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HIGH-ORDER ACCURATE, FULLY DISCRETE ENTROPY STABLE
SCHEMES FOR SCALAR CONSERVATION LAWS

H. ZAKERZADEH∗ AND U. S. FJORDHOLM†

Abstract. The recently developed TECNO schemes for hyperbolic conservation laws are de-
signed to be high-order accurate and entropy stable, but are, as of yet, only semi-discrete. We
perform an explicit discretization of the temporal derivative to obtain a fully discrete scheme, and
derive a non-strict CFL condition that ensures global entropy stability. The scheme is tested in a
series of numerical experiments.

1. Introduction. We consider scalar conservation laws

ut +∇ · f(u) = 0

u(x, 0) = u0(x),
(1.1)

where the unknown u = u(x, t) : RN × R+ → R is the conserved variable and
f : R → RN is the flux function. The theory of well-posedness of scalar conser-
vation laws is well-developed, and we give here a brief overview of its main features.
Following characteristics of (1.1), it is seen that discontinuities will develop in finite
time, regardless of the regularity of the initial data. Thus, (1.1) is interpreted in the
distributional sense: we say that a function u ∈ L∞(RN × R) is a weak solution of
(1.1) if it satisfies (1.1) in the sense of distributions. By the lack of uniqueness of
weak solutions, an additional selection criterion must be enforced. We say that a
weak solution u is an entropy solution provided

(1.2) η(u)t +∇ · q(u) 6 0

in the sense of distributions for all entropy pairs (η, q), that is, all pairs of functions
(η, q) such that η is (strictly) convex and q′ = η′f ′. The entropy condition implies
stability with respect to initial data, and in particular, uniqueness [7].

In numerical approximations of (1.1), it is natural to require that an analogue of
the entropy condition (1.2) is satisfied. Such schemes are called entropy stable, and
were first studied by Lax [8]. There, he established that the Lax-Friedrich’s method
is entropy stable, and as a corollary that if the method converges point-wise, then the
limit is the unique entropy solution. This result was generalized by Harten, Hyman
and Lax in 1976, who showed that all monotone schemes for scalar conservation laws
are entropy stable [6]. Osher developed in his 1984 paper [10] the theory of E-schemes,
of which monotone methods are a subset. E-schemes are designed precisely to be
entropy stable for all entropy pairs, and since they are total variation diminishing,
they converge to the entropy solution.

E-schemes, which enforce entropy stability for all entropy pairs, are at most first-
order accurate [10]. Hence, to construct higher order accurate entropy stable schemes,
we must restrict focus to a limited number of entropy pairs. This was done by Tad-
mor [14] for fully explicit first-order, and certain second-order, schemes. Fjordholm,
Mishra and Tadmor [2] introduced the semi-discrete, arbitrarily high-order accurate,
entropy stable TECNO schemes.
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The goal of the present paper is to derive CFL conditions which guarantee entropy
stability for fully discrete TECNO schemes of arbitrary order of accuracy. Our result
relies on a subtle balance between spatial diffusion and temporal anti-diffusion, and
upon a conjecture on the ENO reconstruction first proposed in [1, Section 5.5] (see
also Conjecture 2.4 below). The work presented here was initiated in the first author’s
M.Sc. thesis [15].

2. Entropy stability for semi-discrete schemes. In this section we review
entropy stability for semi-discrete schemes. For notational simplicity we shall restrict
ourselves to the one-dimensional conservation law (1.1) with N = 1 for the rest of the
paper. For ∆x > 0, let xj := j∆x and xj+1/2 :=

xj+xj+1

2 , and define the computational
cell Cj := [xj−1/2, xj+1/2). The conservation law is discretized using a consistent and
conservative scheme,

(2.1)
d

dt
uj +

1

∆x

(
Fj+1/2 − Fj−1/2

)
= 0,

where the numerical flux function Fj+1/2 = F (uj−p+1, . . . , uj+p) (for some p ∈ N)
is assumed to satisfy the consistency condition F (u, . . . , u) = f(u) for all u ∈ R.
The unknown uj(t) is an approximation of u(xj , t) for finite difference schemes, and
of 1

∆x

∫
Cj u(x, t)dx for finite volume schemes. For the time being we leave the time

derivative undiscretized.
To ensure that the scheme converges towards the correct weak solution – if it at

all converges – it must satisfy a discrete version of the entropy inequality (1.2). If
(η, q) is an entropy pair, then we say that the scheme (1.1) is entropy stable for (η, q)
provided that there is some numerical entropy flux Qj+1/2 = Q(uj−p+1, . . . , uj+p) such
that the computed solution uj(t) satisfies

(2.2)
d

dt
η(uj) +

1

∆x

(
Qj+1/2 −Qj−1/2

)
6 0,

a discrete version of (1.2). If the computed solution is, say, compactly supported,
then summing (2.2) over all j ∈ Z gives

(2.3)
d

dt

∑
j

η(uj)∆x 6 0.

