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CERTIFIED REDUCED BASIS METHODS FOR PARAMETRIZED
DISTRIBUTED OPTIMAL CONTROL PROBLEMS∗

MARK KÄRCHER† , MARTIN A. GREPL‡ , AND KAREN VEROY§

Abstract. In this paper, we consider the efficient and reliable solution of distributed optimal
control problems governed by parametrized elliptic partial differential equations. The reduced basis
method is used as a low-dimensional surrogate model to solve the optimal control problem. To this
end, we introduce reduced basis spaces not only for the state and adjoint variable but also for the
distributed control variable. We also propose two different error estimation procedures that provide
rigorous bounds for the error in the optimal control and the associated cost functional. The reduced
basis optimal control problem and associated a posteriori error bounds can be efficiently evaluated in
an offline-online computational procedure, thus making our approach relevant in the many-query or
real-time context. We compare our bounds with a previously proposed bound based on the Banach-
Nečas-Babuška (BNB) theory and present numerical results for two model problems: a Graetz flow
problem and a heat transfer problem.
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1. Introduction. Many problems in science and engineering can be modeled in
terms of optimal control problems governed by parametrized partial differential equa-
tions (PDEs), see e.g. [19, 8, 18, 26] for theoretical results and applications. While the
PDE describes the underlying system or component behavior, the parameters often
serve to identify a particular configuration of the component — such as boundary
and initial conditions, material properties, and geometry. In such cases — in addition
to solving the optimal control problem itself — one is often interested in exploring
many different parameter configurations and thus in speeding up the solution of the
optimal control problem. However, using classical discretization techniques such as
finite elements or finite volumes even a single solution is often computationally expen-
sive and time-consuming, a parameter-space exploration thus prohibitive. One way
to decrease the computational burden is the surrogate model approach, where the
original high-dimensional model is replaced by a reduced order approximation. These
ideas have received a lot of attention in the past and various model order reduction
techniques have been used in this context: proper orthogonal decomposition (POD)
e.g. in [16, 1, 17, 27], reduction based on inertial manifolds in [10], and reduced basis
methods in [11, 4, 14, 15, 22]. However, the solution of the reduced order optimal
control problem is generally suboptimal and reliable error estimation is thus crucial.

In this paper we employ the reduced basis method [23, 24] as a surrogate model for
the solution of distributed optimal control problems governed by parametrized elliptic
partial differential equations. We extend our previous work in [6, 14, 15] in several
directions. First, we consider optimal control problems involving distributed controls.
Distributed controls pose an additional challenge relative to scalar controls since the
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control space is also high-dimensional. To this end, we follow the approach originally
proposed in [12] and introduce reduced basis spaces not only for the state and adjoint
variable but also a separate reduced basis (control) space for the distributed control.
We thus obtain a considerable dimension reduction of the first-order optimality sys-
tem. Second, we propose two new a posteriori error bounds for the optimal control
and associated cost functional. The first proposed bound is an extension of our work
in [6, 14] to distributed controls, the second bound is derived directly from the error
residual equations of the optimality system. Third, we compare our proposed bounds
to the bound recently proposed in [22]. Finally, we show that the reduced order opti-
mal control problem and error bounds can be efficiently evaluated in an offline-online
computational procedure.

A posteriori error bounds for reduced order solutions of optimal control problems
have been proposed for proper orthogonal decomposition (POD) and reduced basis
surrogate models in [27] and [4, 22], respectively. In [27], the authors estimate the
distance between the computed suboptimal control and the unknown optimal control
using a perturbation argument proposed in [7, 20]. The approach allows one to use the
POD approximation to efficiently solve the optimal control problem. The evaluation
of the a posteriori error bounds, however, requires a “forward-backward” solution
of the underlying high-dimensional state and adjoint equations and, as pointed out
in [27], is thus computationally expensive. Furthermore, in the case of distributed
controls there is no reduction of the possibly high-dimensional control space.

In [22], a reduced basis approach to distributed optimal control problems has been
considered. The resulting a posteriori error bound follows directly from previous work
on reduced basis methods for noncoercive problems [28]. However, the development
in [28] only provides a combined bound for the error in the state, adjoint, and control
variables. Furthermore, the approach requires the computation of (a lower bound
to) the parameter-dependent Babuška inf-sup constant of the first-order optimality
system, which is not only very expensive in terms of computational cost but also very
involved in terms of implementation effort. We compare here the computational effort
and performance, i.e., sharpness, of our proposed bounds with the bound from [22]
when we discuss numerical results. We observe that our proposed bounds — in con-
trast to the bound from [22] — involve only constants (or their lower/upper bounds)
that are straightforward and inexpensive to compute. Furthermore, numerical results
show that the new bound derived from the error residual equations of the optimality
system tends to be much sharper, especially in the case of optimal control problems
involving small regularization parameters.

This paper is organized as follows. In Section 2 we introduce the optimal control
problem: we start with a general (infinite-dimensional) problem statement, state the
first order optimality conditions, and derive a finite element (truth) approximation.
The reduced basis approximation of the optimal control problem is illustrated in
Section 3, where we also explain the associated offline-online computational procedure
and briefly summarize the greedy procedure to generate the reduced basis spaces. In
Section 4, we discuss the a posteriori error estimation procedures. We briefly review
the bound from [22] and then propose two new a posteriori error bounds for the
optimal control and the associated cost functional. Finally, we present numerical
results for a Graetz flow problem and a heat transfer problem in Section 5 and offer
concluding remarks in Section 6.

2. General Problem Statement and Truth Discretization. In this sec-
tion we introduce the parametrized linear-quadratic optimal control problem with
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elliptic PDE constraint and distributed control. We recall the first-order necessary
(and in our case sufficient) optimality conditions and introduce a finite element truth
discretization for the exact, i.e., continuous problem.

2.1. Preliminaries. Let Ye with H1
0 (Ω) ⊂ Ye ⊂ H1(Ω) be a Hilbert space

over the bounded Lipschitz domain Ω ⊂ Rd, d = 1, 2, 3, with boundary Γ.1 The in-
ner product and induced norm associated with Ye are given by (·, ·)Ye

and ‖·‖Ye
=√

(·, ·)Ye
, respectively. We assume that the norm ‖·‖Ye

is equivalent to the H1(Ω)-
norm and denote the dual space of Ye by Y ′e . We also introduce the control Hilbert
space Ue, together with its reference inner product (·, ·)Ue , induced reference norm
‖·‖Ue

=
√

(·, ·)Ue
, and associated dual space U ′e. Furthermore, let D ⊂ RP be a pre-

scribed P -dimensional compact parameter set in which our P -tuple (input) parameter
µ = (µ1, . . . , µP ) resides.

We next introduce the parameter-dependent bilinear form a(·, ·;µ) : Ye×Ye → R,
and shall assume that a(·, ·;µ) is continuous,

0 < γe
a(µ) = sup

w∈Ye\{0}
sup

v∈Ye\{0}

a(w, v;µ)

‖w‖Ye
‖v‖Ye

≤ γa0 <∞, ∀µ ∈ D,

and coercive,

αe
a(µ) = inf

v∈Ye\{0}

a(v, v;µ)

‖v‖2Ye

≥ αa0 > 0, ∀µ ∈ D.

Furthermore we introduce the parameter-dependent continuous linear functional
f(·;µ) : Ye → R and the parameter-dependent bilinear form d(·, ·;µ) : L2(Ω) ×
L2(Ω) → R, where d(·, ·;µ) is continuous, symmetric, and positive semi-definite and
hence induces an associated semi-norm |·|D(µ) =

√
d(·, ·;µ). Furthermore c(·, ·;µ) :

Ue × Ue → R is a parameter-dependent energy inner product on Ue. The associ-
ated induced energy norm is denoted by ‖·‖Ue(µ) =

√
c(·, ·;µ) and we assume that it

is equivalent to the reference norm ‖·‖Ue on Ue. We also introduce the parameter-
dependent bilinear form b(·, ·;µ) : Ue×Ye → R and assume that b(·, ·;µ) is continuous,

0 < γe
b(µ) = sup

w∈Ue\{0}
sup

v∈Ye\{0}

b(w, v;µ)

‖w‖Ue(µ)‖v‖Ye

≤ γb0 <∞, ∀µ ∈ D.

Finally, in anticipation of the optimal control problem defined in Section 2.2, we
introduce the parametrized desired state yd,e(µ) ∈ L2(Ω).

The involved bilinear and linear forms as well as the desired state are assumed
to depend affinely on the parameter, i.e., for all w, v ∈ Ye, u ∈ Ue and all parameters
µ ∈ D,

a(w, v;µ) =

Qa∑
q=1

Θq
a(µ) aq(w, v), b(w, v;µ) =

Qb∑
q=1

Θq
b(µ) bq(w, v),

d(w, v;µ) =

Qd∑
q=1

Θq
d(µ) dq(w, v), c(w, v;µ) =

Qc∑
q=1

Θq
c(µ) cq(w, v),(2.1)

f(v;µ) =

Qf∑
q=1

Θq
f (µ) fq(v), yd,e(x;µ) =

Qyd∑
q=1

Θq
yd(µ) yqd,e(x),

1The subscripts and superscripts “e” denote “exact”.
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for some (preferably) small integers Qa, Qb, Qc, Qd, Qf , and Qyd. Here, the coefficient
functions Θq

∗(·) : D → R, are continuous and depend on µ, but the continuous bilinear
forms aq(·, ·) : Ye × Ye → R, bq(·, ·) : Ue × Ye → R, dq(·, ·) : L2(Ω) × L2(Ω) → R,
cq(·, ·) : Ue × Ue → R, as well as the continuous linear forms fq : Ye → R and
yqd,e ∈ L2(Ω) do not depend on µ.

2.2. General Problem Statement. We consider the parametrized optimal
control problem2

min
ye∈Ye,ue∈Ue

Je(ye, ue;µ)(Pe)

s.t. (ye, ue) ∈ Ye × Ue solves a(ye, v;µ) = b(ue, v;µ) + f(v;µ), ∀v ∈ Ye,

where the quadratic cost functional, Je(·, ·;µ) : Ye × Ue → R is given by

Je(y, u;µ) =
1

2
|y − yd,e(µ)|2D(µ) +

λ

2
‖u− ud,e‖2U(µ).

