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Legendre-Gauss-Lobatto grids and
associated nested dyadic grids

Kolja Brix · Claudio Canuto · Wolfgang Dahmen

Abstract Legendre-Gauss-Lobatto (LGL) grids play a pivotal role in nodal
spectral methods for the numerical solution of partial differential equations.
They not only provide efficient high-order quadrature rules, but give also rise
to norm equivalences that could eventually lead to efficient preconditioning
techniques in high-order methods. Unfortunately, a serious obstruction to fully
exploiting the potential of such concepts is the fact that LGL grids of different
degree are not nested. This affects, on the one hand, the choice and analy-
sis of suitable auxiliary spaces, when applying the auxiliary space method as
a principal preconditioning paradigm, and, on the other hand, the efficient
solution of the auxiliary problems. As a central remedy, we consider certain
nested hierarchies of dyadic grids of locally comparable mesh size, that are in a
certain sense properly associated with the LGL grids. Their actual suitability
requires a subtle analysis of such grids which, in turn, relies on a number of
refined properties of LGL grids. The central objective of this paper is to derive
just these properties. This requires first revisiting properties of close relatives
to LGL grids which are subsequently used to develop a refined analysis of
LGL grids. These results allow us then to derive the relevant properties of the
associated dyadic grids.
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1 Introduction

Studying the distribution of zeros of orthogonal polynomials is a classical
theme that has been addressed in an enormous number of research papers.
The sole reason for revisiting this topic here is the crucial role of Legendre-
Gauss-Lobatto (LGL) grids, formed by the zeros of corresponding orthogonal
polynomials, for the development of efficient preconditioners for high order
finite element and even spectral discretizations of PDEs, see e.g. [4,5,2,3]. In
connection with elliptic PDEs, which often possess very smooth solutions and
thus render high order methods at least potentially extremely efficient, a key
constituent is the fact that interpolation at LGL grids give rise to fully robust
(with respect to the polynomial degrees) isomorphisms between high order
polynomial spaces and low order finite element spaces on LGL grids. However,
unfortunately, one quickly faces some serious obstructions to fully exploiting
this remarkable potential of LGL grids when simultaneously trying to exploit
the flexibility of Discontinuous Galerkin (DG) schemes, namely locally refined
grids and locally varying polynomial degrees. Indeed, as explained in [2], the
essential source of the problems encountered then is the fact that LGL grids
are not nested. This affects the choice and analysis of suitable auxiliary spaces,
when using the auxiliary space method, see e.g. [8,12] as preconditioning strat-
egy, as well as the efficient solution of the corresponding auxiliary problems.
As a crucial remedy, certain hierarchies of nested dyadic grids have been in-
troduced in [2] which are associated in a certain sense with LGL grids. The
term “associated” encapsulates a number of properties of such dyadic grids,
some of which have been used and claimed in [2] but will be proved here which
is the central objective of this paper.

The layout of the paper is as follows. After collecting, for the convenience
of the reader, in Section 2 some classical facts and tools used in the sequel, we
formulate in Section 3 the main results of the paper. The first one, Theorem 4,
is concerned with the quasi-uniformity of LGL grids as well as with a certain
notion of equivalence between LGL grids of different order. This is important
for dealing with DG-discretizations involving locally varying polynomial de-
grees, see [2,3]. The second one, Theorem 5, concerns certain hierarchies of
nested dyadic grids that are associated in a very strong sense with LGL grids.
Both theorems play a crucial role for the design and analysis of preconditioners
for DG systems. Section 4 is devoted to the proof of Theorem 4. This requires
deriving a number of refined properties of LGL grids which to our knowledge
cannot be found in the literature. In particular, we need to revisit in Section 4.4
some close relatives namely Chebyshev-Gauss-Lobatto (CGL) nodes since they
have explicit formulae that help deriving sharp estimates. The central subject
of Section 5 is the generation of dyadic grids associated in a certain way with a
given other grid as well as the analysis of the properties of these dyadic grids.
In particular, the results obtained in this section lead to a specific hierarchy
for which the properties claimed in Theorem 5 are verified.

Throughout the paper we shall employ the following notational convention.
By a . b we mean that the quantity a can be bounded by a constant multiple
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of b uniformly in the parameters a and b may depend on. Likewise a & b is
equivalent to b . a and a ' b means a . b and b . a.

2 Preliminaries and Classical Tools

A central notion in this work concerns grids G induced by zeros of certain or-
thogonal polynomials, especially, the first derivatives of Legendre polynomials.
It will be important though that those are special cases of Ultraspherical or
Gegenbauer polynomials whose definition is recalled for the convenience of the
reader.

Definition 1 (Ultraspherical or Gegenbauer polynomials, [11, Sec-
tion 4.7]) Let the parameters λ > − 1

2 and N ∈ N be fixed. The ultras-

pherical or Gegenbauer polynomial P
(λ)
N of degree N is defined as orthogo-

nal polynomial on the interval [−1, 1] with respect to the weighting function

w(λ)(x) := (1− x2)λ−
1
2 , i.e.∫ 1

−1

P
(λ)
N (x)P

(λ)
N ′ (x)w(λ)(x) dx = c

(λ)
N δN,N ′ for all N,N ′ ∈ N,

with

c
(λ)
N =

21−2λπ

Γ (λ)2

Γ (N + 2λ)

(N + λ)Γ (N + 1)

and normalization

P
(λ)
N (1) =

(
N + 2λ− 1

N

)
.

The following useful properties of ultraspherical polynomials can be found
in [11, Chapter 4.7]. For any N ∈ N the ultraspherical polynomials fulfill the
symmetry property

P
(λ)
N (−x) = (−1)N P

(λ)
N (x) for all x ∈ R, (1)

and the differentiation rule

d

dx
P

(λ)
N (x) = 2λP

(λ+1)
N−1 (x) for all x ∈ R (2)

holds.
The understanding of these polynomials hinges to a great extent on a fact

that will be used several times, namely that the ultraspherical polynomial P
(λ)
N

is a solution of the linear homogeneous ordinary differential equation (ODE)
of second order

(1− x2) y′′(x)− (2λ+ 1)x y′(x) +N(N + 2λ) y(x) = 0, (3)
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see, e.g., [11, (4.2.1)]. By an elementary transformation, based on the product
ansatz for the solution y(x) := s(x)u(x), the first order term can be eliminated,
see [11, Section 1.8], so that the transformed ODE

d2u

dx2
+ φ

(λ)
N (x)u = 0 , where φ

(λ)
N (x) =

1− (λ− 1
2 )2

(1− x2)2
+

(N + λ)2 − 1
4

1− x2
, (4)

has the solutions u(x) = (1− x2)(2λ+1)/4P
(λ)
N (x), see [11, (4.7.10)].

For the convenience of the reader we recall next some standard tools that
are used to estimate the zeros of classical orthogonal polynomials and their
spacings.

Theorem 1 (Sturm Comparison Theorem, cf. [7, Section 2], see also
[11, Section 1.82]) Let [a, b] ⊂ R an interval and f : [a, b] → R and F :
[a, b] → R two continuous functions. Let y and Y , respectively, be nontrivial
solutions of the homogeneous linear ordinary differential equations

y′′ + f(x)y = 0 and Y ′′ + F (x)Y = 0, (5)

respectively.

(i) Let y(a) = Y (a) = 0 and limx→a+ y
′(x) = limx→a+ Y

′(x) > 0. If F (x) >
f(x) for a < x < b, then y(x) > Y (x) for a < x ≤ c, where c is the smallest
zero of Y in the interval (a, b].

(ii) Let y(a) = Y (a) = 0 and F (x) > f(x) for a < x < b. Then the smallest
zero of Y in (a, b] occurs left of the smallest zero of y in (a, b].

(iii) Under the hypothesis of (ii), the k-th zero of Y in (a, b] occurs before the
k-th zero of y to the right of a.

One application of the Sturm comparison theorem is the Sturm convexity
theorem, where two intervals between zeros of the same function are compared.

Theorem 2 (Sturm Convexity Theorem, cf. [7, Section 2]) Let y be a
nontrivial solution of

y′′ + f(x)y = 0, (6)

where f : [a, b] → R is continuous and non-increasing. Then the sequence of
zeros of y(x) is convex, i.e., for consecutive zeros x1, x2, x3 ∈ [a, b] of y(x)
we get

x2 − x1 < x3 − x2.

We also record the following consequence of a theorem by Markoff, see [11,
Theorem 6.21.1, pp. 121 ff], that

∂xν
∂λ

> 0 for 1 ≤ ν ≤
⌊
N

2

⌋
. (7)

In other words, taking the symmetry (1) into account, we observe that the

zeros of the ultraspherical polynomial P
(λ)
N move towards the center of the

interval [−1, 1] with increasing parameter λ.
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Fig. 1: Jacobi and ultraspherical scales.

We recall next for later purposes the main relations between ultraspherical,
Legendre and Chebyshev polynomials from [11, Chapter IV].

Here we are mainly interested in the Legendre polynomials LN of degree

N ∈ N, which are the ultraspherical polynomials LN = P
( 1
2 )

N , and their first
derivatives. Later we shall use the Chebyshev polynomials of first kind TN =

cT (N)P
(0)
N and of second kind UN = cU (N)P

(1)
N as a tool.

Our primary interest concerns the special case of Legendre polynomials.

Definition 2 (Legendre-Gauss-Lobatto nodes, grid and angles; see
e.g. [5, p. 71f, (2.2.18)]) For 0 ≤ k ≤ N the LGL nodes ξNk of order N
are the N + 1 zeros of the polynomial (1 − x2)L′N (x), where L′N is the first
derivative of the Legendre polynomial of degree N . The LGL nodes are sorted
in increasing order, i.e., we have ξNk < ξNk+1 for 0 ≤ k ≤ N−1. Their collection

GLGL
N = {ξNk : 0 ≤ k ≤ N} forms the LGL grid of order N . Given the LGL

grid GLGL
N , we define for 0 ≤ k ≤ N − 1 the corresponding LGL intervals as

∆N
k := [ξNk , ξ

N
k+1] ⊂ [−1, 1], which are of length

∣∣∆N
k

∣∣ = ξNk+1 − ξNk .

We also define the corresponding LGL angles (ηNk )Nk=0 ⊂ [0, π] as ηNk =
arccos(−ξNk ).

