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FINITE ELEMENT DISCRETIZATION ERROR ANALYSIS OF A
GENERAL INTERFACIAL STRESS FUNCTIONAL

JÖRG GRANDE∗

Abstract. A stationary, incompressible two-phase flow problem with a variable interfacial
stress tensor σΓ(x) is considered. Variable interfacial tension is included as a special case. In
the weak formulation, the interfacial stress gives rise to a functional which is supported on the
interface Γ. A new finite element discretization of this functional is presented and analyzed. The
discretization admits almost independent meshes for the approximation of the interface and the
approximation of the flow variables. The main result is an O(hk+1/2)-error-bound in a natural
norm, if the discrete interface is an O(hk+1)-approximation of Γ. The bound is shown to be sharp
in a numerical experiment.
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1. Introduction. Two immiscible, incompressible, Newtonian fluids are con-
tained in the subdomains Ω1, Ω2 of a bounded domain Ω ⊂ Rn, n ≥ 2. At the
common boundary Γ = Ω̄1 ∩ Ω̄2, the interaction of the fluids gives rise to the inter-
facial tension force, which yields a force term in the Navier-Stokes equations. If Γ
meets ∂Ω, additional force terms appear on Γ ∩ ∂Ω which are not the subject of this
paper. Therefore, it is assumed that the closure of Ω1 is contained in Ω which implies
that Γ = ∂Ω1 does not intersect ∂Ω. A standard model is that the interfacial tension
is a contact force which is described by an interfacial stress tensor σΓ, [SSO07, Isr92].
The force exerted on a small patch γ ⊂ Γ is

(1.1) −
∫
∂γ

σΓν,

where ν is the outer unit-length normal of ∂γ which is tangential to Γ. A special
feature of this term is that it is localized at the interface Γ, which is an embedded
manifold of codimension 1 in Ω. The interfacial stress tensor depends only on the
tangential components of the vectors on which it acts. If P(ξ) denotes the orthogonal
projector on the tangent space of Γ at ξ ∈ Γ, this means

(1.2) PTσΓP = σΓ on Γ.

The formulation (1.1) comprises many classical models for interfacial tension: If Γ is
modeled as a ‘clean interface’, that is an interface without a surface-active, dissolved
species (surfactant) in its vicinity, one obtains

σΓ = τP

with the constant interfacial tension coefficient τ > 0 as stiffness-parameter, cf.
[SSO07]. If the phases contain a surfactant, classical models of Langmuir, von Szysz-
kowski, and Frumkin, [LH92, Lan18, VS08, Fru25], express τ as a function of the
surfactant concentration s close to or on Γ. This turns τ into a scalar function on Γ.
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In the presence of complex surfactants, the interface may exhibit viscous behavior. A
standard model in this case is the Boussinesq-Scriven model, [DADL95, Scr60, Bou13],

σΓ = τP + (λΓ − µΓ) divΓ u P + µΓDΓ(u), DΓ(u) = P(DΓu + (DΓu)T )P,

where the constants λΓ > µΓ > 0 are the interfacial dilatational viscosity and the
interfacial shear viscosity; DΓ is the tangential gradient, divΓ is the interfacial diver-
gence, and DΓ(u) is the interfacial deformation tensor which depends on the velocity
field u on Γ.

The weak formulation of (1.1) discussed in this paper is

f(v) = −
∫

Γ
(divΓ σΓ)Tv for all v ∈ H1(Ω)n,

which is obtained from (1.1) via Gauß’ theorem. Let (Ω1
h)h>0 be a family of approx-

imations of Ω1. The discrete interfaces Γh are defined as the boundaries Γh := ∂Ω1
h.

The analysis uses two main quantitative assumptions on Γh. Let d be the signed
distance to Γ which is negative in Ω1, and let dh be the signed distance to Γh which is
negative in Ω1

h. The first assumption is that dh approximates d with order O(hk+1)
for some integer k ≥ 1 and that the gradient Ddh approximates Dd with order O(hk).
A family (σΓ

h)h>0 of approximations to σΓ is required, in which the tensor σΓ
h is de-

fined on Γh. The second assumption is that σΓ
h is an O(hk+1)-approximation on Γh

of a suitable extension of σΓ.
Furthermore, improved approximations ñ of n := Dd are required, which are

assumed to be a family of O(hk+1)-approximations. All of the previous requirements
are reasonable; some concrete settings in which they hold are given in Remark 6.1.

The analysis imposes almost no requirements on the finite element discretization
of the Navier-Stokes equations. A shape regular family (TH)H>0 of Ω is assumed
with a mesh-width H which may be different from h. A weak requirement is that H
should not be arbitrarily smaller than h in the vicinity of Γh. No further conditions
are necessary. In particular, TH does not have to be aligned to Γh, and the discrete
interfaces Γh may be defined independently of TH . For the family of velocity spaces
(VH)H>0, only a standard inverse inequality is required.

Let Q̃ = I − 1
α̃nhñT , α̃ = nTh ñ, nh = Ddh, which is an oblique projector arising

in the analysis. The discrete interfacial tension functional is defined as

fh(v) =
∫

Γh

Q̃TσΓ
h : Dv for all v ∈ VH ,

where A : B = tr(ATB) is the Frobenius-inner-product of matrices. The main result
of this paper, Theorem 6.10, is the bound

sup
v∈VH

f(v)− fh(v)
‖v‖H1(Ω)n

≤ chk+ 1
2

for fh, which holds under the previously stated assumptions and some minor technical
conditions. A numerical experiment for k = 1 confirms that the bound is sharp. A
minor result is Theorem 6.9, an estimate of the form

‖DΓ,hv‖Γh∩T ≤ cH
− 1

2
T ‖Dv‖L2(T ) for all v ∈ VH , T ∈ TH , H > 0,

which generalizes [GR07, Thm. 4.6] to the interfaces considered here.
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The literature on numerical methods for surfactants and variable interfacial ten-
sion mainly contains numerical studies of discretization errors, [JL04, Poz04, XLLZ06,
MT08, RZ13]. The only other paper known to the author which contains rigorous
error bounds for an interfacial tension functional is [GR07], where constant interfacial
tension is assumed, and the error analysis yields an O(h)-bound for the discretization
error. This discretization is compared to fh in a numerical experiment in Section 8
showing that it is an O(h3/2)-approximation of fh for constant interfacial tension.