Here, yd,e(µ) ∈ L2(Ω),∀µ ∈ D is the desired state and ud,e ∈ Ue is the desired control.
The regularization parameter λ > 0 governs the trade-off between the cost associated
with the deviation from the desired state and the desired control, respectively. For
simplicity, we assume that the desired control ud,e is parameter-independent; however,
(affine) parameter dependence is readily admitted.

It follows from our assumptions that there exists a unique optimal solution (y∗e , u
∗
e)

to (Pe) [19]. Employing a Lagrangian approach, we obtain the first-order optimality
system consisting of the state equation, the adjoint equation, and the optimality
equation: Given µ ∈ D, the optimal solution (y∗e , p

∗
e , u
∗
e) ∈ Ye × Ye × Ue satisfies3

a(y∗e , φ;µ) = b(u∗e , φ;µ) + f(φ;µ), ∀φ ∈ Ye,(2.2a)

a(ϕ, p∗e ;µ) = d(yd,e(µ)− y∗e , ϕ;µ), ∀ϕ ∈ Ye,(2.2b)

λ c(u∗e − ud,e, ψ;µ)− b(ψ, p∗e ;µ) = 0, ∀ψ ∈ Ue.(2.2c)

Here, pe is the adjoint variable and the superscript ∗ denotes optimality.
We note that for the linear-quadratic optimal control problem (Pe) the first-order

conditions (2.2) are necessary and sufficient for the optimality of (y∗e , u
∗
e) [19].

Remark 2.1. In practice, the regularization parameter often serves as a design
parameter which is tuned to achieve a desired performance of the optimal controller.
From a reduced basis point of view, however, the regularization parameter may simply
be considered an input parameter of the parametrized optimal control problem. This
allows us to vary λ online and thus to efficiently design the optimal controller as
discussed in the context of parabolic optimal control problems in [15].

2.3. Truth Approximation. In general, we of course cannot expect to find an
analytic solution to (2.2). We thus replace the infinite-dimensional trial space Ye and
the control space Ue for the PDE constraint by “truth” finite element approximation
spaces Y ⊂ Ye and U ⊂ Ue of typically very large dimension N = dim(Y ) and
M = dim(U), respectively. Note that Y shall inherit the inner product and norm from
Ye: (·, ·)Y = (·, ·)Ye

and ‖·‖Y = ‖·‖Ye ; analogously, (·, ·)U = (·, ·)Ue
and ‖·‖U = ‖·‖Ue

.

2Here and in the following we often omit the dependence on µ to simplify notation.
3We again note that we omit the dependence on µ to simplify notation, i.e., we write ye = ye(µ),

pe = pe(µ), and ue = ue(µ).
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We shall assume that the truth spaces Y and U are sufficiently rich such that y(µ)
and ye(µ) as well as u(µ) and ue(µ) are in practice indistinguishable. We further recall
that the reduced basis approximation shall be built upon – and the reduced basis error
thus evaluated with respect to – the truth solution y(µ) ∈ Y and u(µ) ∈ U .

Clearly, the continuity and coercivity properties of the bilinear form a are inher-
ited by the truth approximation, i.e.,

γa(µ) = sup
w∈Y \{0}

sup
v∈Y \{0}

a(w, v;µ)

‖w‖Y ‖v‖Y
≤ γe

a(µ) ≤ γa0 <∞, ∀µ ∈ D,

and

(2.3) αa(µ) = inf
v∈Y \{0}

a(v, v;µ)

‖v‖2Y
≥ αe

a(µ) ≥ αa0 > 0, ∀µ ∈ D.

Similarly, it follows that

γb(µ) = sup
w∈U\{0}

sup
v∈Y \{0}

b(w, v;µ)

‖w‖U(µ)‖v‖Y
≤ γe

b(µ) ≤ γb0 <∞, ∀µ ∈ D.

The discretized cost functional, J(·, ·;µ) : Y × U → R is given by

J(y, u;µ) =
1

2
|y − yd(µ)|2D(µ) +

λ

2
‖u− ud‖2U(µ).

Here, yd(µ) =
∑Qyd
q=1 Θq

yd(µ)yqd ∈ Y where yqd ∈ Y, 1 ≤ q ≤ Qyd, and ud ∈ U are suit-

able approximations of yqd,e, 1 ≤ q ≤ Qyd, and ud,e, respectively. The corresponding
truth optimal control problem is then given by

min
y∈Y,u∈U

J(y, u;µ)(P)

s.t. (y, u) ∈ Y × U solves a(y, v;µ) = b(u, v;µ) + f(v;µ), ∀v ∈ Y.

The associated first-order optimality system reads: Given µ ∈ D, the optimal solution
(y∗, p∗, u∗) ∈ Y × Y × U satisfies

a(y∗, φ;µ) = b(u∗, φ;µ) + f(φ;µ), ∀φ ∈ Y,(2.4a)

a(ϕ, p∗;µ) = d(yd(µ)− y∗, ϕ;µ), ∀ϕ ∈ Y,(2.4b)

λ c(u∗ − ud, ψ;µ)− b(ψ, p∗;µ) = 0, ∀ψ ∈ U.(2.4c)

We note that the trial and test spaces are identical for the state and adjoint equa-
tions. The “first-discretize-then-optimize” and “first-optimize-then-discretize” ap-
proach commute in this setting and hence lead to the same discretization of the
optimality system (2.4), see for example [8].

The optimality system (2.4) constitutes a coupled set of equations of dimension
2N +M and is thus expensive to solve, especially if one is interested in various
values of µ ∈ D. Our goal is therefore to significantly speed up the solution of (2.4)
by employing the reduced basis approximation as a surrogate model for the PDE
constraint in (P).
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3. Reduced Basis Approximation. We will now employ the reduced basis
method for the efficient solution of the truth optimal control problem (P). We first
assume that we are given the greedily selected sample sets SM = {µ1, . . . , µM}, 1 ≤
M ≤Mmax, and associated integrated reduced basis spaces

YN = span{ζyn, 1 ≤ n ≤ N = 2M}(3.1)

= span{y∗(µn), p∗(µn), 1 ≤ n ≤M}, 1 ≤M ≤Mmax,

where y∗(µn) and p∗(µn) are the solutions of (2.4) and ζyn, 1 ≤ n ≤ N , are mutu-
ally (·, ·)Y -orthogonal basis functions derived by a Gram-Schmidt orthogonalization
procedure. Note that we integrate both state and adjoint snapshots in YN ; thus the
term “integrated.” We refer to [14, 15, 22] for further details and discussion on the
use of integrated spaces for the state and adjoint equations. Furthermore we assume
that the reduced basis control spaces are given by

(3.2) UM = span{ζun , 1 ≤ n ≤M} = span{u∗(µn), 1 ≤ n ≤M}, 1 ≤M ≤Mmax.

Here, the ζun , 1 ≤ n ≤ M , are mutually (·, ·)U -orthogonal basis functions. We com-
ment on the greedy sampling procedure to construct the spaces YN and UM in Sec-
tion 3.2.

We next replace the truth approximation of the PDE constraint in (P) by its
reduced basis approximation. The reduced basis optimal control problem is thus
given by

min
yN∈YN ,uM∈UM

J(yN , uN ;µ)(PN)

s.t. (yN , uM ) ∈ YN × UM solves a(yN , v;µ) = b(uM , v;µ) + f(v;µ), ∀v ∈ YN .

We can also directly state the associated first-order optimality system: Given µ ∈ D,
find (y∗N , p

∗
N , u

∗
M ) ∈ YN × YN × UM such that

a(y∗N , φ;µ) = b(u∗M , φ;µ) + f(φ;µ), ∀φ ∈ YN ,(3.3a)

a(ϕ, p∗N ;µ) = d(yd(µ)− y∗N , ϕ;µ), ∀ϕ ∈ YN ,(3.3b)

λ c(u∗M − ud, ψ;µ)− b(ψ, p∗N ;µ) = 0, ∀ψ ∈ UM .(3.3c)

The reduced basis optimality system is only of dimension 2N +M and can be evalu-
ated efficiently using an offline-online computational decomposition. The details are
presented in the next subsection. We also note that — similar to the discussion in
the last section — the “first-reduce-then-optimize” and “first-optimize-then-reduce”
approach commute since the state and adjoint trial and test spaces are identical.

3.1. Computational Procedure. We now turn to the computational details of
the reduced basis approximation of the optimality system. To this end, we express the
reduced basis state, adjoint and control solutions as yN (µ) =

∑N
i=1 yNi(µ)ζyi , pN (µ) =∑N

i=1 pNi(µ)ζyi and uM (µ) =
∑M
i=1 uMi(µ)ζui , and denote the coefficient vectors by

y
N

(µ) = [yN1(µ), . . . , yNN (µ)]T ∈ RN , p
N

(µ) = [pN1(µ), . . . , pNN (µ)]T ∈ RN and

uM (µ) = [uM1(µ), . . . , uMM (µ)]T ∈ RM , respectively. If we choose as test functions
φ = ζyi , 1 ≤ i ≤ N , ϕ = ζyi , 1 ≤ i ≤ N , and ψ = ζui , 1 ≤ i ≤M , in (3.3), the reduced
basis optimality system can be expressed in terms of the (2N +M)× (2N +M) linear
system

(3.4)

DN (µ) 0 AN (µ)T

0 λCM (µ) −BN,M (µ)T

AN (µ) −BN,M (µ) 0

 y
N
uM
p
N

 =

 Yd,N (µ)
λUd,M (µ)
FN (µ)

 .
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Here, we have reordered the variables and equations to exhibit the saddle point struc-
ture of the system. The matrices AN (µ) ∈ RN×N , BN,M (µ) ∈ RN×M , DN (µ) ∈
RN×N , and CM (µ) ∈ RM×M are defined through the entries (AN (µ))ij = a(ζyj , ζ

y
i ;µ),

1 ≤ i, j ≤ N , (BN,M (µ))ij = b(ζuj , ζ
y
i ;µ), 1 ≤ i ≤ N, 1 ≤ j ≤ M , (DN (µ))ij =

d(ζyj , ζ
y
i ;µ), 1 ≤ i, j ≤ N , and (CM (µ))ij = c(ζuj , ζ

u
i ;µ), 1 ≤ i, j ≤ M , respec-

tively. The vectors FN (µ) ∈ RN , Yd,N (µ) ∈ RN , and Ud,M (µ) ∈ RM are given by
(FN (µ))i = f(ζyi ;µ), 1 ≤ i ≤ N , (Yd,N (µ))i = d(yd(µ), ζyi ;µ), 1 ≤ i ≤ N , and
(Ud,M (µ))i = c(ud, ζ

u
i ;µ), 1 ≤ i ≤M , respectively.