Our notation deviates from the standard literature on orthogonal polyno-
mials because the LGL nodes are usually enumerated in decreasing order, see
for example [11, Chapter VI]. Note that ηN0 = 0 and ηNN = π, i.e. ξN0 = −1
and ξNN = 1. Figure 2 exemplifies the enumeration scheme used for the LGL
points and intervals for odd and even values of N .

∆N
0 ∆N

1 ∆N
2 ∆N

N−3 ∆N
N−2 ∆N

N−1

N = 9

0ξN⌊N
2
⌋−1 = ξN0 ξN1 ξN2 ξNN−1ξNN−2 ξNN = 1. . . . . .

(a) LGL grid for odd N.

∆N
0 ∆N

1 ∆N
2 ∆N

N−1∆N
N−2∆N

N−3

N = 10

ξN⌊N
2
⌋ = 0ξN1−1 = ξN0 ξN2 . . . . . . ξNN = 1ξNN−2 ξNN−1

(b) LGL grid for even N.

Fig. 2: Numeration of LGL nodes and intervals.
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By the differentiation rule (2) for ultraspherical polynomials, we have in
the special case of Legendre polynomials

L′N (x) =
1

2
P

(1,1)
N−1(x) =

1

2
P

( 3
2 )

N−1(x).

For the special case of λ = 3
2 , the transformed ODE (4)

d2u

dx2
+ φ

( 3
2 )

N (x)u = 0 with φ
( 3
2 )

N (x) =
(N + 3

2 )2 − 1
4

1− x2
(8)

has the solution u(x) = (1 − x2)P
( 3
2 )

N (x), which has its zeros exactly at the
LGL nodes of order N + 1.

By the symmetry relation (1), the LGL nodes are symmetric with respect
to the origin, i.e., ξNk = −ξNN−k for 0 ≤ k ≤ N , in particular ξNN

2

= 0 if N is

even. For the LGL angles, symmetry yields ηNN−k = π − ηNk for 0 ≤ k ≤ N ,

in particular ηNN
2

= π
2 if N is even. Consequently, the LGL grids on [−1, 1]

are symmetric around zero and an analogous property holds, of course, for
their affine images in general intervals [a, b] with respect to their midpoint
(a + b)/2. In what follows all grids under consideration are assumed without
further mentioning to be symmetric in this sense.

We close this section with recalling a well-known fact about the mono-
tonicity of LGL grids since this will be used frequently.

Theorem 3 (Monotonicity of LGL interval lengths, cf. [6, Theorem
5.1 for α = 1]) The LGL interval lengths are strictly increasing from the
boundary towards the center of [−1, 1], i.e., for N ≥ 3 and 0 ≤ k ≤

⌊
N−1

2 − 1
⌋

we have
∣∣∆N

k+1

∣∣ > ∣∣∆N
k

∣∣.
Proof By symmetry it suffices to consider the left half of the intervall [−1, 1].
The LGL points of order N + 1 are the zeros of the polynomial u(x) = (1 −
x2)P

( 3
2 )

N (x), which is a solution of the transformed ODE (8). Since φ
( 3
2 )

N (x) is
monotonically decreasing on (−1, 0], by the Sturm Convexity Theorem 2, we
have ∣∣∆N

k+1

∣∣ = ξNk+2 − ξNk+1 > ξNk+1 − ξNk =
∣∣∆N

k

∣∣ ,
which is the assertion. ut

Note that for N = 1 there is only one interval and for N = 2 the two
intervals are of same length by symmetry.

3 Main Results

In this section we present the main results of this paper. As pointed out in
the introduction, they are relevant for the development and analysis of robust
preconditioners for high order DG-discretizations. These results can be roughly
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grouped into two parts, namely (A) results on refined properties of LGL grids
themselves and (B) results on the relationship between LGL grids and certain
families of associated dyadic grids.

For ready use of the subsequent results in the DG context we formulate the
results in this section for a generic interval [a, b]. As mentioned before LGL
nodes and corresponding grids on such an interval are always understood as
affine images of the respective quantities on [−1, 1] using for simplicity the
same notation.

To be precise in what follows one should distinguish between a grid and
a partition or mesh induced by a grid. In general, a grid G in [a, b] is always
viewed as an ordered set {xj}Nj=0 of strictly increasing points xj - the nodes,
with x0 = a and xN = b, which induces a corresponding partition P(G) formed
by the closed intervals ∆j = [xj , xj+1], 0 ≤ j ≤ N − 1. The length xj+1 − xj
of ∆j is denoted by |∆j |. Conversely, a partition P of [a, b] into consecutive
intervals induces an ordered grid G(P) formed by the endpoints of the intervals.

Definition 3 (Quasi-uniformity) A family of grids {GN}N∈N is called lo-
cally quasi-uniform if there exists a constant Cg such that

C−1
g ≤ |∆||∆′| ≤ Cg for all ∆,∆′ ∈ P(GN ), ∆ ∩∆′ 6= ∅, N ∈ N. (9)

The next notion concerns a certain comparability of two grids.

Definition 4 (Local uniform equivalence) Given two constants 0 < A ≤
B, the grid G is said to be locally (A,B)-uniformly equivalent to the grid G′ if
the following condition holds:

For all ∆ ∈ P(G) , ∆′ ∈ P(G′) , ∆ ∩∆′ 6= ∅ =⇒ A ≤ |∆||∆′| ≤ B . (10)

3.1 Legendre-Gauss-Lobatto grids

The main result concerning LGL grids reads as follows.

Theorem 4 (i) The family of LGL grids {GLGL
N }N∈N, is locally quasi-uniform

and the constant Cg= CLGL
g in (9) satisfies

CLGL
g ≤ max

{
1,

7π2

4
,

3π2

4
,

9π2

28
,

486

65
,
π2

2
,

49

8

}
=

7π2

4
. (11)

(ii) Assume that M,N ∈ N with cN ≤M ≤ N for some fixed constant c > 0.
Then, the LGL grid GLGL

M is locally (A,B)-uniformly equivalent to the grid
GLGL
N , with A and B depending on c but not on M and N .

The fact (i) that LGL grids are quasi-uniform seems to be folklore. Since
we could not find a suitable reference we restate this fact here as a convenient
reference for [2] and include later a proof with a concrete bound for the con-
stant Cg. Claim (ii) is essential for establishing optimality of preconditioners
for high order DG discretization with varying polynomial degrees, see [2].
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Remark 1 Numerical experiments show that the quotient of the length of two

consecutive LGL intervals is maximized for
|∆N1 |
|∆N0 | and this term grows mono-

tonically in N . The value of the (smallest) constant Cg is approximately 2.36.

A further important issue concerns the comparison of an LGL grid with a
“stretched” version of itself. To explain this we introduce the stretching opera-
tor L =L[a,b] : [a, (a+b)/2]→ [a, b], x 7→ 2x−a. There is an apparent relation
concerning the behavior of LGL grids under stretching which is needed later
for establishing subsequent results on associated dyadic grids. The relevant
property, illustrated by Figure 3, reads as follows.

Definition 5 A family of symmetric grids {GN}N∈N on [a, b] has property
StrN̄ for some N̄ ∈ N, if for any GN with N ≤ N̄ the following holds: For
any I ∈ P(GN ) with I ⊂ (a, a + (b − a)/4] and any I ′ ∈ P(GN ) such that
L(I) ∩ I ′ 6= ∅, one has |I ′| ≤ |L(I)|.

We have verified numerically that property StrN̄ holds for LGL grids up
to order N̄ = 2000. This supports the following conjecture.

Conjecture 1 The family of LGL grids {GLGL
N }N∈N has property StrN̄ for all

N̄ ∈ N.

−1

−1 0

0 1

1L(∆N
k )

∆N
k ∆N

j
ξNj+1ξNj

Fig. 3: Comparison of LGL grid GLGL
N with its stretched version.

3.2 Associated dyadic grids

LGL grids are unfortunately not nested, i.e., an interval in P(GLGL
N ) cannot be

written as the union of intervals in P(GLGL
N+1) which is a severe impediment on

the use of LGL grids in the context of preconditioning. Hierarchies of nested
grids are conveniently obtained by successive dyadic splits of intervals. More
precisely, a single split, i.e., replacing an interval I in a given grid by the
two intervals I ′, I ′′ obtained by subdividing I at its midpoint, gives rise to
a refinement of the current grid. Hence successive refinements of some initial
interval give rise to a sequence of nested grids. We shall see next that that
one can associate in a very strong sense with any LGL grid GLGL

N a dyadic
grid DN that inherits relevant features from GLGL

N while in addition the family
{DN}N∈N is nested.
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Moreover, when using the associated dyadic grids in the context of the
Auxiliary Space Method (see [8,12,2]) for preconditioning the systems aris-
ing form DG-discretizations, one may obtain meshes with hanging nodes. It
then turns out that it is important that the dyadic grids are “closed under
stretching” in the following sense.

Definition 6 (Closedness under stretching) Consider the stretching op-
erator L[a,b] introduced above. Then we call a dyadic grid D on [a, b] closed
under stretching if L[a,b](D ∩ [a, (a+ b)/2]) ⊂ D.

Theorem 5 Given any LGL grid GLGL
N on any interval [a, b], there exists a

dyadic grid DN on [a, b] with the following properties:

(i) DN is symmetric and monotonic in the sense of Theorem 3, i.e., the in-
tervals D ∈ P(DN ) increase in length from left to right in the left half of
[a, b].

(ii) The family of grids {DN}N∈N is locally quasi-uniform.
(iii) The family of grids {DN}N∈N is nested.
(iv) For each N ∈ N the grid DN is locally (A,B)-uniformly equivalent to GLGL

N ,
where the constants A and B do not depend on N . In particular, one has
N ∼ #(DN ), uniformly in N .

(v) Whenever the family of LGL grids {GLGL
N }N∈N has property StrN̄ for N̄ ∈

N, then the dyadic grids DN are closed under stretching for N ≤ N̄ .

Remark 2 As mentioned before, StrN̄ has been confirmed numerically to hold
for N̄ = 2000, i.e., the dyadic grids DN are closed under stretching for N ≤
2000 which covers all cases of practical interest in the context of precondi-
tioning. Conjecture 1 actually suggests that all dyadic grids DN referred to in
Theorem 5 are closed under stretching.

For the application of the above results in the context of preconditioning [2]
quantitative refinement of Theorem 5 (ii) is important. We call a dyadic grid D
graded if any two adjacent intervals I, I ′ in P(D) satisfy |I|/|I ′| ∈ {1/2, 1, 2},
i.e., they differ in generation by at most one.

