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A new redistancing method for piecewise polynomial finite element level set functions is in-
troduced. The method directly computes the distance to the implicitly given discrete level
set. Rigorous error bounds and numerical experiments are provided. Both show that, up to
constants, the method is as good as the nodal interpolation of the computationally unavailable
signed distance function of the continuous level set.
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1. Introduction
This paper is concerned with implicitly defined (hyper-) surfaces Γh ⊂ Rn which are given
as the zero level of a level set function ϕh. More specifically, an algorithm is presented and
analyzed which computes an approximate signed distance function to Γh. This problem is called
redistancing. It has applications to many geometric problems, for example, to path planning,
Kimmel & Sethian (2001). A major application of redistancing is in the level set method, when
the latter is applied to the time evolution of implicitly defined free surfaces and phase-interfaces
in numerical continuum mechanics, Sussman et al. (1994); Osher & Fedkiw (2001); Sethian
(1999). Most level set methods do not conserve the approximate signed-distance property,
which is therefore periodically restored by redistancing. In this context, redistancing is also
called reinitialization. Most redistancing methods in the literature can broadly be classified as
either ‘PDE-based’ (Sethian, 1999, Chp. 11), Sussman et al. (1994); Hartmann et al. (2010)
or ‘geometry-based’ Sethian (1996, 1999); Kimmel & Sethian (1998); Chopp (2001); Mut et al.
(2006); Reusken (2013). A more extensive comparison and further references can be found in
Ausas et al. (2011).

As input to the redistancing method, the discrete level set function ϕh is assumed to be a
function from a finite element space Xh on a triangulation Th. It suffices to know ϕh in a small
neighborhood of Γh. For piecewise quadratic and higher order level set functions, it is in general
difficult to obtain an explicit representation of Γh. Similarly, the signed distance function dh of
Γh is generally not an element of Xh. The output of a redistancing method is a finite element
function d̃h ∈ Xh satisfying two conditions: It approximates a signed distance function, and its
zero level Γ̃h approximates Γh. These goals are not compatible in the sense that one can almost
never improve on both at the same time.
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The new method in this paper is geometry-based with the typical structure of a fast-
marching method – it is split in an initialization phase and an extension phase. In the former,
the value of d̃h is computed for all degrees of freedom in a neighborhood of Γh. From these
values, d̃h is computed in the extension phase in the remaining parts of the domain. The ini-
tialization phase completely determines the new zero level Γ̃h, in particular, its approximation
quality. Therefore, a detailed discussion of the extension phase is not presented here; any of
the methods already available for fast marching can be used.

The simple idea of the new method is to compute d̃h as the nodal interpolant of dh in
a neighborhood of Γh up to floating point precision. As the base case, one considers ϕh on
a single simplex T , where it is a single polynomial. The surface Γh ∩ T is a patch of the
(global) zero level V of this polynomial. Let x be an arbitrary point; later, x is taken as a finite
element node. The points on V which have extremal distance to x are determined by a system of
polynomial equations, which results from the Lagrange multiplier rule. For a linear or quadratic
polynomial, the system of polynomial equations can be reduced to a single polynomial equation
in one indeterminate, for which efficient and robust root finding algorithms are known in the
literature. With this computation as base case, one can exactly compute the distance of x to
the surface patch Γh∩T , and finally to Γh.

In the analysis, the discrete level set function ϕh is viewed as an approximation of a con-
tinuous counterpart ϕ, which is not explicitly available to the redistancing method. Its zero
level is denoted as Γ . Connected to Γ is its signed distance function d, also not available to the
redistancing method. The approximate signed-distance property of d̃h is quantified by a bound
on ��d̃h−dh

��
L∞(ΩΓ

h
) = max

���d̃h(x)−dh(x)
��
��� x ∈ΩΓh

�
,

where ΩΓh is a small common neighborhood of Γ̃h and Γh. Another interesting error measure
is the approximation-error with respect to d as measured by max{|d̃h(x) − d(x)| | x ∈ ΩΓh }.
How well Γ̃h approximates Γh and Γ , is measured by the Hausdorff-distances dist(Γ̃h,Γh) and
dist(Γ̃h,Γ ) between the zero levels. All these measures should be ‘small’ in a good redistancing
method. The main result of the analysis, Theorem 3.2, is a O(hl+1)-bound on these errors, if
the space Xh contains the piecewise polynomials of degree up to l and if ϕh approximates a
level set function ϕ which is sufficiently smooth in a small neighborhood of Γ .

Numerical experiments for piecewise quadratic level set functions complement the analytical
results. A smoothly embedded surface is considered to demonstrate that Theorem 3.2 is a sharp
result. Further examples, one with discontinuous curvature and one with (curved) edges, are
considered, which show that the method is robust. By this, we mean that it does not fail on
coarse meshes and that the error close to the smooth parts of the domain is still bounded as in
Theorem 3.2.

The performance of redistancing methods known in the literature is typically evaluated
only in numerical studies by applying them to certain model problems. Heuristic arguments
and partial analyses are sometimes supplied. The only rigorous error analysis of a redistancing
method that we are aware of is in the recent paper Reusken (2013). We compare the method
from Reusken (2013) with our method. Both work in any number of space dimensions and are
implemented in 3D for piecewise linear and piecewise quadratic finite elements. The general-
ization to higher polynomial degrees is more straightforward for Reusken (2013). The analysis
in Reusken (2013) is technical and excludes some ‘non-generic’ geometric constellations. Our
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analysis is quite elementary. The method in Reusken (2013) is iterative, which may lead to
convergence problems on coarse meshes. Our method works on coarse meshes, cf. Section 5.

The remainder of the paper is structured as follows. In Section 2, the initialization phase is
described in detail. The error analysis is given in Section 3. Section 4 contains some details of
the implementation which is used for the numerical experiments in Section 5.