The paper is organized as follows: In Section 2, basic concepts from differential
geometry are introduced which are needed to state the weak formulation of f . Section
3 contains the weak formulation of the two-phase Navier-Stokes problem and of the
interfacial tension. The discrete Navier-Stokes problem is stated in Section 3.2. The
discretization of f is performed in Section 4. Section 5 contains some prerequisites
for the analysis of the discretization error in Section 6. Some consequences of The-
orem 6.10 for the implementation of fh are discussed in Section 7. Two numerical
experiments and their results are discussed in Section 8.

2. Geometry of the interfacial region. Let Γ = ∂Ω1 ⊂ Ω◦ be a compact
hypersurface which is at least of class C2. This means that its signed distance function
d is in C2(U) for some open neighborhood U of Γ. Reducing U if necessary, this
implies that U ⊂ Ω is a tubular neighborhood of Γ which encompasses the following
properties, cf. [Lee12]: The signed distance function d of Γ is in C2(U). Its gradient
Dd =: n is a map U → Sn which agrees with the normal field of Γ when restricted to
the latter. Finally, there is a retraction map p : U → Γ with the property

x = p(x) + d(x)n(x) for all x ∈ U,

and this decomposition is unique. Due to the compactness of Γ, there is a number
r0 > 0 such that Ur0 := {x ∈ Ω | |d(x)| ≤ r0} ⊂ U . We simply set U := Ur0 . Let
B(x, r0) be an open ball with center x and radius r0. There holds

(2.1) B(x, r0) ⊂ U for all x ∈ Γ

because d is Lipschitz-continuous with Lipschitz-constant 1, and for any y ∈ B(x, r0)
there holds |d(y)| = |d(y) − d(x)| ≤ |x − y| ≤ r0. The notation |·| is used for the
absolute value of scalars, the Euclidean norm of vectors, and the spectral norm of
matrices.

The orthogonal projector on the tangent space of Γ can be written as

P = I− nnT .

The symmetric matrix H(x) = D2d(x) is the Hessian of d. Differentiating |n| ≡ 1,
yields Hn = 0 on U . For P, this implies HP = H = PH on U . Furthermore,
nTDn = nTH = 0 implies that the normal field n is constant along normals. An
elementary computation yields

Dp = P− dH = (I− dH)P on U.

A useful identity for H follows from differentiating n(x) = n(p(x)),

(2.2) H(x) = H(ξ)
(
I + d(x)H(ξ)

)−1 with ξ = p(x) for all x ∈ U.

The mean curvature of Γ is κ = tr H; the maximal curvature on Γ is denoted by

κΓ = max{|H(ξ)| | ξ ∈ Γ},
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and the eigenvalues of H(x) are denoted κi(x), i ∈ {1, . . . , n}, where κn(x) = 0.
Possibly reducing r0 to r0 ≤ 1

2κ
−1
Γ , equation (2.2) yields

|H| ≤ 2κΓ on U.

A fundamental connection between the tangential gradient DΓ, which is intrinsic
to Γ, and the gradient D on Rn is

(2.3) DΓ = PD.

That is, the interfacial gradient is the orthogonal projection of the gradient in Rn
to the tangent space. To apply (2.3), one uses an arbitrary (sufficiently smooth)
extension of a function on Γ to compute the right-hand side. The restriction to Γ
is the intrinsic quantity on the left-hand side. The interfacial divergence is defined
as divΓ v = DΓ · v = P : Dv for vector valued functions, where the gradient Dv is
the transpose of the Jacobian matrix. The interfacial divergence for matrix-valued
functions is divΓ A = (divΓA

1, . . . ,divΓA
n)T with the columns Ai of A.

The pullback of a function on Γ along the fibers of p is defined and denoted as

fe(x) := f(p(x)) for all x ∈ U.

It is constant on the fibers of p. The name pullback comes from the fact that the
domain of f is ‘pulled back’ from the image of p to its domain. The derivative of a
pullback is given by the chain rule of differentiation, here

Dfe(x) = (I− d(x)H(x))P(x)(Df)e(x) for all x ∈ U.

The pull-back of vector-valued and matrix-valued functions is given by the same
formula.

The following elementary fact from differential geometry is required: There exists
a positive constant cm such that for any n-ball B ⊂ U with radius r and for any set
S = {x ∈ U | |d(x)| ≤ s} ⊆ U there hold

(2.4) meas(B ∩ Γ) ≤ cmrn−1, meas(B ∩ S) ≤ cmrn−1s.

3. The Navier-Stokes equations with interfacial tension. The incompress-
ible Navier-Stokes equations relate the fluid velocity u : Ω→ Rn and the fluid pressure
p : Ω→ R to the forces acting on the fluid. Let µ be the viscosity and

(3.1) σ = µD(u)− pI, D(u) = 1
2(Du + (Du)T )

be the stress and the deformation tensor. The viscosity is a assumed to be a piecewise
constant function with a possible discontinuity at Γ. Let γ ⊂ Γ.

Theorem 3.1 (Gauß). For any vector-valued function v ∈ C1(γ,Rn) which is
everywhere tangential to γ there holds∫

γ

divΓ v =
∫
∂γ

νTv,

where ν is the unit-length normal on ∂γ which is also tangential to Γ.
Applying Theorem 3.1 to (1.1) on increasingly smaller patches γ yields the strong

form of the interfacial tension,

(3.2) f = −divΓ σΓ on Γ.
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As an example, in the case of variable interfacial tension τ(x), (3.2) yields −divΓ σΓ =
τκn−DΓτ . Throughout this paper, it is assumed that

(3.3)
∥∥σΓ∥∥2

L2(Γ) +
∥∥divΓ σΓ∥∥2

L2(Γ) =:
∥∥σΓ∥∥2

div

is a finite constant. The standard way to include the interfacial tension into the
Navier-Stokes equations is to let it balance the jump of the normal stress between Ω1

and Ω2,

(3.4) JσnKΓ = −divΓ σΓ.

Under the assumption that u is continuous at Γ, the Navier-Stokes equations consid-
ered in this paper can be written formally as

(3.5)
ρuTDu− div(µD(u))−Dp = −δΓ divΓ σΓ on Ω,

div u = 0 on Ω.