Remark 3 The dyadic grids DN referred to in Theorem 5 are graded for N ≤
N̄ = 2000. Moreover, we conjecture that gradedness holds actually for all
N ∈ N, see the discussion following Conjectures 2 and 3 in Section 4.2 and
Proposition 5.

The remainder of the paper is essentially devoted to proving Theorems 4
and 5. This requires on the one hand refining our understanding of LGL grids,
which, in particular, leads to some results that are perhaps interesting in
their own right, and, on the other hand, developing and analyzing a concrete
algorithm for creating DN for any given N .

Since all the properties claimed in Theorems 4 and 5 are invariant under
affine transformations it suffices to consider from now on only the reference
interval [a, b] = [−1, 1].
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4 Proof of Theorem 4

In this section we proceed establishing further quantitative facts about LGL
grids needed for the proof of Theorem 4. We address first interrelations of LGL
nodes within a single grid GLGL

N of arbitrary order N . We begin recalling the
following estimates on LGL angles which can be found, for instance, in [5] and
[10]

ηNk ∈
[
ηN
k
, ηNk

]
for 1 ≤ k ≤

⌊
N − 1

2

⌋
with ηN

k
:= π

k

N
and ηNk := π

2k + 1

2N + 1
.

(12)

The lower bound follows from (7) and the fact that the ultraspherical

polynomial P
(1)
N−1 can, up to a non-zero normalization factor, be identified as

the Chebyshev polynomial of second kind UN−1, which has the zeros cos ηN
k

for 1 ≤ k ≤ N − 1, see e.g. [5, (2.3.15) on p. 77]. The upper bound is given in
[10, Lemma 1].

Note that the lower bound obtained from (7) is sharper than the lower
estimate in [10, Lemma 1].

4.1 Legendre-Gauss-Lobatto intervals and their spacings

Next we consider the spacings between two subsequent LGL nodes. To this
end, in the following, we will repeatedly make use of the following elementary
estimates: for any x ∈ [0, π2 ] one has

a)
2

π
x ≤ sinx ≤ x ; b) 1− 2

π
x ≤ cosx ≤ 1 ; c) 1− 1

2
x2 ≤ cosx ≤ 1− 4

π2
x2 .

(13)
Moreover, we shall use the prostapheresis trigonometric identity

cosx− cos y = −2 sin

(
x+ y

2

)
sin

(
x− y

2

)
. (14)

Note that for x, y ∈ [0, π2 ] and x ≥ y the arguments of the sine function x+y
2

and x−y
2 are both within [0, π2 ].

Recall that N ≥ 1 as the LGL nodes include the boundary points. For
N = 1 the LGL nodes are ξ1

0 = −1 and ξ1
1 = −1, for N = 2 we have ξ2

0 = −1,
ξ2
1 = 0 and ξ2

1 = −1. For higher order LGL nodes, unfortunately there is no
simple analytical expression. In order to study LGL intervals for larger N , we
estimate the length of the LGL intervals from below and above using (12). For
the proof we consider separately the cases where the position of a LGL node
is the endpoint or the center of the interval [−1, 1].
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Property 1 (Estimates for LGL interval lengths) For N ≥ 5 and 1 ≤ k ≤⌊
N−1

2 − 1
⌋
, we can bound the length of the interval ∆N

k by

2 sin

(
π

2

4kN + k + 3N + 1

N(2N + 1)

)
sin

(
π

2

N + k + 1

N(2N + 1)

)
≤

∣∣∆N
k

∣∣ ≤ 2 sin

(
π

2

4kN + 3N + k

N(2N + 1)

)
sin

(
π

2

3N − k
N(2N + 1)

)
. (15)

For N ≥ 3 the length of the boundary interval ∆N
0 can be estimated by

4

N2
≤
∣∣∆N

0

∣∣ ≤ 9π2

2(2N + 1)2
. (16)

Moreover, if N is odd and N ≥ 3, we get

2

2N + 1
≤
∣∣∣∆N

bN2 c
∣∣∣ ≤ 4N − 2

N2
, (17)

whereas if N is even and N ≥ 4, we have

3

2N + 1
≤
∣∣∣∆N

N
2 −1

∣∣∣ ≤ 4N − 4

N2
. (18)

Proof From (12) for N ≥ 5 and 1 ≤ k ≤
⌊
N−1

2 − 1
⌋

we can derive the upper
estimate∣∣∆N

k

∣∣ = ξNk+1 − ξNk ≤ − cos ηNk+1 + cos ηN
k

= − cos

(
π

2k + 3

2N + 1

)
+ cos

(
π
k

N

)
(14)
= −2 sin

(
π

2

(
k

N
+

2k + 3

2N + 1

))
sin

(
π

2

(
k

N
− 2k + 3

2N + 1

))
= 2 sin

(
π

2

4kN + 3N + k

N(2N + 1)

)
sin

(
π

2

3N − k
N(2N + 1)

)
.

Analogously, we have in the same case as lower estimate∣∣∆N
k

∣∣ = ξNk+1 − ξNk ≥ − cos ηN
k+1

+ cos ηNk

= − cos

(
π
k + 1

N

)
+ cos

(
π

2k + 1

2N + 1

)
(14)
= −2 sin

(
π

2

(
2k + 1

2N + 1
+
k + 1

N

))
sin

(
π

2

(
2k + 1

2N + 1
− k + 1

N

))
= 2 sin

(
π

2

4kN + k + 3N + 1

N(2N + 1)

)
sin

(
π

2

N + k + 1

N(2N + 1)

)
.

In the special case of the boundary interval ∆N
0 = [ξN0 , ξ

N
1 ] for N ≥ 3, we

have ∣∣∆N
0

∣∣ = ξN1 − ξN0 = ξN1 + 1 = − cos(ηN1 ) + 1.
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Therefore we obtain

∣∣∆N
0

∣∣ ≤ − cos

(
π

3

2N + 1

)
+ 1

(13 c)

≤ 9π2

2(2N + 1)2

and

∣∣∆N
0

∣∣ ≥ − cos

(
π

1

N

)
+ 1

(13 b)

≥ 4

N2
.

If N is odd (
⌊
N
2

⌋
= N−1

2 ) and N ≥ 3, there is a central LGL interval

∆N

bN2 c of size

∣∣∣∣∆N

bN2 c

∣∣∣∣ = −2ξNbN2 c = 2 cos(ηNbN2 c), see Figure 2(a). We estimate

its length by

∣∣∣∆N

bN2 c
∣∣∣ ≤ 2 cos

(
π

2

N − 1

N

)
(13 c)

≤ 2

(
1−

(
N − 1

N

)2
)

=
4N − 2

N2

and

∣∣∣∆N

bN2 c
∣∣∣ (13 b)

≥ 2 cos

(
π

2

N

N + 1
2

)
≥ 2

(
1− 2N

2N + 1

)
=

2

2N + 1
.

If N is even (
⌊
N
2

⌋
= N

2 ) and N ≥ 4, the center of the interval is a LGL
node, i.e., we have ηNN

2

= π
2 , ξNN

2

= 0, see Figure 2(b). The adjacent interval

∆N
N
2 −1

has the length
∣∣∣∆N

N
2 −1

∣∣∣ = cos(ηNN
2 −1

). This can be estimated by

∣∣∣∆N
N
2 −1

∣∣∣ (13 c)

≤ 1− 4

π2

(
π
N
2 − 1

N

)2

=
4N − 4

N2

and

∣∣∣∆N
N
2 −1

∣∣∣ (13 b)

≥ 1− 2

π

(
π
N
2 − 1

2

N + 1
2

)
=

3

2N + 1
,

which closes the proof. ut

Remark 4 The estimates for LGL interval lengths in Property 1 show that∣∣∆N
0

∣∣ ' 1
N2 for the boundary interval and

∣∣∣∣∆N

bN−1
2 c

∣∣∣∣ ' 1
N for the intervals at

the origin.
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4.2 Quasi-uniformity of Legendre-Gauss-Lobatto grids

In this subsection we present the proof of Theorem 4 (i), i.e., we show that two
consecutive LGL intervals differ in length at maximum by a constant factor
independent of N .

Property 2 (Quasi-uniformity of LGL grids) The LGL grids GLGL
N satisfy

C−1
g ≤

∣∣∆N
k

∣∣∣∣∆N
k−1

∣∣ ≤ Cg for all 1 ≤ k ≤ N − 1, N ≥ 2 ,

where the constant Cg= CLGL
g is bounded by the right hand side in (11).

Proof By symmetry, it suffices to consider all subintervals that have a nonzero
intersection with the left half interval [−1, 0). For N = 2 the two LGL intervals
[−1, 0] and [0, 1] are of the same size. For N ≥ 3 we apply Property 1 for the
quotient of two consecutive interval lengths.

For 2 ≤ k ≤
⌊
N−1

2 − 1
⌋

we have

∣∣∆N
k

∣∣∣∣∆N
k−1

∣∣ ≤ sin
(
π
2

4kN+3N+k
N(2N+1)

)
sin
(
π
2

3N−k
N(2N+1)

)
sin
(
π
2

4(k−1)N+k+3N
N(2N+1)

)
sin
(
π
2

N+k
N(2N+1)

)
(13 a)

≤
(π

2

)2 4kN + 3N + k

4(k − 1)N + 3N + k
· 3N − k
N + k

≤
(π

2

)2
(

1 +
4N

4(k − 1)N + 3N + k

)
3N − k
N + k

≤
(π

2

)2

· 7

3
· 3 =

7π2

4

and ∣∣∆N
k

∣∣∣∣∆N
k−1

∣∣ ≥ sin
(
π
2

4kN+k+3N+1
N(2N+1)

)
sin
(
π
2
N+k+1
N(2N+1)

)
sin
(
π
2

4(k−1)N+3N+k−1
N(2N+1)

)
sin
(
π
2

3N−k+1
N(2N+1)

)
(13 a)

≥
(

2

π

)2
4kN + 3N + k + 1

4(k − 1)N + 3N + k − 1
· N + k + 1

3N − k + 1

≥
(

2

π

)2

· 1 · 1

3
=

4

3π2
.