2. The initialization phase
In the initialization phase, the value of d̃h is computed for all degrees of freedom of the finite
element space Xh which lie in the direct neighborhood triangulation

T Γh = {S ∈ Th | S∩Γh �= ∅} (2.1)

of the discrete zero level Γh. The space Xh is the space of continuous, piecewise polynomial
finite elements of degree 1 or 2 with the set of standard nodal basis points denoted by Nh.
Spaces containing polynomials of higher degree are addressed in Remark 2.1. To simplify the
presentation, it is assumed that Γh is compact and does not meet ∂Ω.

In all points x ∈ Nh, the sign of d̃h(x) is set equal to the sign of dh(x), and the absolute
value is determined as described in the following sub-sections. This completely determines
Γ̃h =

�
x

�� d̃h(x) = 0
�

on T Γh .

2.1 The distance to the zero level of a polynomial
On any n-simplex S ∈ T Γh , ϕh|S is a polynomial ϕS(y) = yTAy+ aT y+ a0 with coefficients
A∈ Rn×n, a∈ Rn, a0 ∈ R. The matrix A is symmetric. The notation |·| is used for the absolute
value of scalars, the Euclidean vector norm, and the spectral norm of matrices. Let x ∈ Rn be
an arbitrary point; later, x is taken from Nh. The distance from x to ΓS = {z ∈ Rn | ϕS(z) = 0}
is computed. To this end, a point y ∈ ΓS with

|y−x| = dist(x,ΓS) := inf {|z−x| | z ∈ ΓS}

is determined. It may be that y is not contained in S. But as ΓS is a closed set, its intersection
with a sufficiently large ball around x is compact, which implies that the infimum is attained
at some point y.

Two standard facts from linear algebra are used. The cofactor matrix C of a matrix M ∈
Rn×n has the entries Cij = (−1)i+j detMîĵ , where Mîĵ is obtained from M by removing row i
and column j. The coefficients of C are therefore polynomials of degree n−1 in the coefficients of
M . Furthermore, there is a close connection to the inverse ofM : CTM =MCT =det(M)In×n.

One minimizes |y−x|, x∈Rn, under the constraint ϕS(y) = 0. As |y−x| and |y−x|2 assume
their minima for the same values of y, one can use the Lagrange-function

L(y,µ) = |y−x|2 +µϕS(y)

with the real-valued Lagrange multiplier µ. This is a polynomial of degree two in y. By the
Lagrange-multiplier-rule, necessary conditions for a minimizer under the given constraint are

0 =DyL(y,µ) = −2x+2y+µ(2Ay+a) =: 2Mµy−2xµ,
0 =DµL(y,µ) = ϕS(y),

(2.2)
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with Mµ = I+µA and xµ = x− µ
2 a. Let Cµ be the cofactor-matrix of Mµ. The first equation

implies
detMµ y = CTµ xµ.

Multiplying the second equation by (detMµ)2 and inserting the previous equation yields

Lemma 2.1 If y minimizes |y−x| under ϕS(y) = 0, then

p(µ) := xTµCµACTµ xµ+detMµaTCTµ xµ+(detMµ)2a0 = 0. (2.3)

Equation (2.3) involves a polynomial of degree 2n in µ. Its real roots are computed. To
obtain candidate-solutions y of (2.2), in the generic case, the linear system in (2.2) is solved for
each root µ.

In exceptional cases, a root of (2.3) might be such that Mµ is a singular matrix, that is,
there exists a non-zero vector v with Mµv = 0. This condition is checked with the help of the
the Schur-decomposition AQ=QΛ, where Λ= diag(λ1, . . . ,λn) is diagonal and Q= (q1, . . . , qn)
is orthogonal. AsMµ = I+µA, there holdsMνv= 0, if and only if µλi = −1 and v is a non-zero
multiple of qi for some i ∈ {1, . . . ,n}. The solution-set of (2.3) might contain such values for
µ, if x lies on a symmetry axis of the conic. More precisely, there are 2 possibilities: First,
Mµy = xµ could be an inconsistent linear system, which can be checked easily using that Q
diagonalizes Mµ. In this case, there is no solution to the linear system associated to µ.

Second, Mµy = xµ could be a consistent linear system, which implies that the solutions y
form an affine subspace H of dimension m. Here, m is the multiplicity of the eigenvalue λi of
A with µλi = −1. If m= n, the level sets of ϕS are spheres, the radius of which can easily be
computed. Otherwise, m < n and we obtain a dimensional reduction to H. In this case, the
distance can be computed with the method in Subsection 2.2.

Remark 2.1 (Other polynomial degrees) If ϕS is a linear polynomial, then Mµ = I. Thus,
y = xµ, which can be inserted into ϕS(xµ) = 0. This yields a uniquely solvable linear equation
because the coefficient of µ is aT a.

The method is applicable for higher polynomial degrees. It requires the solution of (2.2),
which remains a system of polynomial equations, but in which the first equation is now nonlinear
in y. In analogy to the derivation of (2.3) one could use elimination theory with Groebner bases,
cf. Cox et al. (1997). For the latter, the authors do not know of robust floating-point algorithms.
Alternatively, one could directly apply an iterative root finder to (2.2).

2.2 Higher codimension
Suppose that the extremizer y is restricted to the affine space H given as the image of l(z) =
Bz+ b with B ∈ Rn×m, 1 �m< n, m= rank(B), and b ∈ Rn. This arose in some exceptional
cases in the previous sub-section. This situation also arises, if the distance to ΓS∩F is computed
for an m-face of S.