We say that the semi-discrete scheme (2.1) is globally entropy stable if (2.3) holds.

2.1. Entropy conservative schemes. Tadmor [12, 13] quantified the required
amount of numerical diffusion needed for entropy stability for a single entropy pair
(η, q), through a comparison principle: a scheme is entropy stable precisely when it
contains more diffusion than an entropy conservative scheme. A scheme

(2.4)
d

dt
uj +

1

∆x

(
F̃j+1/2 − F̃j−1/2

)
= 0

is entropy conservative if computed solutions uj(t) satisfy the discrete entropy equality

(2.5)
d

dt
η(ui) +

1

∆x

(
Q̃j+1/2 − Q̃j−1/2

)
= 0

for some numerical entropy flux Q̃j+1/2.
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For a fixed entropy pair (η, q), define the entropy variables as v(u) := η′(u).
Since η is strictly convex, the mapping u 7→ v(u) is invertible, and we can write u as
a function of v. The entropy potential is defined as ψ(v) := vf(u(v)) − q(u(v)) via
Legendre transformation. We will write vj = v(uj) and ψj = ψ(vj), and denote the
jump at a cell interface as [[v]]j+1/2 = vj+1 − vi, etc.

Theorem 2.1 (Tadmor [13]). The scheme (2.4) is entropy conservative if

[[v]]j+1/2F̃j+1/2 = [[ψ]]j+1/2.

Furthermore, the scheme is second-order accurate.
The existence of second-order accurate entropy conservative fluxes was shown in

[13] by means of a phase space integral. Lefloch et al. in [9] showed that by a linear
combination of entropy conservative fluxes over an extended stencil, a 2p-th order of
accuracy is achievable for any p ∈ N. Specifically, they showed that if F̃ 2p

j+1/2 is defined
as

(2.6) F̃ 2p
j+1/2 :=

p∑
r=1

αp,r

r−1∑
s=0

F̃ (vj−s, vj−s+r),

where the constants αp,r satisfy

(2.7)

p∑
r=1

rαp,r = 1,

p∑
r=1

r2s−1αp,r = 0, (s = 2, . . . , p),

then the finite difference scheme with flux F̃ 2p is entropy conservative and 2p-th order
accurate.

2.2. Entropy stable schemes. Due to the lack of numerical diffusion, entropy
conservative schemes will in general not converge to the entropy solution. To ob-
tain consistency with the entropy condition, numerical diffusion must be added, as
quantified in the following theorem.

Theorem 2.2 (Tadmor [13]). The scheme (2.1) is entropy stable if there are an
entropy conservative flux F̃ and a number dmin > 0 such that for each j, dj+1/2 > dmin

and

(2.8) Fj+1/2 = F̃j+1/2 − dj+1/2[[v]]j+1/2.

Numerical schemes with flux of the form (2.8) will in general be only first-order
accurate, due to the jump [[v]]j+1/2 ∼ ∆x in the numerical diffusion. We describe next
a procedure to obtain arbitrarily high-order accurate entropy stable schemes.

Fix an integer k > 1 and choose p := dk2 e so that 2p > k. We perform a k-th order
ENO (Essentially Non-Oscillatory) reconstruction of entropy variables vj , resulting in
a piecewise (k−1)-th order polynomial vj(x) for x ∈ Cj (see [5, 11]). Denoting the cell
interface values v±j := vj(xj±1/2) and the cell interface jump 〈〈v〉〉j+1/2 := v−j+1 − v

+
j ,

we now define the numerical flux

(2.9) F kj+1/2 = F̃ 2p
j+1/2 − dj+1/2〈〈v〉〉j+1/2,

cf. (2.8). The resulting semi-discrete scheme is thus

(2.10)
d

dt
uj +

1

∆x

(
F̃ 2p
j+1/2 − F̃

2p
j−1/2

)
=

1

∆x

(
dj+1/2〈〈v〉〉j+1/2 − dj−1/2〈〈v〉〉j−1/2

)
.
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We call this scheme the (k-th order) TECNO scheme. See [1, 2] for further details.
In [3] Fjordholm et al. showed that the ENO reconstruction procedure satisfies

the so-called sign property :

(2.11) 〈〈v〉〉j+1/2[[v]]j+1/2 > 0 ∀j,

or in other words, the cell interface jump v−j+1−v
+
j has the same sign as the cell mean

value jump vj+1 − vj . Moreover, there is a C > 0, only depending on k, such that

(2.12)
〈〈v〉〉j+1/2

[[v]]j+1/2
6 C.

From the sign property (2.11) and the positivity of dj+1/2, it follows that the TECNO
scheme is entropy stable.

Theorem 2.3 ([1, 2]). The k-th order TECNO scheme is
(i) formally k-th order accurate

(ii) entropy stable; it satisfies
(2.13)

d

dt
η(uj)+

Qkj+1/2 −Q
k
j−1/2

∆x
= −

dj+1/2[[v]]j+1/2〈〈v〉〉j+1/2 + dj−1/2[[v]]j−1/2〈〈v〉〉j−1/2

2∆x
6 0

for a numerical entropy flux function Qkj+1/2 consistent with q.