For the quotient including the boundary interval ∆N
0 , we have

∣∣∆N
1

∣∣∣∣∆N
0

∣∣ ≤ 2 sin
(
π
2

7N+1
N(2N+1)

)
sin
(
π
2

3N−1
N(2N+1)

)
4
N2

(13 a)

≤ π2

8

(7N + 1)(3N − 1)

(2N + 1)2
≤ 3π2

4
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and ∣∣∆N
1

∣∣∣∣∆N
0

∣∣ ≥ 2 sin
(
π
2

7N+2
N(2N+1)

)
sin
(
π
2

N+2
N(2N+1)

)
π2 9

2(2N+1)2

(13 a)

≥ 4

9π2

(7N + 2)(N + 2)

N2
≥ 28

9π2
.

If N is even (
⌊
N
2

⌋
= N

2 ) and N ≥ 4, we can estimate the quotient from
above by∣∣∣∣∆N

bN2 c−1

∣∣∣∣∣∣∣∣∆N

bN2 c−2

∣∣∣∣ ≤
4N−4
N2

2 sin
(
π
2

4N2−9N−2
2N(2N+1)

)
sin
(
π
2

3N−2
2N(2N+1)

)
(13 a)

≤ 2(4N − 4)(2N + 1)2

(4N2 − 9N − 2)(3N − 2)

N≥4

≤ 2 · 12 · 92

26 · 10
=

486

65
,

because the very but last term is monotonically decreasing for N ≥ 4. From
below we can estimate the quotient by∣∣∣∣∆N

bN2 c−1

∣∣∣∣∣∣∣∣∆N

bN2 c−2

∣∣∣∣ ≥
3

2N+1

2 sin
(
π
2

4N2−9N−4
2N(2N+1)

)
sin
(
π
2

5N+4
2N(2N+1)

)
(13 a)

≥ 6

π2

4N2(2N + 1)

(4N2 − 9N − 4)(5N + 4)
≥ 6

π2

4N2 · 2N
4N2 · 6N =

2

π2
.

On the other hand, if N is odd (
⌊
N
2

⌋
= N−1

2 ) and N ≥ 3, we can estimate
the quotient from above by∣∣∣∣∆N

bN2 c

∣∣∣∣∣∣∣∣∆N

bN2 c−1

∣∣∣∣ ≤
4N−2
N2

2 sin
(
π
2

4N2−5N−1
2N(2N+1)

)
sin
(
π
2

3N−1
2N(2N+1)

)
(13 a)

≤ 2(4N − 2)(2N + 1)2

(4N2 − 5N − 1)(3N − 1)

N≥3

≤ 2 · 10 · 72

20 · 8 =
49

8
,

because the very but last term is monotonically decreasing for N ≥ 3. For the
estimate from below we have∣∣∣∣∆N

bN2 c

∣∣∣∣∣∣∣∣∆N

bN2 c−1

∣∣∣∣ ≥
2

2N+1

2 sin
(
π
2

4N2−5N−3
2N(2N+1)

)
sin
(
π
2

5N+3
2N(2N+1)

)
(13 a)

≥ 4

π2

4N2(2N + 1)

(4N2 − 5N − 3)(5N + 3)
≥ 4

π2

4N2 · 2N
4N2 · 6N =

4

3π2
.

Overall, we have the desired estimate for Cg given by (11), as claimed. ut
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For later purposes it is important to have as tight a bound for Cg as possible
and the one derived above will not quite be sufficient. The remainder of this
section is devoted to a discussion of possible quantitative improvements and
related conjectures.

Definition 7 We say that the family of LGL grids {GLGL
N }N∈N has property

MQN̄ for some N̄ ∈ N, if the quotients

qNk :=

∣∣∆N
k

∣∣∣∣∆N
k−1

∣∣ =
ξNk+1 − ξNk
ξNk − ξNk−1

(19)

satisfy

(i) qNk ≤ qN+1
k for N < N̄ , i.e., the quotients increase monotonically in N for

each fixed k ∈ {1, . . . , bN/2c},
(ii) qNk ≥ qNk+1 for 1 ≤ k ≤

⌊
N−3

2

⌋
, i.e., the quotients decrease monotonically

in k ∈ {1, . . . ,
⌊
N−3

2

⌋
} for any fixed N ≤ N̄ .

In the present context property (i) is only relevant for k = 1, 2. The fol-
lowing observations are immediate and recorded for later use.

Remark 5 Assume that property MQN̄ holds for some N̄ ∈ N. Then, the value
of the (smallest) constant CLGL

g in (9) for the family of LGL grids {GLGL
N }N≤N̄

is qN̄1 . Moreover, when omitting the outermost intervals, the constant C̃g sat-
isfying

C̃−1
g ≤

∣∣∣∣∣ ∆N
k

∆N
k−1

∣∣∣∣∣ ≤ C̃g, 2 ≤ k ≤ N − 2, 2 < N ≤ N̄ , (20)

is bounded by qN̄2 .
Specifically, one can verify numerically that MQN̄ holds for N̄ = 2000, in

which case one has

q2000
1 = 2.352303456118672 ± 10−15, q2000

2 = 1.571697180994308 ± 10−15.
(21)

Numerical evidence supports the following

Conjecture 2 The LGL grids GLGL
N have property MQN̄ for all N̄ ∈ N.

In order to determine a constant CLGL
g that holds for all N ∈ N, one can

exploit the well known fact that the asymptotic behavior of the LGL nodes
can be expressed by means of the zeros of the Bessel function J1.

Theorem 6 ([11, Theorem 8.1.2]) The asymptotic behavior of the LGL
angles (ηNk )Nk=0 is given by the formula

lim
N→∞

NηNk = j1,k,

where j1,k are the nonnegative zeros of the Bessel function J1(x).
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k j1,k k j1,k k j1,k
0 0 4 13.323691936314223032 8 25.903672087618382625
1 3.8317059702075123156 5 16.470630050877632813 9 29.046828534916855067
2 7.0155866698156187535 6 19.615858510468242021 10 32.189679910974403627
3 10.173468135062722077 7 22.760084380592771898 11 35.332307550083865103

Table 1: The first nonnegative zeros of the Bessel function J1 of first kind. [9]

The first nonnegative zeros of the Bessel function J1(x) are given in Table 1.

The following arguments support the validity of Conjecture 2. For part (ii)
we consider again the proof of the Sturm Convexity Theorem 2 as a motivation
and apply the Sturm Comparison Theorem 1 to the present situation. Let ξ0,
ξ1, and ξ2 be three consecutive LGL nodes. By definition these points are zeros

of the polynomial u(x) = (1−x2)P
( 3
2 )

N−1(x), which is a solution of equation (8).
The affine mapping

T : x 7→ ξ1 − ξ0
ξ2 − ξ1

(x− ξ1) + ξ0 =: cx− δ

with c = ξ1−ξ0
ξ2−ξ1 and δ = cξ1 − ξ0 maps the zeros ξ0 and ξ1 to the zeros ξ1 and

ξ2, respectively. Note that by Theorem 3, we have 0 < c < 1. Moreover we can
estimate δ = cξ1 − ξ0 > c(ξ2 − ξ1) > 0.

x0 x1 x2 x3

u(x)

ũ(x)

Fig. 4: The construction for a possible proof of Conjecture 2 (ii).

Now we define ũ := −u ◦ T , which is a stretched and moved version of u
mirrored at the x-axis, see Figure 4. The polynomial ũ is a solution of the ODE

ũ′′+ c2φ
( 3
2 )

N−1(cx− δ) = 0. To complete the proof using the Sturm Comparison
Theorem 1, we need to show that

c2φ
( 3
2 )

N−1(cx− δ) < φ
( 3
2 )

N−1(x),

which is equivalent to

c2c0
1− (cx− δ)2

<
c0

1− x2
with c0 = (N +

1

2
)2 − 1

4
> 0.

By elementary calculations this can be shown to be equivalent to c2 +δ2−1 <
x2δc.



Legendre-Gauss-Lobatto grids and associated nested dyadic grids 17

Remark 6 Since we only need to consider x ∈ (ξ2, ξ3), Conjecture 2 (ii) would
follow from the inequality

c2 + δ2 − 1

2δc
< ξ2 , (22)

whose proof is still open. However, this inequality has been verified numerically
for N ≤ N̄ = 2000.

A sharper estimate could be obtained in the proof of Theorem 3 by stretch-
ing the mirrored function in order to estimate the stretching constant.

If Conjecture 2 was correct, the minimal constant in Theorem 4 (i) could
be determined.

Proposition 1 (M. E. Muldoon, private communication) Assume that
Conjecture 2 is true. Then, the value of the (smallest) constant CLGL

g in (9) for

the family of LGL grids {GLGL
N }N∈N is q̂1 := (j1,2/j1,1)2−1 = 2.352306±10−6.

Moreover, when omitting the outermost intervals the (smallest) constant
C̃g satisfying

C̃−1
g ≤

∣∣∣∣∣ ∆N
k

∆N
k−1

∣∣∣∣∣ ≤ C̃g, 2 ≤ k ≤ N − 2, N > 2, (23)

is q̂2 := (j2
1,3 − j2

1,2)/(j2
1,2 − j2

1,1) = 1.571700± 10−6.

Proof Since ηNk → 0 as N → ∞, we apply the Taylor expansion ξNk =

− cos ηNk = −1 +
(ηNk )2

2 +O((ηNk )4). Using Theorem 6, we have for each k∣∣∆N
k

∣∣∣∣∆N
k−1

∣∣=ξNk+1 − ξNk
ξNk − ξNk−1

N→∞−→
j2
1,k+1 − j2

1,k

j2
1,k − j2

1,k−1

. (24)

If Conjecture 2 holds we conclude that∣∣∆N
m

∣∣∣∣∆N
m−1

∣∣ ≤
∣∣∆N

k

∣∣∣∣∆N
k−1

∣∣ ≤ j2
1,k+1 − j2

1,k

j2
1,k − j2

1,k−1

, 1 ≤ k ≤ m ≤ N/2, N ∈ N. (25)

Thus, taking k = 1 in (25), one obtains CLGL
g ≤ j21,2−j

2
1,1

j21,1−j21,0
=
j21,2
j21,1
− 1 = q̂1, which

confirms the first part of the claim. Likewise, taking k = 2, we infer that

|∆N
m/∆

N
m−1| ≤ |∆N

2 /∆
N
1 | ≤ (j2

1,3 − j2
1,2)/(j2

1,2 − j2
1,1) = q̂2

for m ≥ 2, which finishes the proof. ut
Similar ideas like the ones preceding Proposition 1 lead us to formulate the

following conjecture which is again supported by numerical experiments, see
Table 2.