Remark 2.2 One could proceed as before, and introduce a second Lagrange-multiplier µ̃ ∈ R
for the new constraint,

L(y,µ, µ̃) = |y−x|2 +µϕS(y)+ µ̃l̃(y),
where l̃ is an implicit equation for the hyperplane. This approach seems quite elegant, however,
when explicating the details, the second Lagrange-multiplier introduces new possible degenera-
cies. Also, due to the elimination of µ̃, the degree of the polynomial equation for µ increases.
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The reduction to H is performed explicitly by introducing orthogonal coordinates in the
domain of l which map to orthogonal coordinates of H. Let A=QR be a QR-decomposition of
A and denote by Q̂ the orthogonal n×m matrix composed of the first m columns of Q. This
defines the coordinate system. The implicit quadratic equation for ΓS ∩H in these coordinates
is

ϕH(z) = ϕS(Q̂z+ b) = zT Q̂TAQ̂z+(aT Q̂+2bTAQ̂)z+ bTAb+aT b+a0.

Let xH be the orthogonal projection of x onto H, which can be written as

xH = Q̂ẑ+ b, ẑ ∈ Rm.

The distance between xH and an arbitrary point Q̂z+ b in H is
���xH − (Q̂z+ b)

��� =
���Q̂(ẑ−z)

��� = |ẑ−z| .

This proves

Lemma 2.2 Let z ∈ Rm be the minimizer of |ẑ− z| under the constraint ϕH(z) = 0. Then,
y = Q̂z+ b minimizes |x− y| under the constraints ϕS(y) = 0, y ∈H. The minimal distance d
satisfies d2 = |ẑ−z|2 + |x−xH |2.

The constrained minimization problem in Lemma 2.2 is the same as the one considered
in Subsection 2.1 with n replaced by m and ϕS replaced by ϕH . Hence, it can be solved as
explained there.

2.3 The distance with respect to a single n-simplex
Let S ∈ T Γh be an n-simplex (which intersects Γh), and consider the local signed distance
function dSh with

���dSh(x)
��� = min{|x−y| | y ∈ Γh∩S} , sgn(dSh(x)) = sgn(ϕ(x)). (2.4)

The value |dSh(x)| is computed as follows; a description in pseudo-code is Algorithm 1. The
minimum in (2.4) is assumed in the interior of S or on the boundary ∂S. The candidates for
the minima in the interior are computed as in Subsection 2.1. The minima on ∂S are computed
by considering each of the (n−1)-faces F of S together with the embedding of F in an affine
space H of dimension n−1. We use the method of Subsection 2.2 to compute candidates for the
distance minimizers in the (relative) interior of F . The boundary extrema on ∂F are computed
by noting that the boundary of F is composed of (n− 2)-simplexes. One obtains a recursive
scheme, in which the method from Subsection 2.1 is applied on all m-faces of S, 0 < m � n.
The recursion terminates for the vertices v of S, for which

��dvh(x)
�� = |x−v|.

2.4 The output of the initialization phase
Let x ∈ Nh be a degree of freedom of Xh which is contained in

ΩΓh = ∪{S ∈ T Γh }. (2.5)
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Algorithm 1 Compute the unsigned distance of x to Γh∩S.
function distance_in_simplex(x ∈ Rm, m-simplex S, level set function ϕS)

if dimS = 1 then
return |x−S|

end if
5: Let B← ∅ be the set of tentative distances of x to Γh∩S.

Let {µi} be the set of solutions of (2.3).
for all µi do

Compute the base point y corresponding to µi from (2.2).
if y ∈ Γh∩S then

10: B←B∪{|x−y|}
end if

end for
for all (m−1)-faces F of S do

Compute the hyperplane H ⊃ F and the orthogonal coordinate system Q̂.
15: Compute xH , ẑ, and ϕH as in Section 2.2.

δ←distance_in_simplex(ẑ, F , ϕH)
B←B∪{

�
δ2 + |x−xH |2}

end for
return minB

20: end function

To evaluate dh(x), one uses dSh from the previous section. An obvious consequence of Γh ⊂ΩΓh
is

|dh(x)| = min
����dSh(x)

���
��� S ∈ T Γh

�
. (2.6)

The sign of dh(x) is set to the sign of ϕh(x). One defines the output of the initialization phase
as the function d̃h ∈ Xh|ΩΓ

h
which interpolates dh,

d̃h(x) = dh(x) for all degrees of freedom x ∈ Nh∩ΩΓh . (2.7)

To reduce the numerical work, it is desirable to take the minimum in (2.6) over a smaller
neighborhood of x. As x ∈ΩΓh , one of the n-simplices in

T 1(v) = {S ∈ Th | v ∈ S} ,

has an intersection with Γh. Denote this simplex as S. Clearly, there holds |dh(x)| � |dSh(x)|.
Hence, it suffices to consider only the simplices of T Γh which intersect the closed ballB(x, |dSh(x)|).
Furthermore, the upper bound |dSh(x)| cannot be larger than rx = max{|x− y| | y ∈ T,T ∈
T 1(x)}, which is a quantity that only depends on the geometry of the triangulations. For
uniform triangulations (in the neighborhood of Γh), there is a fixed positive integer k such that
the ball B(x,rx) is covered by some

T k(x) =
�
S ∈ T

��� S∩T �= ∅ for some T ∈ T k−1(x)
�
.

For the numerical experiments in Section 5, we use triangulations, which are 3D-Kuhn trian-
gulations in a neighborhood of Γh. A 2D-example is shown in Figure 1; the dots indicate all
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Fig. 1. The neighborhoods T k on a regular 2D-mesh for a vertex (left, k = 2) and the two types of edge-
barycenters (middle and right, k = 2 and k = 3).

possible locations for the points in Nh. One can see (and check by a few distance computations)
that k = 3 is the right choice to guarantee

|dh(x)| = min
����dSh(x)

���
��� S ∈ T k(x)

�
(2.8)

for all degrees of freedom x ∈ Nh∩ΩΓh . The choice k = 3 also works on Kuhn-triangulations in
3D. The number of simplices in T k for any fixed k is bounded on quasi-uniform meshes. Hence,
assuming (2.8), one can evaluate d̃h(x) with a bounded number of local distance computations
independent of h.