Invoking the affine parameter dependence (2.1) yields the expansion AN (µ) =∑Qa
q=1 Θq

a(µ)AqN , where the parameter-independent matrices AqN ∈ RN×N are given

by (AqN )ij = aq(ζyj , ζ
y
i ), 1 ≤ i, j ≤ N, 1 ≤ q ≤ Qa. The matrices BN,M (µ), DN (µ),

CM (µ) and vectors FN (µ), Yd,N (µ), and Ud,M (µ) yield a similar expansion. Finally,
to allow an efficient evaluation of the cost functional in the online stage, we also
save the three-dimensional tensor Yd,d given by (Yd,d)q,p,r = dq(ypd, y

r
d), 1 ≤ q ≤ Qd,

1 ≤ p ≤ Qyd, 1 ≤ r ≤ Qyd, as well as the vector (Ud,d)q = cq(ud, ud), 1 ≤ q ≤ Qc.
The offline-online decomposition is now clear. In the offline stage — performed

only once — we first construct the reduced basis spaces YN and UM . We then assemble
the parameter-independent quantities AqN , 1 ≤ q ≤ Qa, BqN,M , 1 ≤ q ≤ Qb, Dq

N , 1 ≤
q ≤ Qd, CqM , 1 ≤ q ≤ Qc, F qN , 1 ≤ q ≤ Qf , Y qd,N , 1 ≤ q ≤ QdQyd, Uqd,M , 1 ≤ q ≤ Qc,
Yd,d and Ud,d. The computational cost clearly depends on the truth finite element
dimensions N and M. In the online stage — for each new parameter value µ —
we first assemble all parameter-dependent quantities in O((Qa +Qd)N

2 +QbNM +
QcM

2 +(Qf +QdQyd)N+QcM+QdQ
2
yd+Qc) operations. We then solve the reduced

basis optimality system (3.4) at cost O((2N +M)3). Given the reduced basis optimal
solution, the cost functional can then be evaluated efficiently from

J(yN , uM ;µ) =
1

2

(
yT
N
DN (µ)y

N
− 2Yd,N (µ)T y

N
+ Yd,d(µ)

)
+
λ

2

(
uTMCM (µ)uM − 2Ud,M (µ)TuM + Ud,d(µ)

)
,

where we assemble Yd,d(µ) =
∑Qd
q=1

∑Qyd
p=1

∑Qyd
r=1 Θq

d(µ)Θp
yd(µ)Θr

yd(µ)(Yd,d)q,p,r and

Ud,d(µ) =
∑Qc
q=1 Θq

c(µ)(Ud,d)q. The computational cost for the cost functional evalua-

tion (without assembly of the parameter-dependent quantities) is O(N2) for the state
misfit term plus O(M2) for the control misfit term. Hence, the overall computational
cost for the online stage is independent of N andM, the dimensions of the underlying
“truth” finite element approximation spaces. Since N � N and M �M, we expect
significant computational savings in the online stage relative to the solution of (2.4).
However, we need to rigorously and efficiently assess the error introduced.

3.2. Greedy Algorithm. We generate the reduced basis space using the greedy
sampling procedure [28] summarized in Algorithm 1. To this end, we presume the
existence of an a posteriori error bound ∆N (µ) — to be introduced in the next section
— for the optimal control or the associated cost functional. Furthermore, Ξtrain ⊂ D is
a finite but suitably large parameter train sample; µ1 ∈ Ξtrain is the initial parameter
value; and εtol,min > 0 is a prescribed desired error tolerance. Note that we expand
the reduced basis spaces YN in step 6 with a snapshot of the corresponding truth
state and adjoint equation, i.e., we use “integrated” spaces as discussed previously.
Also note that we simultaneously reduce the control space, i.e., UM is spanned by
snapshots of the truth optimal control at the selected parameter values.
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Algorithm 1 Greedy Sampling Procedure

1: Choose Ξtrain ⊂ D, µ1 ∈ Ξtrain (arbitrary), and εtol,min > 0

2: Set N ← 0,M ← 0, YN ← {}, UM ← {}
3: Set µ∗ ← µ1 and ∆N (µ∗)←∞
4: while ∆N (µ∗) > εtol,min do

5: N ← N + 2,M ←M + 1

6: YN ← YN−2 ⊕ span{ y(µ∗), p(µ∗) }
7: UM ← UM−1 ⊕ span{u(µ∗) }
8: µ∗ ← arg max

µ∈Ξtrain

∆N (µ)

9: end while

10: Nmax ← N,Mmax ←M

4. A Posteriori Error Estimation. We next turn to the a posteriori error
estimation procedure. We consider three different error bounds for the optimal control
in Section 4.2 and subsequently derive associated cost functional error bounds in
Section 4.3. The error bounds introduced are rigorous upper bounds for the errors
and are online-efficient to compute; we summarize the computational procedure in
Section 4.4.

4.1. Preliminaries. To begin, we assume that we are given a positive lower
bound αLB

a (µ) : D → R+ for the coercivity constant αa(µ) defined in (2.3) such that

(4.1) 0 < αa0 ≤ αLB
a (µ) ≤ αa(µ), ∀µ ∈ D.

Furthermore, we assume that we have upper bounds available for the constant

(4.2) CUB
D (µ) ≥ CD(µ) ≡ sup

v∈Y \{0}

|v|D(µ)

‖v‖Y
≥ 0, ∀µ ∈ D,

and the continuity constant of the bilinear form b(·, ·;µ)

(4.3) γUB
b (µ) ≥ γb(µ), ∀µ ∈ D.

It is possible to compute these constants (or their bounds) efficiently in terms of an
offline-online procedure; see Section 4.4 for details. We also require

Definition 4.1. The residuals of the state equation, the adjoint equation, and
the optimality equation are defined by

ry(φ;µ) = f(φ;µ) + b(u∗M , φ;µ)− a(y∗N , φ;µ), ∀φ ∈ Y, ∀µ ∈ D,(4.4)

rp(ϕ;µ) = d(yd(µ)− y∗N , ϕ;µ)− a(ϕ, p∗N ;µ), ∀ϕ ∈ Y, ∀µ ∈ D,(4.5)

ru(ψ;µ) = b(ψ, p∗N ;µ)− λ c(u∗M − ud, ψ;µ), ∀ψ ∈ U, ∀µ ∈ D.(4.6)

4.2. Control Error Bounds. We now consider three different a posteriori error
bounds for the optimal control. We start with a bound based on the Banach-Nečas-
Babuška (BNB) theory [5] which was first used in [28] for reduced basis approximations
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to noncoercive problems and in [22] in the context of optimal control problems. We
briefly recall the result here since we compare the BNB-bound with the two new
error bounds introduced afterwards: the first is based on a perturbation approach
proposed in [27], and the second is directly derived from the error residual equations
of the optimality system.

4.2.1. Banach-Nečas-Babuška Approach (BNB). By rearranging the equa-
tions of the truth optimality system (2.4) we identify its saddle-point structure: Given
µ ∈ D, find x∗ = (y∗, u∗, p∗) ∈ X = Y × U × Y such that

d(y∗,ϕ;µ) + 0 + a(ϕ,p∗;µ) = d(yd(µ), ϕ;µ), ∀ϕ ∈ Y,(4.7a)

0 + λ c(u∗, ψ;µ) − b(ψ,p∗;µ) = λ c(ud, ψ;µ), ∀ψ ∈ U,(4.7b)

a(y∗,φ;µ) − b(u∗, φ;µ) + 0 = f(φ;µ), ∀φ ∈ Y.(4.7c)

For x = (y, u, p) ∈ X and ϑ = (ϕ,ψ, φ) ∈ X, we introduce the bilinear form
K(·, ·;µ) : X ×X → R and the linear functional F (·;µ) : X → R as

K(x, ϑ;µ) = d(y, ϕ;µ) + a(ϕ, p;µ) + λ c(u, ψ;µ)− b(ψ, p;µ) + a(y, φ;µ)− b(u, φ;µ),

F (ϑ;µ) = d(yd(µ), ϕ;µ) + λ c(ud, ψ;µ) + f(φ;µ).

We can then express (4.7) compactly via: find x∗ ∈ X such that

K(x∗, ϑ;µ) = F (ϑ;µ), ∀ϑ ∈ X.

For the optimal reduced basis solution x∗N = (y∗N , u
∗
M , p

∗
N ) of (3.3) the corresponding

residual is given by

rx(ϑ;µ) = F (ϑ;µ)−K(x∗N , ϑ;µ) = ry(φ;µ) + rp(ϕ;µ) + ru(ψ;µ), ∀ϑ ∈ X.

We now have all necessary ingredients and can state the standard BNB-bound
(for a proof see [28, 25]).

Proposition 4.2. Let x∗ and x∗N be the optimal solutions to the truth and
reduced basis optimal control problems, respectively. The error in the optimality triple
satisfies

(4.8) ‖x∗ − x∗N‖X ≤ ∆x,BNB
N (µ) ≡ ‖rx(·;µ)‖X′

βLB
Ba (µ)

, ∀µ ∈ D,

where βLB
Ba (µ) is a lower bound of the inf-sup constant

βBa(µ) = inf
ϑ∈X\{0}

sup
x∈X\{0}

K(x;ϑ;µ)

‖x‖X ‖ϑ‖X
,

and ‖·‖X is a given norm on X.
We make several remarks. First, we note that this is just the standard result for

reduced basis approximations of noncoercive problems [28], which was used in [22]
for reduced basis approximations of parametrized optimal control problems. Second,
there is a certain freedom of choice on how to define the inner product and associated
norm on X; we specify and compare two options when discussing numerical results in
Section 5. Third, since ‖u∗ − u∗M‖U ≤ CU,X‖x∗ − x∗N‖X , the bound ∆x,BNB

N (µ) can

also be used to bound the error in the optimal control. We thus define ∆u,BNB
N (µ) ≡

CU,X∆x,BNB
N (µ) for notational convenience. And finally, the computation of a lower

bound of the inf-sup constant βBa(µ) requires very large offline effort as discussed in
the numerical results stated in [22].
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4.2.2. Perturbation Approach (PER). The perturbation approach was orig-
inally proposed in [27] for POD approximations to optimal control problems. Based
on this work, we developed rigorous and efficient reduced basis control error bounds
in different contexts, i.e., for elliptic problems with scalar controls in [6, 14] and
for parabolic problems in [15]. Here, we extend this work to problems involving
distributed controls, also see [12]. The derivation is based on the following result
from [27] (see Theorem 4.11 in [27] for the proof).