Summing and integrating (2.13) over j ∈ Z, t ∈ [0, T ], we find that∑
j

η(uj(T ))∆x =
∑
j

η(uj(0))∆x−
∫ T

0

∑
j

dj+1/2[[v]]j+1/2〈〈v〉〉j+1/2 dt.

From the ENO sign property (2.11) it then follows that
∑
j η(uj(T ))∆x 6

∑
j η(uj(0))∆x,

and moreover,

(2.14)

∫ ∞
0

∑
j

dj+1/2[[v]]j+1/2〈〈v〉〉j+1/2 dt 6
∑
j

η(uj(0))∆x.

2.3. The ENO conjecture. The estimate (2.12) gives an upper bound on the
ENO reconstructed cell interface jump v−j+1 − v

+
j in terms of the jumps vj+1 − vj .

The opposite relation is not true in general, as 〈〈v〉〉j+1/2 can vanish where v−j+1−v
+
j is

non-zero. However, we pose the following conjecture (see [1, Chapter 5] for details).
Conjecture 2.4. There is a C > 0, only depending on k, such that the k-th

order ENO reconstruction v±j of a compactly supported grid function vj satisfies

(2.15)
∑
j

|[[v]]j+1/2|k+1 6 C‖v‖k−1
∞

∑
j

[[v]]j+1/2〈〈v〉〉j+1/2.

Assuming that the computed solution is L∞-bounded, the a priori bound (2.14)
combined with the ENO conjecture (2.15) implies that

(2.16)

∫ T

0

∑
j

|[[v]]j+1/2|k+1 dt 6 C.

Using this bound on the spatial variation of the computed solution, it was shown in [1]
that the k-th order (semi-discrete) TECNO scheme converges strongly to the entropy
solution.
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We will not proceed with a proof of convergence for the fully discrete TECNO
scheme. Instead, we derive in the next section a CFL condition which ensures that
a global time-discrete version of the essential entropy stability estimate (2.3) holds.
This estimate will lead to an analogous time-discrete a priori bound (2.16) on the
spatial variation.

3. Fully discrete schemes. We proceed to discretize the time derivative in
the semi-discrete scheme (2.1). This was carried out by Tadmor [14] for first-order
accurate entropy stable schemes, which we write as

(3.1a)
un+1
j − unj

∆t
+
F
n+1/2
j+1/2 − F

n+1/2
j−1/2

∆x
= 0.

Here, F
n+1/2
j+1/2 will typically be in one of the forms

F
n+1/2
j+1/2 = F

(
un+1
j−p+1, . . . , u

n+1
j+p

)
(implicit scheme)(3.1b)

F
n+1/2
j+1/2 = F

(
unj−p+1, . . . , u

n
j+p

)
(explicit scheme)(3.1c)

for some 2p-point entropy stable numerical flux F .
Analogous to the semi-discrete formulation, we will say that the scheme (3.1a) is

locally entropy stable if the computed solution satisfies

(3.2)
η(un+1

j )− η(unj )

∆t
+
Q
n+1/2
j+1/2 −Q

n+1/2
j−1/2

∆x
6 0

for some numerical entropy flux Q. We say that (3.1a) is globally entropy stable if

(3.3)
∑
j

η(un+1
j )∆x 6

∑
j

η(unj )∆x.

These are discrete analogues of (2.2) and (2.3).
It was found in [14] that an implicit first-order time discretization (3.1a), (3.1b)

gives an unconditionally locally entropy stable scheme: (3.2) holds for any choice of
∆t > 0.

On the other hand, the explicit first-order discretization (3.1a), (3.1c) is locally
entropy stable under a CFL condition ∆t

∆x 6 C = C(un) [14]. We wish to apply this
stability analysis to the high-order accurate TECNO schemes (2.10).

3.1. Implicit discretization. The k-th order TECNO scheme with an implicit
Euler discretization is the scheme (3.1a), (3.1b) with F = F k, the TECNO flux (2.9).
The proof of entropy stability of this scheme is a straightforward extension of [14,
Example 7.1], but we include it here for the sake of completeness.