Here, ρ is the piecewise constant density of the fluids and δΓ is the Dirac-δ-distribution
of Γ. We refer to [Pes77, CHMO96] and the references in the latter for details. The
time-dependence and additional force terms are omitted to simplify the presentation;
they have no effect on the subsequent error analysis. Also for simplicity, homogeneous
Dirichlet boundary conditions are assumed. A rigorous weak formulation formulation
is obtained in the spaces

(3.6) V = H1
0 (Ω)n, Q =

{
q ∈ L2(Ω)

∣∣∣∣ ∫
Ω
q = 0

}
,

cf. [GR86]. The Sobolev-norm on V is denoted as ‖·‖V; the L2(Ω)-inner prod-
uct is denoted by (·, ·). For matrix valued functions, one uses the inner product
(A(x),B(x)) =

∫
Ω A(x) : B(x) dx. A standard weak formulation of (3.5) is

(3.7)
(
ρuTDu,v

)
+ (µD(u),D(v)) + (p,div v) = f(v) for all v ∈ V,

(div u, q) = 0 for all q ∈ Q,

with the interfacial tension functional

(3.8) f(v) = −
∫

Γ
(divΓ σΓ)Tv dx.

If Γ and τ are sufficiently smooth, there holds a standard trace theorem for V, which
implies

(3.9) |f(v)| ≤
∥∥divΓ σΓ∥∥

Γ ‖v‖L2(Γ) ≤ c(Γ)
∥∥σΓ∥∥

div
‖v‖V for all v ∈ V.

Hence, f is a bounded, linear functional on V, which makes (3.7) a well-posed problem,
cf. [GR86].

3.1. Weak formulation of the interfacial tension. Let v ∈ C1(U,Rn) be an
arbitrary function. By (1.2), σΓv is tangential to Γ everywhere, and, using (2.3), one
computes divΓ(σΓv) = (divΓ σΓ)Tv + σΓ : Dv.

Gauß’ theorem 3.1, equation (3.8), and ∂Γ = ∅ imply

(3.10) 0 =
∫

Γ
divΓ(σΓv) =

∫
Γ
(divΓ(σΓ)Tv +

∫
Γ

σΓ : Dv.
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Due to (1.2), σΓ : Dv = σΓ : PDv which shows that the expression depends only on
quantities intrinsic to Γ. It follows that

(3.11) f(v) =
∫

Γ
σΓ : PDv for all v ∈ C1(U,Rn).

By a standard density argument, (3.11) holds on conforming finite element spaces with
piecewise smooth functions. This is the starting point for the discretization of (1.1),
respectively (3.8). The above use of Gauß’ theorem is known as the Laplace-Beltrami
technique in the literature, cf. [Bän01, Hys06] for the case σΓ = τP.

3.2. Discretization of the Navier-Stokes equation. The weak formulation
(3.7) is discretized with finite elements. Let TH , H > 0 be a family of triangulations
of Ω. It is not assumed that the TH are aligned to Γ. Generally, the triangulations
are refined in the vicinity of Γ. It is only required that the family (TH)H>0 is shape-
regular, that is, there exists a positive constant cS such that

(3.12) HT ≤ cSρT for all T ∈ TH , H > 0,

where HT is the diameter of the simplex T and ρT is the diameter of the largest ball
B ⊂ T . As the diameter of the simplexes in TH usually varies strongly across Ω,
one avoids statements about the global mesh-width max {HT | T ∈ TH}. Instead, the
mesh-width H is defined as a piecewise constant function on Ω,

H = H(x) = max {HT | x ∈ T, T ∈ TH} .

Let VH ⊂ V, H > 0, be a family of V-conforming finite element spaces for the
velocity. Any such family is admissible that satisfies the standard inverse inequality

(3.13) ‖Dv‖L∞(T ) ≤ cinvH
−n

2
T ‖Dv‖L2(T ) for all v ∈ VH , T ∈ TH

with a fixed positive constant cinv. This estimate holds for all finite element spaces
which are defined by smooth functions on the reference element, cf. [CL91]; for
example, it holds for the velocity spaces of the Hood-Taylor-pairs. Let QH ⊂ Q,
H > 0, be a family of finite element spaces on (TH)H>0 for the pressure. The discrete
Navier-Stokes problem is: Find (uH , pH) ∈ VH ×QH such that

(3.14)
(
ρuTHDuH ,v

)
+ (µD(uH),D(v)) + (pH ,div v) = f(v) for all v ∈ VH ,

(div uH , q) = 0 for all q ∈ QH .

There are well-known restrictions on the choice of VH and QH to obtain a stable
discrete problem; there are also well-known stabilization techniques for unstable pairs
VH , QH . For the purpose of analyzing the discretization error of f , these are not
important, respectively, can be considered separately.

The evaluation of f(v) in (3.14) is not feasible as the computationally unavailable
interface Γ is needed. Thus, f is replaced by a family of approximations fh, h > 0.
The quality measure required in the finite element error analysis of (3.14) is the
dual norm ‖fh − f‖V′

H
. Writing out its definition, one obtains a typical term in a

Strang-type lemma concerning a variational crime,

(3.15) ‖fh − f‖V′
H

= sup
v∈VH

f(v)− fh(v)
‖v‖V

.
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4. Discretization of the interfacial tension.
4.1. The discrete interfaces. Let (Ω1

h)h>0 be a family of approximations of
Ω1 such that each Ω1

h is a Lipschitz domain, cf. [AF03]. Let Γh = ∂Ω1
h. A domain of

integration in Γh is a relatively open, precompact subset set A ⊆ Γh such that ∂A has
(n − 1)-dimensional measure 0 in Γh. A quasi-partition of Γh is a family (γjh)j∈Jh

of
subsets γjh ⊆ Γh, each Jh is a finite index set, such that

γjh ∩ γ
k
h = ∅ for all j, k ∈ Jh with j 6= k and Γh = ∪

{
γjh

∣∣∣ j ∈ Jh} .
It is assumed that each discrete interface Γh has a finite quasi-partition (γjh)j∈Jh

with
the following properties: Each γjh, j ∈ Jh, is a C2-embedded submanifold of Rn, and
it is a domain of integration. The integral on Γh is∫

Γh

f =
∑
j∈Jh

∫
γj

h

f.