Conjecture 3 The quotients

q̂k :=
j2
1,k+1 − j2

1,k

j2
1,k − j2

1,k−1

decrease monotonically when k ∈ N increases.
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k q̂k k q̂k k q̂k
1 2.352305866930589 5 1.210528759973443 9 1.114285842810397
2 1.571700087758225 6 1.173914021641693 10 1.102564178478225
3 1.363668985974650 7 1.148148599944429 11 1.093023302970354
4 1.266674201821978 8 1.129032489668108 12 1.085106413514218

Table 2: The first 12 quotients q̂k =
j21,k+1−j

2
1,k

j21,k−j
2
1,k−1

, where j1,k are the nonnegative

zeros of the Bessel function J1 of first kind.

4.3 Dependence of Legendre-Gauss-Lobatto interval lengths on the order

In this subsection we analyze the behavior of LGL interval lengths with in-
creasing order. The situation in the following theorem is depicted in Figure 5.
The result is an essential ingredient of the proof of Theorem 5 (iv).

Theorem 7 (Displacement of LGL intervals with increasing order)
Let N ∈ N with N ≥ 2 and 0 ≤ k ≤

⌊
N−1

2

⌋
. If ξMj ≤ ξNk for M ∈ N

with M ≥ N and 0 ≤ j ≤
⌊
M−1

2

⌋
, then for the corresponding LGL intervals

∆M
j = [ξMj , ξ

M
j+1] and ∆N

k = [ξNk , ξ
N
k+1], we have the inequality

∣∣∆M
j

∣∣ ≤ ∣∣∆N
k

∣∣.
Proof By symmetry it is sufficient to consider only the left half of [−1, 1]. If
N = M , the assertion follows directly from Theorem 3. Otherwise we observe
that the function

φ
( 3
2 )

N−1(x) =
(N + 3

2 )2 − 1
4

1− x2
,

see (8), is non-increasing on (−1, 0]. Furthermore φ
( 3
2 )

N−1(x) < φ
( 3
2 )

M−1(x) for
N < M and x ∈ (−1, 1).

Let y(x) be a solution of the ODE y′′(x) + φ
( 3
2 )

M−1(x)y(x) = 0, having

the zeros ξMk for 1 ≤ k ≤
⌊
M−1

2

⌋
. Then y(x − δ) is a solution of the ODE

y′′(x) + φ
( 3
2 )

M−1(x− δ)y(x) = 0 with zeros ξMk + δ for 1 ≤ k ≤
⌊
M−1

2

⌋
.

Now we choose δ := ξNk − ξMj > 0 such that ξNk and ξMj + δ coincide. Then,

by the properties noted above and because of ξMj ≤ ξNk , we have

φ
( 3
2 )

N−1(x) < φ
( 3
2 )

M−1(x) ≤ φ( 3
2 )

M−1(x− δ). (26)

∆M
j

∆N
k

order M ≥ N

ξMj+1ξMj 0−1

order N

ξNk ξNk+1

0−1

Fig. 5: Displacement of the LGL intervals with increasing order.



Legendre-Gauss-Lobatto grids and associated nested dyadic grids 19

By the Sturm comparison theorem, the first zero ξMj+1+δ of (1−x2)P
( 3
2 )

M−1(x+δ)

to the right of ξNj = ξMj + δ occurs before the first zero of (1− x2)P
( 3
2 )

N−1(x) to

the right of ξNj , i.e.,∣∣∆M
j

∣∣ = ξMj+1 − ξMj = (ξMj+1 + δ)− (ξMj + δ) ≤ ξNk+1 − ξNk =
∣∣∆N

k

∣∣ , (27)

which completes the proof. ut

4.4 Chebyshev-Gauss-Lobatto nodes and intervals

In order to prove Theorem 4 (ii) we make a small digression establishing first
corresponding properties for another class of grids associated with ultraspheri-
cal polynomials, namely Chebyshev-Gauss-Lobatto (CGL) grids. This is a much
easier task since the corresponding nodes can be expressed by explicit formu-
lae. Recall that the Chebyshev polynomials of first kind TN of degree N ∈ N
are also special instances of ultraspherical polynomials. In fact, for λ = 0

one has TN = cT (N)P
(0)
N with appropriate nonzero normalization constants

cT (N).

Definition 8 (Chebyshev-Gauss-Lobatto nodes, grid and intervals)
For N ∈ N we define the CGL nodes ζNk by

ζNk = − cos θNk with θNk =
πk

N
for 0 ≤ k ≤ N . (28)

Their collection GCGL
N = {ζNk : 0 ≤ k ≤ N} forms the CGL grid of order N .

We also define the corresponding CGL intervals ΛNk := [ζNk , ζ
N
k+1] for 0 ≤ k ≤

N − 1.

We recall that the points ζNk with indices 1 ≤ k ≤ N −1 are the local extrema
of the Chebyshev polynomial of the first kind TN , namely the zeros of the
Chebyshev polynomial of the second kind UN−1.

We can immediately calculate the lengths of the intervals bounded by two
consecutive CGL points using the prostapheresis trigonometric identity (14).
Note that for x, y ∈ [0, π2 ] and x ≥ y the arguments of the sine function x+y

2

and x−y
2 are both within [0, π2 ]. The following properties whose analogs for

LGL grids have already been established before are simpler in this case but
will be needed below.

Property 3 (CGL interval lengths) The length of the k-th CGL interval ΛNk is∣∣ΛNk ∣∣ = ζNk+1 − ζNk = − cos(π
k + 1

N
) + cos(π

k

N
) = 2 sin(π

2k + 1

2N
) sin(

π

2N
).

We derive next two types of facts about CGL nodes and corresponding in-
tervals, namely first monotonicity statements for any given polynomial degree
and second the evolution of interval lengths for increasing degrees.
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4.4.1 Monotonicity and quasi-uniformity properties of
Chebyshev-Gauss-Lobatto intervals

Let us consider the quotient of the lengths of two consecutive CGL intervals

QNk :=

∣∣ΛNk ∣∣∣∣ΛNk−1

∣∣ =
ζNk+1 − ζNk
ζNk − ζNk−1

=
− cos(π k+1

N ) + cos(π k
N )

− cos(π k
N ) + cos(π k−1

N )
=

sin(π 2k+1
2N )

sin(π 2k−1
2N )

(29)

for 1 ≤ k ≤ N − 1.

Property 4 (Monotonicity of CGL interval lengths, quasi-uniformity of the
CGL grid) The lengths of the CGL intervals increase monotonically in the
left half of the interval [−1, 1], i.e.,

∣∣ΛNk−1

∣∣ ≤ ∣∣ΛNk ∣∣ for 0 ≤ k ≤
⌊
N − 1

2

⌋
.

Furthermore, the CGL nodes form a quasi-uniform decomposition of the in-
terval [−1, 1], i.e., we have

1

C
≤
∣∣ΛNk ∣∣∣∣ΛNk−1

∣∣ ≤ C
with C = 3

2π for 1 ≤ k ≤ N − 1.

Proof By symmetry (1), it is sufficient to consider the left half of [−1, 1], i.e.,
the CGL intervals that have nonempty intersection with [−1, 0). If N is even,
ζNN

2

= 0 is a zero of the Chebyshev polynomial Un−1. Therefore, in this case

ΛNk ⊂ [−1, 0] if and only if 0 ≤ k ≤ N−2
2 . Otherwise N is odd and there is

additionally a central interval ΛNN−1
2

= [ζNN−1
2

, ζNN+1
2

] that is symmetric with

respect to the origin, i.e., the CGL interval ΛNk has nonempty intersection
with [−1, 0) if and only if 0 ≤ k ≤ N−1

2 . Combining both cases, we conclude
that the CGL interval ΛNk has nonempty intersection with [−1, 0) if and only
if 0 ≤ k ≤

⌊
N−1

2

⌋
. In this case, the arguments of the sine functions in the

numerator and the denominator of the last term of (29) are in [0, π2 ] and since
the sine function is monotonically increasing on [0, π2 ], we have 1 ≤ QNk , which
is the first part of the assertion.

To estimate QNk from above, we bound the sine function on [0, π2 ] using
(13 c), and obtain

QNk
(29)
=

sin(π 2k+1
2N )

sin(π 2k−1
2N )

≤ π 2k+1
2N

2
ππ

2k−1
2N

=
π

2

2k + 1

2k − 1
≤ 3

2
π,

which is the second part of our claims. ut
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4.4.2 Displacement of intervals for Chebyshev nodes for increasing order

As the degree N increases, the CGL intervals decrease in length and move
towards the end points of [−1, 1]. To quantify both effects, we formulate the
following proposition on the monotonicity of the interval lengths. As before, by
symmetry, we can restrict ourselves to the left half of the interval [−1, 1]. The
following proposition is not strictly needed for our present purposes. But since
CGL grids are also used in numerical analysis their association with dyadic
grids may also be of interest so that we pause including the following result
for completeness.

Proposition 2 (Displacement of CGL intervals) Let N ∈ N, m ∈ N
and 0 ≤ k ≤

⌊
N−1

2

⌋
be given. If for j ∈ N we have ζN+m

j ≤ ζNk , then the

corresponding CGL intervals satisfy
∣∣ΛN+m
j

∣∣ ≤ ∣∣ΛNk ∣∣.
Proof Using the assumption on the location of the CGL nodes and the mono-
tonicity properties of the cosine function on [0, π2 ], we note that ζN+m

j < ζNk
is equivalent to

cos

(
πj

N +m

)
< cos

(
πk

N

)
,

which, in turn, is equivalent to j
N+m > k

N . Since the sine function increases
monotonically on [0, π2 ], we can conclude for the lengths of the corresponding
CGL intervals, upon using (14) several times,∣∣ΛN+m

j

∣∣ = ζN+m
j+1 − ζN+m

j = − cos

(
π
j + 1

N +m

)
+ cos

(
π

j

N +m

)
(14)
= 2 sin

(
π(2j + 1)

2(N +m)

)
sin

(
π

2(N +m)

)
≤ 2 sin

(
π(2N+m

N k + 1)

2(N +m)

)
sin

(
π

2(N +m)

)
= 2 sin

(
π

2
(
2k

N
+

1

N +m
)

)
sin

(
π

2(N +m)

)
≤ 2 sin

(
π

2k + 1

2N

)
sin
( π

2N

)
(14)
= − cos

(
π
k + 1

N

)
+ cos

(
π
k

N

)
= ζNk+1 − ζNk =

∣∣ΛNk ∣∣ ,
which is the desired estimate. ut

4.5 Locally uniform equivalence of grids

We are now prepared to establish locally uniform equivalence of grids of com-
parable order, associated with a family of ultraspherical polynomials, namely
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for the Chebyshev and Legendre cases. Here the Chebyshev case will serve as
a major tool for deriving later an analog for the Legendre case.