Defining H(v) := du
dv (v) = (η′′(u(v)))

−1
> 0 and vj(s) := vnj + s(vn+1

j − vnj ), we
have

η(un+1
j )− η(unj ) =

∫ 1

0

d

ds
η(u(vj(s))) ds =

∫ 1

0

vj(s)H(vj(s))(v
n+1
j − vnj ) ds

= vn+1
j (un+1

j − unj )−
(
vn+1
j (un+1

j − unj )−
∫ 1

0

vj(s)H(vj(s))(v
n+1
j − vnj ) ds

)
= vn+1

j (un+1
j − unj )−

∫ 1

0

(1− s)H(vj(s))(v
n+1
j − vnj )2 ds.
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By construction (see [2, 13]), we have

vn+1
j

F
n+1/2
j+1/2 − F

n+1/2
j−1/2

∆x
=
Q
n+1/2
j+1/2 −Q

n+1/2
j−1/2

∆x
+ Fn+1

j ,

where

(3.4) Fn+1
j := −

dn+1
j+1/2[[v

n+1]]j+1/2〈〈vn+1〉〉j+1/2 + dn+1
j−1/2[[v

n+1]]j−1/2〈〈vn+1〉〉j−1/2

2∆x
6 0

is the entropy production from the spatial discretization (cf. (2.13)) and Q
n+1/2
j+1/2 =

Qj+1/2(u
n+1) is some numerical entropy flux. Therefore,

η(un+1
j )− η(unj )

∆t
+
Q
n+1/2
j+1/2 −Q

n+1/2
j−1/2

∆x
= EBE,n

j + Fn+1
j ,

where

EBE,n
j := − 1

∆t

∫ 1

0

(1− s)H(vj(s))(v
n+1
j − vnj )2 ds 6 0.

is the entropy production from the time discretization.
Proposition 3.1. The k-th order TECNO scheme with an implicit Euler dis-

cretization is unconditionally locally entropy stable.

3.2. Explicit discretization. Unlike the implicit time discretization, an ex-
plicit time discretization may produce entropy locally. The analysis for first-order
(in space) schemes relies on the fact that the spatial discretization always produces
negative entropy of the order −[[u]]2j+1/2, cf. (2.13). Thus, the time discretization may

produce entropy of order [[u]]2j+1/2, and still give entropy stability. For the high-order

accurate TECNO scheme, however, the local numerical diffusion d〈〈v〉〉 (cf. (2.10))
might vanish, resulting in zero entropy diffusion from the spatial discretization. There-
fore, we cannot hope for local entropy stability, unlike (3.2). Instead, we derive a CFL
condition which ensures global entropy stability (3.3).

We consider the explicit discretization (3.1a), (3.1c) with F = F k, the k-th order
TECNO flux (2.9). Similar to the implicit discretization, we find that

η(un+1
j )− η(unj ) =

∫ 1

0

d

ds
η(u(vj(s))) ds =

∫ 1

0

vj(s)H(vj(s))(v
n+1
j − vnj ) ds

= vnj (un+1
j − unj ) +

(∫ 1

0

vj(s)H(vj(s))(v
n+1
j − vnj ) ds− vnj (un+1

j − unj )

)
= vnj (un+1

j − unj ) +

∫ 1

0

sH(vj(s))(v
n+1
j − vnj )2 ds.

Thus, defining

EFE,n
j :=

1

∆t

∫ 1

0

sH(vj(s))(v
n+1
j − vnj )2 ds > 0,

we get

(3.5)
η(un+1

j )− η(unj )

∆t
+
Q
n+1/2
j+1/2 −Q

n+1/2
j−1/2

∆x
= EFE,n

j + Fnj ,

where Fnj is given by (3.4).
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3.3. Explicit discretization – the linear case. For simplicity we shall first
consider the linear advection equation

(3.6) ut + aux = 0

where a is any real constant. Moreover, we let the entropy η be given by η(u) = u2/2.
The k-th order TECNO scheme is then given by

(3.7) un+1
j = unj −

∆t

∆x

(
a

2

p∑
i=1

αp,i(u
n
j+i − unj−i)− d〈〈un〉〉j+1/2 + d〈〈un〉〉j−1/2

)
,

where we have put dj+1/2 ≡ d > 0 for some d > 0, to be determined.
We will denote

‖[[un]]‖k+1 :=

(∑
j

∣∣unj+1 − unj
∣∣k+1

)1/(k+1)

.

and

(3.8) γ = γ(un) :=
‖[[un]]‖k+1

‖un‖∞
.

Theorem 3.2. Assume that Conjecture 2.4 is true, and that the computed
solutions satisfy maxj,n |unj | 6 M for some M > 0. Then there is a choice of
d = d(un) > 0 and a C = C(un, k, p) > 0 such that if

(3.9) |a|∆t 6 Cγ
k−1
2 ∆x1+ k−1

2(k+1)

then the explicit k-th order TECNO scheme (3.7) is globally entropy stable, i.e. sat-
isfies (3.3). In particular, a sufficient CFL condition is

(3.10) |a|∆t 6 C̃∆x1+ k2+k−2
2(k+1) .

Remark 3.3. The proposed exponent in (3.9), denoted by σ, is shown for different
choices of k in Table 3.1.

Order of scheme k 1 2 3 4 5
Exponent σ 1.000 1.1667 1.250 1.300 1.333

Table 3.1: The exponent appearing in the CFL condition (3.9), ensuring global entropy
stability of fully-discrete TECNO scheme for linear equations.