Theorem 4.3. Let u∗ and u∗M be the optimal solutions to the truth and reduced
basis optimal control problems (P) and (PN), respectively. The error in the optimal
control then satisfies

(4.9) ‖u∗ − u∗M‖U(µ) ≤ ∆u,TV
N (µ) ≡ 1

λ
‖λ(u∗M − ud)− B?p (y(u∗M ))‖U(µ), ∀µ ∈ D,

where B? : Y → U is the adjoint operator defined by

(4.10) b(ψ, φ;µ) = (ψ,B?φ)U(µ), ∀ψ ∈ U, φ ∈ Y, ∀µ ∈ D.

Note that the error bound measures the error in the energy control norm ‖·‖U(µ),
which is the more relevant norm for parametrized geometries, e.g. U e(µ) = L2(Ω(µ)).
Furthermore for the sake of exposition we assume that the adjoint operator B? itself
is parameter-independent, i.e. the parameter-dependence of b(·, ·;µ) is caused only
through the presence of the parameter-dependent inner product (·, ·)U(µ) in its defi-
nition. This assumption is satisfied by all numerical examples in this paper. However
an extension to parameter-dependent B? is possible and straightforward. For the
following error bound derivation we will need to compute the parameter-dependent
constant (or an upper bound)

‖B?‖Y→U(µ) ≡ sup
φ∈Y \{0}

‖B?φ‖U(µ)

‖φ‖Y
,

such that ‖B?φ‖U(µ) ≤ ‖B?‖Y→U(µ)‖φ‖Y holds for all φ ∈ Y . Since

‖B?φ‖U(µ) = sup
ψ∈U\{0}

(B?φ, ψ)U(µ)

‖ψ‖U(µ)
= sup
ψ∈U\{0}

b(ψ, φ;µ)

‖ψ‖U(µ)
,

by Cauchy-Schwarz and (4.10) it follows that ‖B?‖Y→U(µ) = γb(µ).
We further note that y(u∗M ) is the solution of the (truth) state equation (2.4a)

with control u∗M instead of u∗, and p (y(u∗M )) is the solution of the (truth) adjoint
equation (2.4b) with y(u∗M ) instead of y∗(u∗) on the right-hand side. Evaluation of
the bound (4.9) thus requires a consecutive solution of both state and adjoint truth
approximations and is computationally expensive. In contrast, the bound developed
in the following is online-efficient, i.e, its evaluation is independent of N and M.
The underlying idea is to replace the truth approximation p(y(u∗M )) in (4.9) with the
reduced basis approximation p∗N (y∗N (u∗M )) and to bound the error term p(y(u∗M )) −
p∗N (y∗N (u∗M )).

Before we continue, let us make some notational remarks. Following the notation
and terminology in [4], we refer to ẽy = y(u∗M ) − y∗N (u∗M ) as the state predictability
error and to ẽp = p(y(u∗M )) − p∗N (y∗N (u∗M )) as the adjoint predictability error. They
reflect the ability of the corresponding reduced basis solutions to approximate the
truth state and adjoint solutions for a prescribed control. In contrast, we define
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the state, adjoint, and control optimality errors as ey,∗ = y∗(u∗) − y∗N (u∗M ), ep,∗ =
p∗ (y∗(u∗)) − p∗N (y∗N (u∗M )), and eu,∗ = u∗ − u∗M , respectively. Before turning to the
bound for the optimal control we require two intermediate results for the state and
adjoint predictability errors.

Lemma 4.4. The state predictability error, ẽy = y(u∗M )− y∗N (u∗M ), is bounded by

(4.11) ‖ẽy‖Y ≤ ∆̃y
N (µ) ≡ ‖ry(·;µ)‖Y ′

αLB
a (µ)

, ∀µ ∈ D,

where y∗N (u∗M ) is the solution of (3.3a) and y(u∗M ) is the solution of the truth state
equation (2.4a) with control u∗M .

This is the standard a posteriori error bound for coercive elliptic PDEs [23].
Lemma 4.5. The adjoint predictability error, ẽp = p (y(u∗M )) − p∗N (y∗N (u∗M )), is

bounded by

(4.12) ‖ẽp‖Y ≤ ∆̃p
N (µ) ≡ 1

αLB
a (µ)

(
‖rp(·;µ)‖Y ′ + CUB

D (µ)2 ∆̃y
N (µ)

)
, ∀µ ∈ D,

where p∗N (y∗N (u∗M )) is the solution of (3.3b) and p (y(u∗M )) is the solution of the truth
adjoint equation (2.4b) with y(u∗M ) on the right-hand side.

Proof. We note from (4.5) and (2.4b) that the error, ẽp, satisfies

a(ϕ, ẽp;µ) = rp(ϕ;µ) + (y∗N (u∗M )− y(u∗M ), ϕ)D(µ), ∀ϕ ∈ Y.

We now choose ϕ = ẽp, invoke (2.3), (4.1), the definition of the dual norm of the
residual, and the Cauchy-Schwarz inequality to obtain

αLB
a (µ)‖ẽp‖2Y ≤ ‖rp(·;µ)‖Y ′‖ẽp‖Y + |y(u∗M )− y∗N (u∗M )|D(µ)|ẽp|D(µ).

The desired result directly follows from the definition of CD(µ) and Lemma 4.4.
We note that this proof is in fact a simple extension of the proof of the standard

error bound. The main difference is the additional error term due to the change in
the right-hand sides of equations (2.4b) and (3.3b). This error in the right-hand side
propagates and results in the additional term in the error bound (4.12). We are now
ready to state the optimal control error bound in

Proposition 4.6. Let u∗ and u∗M be the optimal solutions of the truth and
reduced basis optimal control problems, respectively. Given ∆̃p

N (µ) defined in (4.12),
the error in the optimal control satisfies

(4.13) ‖u∗ − u∗M‖U(µ) ≤ ∆u,PER
N (µ) ≡ 1

λ
‖λ(u∗M − ud)− B?p∗N‖U(µ)

+
1

λ
γUB
b (µ) ∆̃p

N (µ), ∀µ ∈ D.

Proof. We append ±B?p∗N (y∗N (u∗N )) to the bound in (4.9) and invoke the triangle
inequality to obtain for all µ ∈ D

‖u∗ − u∗M‖U(µ) ≤
1

λ
‖λ(u∗M − ud)− B?p∗N‖U(µ) +

1

λ
‖B?

(
p∗N − p(y(u∗M ))

)
‖U(µ).

The desired result directly follows from the definition of the constant ‖B?‖Y→U(µ) =
γb(µ) and Lemma 4.5.
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4.2.3. Alternative Approach (ALT). Here, we present a new approach to
construct a control error bound which is based on a direct manipulation of the error
residual equations of the optimality system. We will denote this bound — for lack of
a better name — by ALT, for “alternative”. As for the perturbation approach, the
bound measures the error in the energy control norm ‖·‖U(µ).

Proposition 4.7. Let u∗ and u∗M be the optimal solutions to the truth and
reduced basis optimal control problems, respectively. The error in the optimal control
satisfies for all parameters µ ∈ D

(4.14) ‖u∗ − u∗M‖U(µ) ≤ ∆u,ALT
N (µ) ≡ 1

2λ

(
‖ru(·;µ)‖U(µ)′ +

γUB
b (µ)

αLB
a (µ)

‖rp(·;µ)‖Y ′

)
+

1

2λ

[(
‖ru(·;µ)‖U(µ)′ +

γUB
b (µ)

αLB
a (µ)

‖rp(·;µ)‖Y ′

)2

+
8λ

αLB
a (µ)

‖ry(·;µ)‖Y ′‖rp(·;µ)‖Y ′ +
λCUB

D (µ)2

αLB
a (µ)2

‖ry(·;µ)‖2Y ′

] 1
2

.

Although this error bound looks admittedly complicated, we note that it only
contains the dual norms of the state, adjoint, and optimality equation residuals which
also appear in the previous two bounds. Furthermore, it only depends on several
constants resp. their lower/upper bounds which are straightforward to compute. We
also note that, overall, terms involving the dual norm of the state residual, ‖ry(·;µ)‖Y ′ ,

scale with 1/
√
λ whereas all other terms scale with 1/λ. This is in contrast to the

perturbation approach of the last section. Usually, small values of λ allow for a
better fit of the optimal state y∗ to the desired state yd(µ). Since the difference
d(yd(µ) − y∗, ·;µ)) acts as a source term for the adjoint equation, a small misfit will
typically result in a p∗ of small norm compared to y∗ and thus also ‖ry(·;µ)‖Y ′ will
dominate ‖rp(·;µ)‖Y ′ . As a result, we expect the bound (4.14) to perform better for
small regularization parameters λ than (4.13). We will confirm this observation in
the numerical results in Section 5. We turn to the proof of Proposition 4.7.

Proof. We start from the error residual equations

a(ey,∗, φ;µ)− b(eu,∗, φ;µ) = ry(φ;µ), ∀φ ∈ Y,(4.15)

a(ϕ, ep,∗;µ) + (ey,∗, ϕ)D(µ) = rp(ϕ;µ), ∀ϕ ∈ Y,(4.16)

(λeu,∗, ψ)U(µ) − b(ψ, ep,∗;µ) = ru(ψ;µ), ∀ψ ∈ U.(4.17)

From (4.15) with φ = ey,∗ we obtain

αLB
a (µ)‖ey,∗‖2Y ≤ a(ey,∗, ey,∗;µ) = ry(ey,∗;µ) + b(eu,∗, ey,∗;µ),

and therefore (as in Lemma 4.9)

(4.18) ‖ey,∗‖Y ≤
1

αLB
a (µ)

(
‖ry(·;µ)‖Y ′ + γb(µ)‖eu,∗‖U(µ)

)
.