3. Error analysis of the initialization phase
The following assumptions on Γ = {x ∈Ω | ϕ(x) = 0} are used in the sequel: There is an open
neighborhood Γ ⊂ U ⊆Ω with ϕ ∈ Ck+1(U) for some integer k � 1. The non-degeneracy of ϕ
is required as

0< c0 � |Dϕ(x)| � c1 for all x ∈ U (3.1)

with positive constants c0, c1. The real number max{
��D2ϕ(x)

�� | x ∈ Ū} is denoted by κ̃; it is a
measure of the curvature of ϕ.

Due to (Gilbarg & Trudinger, 1977, App. A) and reducing U if necessary, the signed distance
function of Γ satisfies d∈Ck+1(U); the sign is chosen to be equal to the sign of ϕ. The gradient
of d is a unit-length normal field n=Dd defined on U . It is assumed that U is tubular, which
means that there is a function p : U → Γ describing the perpendicular base point on the surface
with the unique decomposition

x= d(x)n(p(x))+p(x) for all x ∈ U. (3.2)

The function p is in Ck(U). The Hessian of d is denoted by H =D2d. The spectral norm |H(x)|
is a measure of the curvature of the level set of d passing through x; let κ=max{|H(x)| | x∈ Γ}
be the maximal curvature of Γ . In fact, there holds

Lemma 3.1 For all x ∈ U with |d(x)| � 1
2κ , there holds |H(x)| � 2κ.
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Proof. From differentiating (3.2) and elementary rearrangements, one finds

H(x) =H(ξ)(1+d(x)H(ξ))−1 for all x ∈ U,ξ = p(x).

Applying the spectral theorem, one obtains the relation

λi(x) = λi(ξ)
1+d(x)λi(ξ)

, i ∈ {1, . . . ,n},

between the eigenvalues of H(x) and H(ξ). For distances |d(x)| � (2κ)−1, one has

|λi(x)| �
|λi(ξ)|

1−|d(x)| |λi(ξ)|
� 2 |λi(ξ)| .

�
Lemma 3.2 For all x ∈ U with |d(x)| � min{ 1

2κ ,
1
2

c0
κ̃+2κc1

}, there holds n(x)TDϕ(x)� c0
2 .

Proof. Consider two arbitrary points x,ξ ∈ U such that the line segment between them also is
in U . The Taylor expansion of n(x)TDϕ(x) yields

n(x)TDϕ(x) = n(ξ)TDϕ(ξ)+D(n(ζ)TDϕ(ζ))T (x− ξ)

with some ζ in the open line segment between ξ and x. From D(nTDϕ) = nTD2ϕ+HDϕ and
Lemma 3.1, one computes ���D(n(ζ)TDϕ(ζ))

��� � κ̃+2κc1.

Now choose ξ = p(x) ∈ Γ . Hence, n(ξ) and Dϕ(ξ) are collinear. They also have the same
orientation as the sign of d and ϕ are the same in U . Thus,

n(ξ)TDϕ(ξ) = |n(ξ)| |Dϕ(ξ)| � c0.

The conclusion follows, if |d(x)|(κ̃+2κc1)� 1
2c0. �

To freely use Lemma 3.1 and Lemma 3.2, another, smaller neighborhood inside U is used,
which obeys the premise of Lemma 3.2 and which is such that its closure is contained in U . A
minor additional assumption is that this neighborhood should have the form

{x ∈Ω | |d(x)| � r0}

for some positive constant r0. This is stronger than necessary, but simplifies the analysis. The
assumption can be satisfied for all geometric configurations in which Γ does not intersect ∂Ω.
To keep the notation simple, this smaller neighborhood is again called U . Altogether, this
means

|d(x)| � r0 <min{ 1
2κ ,

1
2

c0
κ̃+2κc1

} for all x ∈ U. (3.3)

A useful consequence of Lemma 3.2 and ϕ(x) =
� d(x)

0 nTDϕ(p(x)+sn)ds is

|ϕ(x)| � c02 |d(x)| on U. (3.4)

Up to this point, properties of the exact level set Γ were treated. Now, Γh is considered.
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It is assumed that the family of triangulations (Th)h>0 is shape regular. Xh is the space of
continuous, piecewise polynomial finite elements of degree up to l on Th. We assume ϕh ∈ Xh.
A main assumption is that ϕh is a quasi-optimal approximation to ϕ on U ,

�ϕ−ϕh�L∞(U) � c2hl+1, (3.5)

where ca is a positive constant. For instance, this is satisfied, if ϕh is the standard nodal
interpolant of ϕ and l � k. For simplicity, l � k is assumed; otherwise, hl+1 must be replaced
by hk+1 in (3.5). From (3.5), shape-regularity, and a standard inverse estimate, one can deduce

�ϕ−ϕh�L∞(U) +h�Dϕ−Dϕh�L∞(U) � c2hl+1 (3.6)

with some constant, which we also call c2 for simplicity.
The first goal is to show that Γh is the graph of a function E which maps along the fibers

of p, that is
E : Γ → Γh, E(x)−x= d(E(x))n(x) for all x ∈ Γ. (3.7)

Let the positive mesh width h0 be given by

h0 = min{(1
2
c0
c2

)1/l,(1
2
c0
c2
r0)1/(l+1)}. (3.8)

Lemma 3.3 For all h < h0 and x ∈ ∂U , there holds ϕh(x)d(x)> 0.