Proof. We will estimate the sum
∑
j E

FE,n
j +Fnj and show that it is non-positive

under the CFL condition. By our choice of η, we have v(u) = u and H(v) = 1, whence

EFE,n
j = 1

2∆t (u
n+1
j − unj )2. We rewrite (3.7) as

un+1
j − unj =− λ

(
a

2

p∑
i=1

αp,i(u
n
j+i − unj )− d〈〈un〉〉j+1/2︸ ︷︷ ︸

=:Aj

)

+ λ

(
a

2

p∑
i=1

αp,i(u
n
j−i − unj )− d〈〈un〉〉j−1/2︸ ︷︷ ︸

=:Bj

)
,
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where λ := ∆t
∆x . Now, (un+1

j − unj )2 6 2λ2(A2
j +B2

j ). We reorder the above sums and
use Jensen’s inequality to get

A2
j =

(
a

2

p∑
i=1

αp,i(u
n
j+i − unj )− d〈〈un〉〉j+1/2

)2

=

(
a

2

p−1∑
m=0

βm
(
unj+m+1 − unj+m

)
− d〈〈un〉〉j+1/2

)2

6

θ( a

2θ

p−1∑
m=0

βm
(
unj+m+1 − unj+m

))2

+ (1− θ)
(

d

1− θ
〈〈un〉〉j+1/2

)2


6
a2β

4θ

p−1∑
m=0

|βm|
(
unj+m+1 − unj+m

)2
+

d2

(1− θ)
〈〈un〉〉2j+1/2.

where βm :=
∑p
l=m+1 αp,l, β :=

∑p−1
m=0 |βm| and θ ∈ (0, 1) is some number to be

determined. An analogous estimate holds for B2
j . Summing up, we find

∑
j

EFE,n
j ∆x =

∑
j

(un+1
j − unj )2

2∆t
∆x 6 λ

∑
j

A2
j +B2

j

6
∑
j

λa2β

4θ

(
p−1∑
m=0

|βm|
(
unj+m+1 − unj+m

)2
+

p−1∑
m=0

|βm|
(
unj−m − unj−m−1

)2)

+
λd2

(1− θ)
∑
j

(
〈〈un〉〉2j+1/2 + 〈〈un〉〉2j−1/2

)
=
λa2β2

2θ

∑
j

(
unj+1 − unj

)2
+

2λd2

(1− θ)
∑
j

〈〈un〉〉2j+1/2.

Next,∑
j

Fnj ∆x = −
∑
j

d[[un]]j+1/2〈〈un〉〉j+1/2 = −d
∑
j

(
unj+1 − unj

)
〈〈un〉〉j+1/2.

We now apply the estimates

(3.11)
∑
j

(
unj+1 − unj

)2
6 C1∆x−

k−1
k+1 ‖[[un]]‖2k+1

(Hölder’s inequality),

(3.12)
∑
j

〈〈un〉〉2j+1/2 6 C2

∑
j

(
unj+1 − unj

)
〈〈un〉〉j+1/2

(the upper bound on ENO jumps, (2.12)) and

(3.13)
∑
j

(
unj+1 − unj

)
〈〈un〉〉j+1/2 >

C3

‖u‖k−1
∞
‖[[un]]‖k+1

k+1
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(the ENO conjecture (2.15)). Assuming for the moment that

(3.14) d− C2
2λd2

(1− θ)
> 0,

we get∑
j

(
EFE,n
j + Fnj

)
∆x

6
λa2β2

2θ

∑
j

(
unj+1 − unj

)2
+

2λd2

(1− θ)
∑
j

〈〈un〉〉2j+1/2 − d
∑
j

(
unj+1 − unj

)
〈〈un〉〉j+1/2

6 C1∆x−
k−1
k+1

λa2β2

2θ
‖[[un]]‖2k+1 −

(
d− C2

2λd2

(1− θ)

)∑
j

(
unj+1 − unj

)
〈〈un〉〉j+1/2

6 C1∆x−
k−1
k+1

λa2β2

2θ
‖[[un]]‖2k+1 −

(
d− C2

2λd2

(1− θ)

)
C3

‖u‖k−1
∞
‖[[un]]‖k+1

k+1

= ‖[[un]]‖2k+1

(
∆t

(
C1

a2β2

2θ∆x
2k

k+1

+ C2C3
2d2

(1− θ)∆x
γk−1

)
− dC3γ

k−1

)
,

where γ is defined by (3.8). Choosing θ such that the coefficient of ∆t is minimized,
we get

∑
j

(
EFE,n
j + Fnj

)
∆x 6 ‖[[un]]‖2k+1

2∆t

(
|a|β
√
C1

2∆x
k

k+1

+
dγ

k−1
2

√
C2C3

∆x
1
2

)2

− dC3γ
k−1

 .

Thus, we require

∆t 6
C3dγ

k−1

2

(
|a|β
√
C1

2∆x
k

k+1

+
dγ

k−1
2

√
C2C3

∆x
1
2

)2 .