Let dh be the signed distance function of Γh which is negative in Ω1
h, and let nh := Ddh.

The almost everywhere defined unit-length vector-field nh is the normal vector-field
of Γh a. e. on Γh. The orthogonal projector on the tangential space of Γh is

Ph = I− nhnTh .

It is assumed that Γh is the graph over Γ of a homeomorphism F which is piecewise
smooth and which has the form ξ 7→ xh = ξ + a(ξ)n(ξ) for all ξ ∈ Γ. One can think
of a(ξ) as the altitude of xh over Γ, equivalently, a(ξ) = d(xh). This assumption is
reasonable, cf. Remark 6.1. Let

F (ξ) = ξ + ae(ξ)n(ξ) for all ξ ∈ Γ.

The function F is actually defined a. e. on U , where it has the derivative

(4.1) DF = I + aeH + (I− dH)P(Da)enT a. e. on U.

The pullback of a function f on Γh along F is the function

f∗ = f ◦ F on Γ.

Let

(4.2) Q = I− 1
α

nhnT with α = nThn a. e. on U,

which is an oblique projector. By a direct computation, one finds

(4.3) QP = P, PQ = Q, PhQ = Ph, QPh = Q.

This characterizes the kernel and image of Q and QT . There is a close connection
between PDa and nh,

Lemma 4.1. There holds PDa = − 1
α∗ (I+aH)Pn∗h a. e. on Γ with α as in (4.2).

Proof. At almost any point ξ ∈ Γ, the differential (PDF )T maps the tangential
space of Γ at ξ to the tangential space of Γh at xh = F (ξ). Thus, nh(xh)T (PDF (ξ))T =
0, which is inserted into (4.1) to obtain

(I + aH)Pn∗h + PDanTn∗h = 0 a. e. on Γ.

The conclusion follows from rearranging the terms of the equation.
Lemma 4.1 and (4.1) yield

(4.4) PDF = (I + aH)PQ∗ a. e. on Γ.
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4.2. Transformation between Γ and Γh. Together with the chain rule, (4.4)
leads to the transformation law for derivatives under the pullback with F , which plays
a key role in the analysis below,

(4.5) PD(f ◦ F )(x) = PDF (x)Df(F (x)) a. e. on Γ,

with DF as in (4.1). This formula looks, as if Df instead of PhDf were required
on the right-hand side, but because of (4.3) and (4.4), one has PDF = PDFPh∗, so
only the tangential derivatives are involved on either side.

Another basic formula required below is the transformation law induced by F for
integrals on Γ and Γh,

(4.6)
∫

Γh

f =
∫

Γ
µf∗ with µ =

(
α∗

n−1∏
i=1

(1 + aκi)
)
.

The factor µ is the (n − 1)-dimensional Jacobian determinant of (PDF )T for the
surface measures which can be read off from (4.4) as PDF is the concatenation of
linear maps. It can also be computed directly, cf. [Fed69].

The push forward of a function on Γ along F is the function f ◦ (F−1) on Γh,
denoted as f∗. It is used below to shift F from the right-hand side to the left-hand
side in (4.6), for example

∫
Γh
f∗/µ∗ =

∫
Γ f .

4.3. The discrete interfacial tension functional. In (3.11), the integration
over Γ is replaced by integration over Γh. Clearly, σΓ which is defined on Γ must be
replaced by an approximation which is defined on Γh. This is σΓ

h. Due to (4.5) and
(4.4), the term PDv in (3.11) transforms to (I + aH)PQ∗Dv which is approximated
by QDv on Γh. This yields the tentative discretization∫

Γh

QTσΓ
h : Dv for all v ∈ VH

for f . By (4.3), there holds Q = QPh, which shows that QDv is defined using
only tangential derivatives with respect to Γh. As Q involves the computationally
unavailable normal field n, an approximation of n is required. The analysis makes
clear that the O(hk)-approximation nh is not sufficient, cf. Lemma 6.6 below. An
O(hk+1)-approximation ñ of n is required, which is used to define the oblique projector

Q̃ = I− 1
α̃

nhñT , α̃ = nTh ñ a. e. on U.

The discretization of f in (3.11) becomes

(4.7) fh(v) =
∫

Γh

Q̃TσΓ
h : Dv for all v ∈ VH .

5. Preliminaries for the error analysis. The spectral norm |Q| is required in
the analysis. It is computed with the help of the following elementary lemma which
is proved in [Szy06].

Lemma 5.1. For any projector Q 6∈ {I,0} there holds |Q| = |I−Q|.
A useful property of rank-1 matrices is

(5.1) |uvT | = |u| |v| for all u,v ∈ Rn.
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From Lemma 5.1 and (5.1), one obtains

(5.2) |Q| = 1
|α|
∣∣nhnT

∣∣ = 1
|α|

.

The bound |A|F ≤
√
n|A| is used below. For example, in connection with the

Cauchy-Schwarz inequality for the Frobenius inner product, one has

(5.3) |A : B| ≤ n |A| |B| for all A,B ∈ Rn×n.

The notation (f, g)Γ is used for the L2(Γ)-inner-product.

6. Approximation error analysis. The error analysis is based on the assump-
tions on the approximate interface Γh, the improved approximation ñ of n, and the
approximation σΓ

h of the the interfacial stress tensor σΓ which are collected here in
one place. The approximate interface Γh is assumed to satisfy the following conditions,

|d| ≤ cdhk+1 a. e. on Γh,(6.1)
|nh − n| ≤ cnhk a. e. on Γh,(6.2)

h ≤ cT min {HT | T ∈ T }(6.3)

with some positive integer k. The inequalities quantify the asymptotic approximation
properties of Γh with respect to Γ. Inequality (6.3) is the only combined constraint
on the mesh-width of the finite element space VH and the mesh width of the interface
approximations Γh. The improved approximation of n is assumed to satisfy

(6.4) |n− ñ| ≤ cñhk+1 a. e. on Γh.

The largest mesh width of Γh to which the subsequent analysis can be applied is
denoted as h0. The mesh-width is required to satisfy

(6.5) 0 < h ≤ h0, max
{

2κΓcdh
k+1
0 , cnh

k
0 , 4cñhk+1

0
}
≤ 1.