Theorem 8 Assume that M,N ∈ N, with cN ≤ M ≤ N , for some fixed
constant c > 0. Then, the CGL grid GCGL

M in the interval [−1, 1] is locally
(A,B)-uniformly equivalent to the grid GCGL

M , with A and B depending on c
but not on M and N .

Proof Recall from Definition 8 that the nodes of the CGL grid of order N
are defined as ζNk = − cos θNk = − cos kπN for 0 ≤ k ≤ N ; ΛNk = [ζNk , ζ

N
k+1] is

the k-th interval of this grid, with 0 ≤ k ≤ N − 1, whose length is given by
Property 3.

Suppose that ΛNk ∩ ΛM` 6= ∅, i.e., there exists x such that

x = − cos θNx = − cos
kxπ

N
for some kx ∈ [k, k + 1] ,

and

x = − cos θMx = − cos
`xπ

M
for some `x ∈ [`, `+ 1] .

The invertibility of the cosine function in [0, π] yields

kxπ

N
=
`xπ

M

i.e.,

`x = ρkx , or kx = ρ−1`x with ρ =
M

N
∈ [c, 1] .

Then, ` ≤ `x = ρkx ≤ ρ(k + 1) and k ≤ kx = ρ−1`x ≤ ρ−1(`+ 1), i.e,

` ≤ ρ(k + 1) , k ≤ ρ−1(`+ 1) . (30)

Now, using Property 3 and sinx ' x for small x, as well as M ' N , we have

|ΛNk | '
1

N
sin

(k + 1/2)π

N
, and |ΛM` | '

1

N
sin

(`+ 1/2)π

M
.

Therefore it is enough to prove the uniform equivalence of the two sines. To
this end, we first observe that, by (30), we have

(`+ 1/2)
π

M
≤ ρ(k + 1) + 1/2

ρ

π

N
= (k + 1/2)

π

N
+

1

2

(
1 + ρ−1

) π
N

,

whence, noting that k ≥ 0, we get

(`+ 1/2) πM
(k + 1/2) πN

≤ 1 +
1

2

1 + ρ−1

k + 1/2
≤ 2 + ρ−1 . (31)
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Exchanging the roles of k and `, we obtain

(k + 1/2) πM
(`+ 1/2) πN

≤ 2 + ρ ,

whence
1

2 + ρ
≤ (`+ 1/2) πM

(k + 1/2) πN
. (32)

Putting together (31) and (32), we see that we have two angles γ and ϕ , that
we can assume to be in (0, π/2], which satisfy 0 < a ≤ (γ/ϕ) ≤ b for some
constants a < 1 and b > 1. This immediately implies that there exist constants
a∗ and b∗ with the same properties such that

0 < a∗ ≤ sin γ

sinϕ
≤ b∗ .

Indeed, fix any λ ∈ (0, 1) and let C > 0 such that Cx ≤ sinx ≤ x for all
0 ≤ x ≤ λπ/2; then, let µ < λ to be determined in a moment, and let D > 0
be such that D ≤ sinx ≤ 1 for all µπ/2 ≤ x ≤ π/2. Now, if bϕ ≤ λπ/2, then
also ϕ ≤ λπ/2 as well as γ ≤ bϕ ≤ λπ/2, whence

sin γ

sinϕ
≤ γ

Cϕ
≤ b

C
, and

sin γ

sinϕ
≥ Cγ

ϕ
≥ Ca .

Conversely, if bϕ > λπ/2, then ϕ > (λ/b)π/2 and γ ≥ aϕ ≥ (a/b)λπ/2.
Choosing µ = (a/b)λ, we have both ϕ > µπ/2 and γ > µπ/2, whence

D ≤ sin γ

sinϕ
≤ 1

D
.

This concludes the proof of the theorem. ut

In order to establish the analogous property for the LGL grids, we need
the following auxiliary result.

Lemma 1 For any 0 ≤ k ≤ N − 1, let ∆N
k and ΛNk be, respectively, the k-th

interval of the LGL grid and the CGL grid of the same order N . Then

|∆N
k | ' |ΛNk |

uniformly in k and N .

Proof For the LGL nodes, by (12) we have for 1 ≤ k ≤ b(N − 1)/2c that

ξNk = − cos ηNk , with k
π

N
≤ ηNk ≤

2k + 1

2N + 1
π < (k + 1)

π

N
;

thus ζNk ≤ ξNk ≤ ζNk+1, whence ζNk ≤ ξNk < ξNk+1 ≤ ζNk+2, i.e.,

∆N
k ⊂ ΛNk ∪ ΛNk+1 , (33)
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so that |∆N
k | ≤ |ΛNk |+ |ΛNk+1|. Since we already know that contiguous elements

of the same grid have uniformly equivalent lengths, we obtain

|∆N
k | . |ΛNk |

uniformly in k and N .
In order to obtain the reverse bound, we use the following lower estimate

from Property 1:

|∆N
k | ≥ 2 sin

(
π

2

4kN + k + 3N + 1

N(2N + 1)

)
sin

(
π

2

N + k + 1

N(2N + 1)

)
,

and we already know from Property 3 that

|ΛNk | = 2 sin

(
π

2

2k + 1

N

)
sin

(
π

2

1

N

)
.

Now, it is immediate to observe that for the given interval of variation of k we
have

1

2
≤ N + k + 1

2N + 1
≤ 1.

On the other hand, we write

Z :=
4kN + k + 3N + 1

2N + 1
=

4N + 1

2N + 1
k +

3N + 1

2N + 1

and we observe that

1 ≤ 4N + 1

2N + 1
≤ 2 and 1 ≤ 3N + 1

2N + 1
≤ 2 ,

whence

1

2
(2k + 1) ≤ Z ≤ 2(2k + 1) .

Since we have seen in the proof of the previous theorem that uniformly equiv-
alent arguments imply uniformly equivalent sines, we conclude that

|∆N
k | & |ΛNk |

and the proof of the lemma is complete for 1 ≤ k ≤ b(N − 1)/2c. For k = 0,
we recall that ζN0 = ξN0 and ζN1 ≤ ξN1 < ζN2 as seen above. This yields
ΛN0 ⊆ ∆N

0 ⊂ ΛN0 ∪ ΛN1 , whence the result for k = 0. Finally, we observe that
intervals are symmetrically placed around the origin. ut

The following Corollary finishes the proof of Theorem 4 (ii).

Corollary 1 Assume that cN ≤ M ≤ N for some fixed constant c > 0.
Then, the LGL grid GLGL

M in the interval [−1, 1] is locally (A,B)-uniformly
equivalent to the grid GLGL

N , with A and B depending on c but not on M and
N .
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Proof Suppose that ∆N
k ∩∆M

` 6= ∅ for some k and `; then, recalling (33), the set
ΛNk ∪ΛNk+1 has a non-empty intersection with the set ΛM` ∪ΛM`+1, which implies

that ΛNm∩ΛMn 6= ∅ for some m ∈ {k, k+1} and n ∈ {`, `+1}. Using Theorem 8
and Lemma 1, as well as the fact that contiguous intervals of any CGL and
LGL grid have uniformly comparable lengths (see Property 4, Theorem 4 (i)),
we obtain

|∆N
k | ' |ΛNk | ' |ΛNm| ' |ΛMn | ' |ΛM` | ' |∆M

` | ,

which is the claim. ut

5 Dyadic Grid Generation - Proof of Theorem 5

The main objective of this section is to construct for the family {GLGL
N }N∈N,

of LGL grids an associated family {DN}N∈N, of dyadic grids that are locally
(A,B)-uniformly equivalent with constants A,B, independent of N , which
in addition offer the additional advantage of being nested. This construction
is the essential basis for the proof of Theorem 5. Therefore, we formulate the
construction for a general interval [a, b]. Although we shall be concerned in this
section with more general classes of ordered grids G = {xi : 0 ≤ i ≤ N} ⊂ [a, b],
x0 = a, xN = b, we retain some notation used earlier only for LGL grids
such as the notation ∆ for corresponding intervals. We always assume that
G is symmetric around the midpoint of [a, b] and monotonic in the spirit of
Theorem 3. Recall that we denote by P = P(G) the partition of subintervals
of [a, b] induced by G; conversely, G = G(P) denotes the grid defined by a
partition P of [a, b] comprised of the endpoints of its intervals.

The following notions will serve as important tools for the envisaged con-
struction. We exploit the symmetry of G and consider for any subinterval
I ⊂ [a, (a+ b)/2] the largest and shortest overlapping subcell in P(G)

∆(I,G) := argmax{|∆| : ∆ ∈ P(G), I ∩∆ 6= ∅} and

∆(I,G) := argmin{|∆| : ∆ ∈ P(G), I ∩∆ 6= ∅}. (34)

Note that due to the monotonicity property of G and the restriction of I to
one half of the base interval, ∆,∆ are always uniquely defined.

For any interval D in some dyadic partition P with D 6= [a, b] we shall
denote by D̂ = D̂(D) its parent interval which has D as a subinterval created
by splitting D̂ at its midpoint. The following inequalities will be useful in the
sequel:

∆(D̂,G) ≤ ∆(D,G) ≤ ∆(D,G) ≤ ∆(D̂,G) . (35)

It will be convenient to associate with a dyadic partition P of [a, b] the cor-
responding rooted binary tree T = T (P) whose nodes are those subintervals
generated during the refinement process yielding P. Thus, T has the interval
[a, b] as its root and the parent-child relation is given by the inclusion of inter-
vals. Those nodes in the tree that have no children are called leaves. Note that
the binary tree T associated with a dyadic grid is a full binary tree, i.e., every
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node has either no or two child nodes in the tree. Furthermore, note that the
binary tree T is full if and only if the set of leaves of T is a partition of [a, b].

5.1 The algorithm Dyadic

Given a real number α > 0, a grid G on the interval [a, b] and an initial
dyadic grid D0, the following Algorithm 1 creates a certain refined dyadic grid
D = DyadicGrid(G,D0, α) through suitable successive refinements of partitions.