The right-hand side is maximized when

d =
|a|β

2

√
C1

C2C3

(
∆x

−1
k+1

γ

) k−1
2

,

giving the optimal CFL condition

(3.15) ∆t 6

√
C3

C1C2

γ
k−1
2 ∆x

3k+1
2(k+1)

4|a|β
.

Note that γ & ∆x, regardless of the value of un. Therefore, a sufficient CFL
condition is

∆t .
∆x

k(k+3)
2(k+1)

|a|
.

9



Finally, we verify that the condition (3.14) is satisfied when θ and d are chosen
as above. Indeed, with these choices of θ and d, (3.14) can be rewritten as

∆t 6

√
C3

C1C2

γ
k−1
2 ∆x

3k+1
2(k+1)

2|a|β
,

which is twice the right-hand side of (3.15).
Remark 3.4. The CFL condition derived in [15] requires σ = k which is much

more restrictive than Theorem 3.2.

3.4. Extension to higher order time integration. The generalization of the
preceding analysis to higher order time integration is straightforward, provided so-
called Strong Stability Preserving (SSP) Runge-Kutta time integration is applied (see
[4] and the references therein). If we write the explicit Euler time-stepping (3.7) in
the abstract formulation

(3.16) un+1 = un + ∆tL(un),

then a k-th order accurate SSP Runge-Kutta method is of the form
(3.17)

u(0) := un, u(i) :=

i−1∑
l=0

δilu
(l) + βil∆tL(u(l)) (i = 1, . . . , k), un+1 := u(k),

where δil > 0, βil > 0, and
∑i−1
l=0 δil = 1 for consistency. Each intermediate step can

be written as a convex combination of explicit Euler steps with step sizes βil

δil
∆t:

u(i) =

i−1∑
l=0

δil

(
u(l) +

(βil
δil

∆t
)
L(u(l))

)
.

Thus, if the forward Euler method (3.16) is globally entropy stable with respect to an
entropy pair (η, q), then convexity of the entropy function gives

∑
j

η
(
u

(i)
j

)
6
∑
j

i−1∑
l=0

δilη

(
u

(l)
j +

(
βil
δil

∆t

)
L(u(l))j

)

6
∑
j

i−1∑
l=0

δil

∑
j

η
(
u

(l)
j

) =

i−1∑
l=0

δil
∑
j

η
(
u

(l)
j

)
for every i = 1, . . . , k. Hence, iterating over i = 1, . . . , k, we find that∑

j

η
(
u

(k)
j

)
6 . . . 6

∑
j

η
(
u

(0)
j

)
,

and so the method is globally entropy stable.
Theorem 3.5. Under the same assumptions as in Theorem 3.2, there is a choice

of d = d(un) > 0 and a C = C(un, k, p) > 0 such that if

|a|∆t 6 C

(
‖[[un]]‖k+1

‖u‖∞

) k−1
2

∆x1+ k−1
2(k+1) ,

then the explicit k-th order TECNO scheme using SSP time-stepping (3.17), (3.7) is
globally entropy stable, i.e. satisfies (3.3).
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4. Nonlinear equations. Next, we generalize the approach from the previous
section to general, nonlinear scalar conservation laws (1.1). Thus, consider the ex-
plicitly discretized TECNO scheme (3.1a), (3.1c) with the numerical flux F k given by
(2.9). The key observation is that the 2p-th order entropy conservative flux (2.6) is
Lipschitz continuous whenever the underlying entropy conservative flux F̃ is Lipschitz,
in the sense that
(4.1)∣∣∣F̃ 2p(uj−p, . . . , uj+p−1)− F̃ 2p(uj−p+1, . . . , uj+p)

∣∣∣ 6 CLip

p−1∑
m=−p

|uj+m+1 − uj+m|.

As in the linear case, we will let the entropy be given by η(u) = u2/2, which gives
entropy variable v(u) := η′(u) = u.

Theorem 4.1. Assume that the TECNO diffusion constant dj+1/2 in (2.9) sat-
isfies dmax > dj+1/2 > dmin > 0 for all j. Then, under the same assumptions as in
Theorem 3.2, there are constants C1, C2, C3 > 0, depending on the flux function f ,
order of the scheme k and the diffusion of the numerical flux such that if

(4.2) ∆t 6
C1γk−1(

C2∆x−
k

k+1 + C3γ
k−1
2 ∆x−

1
2

)2

with γ defined in (3.8), then the explicit k-th order TECNO scheme is globally entropy
stable, i.e. satisfies (3.3).

In particular, there is a C4 > 0 and a choice of dmax > 0 such that the CFL
condition

(4.3) ∆t 6 C4
dmin

dmax
γ

k−1
2 ∆x1+ k−1

2(k+1)

for any dmin 6 dmax , implies global entropy stability.
Proof. From the Lipschitz condition (4.1) we find that∣∣un+1

j − unj
∣∣ = λ

∣∣∣F̃ 2p
j+1/2 − F̃

2p
j−1/2 − dj+1/2〈〈un〉〉j+1/2 + dj−1/2〈〈un〉〉j−1/2

∣∣∣
6 λ

(
CLip

p−1∑
m=−p

|uj+m+1 − uj+m|+ dj+1/2|〈〈un〉〉j+1/2|+ dj−1/2|〈〈un〉〉j−1/2|

)
.