Finally, an assumption on the interfacial stress tensor is required,∥∥σΓ
h − σΓ

∗
∥∥

Γh
≤ cσhk+1.(6.6)

The bound (6.6) relates the value of σΓ
h at xh ∈ Γh to the value of σΓ at p(xh) ∈ Γ.

In the remainder of this section, (6.1) – (6.6) are tacitly assumed to hold.
Remark 6.1. All of the previous assumptions are reasonable. Let Γ be the zero

level of the level set function ϕ which satisfies ϕ ∈ Ck+1(U) and ‖Dϕ‖L∞(U) > c > 0
on some neighborhood U of Γ. Let Ih be the interpolation operators of a family of
continuous, piecewise polynomial finite-element spaces of degree k on a shape-regular
family of triangulations (Th)h>0. The discrete family of interfaces Γh is given by the
zero levels of the functions Ihϕ. The covering (γjh)j∈Jh

is given by the intersections
Γh∩T with the simplices of Th. In [EG13], it is shown that there is a piecewise smooth
homeomorphism Γ→ Γh of the form ξ 7→ ξ + a(ξ)n(ξ). From [Reu13], it follows that
(6.1) and (6.2) hold.

The bound (6.6) is derived in [ORG09] for k = 1 for the case in which σΓ = τP
is determined by a surface PDE on Γ which is discretized with an Eulerian finite
element method. Some weak assumptions restrict the maximal admissible mesh width
depending on the curvature of Γ.
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The improved normal field ñ can be obtained from an approximation d̃ of d satis-
fying (6.1) and (6.2) with k replaced by k+ 1. An example with a piecewise quadratic
level set function and its linear interpolant can be found in [GR07].

An auxiliary interfacial tension functional f̃ is introduced. The transformation
rules (4.6) and (4.5) yield

(6.7) f̃(v) :=
(
σΓ,PD(v ◦ F )

)
Γ =

(
µ−1
∗ σΓ

∗ ,PDF∗Dv
)

Γh
.

The difference between the continuous and discrete interfacial tension in (3.11) and
(4.7) is split into two terms,

f(v)− fh(v) = (f − f̃)(v)− (f̃ − fh)(v)
=
(
σΓ,PD(v− v ◦ F )

)
Γ +

(
µ−1
∗ (PDF∗)TσΓ

∗ − Q̃TσΓ
h, Dv

)
Γh

=: I + II.

(6.8)

The analysis rests on the estimates of these terms in Lemma 6.2 and Lemma 6.8.
Lemma 6.2 (I). With the positive constant cI = 2n−1cdcinvc

1/2
m , there holds∣∣f(v)− f̃(v)

∣∣ ≤ cI ∥∥divΓ σΓ∥∥
Γ

∥∥∥H− 1
2Dv

∥∥∥
U
hk+1 for all v ∈ VH .

Proof. Applying (3.10) to I yields

∣∣f(v)− f̃(v)
∣∣ =

∣∣∣∣−∫
Γ
(divΓ σΓ)T (v ◦ F − v)

∣∣∣∣ ≤ ∥∥divΓ σΓ∥∥
Γ ‖v ◦ F − v‖Γ .

For any x ∈ Γ, the interval (0, |a(x)|) is denoted as J and l(s) = x + sgn(a(x))n(x)s
parameterizes the fiber of p over x. The difference v(F (x))− v(x) can be written as

v(F (x))− v(x) =
∫
J

Dv(l(s))Tn ds.

The Cauchy-Schwarz inequality gives |v(F (x))−v(x)| ≤ |a(x)|1/2‖Dv◦l‖J . Therefore,

‖v ◦ F − v‖2Γ ≤ ‖a‖∞,Γ
∫

Γ

∫
J

|Dv(l(s))|2 ds dσ(x).

To the double integral, the coarea formula is applied, cf. [Fed69], where the inner
integral ranges over the fibers of p. Let Ũ = {l(s) | s ∈ J, x ∈ Γ} ⊂ U be the set of
points between Γ and Γh, and let ν(x) =

∏n−1
i=1
(
1− d(x)κi(x)

)
. It follows that∫

Γ

∫
J

|Dv(l(s))|2 ds dσ(x) =
∫
Ũ

ν |Dv|2 .

By Hölder’s inequality, this is bounded by ‖ν‖∞,Ũ
∫
Ũ
|Dv|2. The integral is written

as sum over integrals on all T ∈ T which intersect Ũ . Hölder’s inequality is applied
on each T , ∫

Ũ

|Dv|2 =
∑
T

∫
T∩Ũ
|Dv|2 ≤

∑
T

meas(T ∩ Ũ) ‖Dv‖2∞,T∩Ũ .
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Consider a single summand. Let B be the smallest ball enclosing T . From (2.4), one
concludes meas(T ∩ Ũ) ≤ meas(B ∩ Ũ) ≤ cmH

n−1
T ‖a‖∞,Γ. The inverse inequality

(3.13) yields ‖Dv‖2∞,T∩Ũ ≤ c
2
invH

−n
T ‖Dv‖2T . Collecting the previous estimates yields

‖v ◦ F − v‖2Γ ≤ cmc
2
inv ‖a‖

2
∞,Γ ‖ν‖∞,Ũ

∥∥∥H− 1
2Dv

∥∥∥2

U
,

and by assumption (6.1), ‖a‖∞,Γ ≤ cdh
k+1. It remains to derive a bound on ν.

Let ξ = p(x) for x ∈ Ũ . Equation (2.2) implies ν(x) =
(∏n−1

i=1 (1 + d(x)κi(ξ))
)−1.