Algorithm 1 Algorithm D = Dyadic(G,D0, α) for the generation of dyadic
grids.
1: P ← P0 := P(D0) . initialization
2: while there exists D ∈ P such that |D| > α|∆(D,G)| do
3: split D by halving into its two children D′, D′′ with D = D′ ∪D′′

4: P ← (P \ {D}) ∪ {D′, D′′} . replace D by D′ and D′′

5: end while
6: return D:=G(P)

Since the parameter α is usually fixed and clear from the context it will be
convenient for further reference, to set

D = D(G,D0) =: DyadicGrid(G,D0, α) and P = P(G,D0) =: P(D(G,D0)).

Of course, a natural “extreme” choice for the initial dyadic grid is D0 =
{a, b}. Note that clearly P is also a dyadic partition of [a, b].

In what follows we shall frequently make use of the following relations
which are immediate consequences of the definition of Algorithm 1.

Remark 7 The resulting partition P = P(G,D0) has the following properties:

(i) For any ∆ ∈ P(G), D ∈ P, one has

∆ ∩D 6= ∅ =⇒ |D| ≤ α |∆| . (36)

(ii) Assume that P0 = P(D0) satisfies

|D| > β|∆(D,G)| for all D ∈ P0, (37)

then, for any ∆ ∈ P(G), D ∈ T (P) \ P, one has

|D| > min{α, β}|∆(D,G)|. (38)

Hence, for any D ∈ P(G, {a, b}) \ {[a, b]}, the parent interval D̂ of length
|D̂| = 2|D|, whose halving produced D, satisfies

|D̂| > α|∆(D̂,G)| . (39)
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(iii) Whenever for each D0 from the initial partition P0\{[a, b]} the parent D̂
of D0 satisfies condition (39), then this is inherited by P = P(G,D0), i.e.,
for each D ∈ P \ {[a, b]} the parent D̂ of D also satisfies (39).

It is easy to see that Algorithm 1 terminates after finitely many steps. In
fact, the maximal dyadic level of D is

J =

⌈
log2

(b− a
αh

)⌉
, (40)

where h := min{|∆| : ∆ ∈ P(G)} is the finest resolution in the original grid G.
Indeed, for any dyadic cell D of maximal level J we have

|D| = 2−J(b− a) ≤ 2log2( αhb−a )(b− a)αh ≤ α |∆(D,G)| ,

hence, such a cell cannot be halved in the algorithm.
We shall see next that D= D(G,D0) = DyadicGrid(G,D0, α) and the origi-

nal grid G are still locally of comparable size whenever the initial dyadic grid
D0 satisfies a condition like (37), but with a potentially smaller constant β,
which will be important later.

Proposition 3 Assume that (9) holds for a given grid G and assume that
the initial dyadic partition P0 = P(D0) satisfies the following condition: there
exists some β > 0 such that for all D ∈ P0 \ {[a, b]}, the parent D̂ = D̂(D)
satisfies

|D̂| > β|∆(D̂,G)| . (41)

Then, the grid D = DyadicGrid(G,D0, α) is locally (A,B)-uniformly equivalent
to G with A = α−1, B = 2Cg/min{α, β, 1}, i.e., one has

∀D ∈ P = P(D), ∀∆ ∈ P(G) ,

∆ ∩D 6= ∅ =⇒ α−1 ≤ |∆||D| ≤
2Cg

min{α, β, 1} . (42)

Proof The lower bound follows directly from (36) in Remark 7 (i). We shall
show next that there exists an η > 0 such that for any D ∈ P

|D| ≥ η|∆| holds for all ∆ ∈ P(G) such that ∆ ∩D 6= ∅ . (43)

To see this, consider any D ∈ P \{[a, b]} and recall from (38) in Remark 7 (ii)
that its parent D̂ satisfies the inequality

|D̂| > min(α, β)|∆(D̂,G)| . (44)

Suppose first that D̂ intersects at most two intervals from P(G); these two
intervals therefore have to be ∆(D̂,G),∆(D̂,G). Using (44), (9) and (35), we
obtain

2|D| = |D̂| > min(α, β)|∆(D̂,G)| ≥ min(α, β)C−1
g |∆(D̂,G)|

≥ min(α, β)C−1
g |∆(D,G)| ≥ min(α, β)C−1

g |∆(D,G)| ,
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Fig. 6: Size of the dyadic grid DyadicGrid(GLGL
N , {−1, 1}, α) as a function of

the size of GLGL
N for different values of α. The black graph indicates the line

of equal cardinalities of LGL and dyadic meshes.

i.e., (43) holds with η = min(α, β)/(2Cg). Suppose next that one has #{∆ ∈
P(G) : ∆ ∩ D̂ 6= ∅} ≥ 3. Note that, if ∆(D̂,G) is not contained in D̂, it must
have a neighbor ∆′ ∈ P(G) fully contained in D̂. Therefore, by (9) and (35),

2|D| = |D̂| ≥
∑
∆⊂D̂

|∆| ≥ |∆′| ≥ C−1
g |∆(D̂,G)|

≥ C−1
g |∆(D,G)| ≥ C−1

g |∆(D,G)| ,

which means that in this case (43) is valid with η = 1/(2Cg). This concludes
the proof of (42). ut

The value of the parameter α influences the deviation of the cardinality
of D = DyadicGrid(G,D0, α) from that of G: the larger is α, the smaller is
the number of refinements of the initial grid D0 induced by G. When D0 =
{a, b}, a choice of α around 1 produces comparable cardinalities for D =
DyadicGrid(G,D0, α) and G. This is clearly documented in Figure 6 for the
LGL grids GLGL

N of increasing order N .

Remark 8 Since the algorithm Dyadic(G,D0, α) only depends on relative sizes
of the overlapping subintervals in P(G) and P, it is invariant under affine
transformations.



Legendre-Gauss-Lobatto grids and associated nested dyadic grids 29

5.2 Monotonicity of the dyadic grids

The grids produced by algorithm Dyadic(G,D0, α) exhibit two types of mono-
tonicity. We first consider the monotonicity with respect to the parameter α
which is obvious.

Remark 9 (Monotonicity with respect to α) By construction of the algorithm,
for any α, α̃ ∈ R with α < α̃, the dyadic mesh DyadicGrid(G,D0, α) is equal to
or a refinement of the dyadic mesh DyadicGrid(G,D0, α̃).

We show next that the monotonicity of the interval lengths in the input
grid G in the sense of Theorem 3 is inherited by the dyadic grid.

Definition 9 (Monotonicity) A symmetric grid G on [a, b] is monotonic
if for any ∆,∆′ ∈ P(G) with ∆,∆′ ⊂ [a, (a+ b)/2], where ∆′ is the right
neighbor of ∆, one has |∆| ≤ |∆′|.

Proposition 4 (Monotonicity of the dyadic grids) Let α > 0 and assume
that G and D0 are symmetric and monotonic. Then the dyadic grid D generated
by DyadicGrid(G,D0, α) is also symmetric and monotonic.

Proof Assume that D,D′ ∈ P = P(D) are as in Definition 9; suppose by
contradiction that |D| > |D′| which means |D| ≥ 2|D′|. Since T (P) is full D is
not contained in D̂′, the parent of D′, and hence ∆(D′,G) = ∆(D̂′,G). Since
D is a left neighbor of D′ so that |∆(D,G)| ≤ |∆(D′,G)| we infer from (36)

α−1|D| ≤ |∆(D,G)| ≤ |∆(D′,G)| = |∆(D̂′,G)| < α−1|D̂′| = α−12|D′|,

which is a contradiction. ut

Using Theorem 3 we now can conclude that the dyadic grids generated for
LGL input grids GLGL

N are symmetric and monotonic.

Corollary 2 Let α > 0 and N ∈ N. Then the dyadic grid D generated by
DyadicGrid(GLGL

N , {a, b}, α) is symmetric and monotonic.

5.3 Gradedness of the dyadic grids

If a symmetric grid G and an initial dyadic grid D0 are locally quasi-uniform
(see (9)), one readily infers from Proposition 3 that, due to the local uniform
(A,B)-equivalence of G and the dyadic grid D, generated by the algorithm
DyadicGrid(G,D0, α), the grid D is also locally quasi-uniform. Numerical ex-
periments indicate that this can be further quantified in terms the following
notion of gradedness.

Definition 10 (Gradedness) A dyadic grid D of an interval [a, b] is called
graded, if the levels of two neighboring dyadic intervals D,D′ ∈ P = P(D)
differ at most by 1, i.e., 1/2 ≤ |D| / |D′| ≤ 2.
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Lemma 2 Assume that G is a symmetric, monotonic, and locally quasi-uni-
form grid. If D0 is graded and if the constant Cg from (9) satisfies

αCg ≤ 2, (45)

then the output D of DyadicGrid(G,D0, α) is graded.

Proof Consider any two neighboring dyadic intervals D,D′ ∈ P = P(D),
D,D′ ⊂ [a, (a+ b)/2], where as before D is the left neighbor of D′. By Propo-
sition 4, we know that |D| ≤ |D′| and since the lengths of the dyadic intervals
can only differ by powers of two, it remains to show that |D′| < 4|D|. Suppose
now to the contrary that

|D′| ≥ 4|D|. (46)

When D ∈ P0 = P(D0) there is nothing to prove since either both D,D′ ∈
P0, in which case (46) contradicts the hypothesis on P0, or D′ 6∈ P0 which
means that the original right neighbor of D in P0 has been refined which also
contradicts (46). Now let ∆l ∈ P denote the left neighbor of ∆(D′,G). From
(9) and (36) we infer that

|∆l| ≥ C−1
g |∆(D′,G)| ≥ (Cgα)−1|D′| ≥ 1

2
|D′| ≥ 2|D|.

Thus, denoting by D̂ the parent of D, we conclude that ∆l = ∆(D̂,G). Hence,
since D̂ 6∈ P0, (39) and the previous estimate assert that

2|D| = |D̂| > α|∆l| ≥ 2α|D|,

which is a contradiction for α ≥ 1. This finishes the proof. ut

In order to apply this to LGL grids we note first that the above argument
is local in the following sense. Again, considering by symmetry only the left
half of the base interval, suppose that (45) holds only for intervals of P(G)
that are equal to or on the right of some ∆̃ ∈ P(G). Then the above argument
implies gradedness of D for all D,D′ for which ∆(D̂,G) agrees with or is on
the right of ∆̃.

