

z4= −w1 · a2,3 + w2 · a1,3 − w3 · a1,2
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