Similarly, equation (4.16) with ϕ = ep,∗ yields

αLB
a (µ)‖ep,∗‖2Y ≤ a(ep,∗, ep,∗;µ) = rp(e

p,∗;µ)− (ey,∗, ep,∗)D(µ),

and thus (almost as in Lemma 4.10)

(4.19) ‖ep,∗‖Y ≤
1

αLB
a (µ)

(
‖rp(·;µ)‖Y ′ + CD(µ)|ey,∗|D(µ)

)
.
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Choosing the test functions φ = ep,∗, ϕ = ey,∗, and ψ = eu,∗ in equations (4.15) –
(4.17), respectively, we obtain

a(ey,∗, ep,∗;µ)− b(eu,∗, ep,∗;µ) = ry(ep,∗;µ),(4.20)

a(ey,∗, ep,∗;µ) + (ey,∗, ey,∗)D(µ) = rp(e
y,∗;µ),(4.21)

λ(eu,∗, eu,∗)U(µ) − b(eu,∗, ep,∗;µ) = ru(eu,∗;µ).(4.22)

Adding (4.21) and (4.22) and subtracting (4.20) yields

λ(eu,∗, eu,∗)U(µ) + (ey,∗, ey,∗)D(µ) = −ry(ep,∗;µ) + rp(e
y,∗;µ) + ru(eu,∗;µ)

and hence

λ‖eu,∗‖2U(µ) + |ey,∗|2D(µ) ≤‖ry(·;µ)‖Y ′‖ep,∗‖Y + ‖rp(·;µ)‖Y ′‖ey,∗‖Y(4.23)

+ ‖ru(·;µ)‖U(µ)′‖eu,∗‖U(µ).

We now plug (4.18) and (4.19) in (4.23) to obtain

λ‖eu,∗‖2U(µ) + |ey,∗|2D(µ) ≤‖ru(·;µ)‖U(µ)′‖eu,∗‖U(µ)

+
1

αLB
a (µ)

‖rp(·;µ)‖Y ′
(
‖ry(·;µ)‖Y ′ + γb(µ)‖eu,∗‖U(µ)

)
+

1

αLB
a (µ)

‖ry(·;µ)‖Y ′
(
‖rp(·;µ)‖Y ′ + CD(µ)|ey,∗|D(µ)

)
.

Furthermore it follows from Young’s inequality that

CD(µ)

αLB
a (µ)

‖ry(·;µ)‖Y ′ |ey,∗|D(µ) ≤
CD(µ)2

4αLB
a (µ)2

‖ry(·;µ)‖2Y ′ + |ey,∗|2D(µ).

Combining the last two inequalities, rearranging terms and employing the upper
bounds for the constants in (4.2) and (4.3) results in

λ‖eu,∗‖2U(µ) ≤‖ru(·;µ)‖U(µ)′‖eu,∗‖U(µ) +
2

αLB
a (µ)

‖ry(·;µ)‖Y ′‖rp(·;µ)‖Y ′

+
γUB
b (µ)

αLB
a (µ)

‖rp(·;µ)‖Y ′‖eu,∗‖U(µ) +
CUB
D (µ)2

4αLB
a (µ)2

‖ry(·;µ)‖2Y ′ .

This can be written in the form of a quadratic inequality for ‖eu,∗‖U(µ) by

A‖eu,∗‖2U(µ) +B‖eu,∗‖U(µ) + C ≤ 0,

with

A = λ, B = −
(
‖ru(·;µ)‖U(µ)′ +

γUB
b (µ)

αLB
a (µ)

‖rp(·;µ)‖Y ′

)
,

C = −
(

2

αLB
a (µ)

‖ry(·;µ)‖Y ′‖rp(·;µ)‖Y ′ +
CUB
D (µ)2

4αLB
a (µ)2

‖ry(·;µ)‖2Y ′

)
,

which is satisfied iff

∆−N ≤ ‖e
u,∗‖U(µ) ≤ ∆+

N , where ∆±N =
−B ±

√
B2 − 4AC

2A
.

The results follows by setting ∆u,ALT
N (µ) ≡ ∆+

N .
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4.3. Cost Functional Error Bounds. Given the error bounds for the optimal
triple x∗ ∈ X and the optimal control u∗ ∈ U we may readily derive a bound for the
error in the cost functional. We again first review the BNB-result before presenting
the results for the PER- and ALT-approach.

4.3.1. Banach-Nečas-Babuška Approach. The cost functional error bound
is defined in

Proposition 4.8. Let J∗ = J(y∗, u∗;µ) and J∗N = J(y∗N , u
∗
M ;µ) be the optimal

values of the cost functionals of the truth and reduced basis optimal control problems,
respectively. The error then satisfies

(4.24) |J∗ − J∗N | ≤ ∆J,BNB
N (µ) ≡ 1

2

‖rx(·;µ)‖2X′

βLB
Ba (µ)

, ∀µ ∈ D.

Proof. We use the standard result from [2] to estimate the error in the cost
functional by

|J∗ − J∗N | =
1

2
rx(ex,∗;µ) ≤ 1

2
‖rx(·;µ)‖X′‖ex,∗‖X , ∀µ ∈ D,

where ex,∗ = x∗ − x∗N . The result then follows directly from Proposition 4.2.
As pointed out previously, there is a freedom of choice on how to define the inner

product and associated norm on X. In fact, one can choose the norm on X so as to
minimize the effectivity of the error bound ∆J,BNB

N (µ). We will comment on this issue
in Section 5.

4.3.2. Perturbation and Alternative Approach. So far we only derived
an a posteriori control error bound for the PER- and ALT-approach. For the cost
functional error bound, however, we will also require associated a posteriori error
bounds for the optimal state and adjoint. These are stated in the following two
preparatory lemmata. We note that the proofs of these lemmata are similar to the
proof of Lemma 4.5, i.e., the error in the optimal control — or, more precisely, the
error bound of the optimal control — propagates and appears as an additional term
in the state and adjoint optimality error bounds.

Lemma 4.9. The state optimality error, ey,∗ = y∗(u∗)− y∗N (u∗M ), is bounded by

(4.25) ‖ey,∗‖Y ≤ ∆y,•
N (µ) ≡ 1

αLB
a (µ)

(
‖ry(·;µ)‖Y ′ + γUB

b (µ) ∆u,•
N (µ)

)
, ∀µ ∈ D,

where • ∈ {PER,ALT}.
Proof. We note from (4.4) and (2.4a) that the error, ey,∗, satisfies

a(ey,∗, φ;µ) = ry(φ;µ) + b(u∗ − u∗M , φ;µ), ∀φ ∈ Y.

We now choose φ = ey,∗ and invoke (2.3), (4.1), and the definition of the dual norm
of the residual to obtain

αLB
a (µ)‖ey,∗‖2Y ≤ ‖ry(·;µ)‖Y ′‖ey,∗‖Y + b(u∗ − u∗M , ey,∗;µ).

By the definition of γb(µ) and invoking Proposition 4.6 and Proposition 4.7, respec-
tively, we obtain the desired result.

Lemma 4.10. The adjoint optimality error, ep,∗ = p∗ (y∗(u∗))− p∗N (y∗N (u∗M )), is
bounded by

(4.26) ‖ep,∗‖Y ≤ ∆p,•
N ≡ 1

αLB
a (µ)

(
‖rp(·;µ)‖Y ′ + CUB

D (µ)2 ∆y,•
N

)
, ∀µ ∈ D,
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where • ∈ {PER,ALT}.
The proof is analogous to the proof of Lemma 4.5 and therefore omitted. We can

now state
Proposition 4.11. Let J∗ = J(y∗, u∗;µ) and J∗N = J(y∗N , u

∗
M ;µ) be the optimal

values of the cost functionals of the truth and reduced basis optimal control problems,
respectively. The error then satisfies

|J∗ − J∗N | ≤ ∆J,•
N ≡1

2

(
‖ry(·;µ)‖Y ′ ∆p,•

N + ‖rp(·;µ)‖Y ′ ∆y,•
N(4.27)

+ ‖ru(·;µ)‖U(µ)′ ∆u,•
N

)
, ∀µ ∈ D,

where • ∈ {PER,ALT}.
Proof. We use the standard result from [2] to bound the cost functional error by

|J∗ − J∗N | =
1

2
rx(ex,∗;µ) =

1

2

(
ry(ep,∗;µ) + rp(e

y,∗;µ) + ru(eu,∗;µ)
)

≤1

2

(
‖ry(·;µ)‖Y ′ ‖ep,∗‖Y + ‖rp(·;µ)‖Y ′ ‖ey,∗‖Y

+ ‖ru(·;µ)‖U(µ)′ ‖eu,∗‖U(µ)

)
, ∀µ ∈ D.

The result follows from Lemma 4.9 and 4.10 and Proposition 4.6 resp. 4.7.

4.4. Computational Procedure. To evaluate the control and cost functional
error bounds ∆u,PER

N (µ), ∆u,ALT
N (µ) and ∆J,PER

N (µ), ∆J,ALT
N (µ) described in Sections

4.2.2, 4.2.3 and 4.3.2, we need to compute
1. the dual norms of the state, adjoint, and optimality equation residuals, i.e.
‖ry(·;µ)‖Y ′ , ‖rp(·;µ)‖Y ′ , and ‖ru(·;µ)‖U(µ)′ ;

2. the lower and upper bounds αLB
a (µ), CUB

D (µ) and γUB
b (µ).

Since ‖ry(·;µ)‖Y ′ and ‖rp(·;µ)‖Y ′ can be evaluated using the standard offline-online
decomposition [24], we only summarize the computational cost in the offline and
online stage. For the computation of the dual norm of the state residual we have
to solve ny = QaN + QbM + Qf Poisson-type problems in the offline stage and
can then evaluate ‖ry(·;µ)‖Y ′ in O(n2

y) operations in the online stage for any given
parameter µ ∈ D and associated optimal solution x∗N . Similarly, for the adjoint
residual we require np = QaN + QdN + QdQyd Poisson problem solves offline and
O(n2

p) operations online.
Since the evaluation of ‖ru(·;µ)‖U(µ)′ is not standard, we provide the necessary

details here. From

ru(ψ;µ) = (λ(u∗M − ud)− B?p∗N , ψ)U(µ) = (r̃u(µ), ψ)U(µ),

it follows that r̃u(µ) = λ(u∗M − ud) − B?p∗N is the Riesz-representation of ru(·;µ) ∈
U(µ)′ with respect to the (·, ·)U(µ) energy inner product. Since ‖ru(·;µ)‖U(µ)′ =
‖r̃u(µ)‖U(µ), we can compute the dual norm of the optimality equation residual by

‖ru(·;µ)‖2U(µ)′ = ‖r̃u(µ)‖2U(µ) = ‖λ(u∗M − ud)− B?p∗N‖2U(µ)

= λ2(u∗M , u
∗
M )U(µ) − 2λ(u∗M , ud)U(µ) + λ2(ud, ud)U(µ)

− 2λ(u∗M ,B?p∗N )U(µ) + 2λ(ud,B?p∗N )U(µ) + (B?p∗N ,B?p∗N )U(µ)

= λ2(u∗M )TCM (µ)u∗M − 2λ(u∗M )TUd,M (µ) + λ2Ud,d(µ)

− 2λ(u∗M )TBTM,N (µ)p∗N + 2λBd,N (µ)T p∗N + (p∗N )TB?N,N (µ)p∗N .
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The matrix B?N,N (µ) ∈ RN×N and vector Bd,N (µ) ∈ RN have entries (B?N,N (µ))ij =
c(B?ζyj ,B?ζ

y
i ;µ), 1 ≤ i, j ≤ N , and (Bd,N (µ))i = b(ud, ζ

y
i ;µ), 1 ≤ i ≤ N . Exploiting

the affine parameter dependence of c(·, ·;µ) and b(·, ·;µ), B?N,N (µ) and Bd,N (µ) can be

assembled online in O(QcN
2) and O(QbN) operations, respectively. The total online

cost (to leading order) for computing ‖ru(·;µ)‖U(µ)′ is O(Qc(M
2 +N2) +QbMN).