Proof. For any x ∈ ∂U , there holds |d(x)| = r0. Obviously, ϕh(x) = ϕ(x)− (ϕ(x)−ϕh(x)).
From (3.4) and (3.5), one concludes for d(x) = r0 that ϕh(x) � 1

2c0r0 − c2hl+1. Likewise,
for d(x) = −r0, we find ϕh(x) � −1

2c0r0 + c2hl+1. The conclusion follows from h < h0 and
c2h

l+1
0 � 1

2c0r0. �
To proceed, we require the following representation of ϕh,

Lemma 3.4 For all x ∈ U , there holds

ϕh(x) = ϕh(ξ)+
� d(x)

0
n(ξ)TDϕh

�
ξ+sn(ξ)

�
ds, ξ = p(x). (3.9)

Proof. Consider the line segment L= conv{ξ,x} and its intersection with the simplices in Th.
In the interior of the n-simplices, the representation (3.9) is valid because ϕh is a polynomial.
In the generic case, L intersects the boundaries of the n-simplices in a finite number of points,
where Dϕh has a jump discontinuity. Hence, (3.9) holds in the generic case.

In the exceptional case, L intersects the boundary of some n-simplices Sj in a finite number
of (closed) sub-segments Li. Now, one uses the fact that ϕh is continuous and piecewise polyno-
mial. Continuity implies, that all Sj induce the same polynomial on the Li. Hence, its tangential
derivative on L is well-defined with the exception of finitely many jump-discontinuities, and the
integral formula (3.9) is valid. �

Consider the approximation property (3.6) on an arbitrary (closed) S ∈ Th, S ⊂U : ϕh|S is a
polynomial and therefore has a smooth extension to Rn. The level set function ϕ is (k+1)-times
differentiable in a neighborhood of S. Hence, one infers from (3.6) that

max{|Dϕ(x)−Dϕh(x)| | x ∈ S̄} � c2hl. (3.10)

An important consequence is that the L∞-approximation property of (3.6) is also valid on the
boundaries of the simplices, where Dϕh is multi-valued.
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Fig. 2. Zero-levels of piecewise quadratic functions that do not occur, if (3.5) holds, cf. Remark 3.1.

Lemma 3.5 For all h < h0 and ξ ∈ Γ , the function f(r) = ϕh(ξ+ rn(ξ)) is strictly increasing
on [−r0, r0].
Proof. Let −r0 � s < t� r0 and ξ ∈ Γ be arbitrary. Lemma 3.4 yields

f(t)−f(s) =
� t

s
nTDϕh(ξ+ rn)dr

with the abbreviation n= n(ξ) = n(ξ+ rn(ξ)). Writing Dϕh =Dϕ− (Dϕ−Dϕh), Lemma 3.2
and (3.10) yield

f(t)−f(s)� 1
2c0(t−s)− (t−s)c2hl = (t−s)(12c0 − c2hl)> 0.

�
Lemma 3.3 and Lemma 3.5 imply that the map E in (3.7) is in fact well-defined and unique,

if h < h0.

Remark 3.1 (Geometry of Γh) In the interior of any n-simplex S ∈ Th, the approximate surface
Γh∩S is a C∞-embedded manifold because h < h0 and (3.6) imply |Dϕh|> 1

2c0. Hence, Dϕh
has full rank on S, and the implicit function theorem applies. The consequence is that singular
level sets as shown on the left-hand side of Figure 2 do not occur locally on S.

In points x∈Γh∩S1 ∩S2, Si ∈ Th, the approximate surface generally is not smooth. One can
bound the angle between the normals to Γh as one approaches x from within Si. By continuity,
gi = limy→x,y∈SiDϕh(y) is well-defined. Let g =Dϕ(x) and δi = gi−g. Note that the normal
on Γh in x from within Si is nih = gi/

��gi
��. One has

n1
hn2
h � 1− chl

with some positive constant c. This implies that the angle between n1
h and n2

h is of order
O(hl/2) for h→ 0. Hence, cusps as on the right-hand side of Figure 2 do not occur.
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To prove the statement, one uses (3.10) to find
��δi

�� � c2hl. Then, (g1)T g2 = (g+ δ1)T (g+
δ2)� |g|2 − c(h) with c(h) = 2c1c2hl+(c2hl)2. Similarly,

��g1�� ��g2�� � |g|2 + c(h). Thus,

n1
hn2
h �

|g|2 − c(h)
|g|2 + c(h)

� 1− 2c(h)
|g|2 + c(h)

� 1−2c(h)
c20
,

from which the claim follows with (3.8) and h < h0.

The next goal is to derive the bound �d−dh�L∞(U) �Chl+1. First, we bound the distance
of Γh to Γ . The following lemma can be found in (Reusken, 2013, La. 7.4). To make the paper
self contained, we include a slightly modified proof below.

Lemma 3.6 Under (3.1), (3.3), (3.5), (3.8) and for h <min{h0,
c0
κ̃ ,(

1
2
c2

0
c2κ̃

)1/(l+1)}, there holds

max{|d(x)| | x ∈ Γh} � 2c2
c0
hl+1. (3.11)

Proof. Consider two arbitrary points x,ξ ∈ U with the line segment conv{ξ,x} ⊂ U . The
Taylor expansion of ϕ yields

ϕ(x) = ϕ(ξ)+Dϕ(ξ)T (x− ξ)+ 1
2(x− ξ)TD2ϕ(ζ)(x− ξ)

with some ζ ∈ conv{ξ,x}. Rearranging this and the Cauchy-Schwarz inequality imply
���Dϕ(ξ)T (x− ξ)

��� � |ϕ(x)−ϕ(ξ)|+ 1
2κ |x− ξ|2 .

Choosing ξ = p(x) yields x−ξ = x−p(x) = d(x)n(p(x)). As Dϕ(ξ) and n(ξ) are collinear, there
holds

��Dϕ(ξ)T (x− ξ)
�� = |Dϕ(ξ)| |x− ξ|. Furthermore, ϕ(ξ) = 0, so

c0 |x− ξ| � |ϕ(x)|+ 1
2 κ̃ |x− ξ|2 .