Assumption (6.5) and the definition of Ũ yield |1 + d(x)κi(ξ)| ≥ 1 − |a(ξ)|κΓ ≥ 1
2 ,

i ∈ {1, . . . , n− 1}. Therefore, one obtains ‖ν‖∞,Ũ ≤ 2n−1.
To bound term II in (6.8), the telescopic sum

µ−1
∗ (PDF∗)TσΓ

∗ − Q̃TσΓ
h

= µ−1
∗ (PDF∗)T (σΓ

∗ − σΓ
h) + (µ−1

∗ − 1)(PDF∗)TσΓ
h + (PDF∗ −Q)TσΓ

h

+ (Q− Q̃)TσΓ
h

=: A+B + C +D

(6.9)

is estimated term by term. In each of the expressions A, B, C, and D, the difference
in parentheses is of order O(hk+1), whereas the remaining factors are bounded by
constants. That the difference σΓ

∗ −σΓ
h is of order O(hk+1), is a direct consequence of

assumption (6.6). The O(hk+1)-bounds for the other differences are proved in Lemma
6.4, 6.5, 6.6. The bounds for the remaining factors are collected in Lemma 6.3.

Lemma 6.3. The following inequalities hold a. e. on Γh,

|α| ≥ 1
2 ,

∣∣(PDF∗)T ∣∣ ≤ 3, and 1
2n ≤ |µ∗| ≤

(
3
2

)n−1
.

Proof. Take any xh ∈ Γh, where nh is single valued. By definition,

α(xh) = n(xh)Tnh(xh) = 1− 1
2 |n(xh)− nh(xh)|2 .

This is bigger than 1− 1
2c

2
nh

2k by (6.2), which is bigger than 1
2 by (6.5).

Let ξ denote the point on Γ with xh = F (ξ). From (4.4), one gets |(PDF∗)(xh)T | ≤
|I+a(ξ)H(ξ)||Q(xh)|. By (5.2), |Q(xh)| = |α(xh)|−1 which less than 2. For the matrix
I + aH, (6.1) and (6.5) lead to |(I + a(ξ)H(ξ))| ≤ 1 + κΓcdh

k+1 ≤ 3
2 .

Instead of |µ∗(xh)|, one can equivalently consider |µ(ξ)|. The assumptions (6.1)
and (6.5) yield

1
2 ≤ 1− |a(ξ)|κΓ ≤ |1 + a(ξ)κi(ξ)| ≤ 1 + |a(ξ)|κΓ ≤ 3

2

for all i ∈ {1, . . . , n− 1}. Using this and 1
2 ≤ |α(xh)| ≤ 1, proves the final assertion.

Lemma 6.4. Using the constant cµ = 3n−2(4(n− 1)cdκΓ + 3c2nhk−1
0
)
, there holds∣∣µ−1

∗ − 1
∣∣ ≤ cµhk+1 a. e. on Γh.

Proof. One writes |µ−1
∗ −1| as |µ|−1

∗ |1−µ∗|. For the first factor, Lemma 6.3 gives
|µ−1
∗ | ≤ 2n. For the second factor, consider an arbitrary ξ ∈ Γ, and let xh = F (ξ).
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Let g(t) =
∏n−1
i=1 (1 + syi) with coefficients yi = a(ξ)κi(ξ) for i ∈ {1, . . . , n− 1}. Due

to (6.1) and (6.5), there holds ‖y‖∞ ≤ 1
2 . By definition,

µ∗(xh)− 1 = α(xh)g(1)− 1 = g(1)− 1 + g(1)(α(xh)− 1).

From the mean value theorem, one obtains g(1) − 1 = g(1) − g(0) = g′(s) for some
s ∈ (0, 1). Computing the derivative g′(s) =

∑n−1
i=0 yi

∏
j 6=i(1 + syj) gives |g′(s)| ≤

( 3
2 )n−2∑n−1

i=1 |yi|. Using again (6.1) yields

|g(1)− 1| ≤
(

3
2

)n−2
(n− 1)κΓcdh

k+1.

From the definition of α, one obtains α − 1 = 1
2 |nh − n|2, which, by (6.2), gives

|α− 1| ≤ 1
2c

2
nh

2k. As |g(1)| ≤ ( 3
2 )n−1, the proof is finished.

Lemma 6.5. The inequality |PDF∗ −Q| ≤ 2κΓcdh
k+1 holds a. e. on Γh.

Proof. Let xh = F (ξ) ∈ Γh be an arbitrary point, where nh is defined. By (4.4),

(PDF∗ −Q)(xh) = a(ξ)H(ξ)Q(xh).

Equation (5.2) and Lemma 6.3 yield |Q(xh)| ≤ 2. By definition, |H(ξ)| ≤ κΓ. Finally,
by (6.1), |a(ξ)| = |d(xh)| ≤ cdhk+1.

Lemma 6.6. There holds
∣∣Q− Q̃

∣∣ ≤ 6cñhk+1 a. e. on Γh.
Proof. From the definitions of Q and Q̃, one infers Q − Q̃ = nh

( 1
α̃ ñ− 1

αn
)T .

Due to (5.1), one has

∣∣Q− Q̃
∣∣2 =

∣∣∣∣ 1α̃ ñ− 1
α

n
∣∣∣∣2 = 1

α̃2 + 1
α2 − 2 ñTn

αα̃
.

Using ñTn = 1 − 1
2 |ñ − n|2, this is ( 1

α̃ −
1
α )2 + 1

α̃α |ñ − n|2. The first summand is
considered. From α = 1− 1

2 |nh − n|2 one obtains

1
α̃
− 1
α

= 1
2

1
α̃α

(|ñ− nh|+ |n− nh|) (|ñ− nh| − |n− nh|).

With the triangle inequality and letting δ = 1
2 (|nh − n| + |ñ − n|), one obtains

| 1α̃ −
1
α | ≤

δ
α̃α |ñ− n|. Altogether, the bound for Q̃−Q is

(6.10)
∣∣Q− Q̃

∣∣2 ≤ 1
α̃α

(
δ2

α̃α
+ 1
)
|ñ− n|2 =: λ2 |ñ− n|2 .

Considering (6.4), it remains to estimate λ. From (6.2) and (6.4), one obtains δ ≤
1
2 (cnhk + cñh

k+1) ≤ 5
8 . A lower bound for α̃ is obtained from

α̃ = 1− 1
2 |ñ− nh|2 ≥ 1− 1

2(|ñ− n|+ |n− nh|)2 = 1− 2δ2.