For the construction of the coercivity constant lower bound αLB
a (µ) various recipes

exist [9, 23, 29]. The specific choices for our numerical examples are stated in Section 5.
Simple (yet for our examples effective) upper bounds CUB

D (µ) and γUB
b (µ) can be

computed by solving Qd+Qu generalized eigenvalue problems in the offline stage and
then assembled in O(Qd +Qu) operations online. In general (arbitrarily tight) upper
bounds can be obtained by applying the successive constraint method.

In summary, the online evaluation of the error bounds ∆u,PER
N (µ), ∆u,ALT

N (µ),

and ∆J,PER
N (µ), ∆J,ALT

N (µ) involves an operation count that is independent of the
dimension of the finite element spaces N and M.

For the evaluation of the error bounds ∆x,BNB
N (µ) = ∆u,BNB

N (µ), and ∆J,BNB
N (µ)

described in Sections 4.2.1, and 4.3.1 we need to compute
1. the dual norm of the saddle point residual ‖rx(·;µ)‖X′ ;
2. the constant βLB

Ba (µ).
The computational procedure and effort to compute ‖rx(·;µ)‖X′ are the same as for
evaluating ‖ry(·;µ)‖Y ′ , ‖rp(·;µ)‖Y ′ , and ‖ru(·;µ)‖U(µ)′ . However computing a lower
bound βLB

Ba (µ) for the stability constant is very involved and requires a very large
computational effort in the offline stage [22].

5. Numerical Results. In this section we present two numerical examples:
i) a Graetz flow and ii) a heat transfer problem motivated by hyperthermia cancer
treatment. Both problems involve a distributed control over the whole domain. We
stress that, throughout this section, we use the actual stability constant βBa(µ) and
not its lower bound βLB

Ba (µ) for the evaluation of the BNB-bounds (4.8) and (4.24).
The reason is the high computational cost and implementation effort required to
obtain βLB

Ba (µ) in combination with the fact that the BNB-bounds are just used for
comparison here (and are not our original contribution). The computations were done
in Matlab on a computer with a 2.6 GHz Intel Core i7 processor and 16 GB of RAM.

5.1. Graetz flow problem. We consider a linear-quadratic optimal control
problem governed by a steady Graetz flow in a two-dimensional domain based on the
numerical examples in [21, 22]. The spatial domain, an arbitrary point of which is x =
(x1, x2), is given by Ω = (0, 2.5)× (0, 1) and is subdivided into the three subdomains
Ω1 = [0.2, 0.8] × [0.3, 0.7], Ω2 = [1.2, 2.5] × [0.3, 0.7], and Ω3 = Ω \ {Ω1 ∪ Ω2}. A
sketch of the domain is shown in Figure 5.1. We impose homogeneous Neumann and
non-homogeneous Dirichlet boundary conditions on ΓN and ΓD1 , ΓD2 , respectively.
The amount of heat supply in the whole domain Ω is regulated by the distributed
control function ue ∈ Ue ≡ L2(Ω). The parametrized optimal control problem is then

min
ye∈Y De ,ue∈Ue

J(ye, ue;µ) =
1

2
‖ye − yd,e(µ)‖2L2(Ω1∪Ω2) +

λ

2
‖ue − ud,e‖2L2(Ω)

s.t.
1

µ1

∫
Ω

∇ye · ∇v dx+

∫
Ω

β(x) · ∇ye v dx =

∫
Ω

ue v dx, ∀v ∈ Y De ,

for the given parabolic velocity field β(x) = x2(1 − x2) and Y De = {v ∈ H1(Ω) :
v|ΓD1

≡ 1, v|ΓD2
≡ 2}. The parameter µ1 describes the Péclet number of the flow

and the parametrized desired state is given by yd,e(µ) = µ2 on Ω1 and yd,e(µ) = µ3
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Fig. 5.1: Domain Ω for the Graetz flow problem with distributed control.

on Ω2. The full parameter domain is D = [3, 20] × [0.5, 1.5] × [1.5, 2.5]. For the
cost functional we set ud,e ≡ 0. In Section 5.3 we consider different values for the
regularization parameter λ. However, for the remainder of this subsection we will keep
the regularization parameter λ = 0.01 fixed. We choose the inner product (w, v)Ye

=
1
µref
1

∫
Ω
∇w·∇v dx+ 1

2 (
∫

Ω
β(x)·∇w v dx+

∫
Ω
β(x)·∇v w dx) for µref

1 = 3; we may hence

choose αLB
a (µ) = min(µref

1 /µ1, 1) in (4.1). For the control space Ue we use the usual
L2-norm and inner product. After introducing suitable lifting functions that take into
account the non-homogeneous Dirichlet boundary conditions, we can reformulate the
problem in terms of the space Ye = H1

0 (Ω) and the considered problem satisfies the
affine representation (2.1) of all involved quantities with Qa = 2, Qb = Qd = Qc = 1,
Qf = 2, and Qyd = 3 (taking into account the affine terms required for the lifting
functions). For details regarding the involved forms and functionals, cf. [21], [22], and
[13].

For the truth discretization we consider linear finite element approximation spaces
Y ⊂ Ye, U ⊂ Ue for the state, adjoint, and control variables. The number of degrees
of freedom is dim(Y ) = N = 10, 801 and dim(U) = M = 11, 148; hence the total
dimension of the truth optimality system is 2N +M = 32, 750.

We construct the reduced basis spaces YN ⊂ Y and UM ⊂ U according to the
Greedy sampling procedure described in Section 3.2. To this end, we employ the train
sample Ξtrain ⊂ D consisting of ntrain = 10 · 7 · 7 = 490 equidistant parameter points
over D. We sample on the relative ALT control error bound ∆u,ALT

N (µ)/‖u∗M (µ)‖U(µ).
The desired error tolerance is εtol,min = 10−4 and the initial parameter value is µ1 =
(3, 0.5, 1.5)T . We also introduce a parameter test sample Ξtest ⊂ D of size ntest = 20
with a uniform-random distribution in D.

On the product space X = Y × U × Y , we define for ϑ1 = (ϕ1, ψ1, φ1) ∈ X
and ϑ2 = (ϕ2, ψ2, φ2) ∈ X the energy inner product as (ϑ1, ϑ2)X(µ) = (ϕ1, ϕ2)Y +

(ψ1, ψ2)U(µ) + (φ1, φ2)Y , and associated energy norm as ‖ϑ‖X(µ) =
√

(ϑ, ϑ)X(µ) =√
‖ϕ‖2Y + ‖ψ‖2U(µ) + ‖φ‖2Y . In Section 5.3 we will also consider a scaled energy inner

product and norm given by (ϑ1, ϑ2)Xλ(µ) = (ϕ1, ϕ2)Y + λ(ψ1, ψ2)U(µ) + (φ1, φ2)Y

and ‖ϑ‖Xλ(µ) =
√

(ϑ, ϑ)Xλ(µ) =
√
‖ϕ‖2Y + λ‖ψ‖2U(µ) + ‖φ‖2Y , respectively. This

corresponds to CU,X = 1 resp. CU,X =
√
λ in the remark after Proposition 4.2.

We recall that the PER- and ALT-bounds measure the error in the energy control
norm ‖·‖U(µ), which is the more relevant norm for geometry parametrizations, e.g.
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Ue(µ) = L2(Ω(µ)). Note that for the Graetz flow problem we do not consider a
geometrical parametrization and hence the reference and energy control norm coin-
cide. Similarly, in the heat transfer problem involving a parametrized domain we
observe no differences in the results between using the reference and energy norm
(norm equivalence constants close to one), so we only present energy norm results.

M εuN,max,rel ∆u,BNB
N,max,rel η̄u,BNB

N ∆u,PER
N,max,rel η̄u,PER

N ∆u,ALT
N,max,rel η̄u,ALT

N

2 1.12 E+00 1.76 E+02 1.35 E+02 1.12 E+02 4.68 E+01 4.01 E+01 1.49 E+01
4 4.96 E–01 9.18 E+01 9.58 E+01 7.84 E+00 2.66 E+01 1.72 E+00 4.34 E+00
8 3.07 E–02 3.82 E+00 7.82 E+01 4.58 E–01 2.25 E+01 1.43 E–01 6.27 E+00
12 1.66 E–03 1.36 E–01 6.89 E+01 4.03 E–02 1.51 E+01 7.74 E–03 4.49 E+00
16 9.67 E–05 8.19 E–03 9.20 E+01 1.95 E–03 2.33 E+01 3.43 E–04 4.95 E+00
19 1.26 E–05 8.13 E–04 7.82 E+01 2.46 E–04 1.49 E+01 4.86 E–05 3.64 E+00

Table 5.1: Control variable in Graetz flow example: error convergence, error bounds,
and effectivities as a function of M .