Through an argument very similar to the linear case, the elementary inequality (a1 +
· · ·+ am)2 6 m(a2

1 + · · ·+ a2
m), and the estimates (3.11), (3.12) and (3.13) imply that∑

j

(
EFE,n
j + Fnj

)
∆x 6

λ

2θ
(2p− 1)2C1C

2
Lip‖[[un]]‖2k+1∆x−

k−1
k+1

−
(
dmin −

2λC2d
2
max

(1− θ)

)∑
j

[[un]]j+1/2〈〈un〉〉j+1/2,

where dmin and dmax are the minimum-positive and maximum characteristic speeds of
the flux derivative in Lax-Friedrichs or Local Lax-Friedrichs sense (see [1] for different
choices of d). Now if we claim that—analogously to (3.14)— we have

(4.4) dmin −
2λC2d

2
max

(1− θ)
> 0.
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It follows that∑
j

(EFE,n
j + Fnj )∆x

6 ‖[[un]]‖2k+1

(
∆t

(
C1

(2p− 1)2C2
LipC1

2θ∆x
2k

k+1

+ C2C3
2d2
max

(1− θ)∆x
γk−1

)
− dminC3γ

k−1

)
.

Again choosing θ such that the coefficient of ∆t is minimized, we get the CFL condition

(4.5) ∆t 6
dminC3γ

k−1

2

(
(2p− 1)CLip

√
C1

2∆x
k

k+1

+

√
C2C3dmax

∆x
1/2

γ
k−1
2

)2 ,

which is (4.2).
If we choose dmin such that dmin = εdmax = εd for some ε ∈ [0, 1] and d > 0, then

(4.5) is minimized when

d =

√
C1

C2C3

(2p− 1)CLip

2ε

(
∆x

−1
k+1

γ

) k−1
2

,

whence (4.5) gets

(4.6) ∆t 6

√
C3

C1C2

ε

4(2p− 1)CLip
γ

k−1
2 ∆x1+ k−1

2(k+1) .

With our choice of θ, the condition (4.4) becomes

(4.7) ∆t 6
dmin∆x

2C2d2
max

(
1 +

√
C1

C2C3

(2p− 1)CLip

dmax

∆x−
k−1

2(k+1)

γ
k−1
2

) .
Finally, we verify the assumption (4.4). For general 0 < dmin 6 dmax, the estimate

γ & ∆x shows that the asymptotic behavior of (4.5) is ∆t . ∆x
k2+2k−1

k+1 , while for

(4.7) it is ∆t . ∆x
5k−1

2(k+1) , which is less restrictive than the former. Hence, the CFL
condition (4.2) implies that our assumption (4.4) indeed holds.

Remark 4.2. The exponent appearing in the worst-case scenario ∆t . ∆x
k2+2k−1

k+1

of (4.2), as derived in the above proof, is presented in Table 4.1. On the other hand,
the exponent in the optimal CFL condition (4.3) is identical to that of the linear case,
cf. Table 3.1.

Order of scheme k 1 2 3 4 5
Exponent σ 1.00 2.33 3.50 4.60 5.66

Table 4.1: The exponent σ proposed by Theorem 4.1, ∆t 6 C∆xσ, for global entropy
stability of the fully-discrete TECNO scheme, nonlinear equations.

Remark 4.3. [15] includes an asymptotic analysis for nonlinear case that pro-
poses σ = k, the same as in the linear case (cf. Remark 3.4), before the discontinuity
appears.
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FE SSP RK2
Gridpoints \ k 2 3 4 2 3 4

20 0.7468 0.9441 0.9780 0.7051 0.9326 0.9746
40 0.9102 0.9856 0.9970 0.8909 0.9825 0.9964
80 0.9770 0.9964 0.9995 0.9692 0.9956 0.9995

Table 5.1: The growth factor for different orders and mesh sizes at T = 2. Com-
puted with the TECNO scheme using forward Euler time integration and second-order
Runge-Kutta scheme applied to linear advection.

5. Numerical experiments. In the present section we present numerical ex-
periments demonstrating global entropy stability for both linear and nonlinear con-
servation laws. The experiments are done on a periodic domain Ω := [−1, 1) for
TECNO schemes of order k = 2, k = 3 and k = 4, using the CFL conditions proposed
by Theorem 3.2 and Theorem 4.1. We consider the linear advection equation (3.6)
and Burgers’ equation

(5.1) ut +

(
u2

2

)
x

= 0,

and in each case we use the initial data as

u0(x) = sin(πx) (linear advection)

u0(x) =
1

2

(
sin(πx) + 1

)
(Burger’s equation),

when the latter develops a shock at t = 2
π ≈ 0.636. For the square entropy function

η(u) = u2/2, global entropy stability is equivalent to stability of the solution in the
2-norm. We therefore display the growth factor

GT :=
‖u(T )‖2
‖u(0)‖2

,

for the numerical solution over time.