As Γh ⊂U , one can choose any x∈ Γh. By adding 0 = ϕh(x), one obtains from (3.5) that |x− ξ|
satisfies the quadratic inequality

c0 |x− ξ| � c2hl+1 + 1
2 κ̃ |x− ξ|2 .

Consider the corresponding quadratic equation 1
2 κ̃ |x− ξ|2 −c0 |x− ξ|+c2hl+1 = 0, which has a

global minimum at c0
κ̃ . By the premises, one knows 0� |x− ξ| � c0

κ̃ . Therefore,

|x− ξ| � 2 c2
κ̃ h

l+1

c0
κ̃ +

�� c0
κ̃

�2 −2 c2
κ̃ h

l+1
� 2c2
c0
hl+1.

�
The preceding result easily yields a one-sided estimate on U ,

Lemma 3.7 Under the assumptions of Lemma 3.6, the inequality |d(x)| − |dh(x)| � 2 c2
c0
hl+1

holds for all x ∈ U .
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Γ

Γh

x

p(x)

E(p(x)) x

p(x)

E(p(x)) x

p(xh)

xh

Fig. 3. Notation in proofs, from left to right: Lemma 3.9, Theorem 3.1, Lemma 3.7.

Proof. Let x ∈ U be an arbitrary point. By the closedness of Γh, there exists a point xh ∈ Γh
of minimal distance, |x−xh| = min{|x−y| | y ∈ Γh} = |dh(x)|. The distance of x to Γ satisfies
|d(x)| = min{|x−y| | y ∈ Γ} � |x−p(xh)|. The triangle inequality implies

|d(x)|− |dh(x)| � |x−p(xh)|− |x−xh| � |xh−p(xh)| � 2c2
c0
hl+1,

where Lemma 3.6 is used in the final step. �
Next, Lemma 3.7 is established with d and dh exchanged. If ϕh were smooth, one could

appeal to the symmetry of the situation to obtain the desired result. But the proof of Lemma
3.6 fails for ϕh. Instead, the proof relies on the key property of the map E that it maps Γ → Γh
along the fibers of p. The first step is the analogue of Lemma 3.6,

Lemma 3.8 Under the assumptions of Lemma 3.6, max{|dh(ξ)| | ξ ∈ Γ} � 2c2
c0
hl+1.

Proof. Take any ξ ∈ Γ . Then, |dh(ξ)| � |ξ−E(ξ)|. Due to (3.7), one can express the latter as
|d(E(ξ))n(ξ)|, to which Lemma 3.6 can be applied. �

From Lemma 3.6, one obtains the final one-sided estimate,

Lemma 3.9 Under the assumptions of Lemma 3.6, the inequality |dh(x)| − |d(x)| � 2 c2
c0
hl+1

holds for all x ∈ U .

Proof. Let x ∈ U be an arbitrary point and ξ = p(x). Then, |d(x)| = |x− ξ|. The distance
of ξ ∈ Γ to Γh satisfies |dh(ξ)| = min{|ξ−xh| | xh ∈ Γh} � |ξ−E(ξ)|. The triangle inequality
implies

|dh(x)|− |d(x)| � |x−E(ξ)|− |x− ξ| � |ξ−E(ξ)| .
As in the preceding proof, one uses (3.7) to bound the final term by |d(E(ξ))n(ξ)|, to which
Lemma 3.6 can be applied. �
Theorem 3.1 Under the assumptions of Lemma 3.6, there holds

�d−dh�L∞(U) � 2 c2
c0
hl+1.

Proof. Take any x∈U . If d(x) and dh(x) have the same sign, |d(x)−dh(x)| =
�� |d(x)|−|dh(x)|

��
and the claim follows from Lemma 3.7 and Lemma 3.9.

Otherwise, the signs are different and x lies on the line segment between ξ = p(x) ∈ Γ and
xh = E(ξ) ∈ Γh, cf. Figure 3. Hence, |x− ξ|+ |xh−x| = |xh− ξ|. Clearly, |dh(x)| � |xh−x|.
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One obtains
|d(x)−dh(x)| = |d(x)|+ |dh(x)| � |x− ξ|+ |xh−x| = |xh− ξ| ,

from which the claim follows with Lemma 3.6. �
We turn to the approximate distance function d̃h and its zero level Γ̃h, which are the output

of the redistancing algorithm. The standard nodal interpolation operators Ih on T Γh are a
stable family because of shape-regularity. This means

�Ihf�L∞(ΩΓ
h

) � cS �f�L∞(ΩΓ
h

) for all f ∈ C(U)

for some positive constant cS . Due to the Ck+1-smoothness of d, there holds �Ihd−d�L∞(ΩΓ
h

) �
cI �d�Cl+1(U)h

l+1 for some positive constant cI .

Theorem 3.2 Under the assumptions of Lemma 3.6, there holds
��d̃h−d

��
L∞(ΩΓ

h
) � ch

l+1,
��d̃h−dh

��
L∞(ΩΓ

h
) � ch

l+1

with the constant c= (2 c2
c0

(1+ cS)+ cI �d�Cl+1(U)).

Proof. Writing d̃h−d= d̃h− Ihd+ Ihd−d, the stability of (Ih)h>0 and Theorem 3.1 yield
��d̃h−d

��
L∞(ΩΓ

h
) � cS ·2c2

c0
hl+1 + cI �d�Cl+1(U)h

l+1.

The other inequality follows from this one and Theorem 3.1 via d̃h−dh = d̃h−d− (dh−d). �
The most straightforward application of Theorem 3.2 is to bound the Hausdorff distance

between Γ̃h and Γ , respectively Γh. For two sets A, B with (unsigned) distance functions dA
and dB , their Hausdorff distance is

dist(A,B) = max
�
max{dB(x) | x ∈A},max{dA(x) | x ∈B}

�
.

Corollary 3.1 Under the assumptions of Lemma 3.6, there holds

dist(Γ̃h,Γ )� chl+1, dist(Γ̃h,Γh)� chl+1

with the constant c of Theorem 3.2.