In Table 5.1 we present, as a function of M , the maximum relative control error
εuN,max,rel and the maximum relative error bounds ∆u,BNB

N,max,rel, ∆u,PER
N,max,rel, ∆u,ALT

N,max,rel as

well as the corresponding mean effectivities η̄u,BNB
N ,η̄u,PER

N , η̄u,ALT
N . Here, εuN,max,rel is

the maximum over Ξtest of ‖eu,∗(µ)‖U(µ)/‖u∗(µ)‖U(µ), ∆u,•
N,max,rel is the maximum over

Ξtest of ∆u,•
N (µ)/‖u∗(µ)‖U(µ), and η̄u,•N is the average over Ξtest of ∆u,•

N (µ)/‖eu,∗‖U(µ).
We observe that the control error and all three error bounds are decreasing very
rapidly with increasing reduced basis dimension M . The Greedy sampling procedure
guarantees the prescribed sampling tolerance εtol,min = 10−4 for the normalized er-

ror bound ∆u,ALT
N (µ)/‖u∗M (µ)‖U(µ) over the training set Ξtrain after selecting only

Mmax = 19 parameter snapshots. We note that the effectivities of the BNB-bound
are slightly larger than the ones of the PER-bound, and that both are significantly
larger than the ones of the ALT-bound. The ALT-bound clearly performs best with
effectivities close to one for all values of M (except for M = 2). Again, the BNB-
bound is computed with βBa(µ) instead of βLB

Ba (µ) and the effectivities may thus be
considerably larger in actual practice. However, the BNB-bound is actually a bound
for the combined error ‖ex,∗‖X(µ).

M εxN,max,rel ∆x,BNB
N,max,rel η̄x,BNB

N ∆x,PER
N,max,rel η̄x,PER

N ∆x,ALT
N,max,rel η̄x,ALT

N

2 7.00 E–02 8.54 E+00 1.02 E+02 7.39 E+00 1.13 E+02 2.67 E+00 3.48 E+01
4 3.15 E–02 3.46 E+00 8.26 E+01 1.05 E+00 7.35 E+01 1.16 E–01 1.08 E+01
8 1.71 E–03 2.03 E–01 7.01 E+01 3.02 E–02 6.54 E+01 8.35 E–03 1.73 E+01
12 6.84 E–05 7.15 E–03 6.26 E+01 2.67 E–03 4.16 E+01 6.06 E–04 1.09 E+01
16 2.87 E–06 4.58 E–04 7.99 E+01 2.83 E–04 6.72 E+01 3.91 E–05 1.24 E+01
19 4.53 E–07 4.55 E–05 6.47 E+01 1.63 E–05 4.01 E+01 3.40 E–06 9.10 E+00

Table 5.2: Combined variable x in Graetz flow example: error convergence, error
bounds, and effectivities as a function of M .

Motivated by this fact, we present results for the combined variable x in Table 5.2.
We compare, as function of M , the maximum relative combined error εxN,max,rel and

the maximum relative error bounds ∆x,BNB
N,max,rel, ∆x,PER

N,max,rel, ∆x,ALT
N,max,rel as well as the
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corresponding mean effectivities η̄x,BNB
N ,η̄x,PER

N , η̄x,ALT
N . Here, εxN,max,rel is the maxi-

mum over Ξtest of ‖ex,∗(µ)‖X(µ)/‖x∗(µ)‖X(µ), ∆x,•
N,max,rel is the maximum over Ξtest of

∆x,•
N (µ)/‖x∗(µ)‖X(µ), and η̄x,•N is the average over Ξtest of ∆x,•

N (µ)/‖ex,∗‖X(µ). Note
that we obtain this bound for the PER- and ALT-approach by simply combining the
control error bound with the state and adjoint optimality error bounds defined in
Lemma 4.9 and 4.10, respectively. Similar to the results for the control variable, the
combined error and all three bounds are decreasing rapidly with increasing reduced
basis dimension M . Although the BNB-bound is specifically designed to measure the
combined error in the X-norm, its effectivities are comparable to the PER-bound and
significantly (almost one order of magnitude) larger than for the ALT-bound.

M εJN,max,rel ∆J,BNB
N,max,rel η̄J,BNB

N ∆J,PER
N,max,rel η̄J,PER

N ∆J,ALT
N,max,rel η̄J,ALT

N

2 1.10 E+01 3.38 E+03 2.29 E+03 9.30 E+03 7.12 E+02 3.37 E+03 1.81 E+02
4 1.31 E–01 9.23 E+02 4.51 E+03 4.78 E+01 1.18 E+03 6.25 E+00 1.74 E+02
8 4.90 E–04 1.98 E+00 5.49 E+03 1.42 E–01 5.94 E+02 4.60 E–02 1.72 E+02
12 2.53 E–06 2.59 E–03 3.40 E+03 1.21 E–03 3.60 E+02 2.29 E–04 1.16 E+02
16 1.54 E–09 8.86 E–06 9.32 E+03 2.91 E–06 1.25 E+04 3.91 E–07 1.91 E+03
19 1.21 E–10 8.72 E–08 4.61 E+03 4.53 E–08 5.04 E+02 9.08 E–09 1.08 E+02

Table 5.3: Cost functional J in Graetz flow example: error convergence, error bounds,
and effectivities as a function of M .

Finally, we state in Table 5.3, as a function of M , the maximum relative cost func-
tional error εJN,max,rel and the maximum relative error bounds ∆J,BNB

N,max,rel, ∆J,PER
N,max,rel,

∆J,ALT
N,max,rel as well as the corresponding mean effectivities η̄J,BNB

N ,η̄J,PER
N , η̄J,ALT

N .

Here, εJN,max,rel is the maximum over Ξtest of |J∗(µ) − J∗N (µ)|/J∗(µ), ∆J,•
N,max,rel is

the maximum over Ξtest of ∆J,•
N (µ)/J∗(µ), and η̄J,•N is the average over Ξtest of

∆J,•
N (µ)/|J∗(µ) − J∗N (µ)|. Again, a rapid decrease of the error and error bounds

can be observed. The BNB- and PER-bound effectivities have the same order of
magnitude whereas the ALT-bound again performances considerably better.

We finally consider the online computational cost for solving the reduced basis
optimal control problem compared to the truth optimal control problem. On average
(over Ξtest) it takes 0.49 seconds to solve the truth optimal control problem based
on our finite element discretization. Depending on the reduced basis dimension 1 ≤
M ≤ Mmax = 19 it takes between 1.19 and 2.01 milliseconds to solve the reduced
basis optimal control problem (without error bounds) resulting in speedups ranging
from 244 to 412. Taking into account the computation of the error bounds (consisting
mainly of the online residual calculation and evaluating αLB

a (µ)) the online cost for the
reduced basis solution ranges from 1.61 to 2.11 milliseconds, which in turn corresponds
to a speedup of 232 up to 304. Note that the computational time required for the
error bound computation is only a small fraction of the reduced basis solution time.

5.2. Heat transfer problem. Next we consider a linear-quadratic optimal con-
trol problem governed by steady heat conduction in a parametrized two-dimensional
domain. The spatial domain, a typical point of which is xo = (xo1, x

o
2), is given by Ωo =

(0, 5)× (0, 5) and is subdivided into the three subdomains Ωo1(µ) = Ωo \{Ωo2∪Ωo3(µ)},
Ωo2 = {(1, 4) × (1, 2)} ∪ {(1, 2) × (1, 4)}, and Ωo3(µ) = (µ1 − 0.5, µ1 + 0.5) × (µ2 −
0.5, µ2 + 0.5). Here, the parameter µ = (µ1, µ2)T ∈ D = [3, 4] × [3, 4] describes the
horizontal and vertical translation of the square Ωo3(µ) in the upper right corner of the
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domain Ωo. A sketch of the domain is shown in Figure 5.2. The temperature satisfies

Fig. 5.2: Parametrized domain Ωo for the heat transfer problem with distributed
control.

Laplace’s equation in Ωo with continuity of temperature and heat flux across subdo-
main interfaces. The (reference) conductivity in the subdomain Ωo1(µ) is set to unity,
whereas the normalized conductivity is κ2 = 0.2 in the subdomain Ωo2 and κ3 = 5
in the subdomain Ωo3(µ). We impose zero Dirichlet conditions on the whole domain
boundary ∂Ωo. The amount of heat supply in the whole domain Ωo is regulated by
the distributed control function uoe ∈ Uoe ≡ L2(Ωo).

The parametrized optimal control problem then reads

min
yoe∈Y oe ,uoe∈Uoe

J(yoe , u
o
e ;µ) =

1

2
‖yoe − yod,e‖2L2(Ωo2∪Ωo3(µ)) +

λ

2
‖uoe − uod,e‖2L2(Ωo)(5.1)

s.t.

3∑
i=1

κi

∫
Ωoi (µ)

∇yoe · ∇v dx =

∫
Ωo
uoe v dx, ∀v ∈ Y oe = H1

0 (Ωo).

The desired state is given by yod,e ≡ 1 in Ωo2 and yod,e ≡ 0 in Ωo3(µ) and the desired

control is u0
d,e ≡ 0. As for the Graetz flow example we will keep the regulariza-

tion parameter λ = 0.01 fixed for the remainder of this subsection. In Section 5.3
we consider different values for the regularization parameter λ. After recasting the
problem to a reference domain Ω with corresponding subdomains Ω1,3 = Ωo1,3(µref)

for µref = (3.5, 3.5)T [24], we obtain the affine representation (2.1) of all involved
quantities with Qa = 17, Qb = Qc = 4, Qd = 1, Qf = 0, and Qyd = 1; see [13] for
details.

The problem is motivated by hyperthermia treatment of cancer, where the sub-
domain Ωo2 could be interpreted as tumor tissue and the subdomain Ωo3(µ) as so-called
risk tissue. Hence, the goal is to heat up only the damaged part of the body (yod,e ≡ 1
in Ωo2) but not the regions at risk (yod,e ≡ 0 in Ωo3(µ)).

We further choose the inner product (w, v)Ye
=
∑3
i=1 κi

∫
Ωi
∇w · ∇v dx. To

compute a lower bound αLB
a (µ) for the coercivity constant in (4.1) we use the suc-

cessive constraint method (SCM) [9, 3], where we chose the following parameters:
JSCM = 35 · 35 = 1225 equidistant training points over D, MSCM = 2 coercivity and
MSCM

+ = 4 positivity constraints. A required tolerance of εSCM = 0.2 then selects
KSCM = 53 parameters in the SCM offline phase. The (reference) inner product for
the control space Ue is given by (·, ·)Ue = c(·, ·, µref).
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We next introduce linear truth finite element approximation spaces Y ⊂ Ye =
H1

0 (Ω), U ⊂ Ue = L2(Ω) for the state, adjoint, and control variables. The number of
degrees of freedom is dim(Y ) = N = 18, 117 and dim(U) = M = 18, 517; hence the
dimension of the truth optimality system is 2N +M = 54, 751.