5.1. Linear Advection. Consider the linear advection equation (3.6) with a =
1. As the equation is linear, entropy should be constant in time, i.e. ‖u(T )‖2 = ‖u(0)‖2
for all T > 0. We use Theorem 3.2 to calculate the time step for global entropy

stability. We set C1 = |Ω|
k−1
k+1 = 2

k−1
k+1 and C3 = 1

2k−1 as proposed in [1]. C2 is the
ENO upper bound constant found in [3].

Table 5.1 shows the growth factor at time T = 2 with various combinations of
mesh size and order of accuracy. As well as forward Euler time integration, we show
results for the second-order SSP Runge-Kutta (Heun’s method). Higher (than second)
order accurate SSP RK methods and forth-order non-SSP RK give very similar results.
The growth factor GT over time is shown in Figure 5.2. It can be seen that the more
spatial accuracy the scheme has, the less entropy is dissipated. On the other hand,
using SSP Runge-Kutta schemes dissipates entropy more than forward Euler. As
Figure 5.2 shows, this dissipation decreases as the mesh is refined.
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Fig. 5.1: The growth factor over time for different orders and mesh sizes, computed
with the TECNO scheme using forward Euler time integration, linear advection.
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Fig. 5.2: The growth factor over time, computed with the TECNO scheme using
forward Euler time integration and SSP RK2, linear advection.

5.2. Burgers’ equation. As the prototypical example of a nonlinear scalar con-
servation laws, we consider Burgers’ equation (5.1). As the CFL condition depends on
the Lipschitz constant of the entropy conservative flux F̃ , we estimate this as follows.

Proposition 5.1. Consider Burgers’ equation (5.1) and suppose that the data uj
is L∞-bounded, maxj |uj | 6 M . Then the high-order entropy conservative flux (2.6)
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based on the second-order entropy conservative flux

F̃j+1/2 :=
u2
j + uj+1uj + u2

j+1

6

is Lipschitz-continuous with constant

CLip =
M

2

p∑
r=1

|αp,r|r.

Proof. It is straightforward to show that

|F̃ (uj , uj+1)− F̃ (uj−1, uj)| 6
M

2
(|uj − uj−1|+ |uj+1 − uj |).

Thus,

|F̃j+1/2 − F̃j−1/2| 6
p∑
r=1

|αp,r|
∣∣∣F̃ (uj , uj+r)− F̃ (uj−r, uj)

∣∣∣
6
M

2

p∑
r=1

|αp,r|r
(
|uj−p+1 − uj−p|+ · · ·+ |uj+p − uj+p−1|

)
.

The CFL condition (4.2), valid for general diffusion coefficients dj+1/2, is too
restrictive for practical computations. Instead we select dmin = dmax according to the
optimal choice suggested in Theorem 4.1. Figure 5.3 shows how the growth factor GT
decreases with time. It can be seen that higher order time integration dissipated more
entropy, similar to the results for the linear equation, although the difference is small.
Also Figure 5.3 suggests that higher order schemes have more entropy dissipation.
Note that in this case, due to shock formation, the entropy should be dissipated in
the exact (entropy) solution.

We also compare the time step for the linear and non-linear cases as shown in
Figure 5.4. After the formation of a shock, there is a slight increase in ∆t; cf. Remark
4.3.

6. Conclusion and future work. We have derived CFL conditions that ensure
the global entropy stability of an explicit temporal discretization of the high-order
accurate TECNO schemes. Using SSP Runge-Kutta methods the schemes are high-
order accurate in time as well as space. By a judicious choice of the diffusion constant
dj+1/2 appearing in the TECNO scheme, we obtain a CFL condition of the form
∆t 6 C∆xσ for a σ ∈ [1, 2), cf. (3.9) in the linear case and (4.2) in the nonlinear
case. This should be contrasted with the CFL condition ∆t 6 C∆x for monotone
first-order schemes, and ∆t 6 C∆x2 for convection-diffusion equations.

A natural next step would be to carry out, for the fully discrete schemes, the
convergence analysis performed in [1] for semi-discrete schemes. This entails deriving
an a priori bound on the spatial variation of the solution, a discrete version of the
bound (2.16).

Further suggestions for future work include sharpen the CFL condition, for in-
stance by doing a more careful, local choice of the diffusion coefficient dj+1/2, and to
generalize our analysis to arbitrary entropy functions and to systems of conservation
laws. Finally, a proof (or counterexample) of the ENO conjecture would be of great
interest.
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Fig. 5.3: Comparison of growth factor for different time integration methods, mesh
sizes and orders for fully discrete TECNO scheme, applied to Burgers’ equation.
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Fig. 5.4: Comparison of required ∆t for global entropy stability of fully discrete
TECNO scheme with forward Euler time integration.
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