Proof. The first inequality follows from the first inequality of Theorem 3.2 by noting that d is
zero on Γ and conversely d̃h is zero on Γ̃h. The second inequality follows in the same manner
from the second inequality of Theorem 3.2. �

The unit-length vector field ñh =Dd̃h/|Dd̃h| on ΩΓh is an approximation of n,

Corollary 3.2 Under the assumptions of Lemma 3.6, there holds

�ñh−n�L∞(ΩΓ
h

) � ch
l

with some positive constant c.

Proof. As d̃h ∈Xh, one can apply a standard inverse estimate to the first inequality in Theorem
3.2 to produce ��Dd̃h−Dd

��
L∞(ΩΓ

h
) � ch

l (3.12)
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Fig. 4. Test cases: Torus, apple, and slotted sphere.

with some positive constant c. From this and the triangle inequality, one gets �|Dd̃h| −
1�L∞(ΩΓ

h
) � �Dd̃h−n�L∞(ΩΓ

h
) � chl. Writing

ñh−n= ñh(1−
��Dd̃h

��)+Dd̃h−n a. e. on ΩΓh ,

the conclusion follows by taking the L∞(ΩΓh )-norm on both sides. �
Remark 3.2 Surfaces with edges do not satisfy the assumption ϕ ∈ Ck+1(U) for any positive
integer k. However, there may be subsets of U of the form {x+sn(x) | x∈ γ,0� |s|� r0}, γ ⊂Γ ,
on which ϕ is Ck+1-smooth. The preceding analysis can be modified to show that Theorem 3.2
and Corollary 3.2 hold on these subsets.

4. Implementation
The method is implemented for piecewise linear and piecewise quadratic finite elements in the
3D finite element code Drops, Groß et al. (2002). The real roots of the univariate polynomial
(2.3), which has degree up to 6, are computed with a standard method: They are isolated in
disjoint intervals with a method based on Sturm-sequences. Within an interval, the final value
is computed with the Anderson-Björk-method Anderson & Björck (1973) which is a bracketing
method. The roots are located in intervals of size less then 1e-12. The Schur decomposition of
the matrix A is computed with Jacobi’s method Golub & Van Loan (1996), in which the root
of the sum-of-squares of the off-diagonal entries is reduced below 1e-12.

The computations of the values of d̃h(x) for different degrees of freedom x ∈ Nh are com-
pletely independent of each other. Therefore, the redistancing method is well-suited for a
shared-memory parallelization. An OpenMP-based parallelization has been implemented and
is used for the experiments in Section 5. Almost perfect speedup is observed.

5. Numerical experiments
Three test cases are considered: A torus, an ‘apple’, and a slotted sphere, which are all

embedded in the cube Ω = (−1,1)3. The surfaces are displayed in Figure 4. The torus is
C∞-embedded, hence, Theorem 3.2 applies without restrictions. The apple is composed of two
half-spheres with different radii and a slice of a torus connecting them. Each of these pieces
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Fig. 5. Slices of Th, �= 4, for the torus, the apple, and the slotted sphere.

Fig. 6. Torus: Values of ϕα and level sets of 0, ±0.1, ±0.2 for α ∈ {10,50}.

is C∞-embedded, but the radius of the osculating sphere has a jump discontinuity where the
half-spheres meet the torus. Therefore, the apple is globally only C1-embedded. It is used
in Reusken (2013) as an example of a mildly rough surface. The slotted sphere is piecewise
smooth, but at the edges the embedding is not even C1. For all three surfaces, the signed
distance function d is available via an explicit formula.

To generate the triangulations Th, the domain is subdivided uniformly into 3×3×3 smaller
cubes. Each of these is partitioned into 6 tetrahedra which yields the Kuhn-triangulation Th0
with mesh width h0 = 2

3 . Local red-green refinement is applied in the vicinity of Γ until all
tetrahedra of Th intersecting Γ have the mesh-width h= h(�) = 2−�h0, � ∈ {2, . . . ,7}. Slices of
Th for �= 4 are shown in Figure 5. The space of continuous, piecewise quadratic finite elements
is used for the discrete level set functions ϕh. Let Ih be the standard nodal interpolation
operator of this space on Th, and let Nh be the set of vertices and edge-barycenters of T Γh . As
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α= 1 α= 10 α= 50
� e∞ order e∞ order e∞ order
2 7.57e-3 5.60e-3 4.49e-2
3 5.75e-4 3.72 8.27e-4 2.76 1.66e-2 1.43
4 7.80e-5 2.88 1.21e-4 2.77 3.33e-3 2.32
5 1.08e-5 2.86 1.56e-5 2.96 5.20e-4 2.68
6 1.42e-6 2.92 1.87e-6 3.06 6.89e-5 2.92
7 1.73e-7 3.04 2.45e-7 2.94 8.78e-6 2.97

Table 1. Torus: Error and order of convergence.

α= 1 α= 10 α= 50
� eD∞ order eD∞ order eD∞ order ẽD∞

2 2.13e-1 2.03e-1 2.89e-1 2.17e-1
3 1.66e-2 3.69 1.77e-2 3.52 1.46e-1 0.98 1.59e-2
4 3.46e-3 2.26 3.85e-3 2.20 6.44e-2 1.18 2.96e-3
5 8.70e-4 1.99 1.11e-3 1.80 1.99e-2 1.69 7.69e-4
6 2.13e-4 2.03 3.10e-4 1.83 5.90e-3 1.75 1.84e-4
7 5.31e-5 1.99 7.33e-5 2.08 1.57e-3 1.91 4.49e-5

Table 2. Torus: Gradient-error and order of convergence.

exact level set functions, the perturbations of d

ϕ(α) = q(α)d with q(α)(x) = 9.0+4.0cos
�
α
x1x2
|x|

�
, α ∈ {1,10,50},

are taken. The functions ϕα have the same zero level as d, and they have a large gradient.
The parameter α determines the amount of distortion and the oscillations of the gradient. For
α ∈ {10,50}, Figure 6 shows the level sets of 0, ±0.1, ±0.2 of ϕ(α) for the torus at the cross
section displayed in Figure 5. The input of the redistancing method is the nodal interpolant
ϕαh = Ihϕα.