Proposition 5 (Gradedness for LGL companion grids) Let 1 ≤ α≤ 1.25.
Then the dyadic grids generated by the algorithm DyadicGrid(GLGL

N ,D0, α) are
graded for any 2 ≤ N ≤ 2000, whenever D0 is graded.

Moreover, when Conjecture 2 is valid, then the grids DyadicGrid(GLGL
N ,

D0, α) are graded for all N ∈ N.

Proof Recall that property MQN̄ has been verified numerically to hold at least
for N̄ ≤ 2000. Thus, we can invoke Remark 5 and note that for C̃g given by
(23) and (21) implies that for α ≤ 1.25 that condition (45) is satisfied for
all quotients not involving the outermost LGL intervals. The same arguments
apply, on account of Proposition 1, for all N ∈ N provided that Conjecture 2,
holds.
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Hence, it suffices to verify gradedness for the intervals adjacent to the left
end point of the base interval. Let D0 ∈ P = P(D) share the left end point.
Then either D0 has a right sibling of equal size in P or equals half the base
interval. In both cases gradedness holds trivially. The next observation is that
the right neighbor D2 ∈ P of the parent D̂ of two siblings next to the left end
point of the base interval must satisfy |D2| ≤ |D̂| since otherwise these intervals
cannot belong to a partition that stems from successive dyadic splittings. The
next possibility for breaking gradedness would be the transition to D3. But,
again to be part of the leaf set of a dyadic tree one must have |D3| ≤ |D0| +
|D1| + |D2| = 2|D2| which again implies gradedness of {D0, D1, D2, D3}. To
obtain a jump of two levels at the left boundary of D3 one must have that the
two children D2,0, D2,1 also belong to P, i.e. |D2,i| = |D1| = |D0|, i ∈ {0, 1}.
But this means (since as in the proof of Lemma 2 we can assume that D2,1 6∈
P0) that |D2| > α|∆(D2,G)|. Therefore, since α ≥ 1 and ∆(D2,G) ∩D3 6= ∅,
we see that ∆(D2,G) does not contain the left end point of [a, b] and hence is
not an extreme interval. Since under the assumption that Conjecture 2 holds
for all interior intervals of P Lemma 2 applies, this finishes the proof. ut

Numerical evidence suggests that the constraint α ≤ 1.25, used above, is
not necessary.

5.4 Closedness of the dyadic grids under stretching

Let us recall the stretching operator L = L[a,b] : [a, (a+b)/2]→ [a, b], x 7→ 2x−
a as defined in Section 3.2. Under the assumption that Conjecture 1 is true, we
can show that for α ≥ 1 and an LGL input grid GLGL

N , the dyadic grid generated
by Algorithm 1 is closed under stretching, in the sense of Definition 6.

Proposition 6 Let α ≥ 1, N ∈ N and D = DyadicGrid(GLGL
N ,D0, α), where

D0 is closed under stretching. Then the validity of Conjecture 1 implies that
D is closed under stretching.

Proof As usual, we set P = P(D) and P0 = P(D0). By affine invariance
it suffices to consider [a, b] = [−1, 1], see Remark 8. First note that since
L([−1,−1/2]) = [−1, 0] and L([−1/2, 0]) = [0, 1], it suffices, on account of
symmetry and monotonicity, to show that L(D) ∈ T (P) for any D ∈ P,
D ⊆ [−1,−1/2]. For D ∈ P0 ∩ P there is nothing to show by our assumption
on D0. Suppose now that D ∈ T (P) is a node that is split during the execution
of algorithm Dyadic, i.e., due to the condition in line 2 of Algorithm 1, we know
that |D| > α|∆|, where ∆ := ∆(D,G). Since α ≥ 1 we have, in particular,
|∆| ≤ |D|. The assertion follows as soon as we have shown that the stretched
version L(D) must also be split, i.e., we have to show that

|D| > α|∆(D,G)| =⇒ |L(D)| > α|∆(L(D),G)|. (47)

To show this, let us observe first that it suffices to verify (47) for D ⊆
[−1,−1/2]. In fact, any D ⊆ [−1/2, 0] gets mapped by L into [0, 1]. It then
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follows from the monotonicity and symmetry of D that the midpoint of such
a D must be contained in D∩ [0, 1]. So it remains to consider D ⊆ [−1,−1/2].
First, there is nothing to show when the left end point of D is −1, since then
L(D) is the parent of D. We may therefore assume that D does not contain
−1. By the above comment −1 6∈ ∆(D,G). Clearly, L(∆(D,G)) contains the
left end point of L(D) and therefore has to intersect ∆(L(D),G). Under the
assumption that Conjecture 1 is valid, it follows that

|∆(L(D),G)| ≤ |L(∆(D,G))| = 2|∆(D,G)| < 2α−1|D| = α−1|L(D)|,

which finishes the proof. ut

5.5 Construction of DN and the proof of Theorem 5

A first natural attempt to construct a dyadic grid associated with a given
LGL grid GLGL

N would be to take DN = DyadicGrid(GLGL
N , {a, b}, α) for some

α ∈ [1, 1.25]. In fact, the initial dyadic grid {a, b} trivially satisfies all the as-
sumptions on D0 used in the derivation of the various properties above. Unfor-
tunately, although this seems to occur very rarely, the grids DyadicGrid(GLGL

N ,
{a, b}, α) are not always nested, as shown by numerical evidence. For instance,
for α = 1, the first pair N−, N+ of polynomial degrees where such dyadic grids
are not nested, occurs for N+ = 20 and N− = 19. For corresponding extensive
numerical studies and further examples of non-nestedness, we refer the reader
to [1].

Therefore, to ensure nestedness we employ DyadicGrid(GLGL
N ,D0, α) with

dynamically varying initial grids D0, as described in Algorithm 2.

Algorithm 2 Algorithm NestedDyadicGrid(N, {a, b}, α) for the generation of
LGL related nested dyadic grids.

1: D1 ← DyadicGrid(GLGL
1 , {a, b}, α) . initialization

2: for 1 ≤ j < N do
3: Dj+1 ← DyadicGrid(GLGL

j+1 ,Dj , α) . refine Dj for GLGL
j+1 according to (36)

4: end for

By construction, the grids DN are nested. Moreover, one inductively con-
cludes from the results of the preceding sections that the DN are symmetric
and monotonic. They are also closed under stretching for any range of degrees
N for which property StrN holds. Moreover, they are also graded (beyond any
numerically confirmed range of N) if Conjecture 2 is valid.

A little care must be taken to confirm the desired locally (A,B)-uniform
equivalence of DN with GLGL

N . Again the lower inequality is ensured by (36),
see Remark 7 (i). As for the upper inequality, a certain obstruction lies in the
fact that (39) is not necessarily inherited for the specific value α. In fact, the
following situation may occur which again is a consequence of the fact that
intervals in LGL grids not only decrease in size but also move outwards with
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increasing degree. Let for a given (dyadic) interval D, ∆ = ∆(D,GLGL
N ) be

the `-th interval in PN := P(GLGL
N ). Then it could happen that D no longer

intersects the `-th interval in PN+1, i.e. ∆(D,GLGL
N+1) is the (`+1)-st interval in

PN+1 and may therefore have larger size than ∆(D,GLGL
N ). As a consequence

|D| > α|∆(D,GLGL
N+1)| is not necessarily true. Nevertheless, the following can

be shown.

Property 5 For all N > 1, the dyadic grids DN produced by Algorithm 2
are locally (A,B)-uniformly equivalent to GLGL

N with constants A,B specified
below:

∀D ∈ PN = P(DN ) , ∀∆ ∈ PN = P(GLGL
N ) ,

∆ ∩D 6= ∅ =⇒ α−1 ≤ |∆||D| ≤
2Cg

min{αC−1
g , 1} . (48)

Furthermore, we have
#DN ' #GLGL

N . (49)

Proof Due to Remark 8 we can assume without loss of generality that [a, b] =
[−1, 1] and, by symmetry, consider only intervals in the left half [−1, 0]. To be
able to apply Proposition 3, we shall exploit the fact that with increasing N
outward moving intervals decrease in size. More precisely, by Theorem 7, one
has for any m ∈ N

∆N
i := [ξNi−1, ξ

N
i ] ∈ PN , ∆N+m

j = [ξN+m
j−1 , ξN+m

j ] ∈ PN+m,

ξN+m
j−1 ≤ ξNi−1 =⇒ |∆N+m

j | ≤ |∆N
i | .

(50)

Now, on account of Proposition 3, the assertion follows as soon as we have
shown that (41) holds with β = αC−1

g . To that end, suppose D ∈ PN is not

subdivided in DyadicGrid(GLGL
N+1,DN , α). Without loss of generality we may

assume that PN 6= {[−1, 1]}. Thus, D must have been created by splitting
D̂(D) ∈ PN−m for some m ∈ N. By the condition in line 2 of Algorithm 1,
D̂(D) satisfies |D̂(D)| > α|∆(D̂(D),GLGL

N−m)|. Now let ∆′ ∈ PN−m be the

right neighbor of ∆(D̂(D),GLGL
N−m), so that by (9), |D̂(D)| ≥ αC−1

g |∆′|. One
readily concludes from the monotonicity of the intervals in the LGL grids, see
Theorem 3, that the left end point of ∆(D̂(D),GLGL

N ) must be smaller than
the left end point of ∆′. Therefore, we infer from (50) that

|D̂(D)| ≥ αC−1
g |∆′| ≥ C−1

g α|∆(D̂(D),GLGL
N )| ,

which is (41). This finishes the proof of (48). Finally, (49) follows immediately
from this result. ut

In summary, all the claims stated in Theorem 5 have been verified to be
satisfied by the dyadic grids DN , generated by Algorithm 2, which completes
the proof of Theorem 5. ut

In Figure 7 the sizes of the nested dyadic grids DN are plotted against the
sizes of the LGL grids GLGL

N for different values of α. We observe that usually
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Fig. 7: Size of the nested dyadic grid DN (solid lines) as a function of the size
of GLGL

N for different values of α. The sizes of the dyadic grids as in Figure 6
are also given for a comparison (marks). The black graph indicates the line of
equal cardinalities of LGL and dyadic meshes.

only very few points, in comparison with running just Dyadic(GLGL
N , {a, b}, α),

are added to the grid to ensure nestedness.
Finally, we can invoke Proposition 5 to confirm the claims in Remark 3 for

the family of dyadic grids DyadicGrid(GLGL
N , {a, b}, α), 1 ≤ α ≤ 1.25.
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