This is bigger than 1 − 2 · ( 5
8 )2 = 7

32 . With the lower bound for α from Lemma 6.3,
it follows that |λ| ≤ 4

7
√

78 < 6. The conclusion follows from (6.10).
Remark 6.7. The projector Q is approximated well by PPh, namely, |PPh −

Q| ∈ O(h2k). Consider PPh − Q = P(I − Q)Ph = α−1Pnh(Phn)T . By (5.1),
|PPh − Q| = |α|−1|Pnh||Phn|. Lemma 6.3 yields the upper bound 2 for |α|−1. To
estimate further, Pnh = nh−αn = nh−n−(α−1)n. As α−1 = 1− 1

2 |nh−n|2−1 =:
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1
2δ

2, there holds |Pnh| = δ + 1
2δ

2, which is less than 3
2δ by (6.5). The term |Phn| is

bound similarly. Hence, by (6.2),

|PPh −Q| = |α|−1 |Pnh| |Phn| ≤ 9
2c

2
nh

2k.

The preceding Lemmas prove a bound for term II of (6.8),
Lemma 6.8 (II). There exist positive constants cA, cĨI , and cII such that∣∣f̃(v)− fh(v)

∣∣ ≤ (cA ∥∥σΓ
h − σΓ

∗
∥∥

Γh
+ cĨI

∥∥σΓ∥∥
Γ h

k+1
)
‖PhDv‖Γh

≤ cII ‖PhDv‖Γh
hk+1 for all v ∈ VH .

Proof. By direct computation, one finds Q̃ = Q̃Ph. Using this, (4.3), and the
Cauchy-Schwarz inequality, the term II is bound by∣∣f̃(v)− fh(v)

∣∣ ≤ ‖A+B + C +D‖Γh
‖PhDv‖Γh

.

Hölder’s inequality is applied to the first factor on the right-hand side. Term A yields
‖A‖Γh

≤ ‖µ−1
∗ (PDF∗)T ‖L∞(Γh)‖σΓ

h − σΓ
∗‖Γh

≤ 3 · 2n‖σΓ
h − σΓ

∗‖Γh
by Lemma 6.3.

The contribution from any term T ∈ {B,C,D} is bound as ‖T‖Γh
≤ cT

∥∥σΓ
h

∥∥
Γh
hk+1,

where the constants cT follow from the Lemma 6.3, 6.4, 6.5, and 6.6:

cA = 3 · 2n, cB = 3cµ, cC = 2κΓcd, cD = 6cñ.

A bound for ‖σΓ
h‖Γh

follows from (6.6), the triangle inequality, and (4.6),

‖σΓ
h‖Γh

≤ ‖σΓ
h − σΓ

∗‖Γh
+ ‖µ‖1/2∞,Γ‖σ

Γ‖Γ.

The upper bound for |µ| from Lemma 6.3 concludes the proof.
The estimate in Lemma 6.8 is with respect to the L2-norm of PhDv on Γh.

To estimate the discretization error in (3.15), the H1(Ω)-norm is required. A trace
theorem is needed to convert the former to the latter. Such a theorem is [GR07, Thm.
4.6] which is proved for n = 3 ibidem. A simpler proof for general n is given below.
The simplification comes through the use of a well-known inverse inequality which
removes the necessity to transform the interfacial quantities to the reference simplex.

Theorem 6.9. Let (TH)H>0 be a shape-regular family of triangulations of Ω, and
let the inverse inequality (3.13) hold. Let (6.1), (6.5), and (6.3) be satisfied. There is
a positive constant ctr such that

(6.11) ‖PhDv‖T∩Γh
≤ ctrH

− 1
2

T ‖Dv‖T for all v ∈ VH , T ∈ TH , H > 0.

Proof. Take any T ∈ TH , v ∈ VH . By Hölder’s inequality and |Ph| ≤ 1 one has

‖PhDv‖2T∩Γh
≤ ‖Dv‖2∞,T∩Γh

meas (T ∩ Γh) ≤ ‖Dv‖2∞,T meas (T ∩ Γh).

The inverse estimate (3.13) is applied to ‖Dv‖∞,T producing a factor H−nT among
others. It remains to show that meas (T ∩ Γh) ≤ cHn−1

T for some constant c. The
transformation rule (4.6) gives

meas (T ∩ Γh) =
∫
T∩Γh

1 =
∫
F−1(T∩Γh)

µ.
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From Lemma 6.3, the upper bound ‖µ‖L∞(Γ) = ‖µ∗‖L∞(Γh) ≤ ( 3
2 )n−1 is taken. The

patch T ∩Γh is contained in a ball of radius 1
2HT . Due to (6.1), the distance between

any F (ξ) and ξ is bounded by cdhk+1 on Γ. Hence, the patch F−1(T ∩ Γh) ⊂ Γ is
contained in a ball B of radius less than 1

2HT + 2cdhk+1. By (6.3), this is less than
( 1

2 + 2cdcT hk)HT . From (2.4), one obtains

meas (T ∩ Γh) ≤
(

3
2

)n−1
meas(B ∩ Γ) ≤ cHn−1

T

with c = ( 3
2 )n−1cm( 1

2 + 2cdcT hk0)n−1.
The main result on the discretization error of the variable interfacial tension

functional is
Theorem 6.10. Let (TH)H>0 be a shape-regular family of triangulations of Ω,

and let (3.13) and (6.1) – (6.6) hold. There are positive constants c0, c1, c such that

|f(v)− fh(v)| ≤
(
c0
∥∥σΓ∥∥

div
hk+1 + c1

∥∥σΓ
h − σΓ

∗
∥∥

Γh

)∥∥∥H− 1
2 v
∥∥∥

V

≤ chk+ 1
2 ‖v‖V for all v ∈ VH .

Proof. The result is an immediate consequence of the splitting (6.8) of f − fh.
The constituents are bound in Lemma 6.2 and Lemma 6.8; for term II, Theorem 6.9
is used as well.

Corollary 6.11. Under the premises of Theorem 6.10, there is a positive con-
stant c such that

sup
v∈VH

f(v)− fh(v)
‖v‖VH

≤ chk+ 1
2 .

An important property of the bound in Corollary 6.11 is that it only depends on the
mesh width of Γh.

7. Consequences of Strang’s lemma. A bound for the discretization error
‖u− uH‖V which uses Strang’s lemma contains the terms

inf
vH∈VH

‖u− vH‖V and ‖f − fh‖V′
H
.