As error measure, the maximum norm error between d̃h and d in the degrees of freedom is
used,

e∞ := max
x∈Nh

��d̃h(x)−d(x)
�� .

This can be compared to the error bounds of Theorem 3.2. Furthermore, the gradient of d̃h in
ΩΓh is considered,

eD∞ := max
T∈T Γ

h

�����

�
1

|T |

�

T

��Dd̃h(s)
��2
ds−1

����� ,

which can be compared to (3.12) and Corollary 3.2. We also compute this error measure with
d̃h replaced by Ihd to provide a reference for the absolute magnitude of eD∞. This is referred to
as ẽD∞ below.
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� e∞ order eD∞ order ẽD∞

2 2.05e-2 1.42e-1 1.12e-1
3 3.32e-3 2.63 4.93e-2 1.53 3.41e-2
4 4.43e-4 2.90 9.47e-3 2.38 7.08e-3
5 5.78e-5 2.94 2.33e-3 2.02 1.74e-3
6 7.45e-6 2.96 6.10e-4 1.93 3.83e-4
7 9.35e-7 2.99 1.54e-4 1.99 9.53e-5

Table 3. Apple: Error, gradient-error, and order of convergence for α= 10.

� e∞ order eD∞ order ẽD∞

2 4.45e-2 - 3.63e-1 - 3.83e-1
3 2.22e-2 1.01 3.42e-1 0.0 9 4.16e-1
4 1.18e-2 0.91 3.54e-1 -0.05 6.18e-1
5 4.93e-3 1.26 3.45e-1 0.04 3.70e-1
6 5.01e-3 -0.02 4.14e-1 -0.26 3.71e-1
7 3.44e-3 0.54 1.26e 0 -1.61 3.70e-1

Table 4. Slotted sphere: Error, gradient-error, and order of convergence for α= 10.

The results for the torus are shown in the Tables 1, 2. One can observe order 3 for e∞ for
all values of α. This agrees with the bound in Theorem 3.2. For stronger perturbations, the
convergence sets in on finer meshes. For eD∞, order 2 is observed. For all values α ∈ {1,10,50},
the redistancing method produces results on the very coarse meshes Th with � ∈ {0,1}. In this
sense, it is a robust method. This is in contrast to the iterative method of Reusken (2013),
where convergence problems are reported for α= 50 up to level 5.

Table 3 contains the errors for the apple for α= 10. The results for α ∈ {1,50} are similar
and are not displayed separately. Beginning with �= 4, order 3 is observed for e∞ and order 2
for eD∞. This is better than predicted by Theorem 3.2 as the embedding of the geometry is not
globally C3-smooth.

In the final experiment, the slotted sphere is considered. The errors for α= 10 are shown in
Table 4. The global error measure e∞ decreases only marginally as � is increased, and eD∞ even
increases. This is in agreement with the fact that the slotted sphere is not smoothly embedded
at the edges of the slot.

As explained in Remark 3.2, the large errors are confined to the vicinity of the edges. A
visual comparison of the zero levels of Ihd and d̃h, cf. Figure 7, indicates that this is the
case. Let de be the unsigned distance-function for the edges of the slotted sphere. A tedious,
elementary computation yields an explicit expression for this function. It is used to define the
local error away from the edges of the geometry,

ê∞ := max
���d̃h(x)−d(x)

�� �� x ∈ Nh,de(x)> 3h
�
.

Furthermore, êD∞ and ˆ̃eD∞ are defined like eD∞ and ẽD∞, but a tetrahedron T ∈ Th is only consid-
ered, if its barycenter x satisfies de(x)> 3h.
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Fig. 7. Slotted sphere: Zero level of Ihd (left) and of d̃h (right).

α= 1 α= 10 α= 50
� ê∞ order ê∞ order ê∞ order
2 9.23e-4 4.17e-3 3.85e-2
3 9.81e-5 3.23 6.10e-4 2.77 1.39e-2 1.47
4 1.28e-5 2.93 9.58e-5 2.67 2.24e-3 2.63
5 1.72e-6 2.90 1.26e-5 2.93 3.03e-4 2.89
6 2.22e-7 2.95 1.59e-6 2.98 3.82e-5 2.99
7 2.92e-8 2.93 1.98e-7 3.01 4.84e-6 2.98

Table 5. Slotted sphere: Error and order of convergence away from the edges.

α= 1 α= 10 α= 50
� êD∞ order êD∞ order êD∞ order ˆ̃eD∞
2 4.84e-3 1.19e-2 1.16e-1 4.25e-3
3 2.22e-3 1.12 4.57e-3 1.38 1.18e-1 -0.02 1.90e-3
4 6.17e-4 1.85 1.29e-3 1.82 4.25e-2 1.47 4.45e-4
5 1.56e-4 1.98 4.05e-4 1.68 1.19e-2 1.83 1.08e-4
6 3.72e-5 2.07 1.07e-4 1.92 3.08e-3 1.95 2.68e-5
7 9.62e-6 1.95 2.56e-5 2.06 7.84e-4 1.97 6.62e-6

Table 6. Slotted sphere: Gradient-error and order of convergence away from the edges.
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The resulting errors are displayed in Table 5 and Table 6. One clearly observes order 3 for
ê∞ and order 2 for êD∞.

Acknowledgments
The authors thank Arnold Reusken for reading and discussing the initial version of this paper.
This lead to an improved presentation.

References
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