Let the first term be of order O(H l+1), l ≥ 1. For example, this can be achieved
with the Hood-Taylor Pl+1-Pl-pair, if u is smooth enough. To balance the order of
magnitude of the terms in Strang’s lemma, the relation

hk+1 ≤ cH l+ 3
2

is required by Theorem 6.10. Some ways to achieve this in a numerical method are
discussed. For simplicity, it is assumed that Γh is the zero level of Imh d where Imh is
the nodal interpolation operator of the continuous finite elements of degree m.

The obvious choice h = H requires k = l+ 1. Hence, Γh is the zero level of I l+1
H d.

To satisfy (6.4), the interpolant I l+2
H d is required to compute the improved normal ñ

as the gradient D(I l+2
H d) which is rescaled to unit length. An advantage of this choice

is that only a single mesh is required; a disadvantage is that Γh is composed of curved
pieces which are the zero levels of polynomials of degree l + 1. This complicates the
numerical integration over Γh.
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r 0 1 2 3 4 5 6
s 1 2 2 2 2 3 3

Table 7.1
The mesh-width h = H/s of a piecewise linear Γh for H = 2−r.

Another choice is k = 1 which requires two meshes satisfying h ≤ cH l/2+3/4. The
resulting piecewise linear discrete interface admits standard numerical integration
schemes. To satisfy (6.4), the interpolant I2

hd is required on the fine mesh to compute
the improved normal as the gradient D(I2

hd) which is rescaled to unit length. Assume
H = 2−r for TH and a mesh width h = H/s, s ∈ N, for Γh, which could be obtained by
subdividing the elements of TH . For c = 1, the requirement h ≤ cH l/2+3/4 becomes
s ≥ 2r(l/2−1/4). For the low order case l = 1, which corresponds to the P2-P1-Hood-
Taylor pair, the dependence of s on the refinement level r of TH is shown in Table 7.1.
For typical mesh-widths in 3-dimensional flow simulations, s increases slowly with r.

8. Numerical experiments. Let Ω be the cube (−1, 1)3. The initial mesh is
the uniform subdivision of Ω into 10 × 10 × 10 cubes, each of which is subdivided
into 6 tetrahedra. This results in a Kuhn-triangulation T with initial mesh width
H0 = 1

5 . To obtain finer meshes TH , adaptive refinement is applied in the vicinity of
Γ, such that it is embedded in a mesh with local mesh width H = H(i) = 2−iH0 for
i ∈ {0, 1, 2, . . . }. The discrete interface Γh is constructed as the zero level of I1

Hd. The
operator I1

H is the standard nodal interpolation operator for the continuous, piecewise
linear finite elements on TH which corresponds to the choices k = 1 and h = H. Let
d̃ = I2

Hd be the nodal interpolant of d with continuous, piecewise quadratic finite
elements. The improved approximation ñ is constructed as Dd̃/|Dd̃|.

Let VH be the finite element space of continuous, vector-valued, piecewise quadratic
functions on the mesh TH . Let B be the standard nodal basis, let G be the Grammian
matrix of the V-inner-product on VH , and let the tuple v denote the representation
of v ∈ VH in B. The dual norm of the VH -norm is required, cf. (3.15),

‖f‖V′
H

= sup {f(v) | v ∈ VH , ‖v‖V = 1} .

By elementary linear algebra,

‖f‖V′
H

=
√
fG−1f,

where fj = f(vj) with the nodal basis function vj ∈ B. Hence, the V′H -norm can be
evaluated by solving a linear system with the Grammian. This is done up to floating
point precision. In the implementation of (4.7), a 5th-order accurate quadrature rule
is used on the triangles which constitute Γh.

For the first experiment, let Ω1 be the ball {x ∈ Ω | |x| ≤ R} with R = 1
2 ,

Γ = ∂Ω1. Constant interfacial tension τ ≡ 1 is prescribed, and fh is compared
to the ‘improved’ discretization of [GR07] which is denoted as gh. The results are
shown in Table 8.1. They show that gh is an O(h3/2)-approximation of fh. This
can be explained by a variation of our analysis and Remark 6.7 because, for constant
interfacial tension and k = 1, the improved approximation from [GR07] is equivalent
to (4.7) after substituting P̃Ph for Q̃.
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i 0 1 2 3 4 5
‖fh − gh‖V′

H
0.03227 0.008206 0.002241 6.241e-4 1.816e-4 5.743e-5

Order 1.98 1.87 1.84 1.78 1.66
Table 8.1

Comparison of fh and gh for constant interfacial tension.

i 0 1 2 3 4 5

‖fh − f̃‖V′
H

0.1150 0.03532 0.009634 0.002510 6.485e-4 1.696e-4
Order 1.70 1.87 1.94 1.95 1.93

‖fh − f7‖V′
H

0.2471 0.1195 0.04720 0.01710 0.006068 0.002048
Order 1.05 1.34 1.46 1.49 1.57

Table 8.2
Variable interfacial tension.

For the second experiment, the variable interfacial tension

τ(x) = 1 + cos(2πx1)

is taken. Despite the simple geometry, it is difficult to evaluate f exactly. Instead,
the auxiliary functional f̃ in (6.7) is considered which has an exact representation as
integral over Γh. By Lemma 6.2 and (6.3), it is an O(h 3

2 )-approximation of f . In
the present example, the integrand of the right-hand side of (6.7) can be evaluated
exactly using the expressions

n(x) = x

|x|
, F−1(xh) = Rn(xh),

µ∗(xh) = α(xh)
(

1 + d(xh)
R

)2
, PDF (xh) =

(
1 + d(xh)

R

)
Q(xh).

This yields a piecewise analytic integrand. Therefore, approximating the integral over
Γh in (6.7) with a fifth order accurate quadrature rule on the triangles of Γh yields an
O(h 3

2 ) approximation to which fh is compared. Additionally, fh is compared to f7
which is the evaluation of fh on level 7.

The results are shown in Table 8.2. One can conclude from the data for fh − f̃
that fh is an O(h2)-approximation of f̃ as predicted by Lemma 6.8. One cannot
conclude the same approximation property with respect to f as f̃ is only an O(h 3

2 )-
approximation of f . On the other hand, the results for fh − f7 in Table 8.2 reflect
the O(h 3

2 )-error-bound in Corollary 6.11.
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