(a) Optimal state y∗(µ),
(µ1, µ2, λ) = (3, 3, 0.01), J∗(µ) = 0.13

(b) Optimal control u∗(µ),
(µ1, µ2, λ) = (3, 3, 0.01), J∗(µ) = 0.13

(c) Optimal state y∗(µ),
(µ1, µ2, λ) = (4, 4, 0.01), J∗(µ) = 0.08

(d) Optimal control u∗(µ),
(µ1, µ2, λ) = (4, 4, 0.01), J∗(µ) = 0.08

Fig. 5.3: Optimal state y∗(µ), optimal control u∗(µ), and optimal cost functional
value J∗(µ) for different representative parameter values

We present results for the solution of the truth optimal control problem (5.1) for
different parameter values in Figure 5.3. We plot the optimal temperature distribution
and optimal control and report the associated cost functional value. We note that all
parameters have a strong influence on the solution of the optimal control problem:
the temperature, optimal control, and optimal cost functional value vary significantly.

Again, we construct the reduced basis spaces YN ⊂ Y and UM ⊂ U according to
the Greedy sampling procedure described in Section 3.2. The training set Ξtrain ⊂ D
consists of ntrain = 15 · 15 = 225 equidistant parameter points over D. We sample on
the relative ALT control error bound ∆u,ALT

N (µ)/‖u∗M (µ)‖U(µ), set the desired error
tolerance to εtol,min = 10−4, and choose as initial parameter value µ1 = (3, 3)T . We
obtain Mmax = 45 to achieve the desired error tolerance. The test sample Ξtest ⊂ D
consists of ntest = 20 random parameter points distributed uniformly in D.

Following the presentation of the numerical results for the Graetz flow example
in the last section, we present the maximum relative errors and bounds as well as the
average effectivities for the control, the combined variable x, and the cost functional
in Tables 5.4–5.6. We first observe that the convergence is slower than in the Graetz
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flow examples due to the higher parametric complexity of this example. Also, the
effectivities are consistently higher. For the control variable the effectivities of the
BNB-bound and PER-bound are roughly the same, whereas for the combined vari-
able and the cost functional the PER-bound effectivity is approximately one order of
magnitude higher than the one of the BNB-bound. Taking into account the additional
overestimation if βLB

Ba (µ) is used instead of βBa(µ), the performance of the BNB-bound
and PER-bound would likely be equivalent in practice. For all three quantities, how-
ever, the ALT-bound again performs best: the overestimation is considerably lower
than with the other two approaches.

M εuN,max,rel ∆u,BNB
N,max,rel η̄u,BNB

N ∆u,PER
N,max,rel η̄u,PER

N ∆u,ALT
N,max,rel η̄u,ALT

N

2 1.01 E–01 1.28 E+02 6.19 E+02 1.66 E+02 7.30 E+02 3.71 E+00 2.16 E+01
8 7.16 E–03 3.54 E+00 4.25 E+02 3.86 E+00 4.71 E+02 1.18 E–01 1.56 E+01
16 1.21 E–03 3.09 E–01 4.65 E+02 3.04 E–01 5.33 E+02 1.32 E–02 1.86 E+01
24 8.40 E–05 4.77 E–02 4.89 E+02 5.37 E–02 5.56 E+02 1.71 E–03 2.09 E+01
32 2.22 E–05 1.02 E–02 5.49 E+02 1.72 E–02 6.37 E+02 4.72 E–04 2.39 E+01
40 1.09 E–05 4.38 E–03 6.08 E+02 4.43 E–03 6.91 E+02 1.93 E–04 2.54 E+01
45 1.52 E–06 1.44 E–03 7.52 E+02 1.52 E–03 8.55 E+02 4.21 E–05 2.96 E+01

Table 5.4: Control variable in heat transfer example: error convergence, error bounds,
and effectivities as a function of M .

M εxN,max,rel ∆x,BNB
N,max,rel η̄x,BNB

N ∆x,PER
N,max,rel η̄x,PER

N ∆x,ALT
N,max,rel η̄x,ALT

N

2 1.19 E–01 1.02 E+02 4.55 E+02 1.68 E+03 4.95 E+03 3.82 E+01 1.40 E+02
8 6.58 E–03 2.85 E+00 3.43 E+02 2.91 E+01 3.41 E+03 8.61 E–01 1.10 E+02
16 1.11 E–03 2.49 E–01 3.63 E+02 2.56 E+00 3.78 E+03 6.95 E–02 1.28 E+02
24 8.75 E–05 3.71 E–02 3.83 E+02 4.93 E–01 3.89 E+03 1.60 E–02 1.41 E+02
32 2.40 E–05 8.15 E–03 4.04 E+02 1.81 E–01 4.16 E+03 5.03 E–03 1.51 E+02
40 1.13 E–05 3.47 E–03 4.26 E+02 2.52 E–02 4.25 E+03 8.56 E–04 1.52 E+02
45 2.36 E–06 1.17 E–03 4.60 E+02 1.22 E–02 4.62 E+03 3.48 E–04 1.60 E+02

Table 5.5: Combined variable x in heat transfer example: error convergence, error
bounds, and effectivities as a function of M .

M εJN,max,rel ∆J,BNB
N,max,rel η̄J,BNB

N ∆J,PER
N,max,rel η̄J,PER

N ∆J,ALT
N,max,rel η̄J,ALT

N

2 3.48 E–02 1.12 E+03 1.59 E+04 1.77 E+04 1.71 E+05 4.04 E+02 4.69 E+03
8 6.67 E–05 1.09 E+00 2.68 E+04 9.46 E+00 3.18 E+05 2.85 E–01 8.22 E+03
16 1.09 E–06 1.30 E–02 3.01 E+04 5.79 E–02 3.79 E+05 2.60 E–03 1.24 E+04
24 1.07 E–08 2.04 E–04 2.39 E+04 1.95 E–03 3.29 E+05 6.34 E–05 1.05 E+04
32 1.83 E–09 1.26 E–05 1.75 E+04 1.91 E–04 2.07 E+05 5.32 E–06 7.02 E+03
40 3.17 E–10 2.54 E–06 1.41 E+04 1.23 E–05 1.56 E+05 4.98 E–07 5.33 E+03
45 1.40 E–11 2.27 E–07 2.44 E+04 1.43 E–06 3.96 E+05 4.11 E–08 1.29 E+04

Table 5.6: Cost functional J in heat transfer example: error convergence, error
bounds, and effectivities as a function of M .

We finally consider the online computational cost for solving the reduced basis
optimal control problem compared to the truth optimal control problem. On average
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(over Ξtest) it takes 1.23 seconds to solve the truth optimal control problem based
on our finite element discretization. Depending on the reduced basis dimension 1 ≤
M ≤ Mmax = 45 it takes between 1.43 and 5.91 milliseconds to solve the reduced
basis optimal control problem resulting in speedups ranging from 208 to 860. Taking
into account the computation of the error bounds (consisting mainly of the online
residual calculation and evaluating αLB

a (µ)) the online cost for the reduced basis
solution ranges from 2.21 to 9.02 milliseconds which in turn corresponds to a speedup
of 136 up to 557. Note that the computational time required for the error bound
computation is only a small fraction of the reduced basis solution time.

5.3. Performance of error bounds for varying regularization parameter.
In this section we investigate the behavior of the parametrized optimal control problem
and the performance of the error bounds for different choices of λ. We again consider
the Graetz flow and heat transfer problem introduced in the last two sections and
generate five different reduced basis spaces for λ = 1, 0.1, 0.01, 0.001, and 0.0001 using
the greedy sampling procedure. In Table 5.7, we present the number of reduced basis
functions Mmax required to achieve the prescribed sampling tolerance εtol,min = 10−4

vs. the value of the regularization parameter λ (note that λ = 0.01 corresponds to
the case discussed in the last two sections). As one can expect the reduced basis
dimension Mmax increases for decreasing λ. The main reason for this behavior is the
increased parametric complexity for smaller values of λ, although we will next observe
that the effectivities of the error bounds (in the greedy sampling we use the relative
ALT control error bound) will also increase slightly for decreasing λ.

λ 1 0.1 0.01 0.001 0.0001

Graetz flow Mmax 13 16 19 22 24

Heat transfer Mmax 35 39 45 50 61

Table 5.7: Size of Reduced Basis Mmax to achieve desired accuracy of εtol,min = 10−4.

We will now turn to the influence of λ on the error bounds. In Figure 5.4, we
present the average (over the test set Ξtest and reduced basis dimension M) control
error bound effectivities, ∆u,•

N (µ)/‖eu,∗(µ)‖U(µ), as a function of λ for the Graetz flow
and heat transfer problem. Note that this corresponds to five separate evaluations
each for a fixed λ ∈ {1, 10−1, 10−2, 10−3, 10−4}. In addition to the previous tables we
also show two more bounds: the original perturbation bound as defined in (4.9) and
the λ-scaled bound BNB-λ which measures the error in the ‖·‖Xλ(µ)-norm instead
of the ‖·‖X(µ)-norm. Also recall that the original perturbation bound (4.9) is not
online-efficient since it requires a state and adjoint truth solve. We first observe that
the effectivities of all bounds increase with decreasing λ. Furthermore, they scale
— except for the ALT-bound — with approximately 1/λ for λ ≤ 10−2, whereas the
ALT-bound shows approximately a scaling with 1/

√
λ. We recall our discussion after

Proposition 4.7 explaining this effect. We also observe that the PER-bound performs
slightly better than the BNB-λ and BNB-bounds (again, taking the additional overes-
timation due to βLB

Ba (µ) into account); however, all three bounds become meaningless
for small values of λ. In contrast, the ALT-bound effectivity remains acceptable even
for λ = 10−4 and is remarkably even smaller than the original (online-expensive)
perturbation bound for small values of λ.

In Figure 5.5 and Figure 5.6, we present the corresponding results for the average
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Fig. 5.4: Average control error bound effectivities (over M and Ξtest) vs. regularization
parameter λ for Graetz flow (left) and heat transfer problem (right)

combined error bound effectivities, ∆x,•
N (µ)/‖ex,∗(µ)‖X(µ), and average cost functional

error bound effectivities, ∆J,•
N (µ)/|J∗(µ) − J∗N (µ)|, respectively. Note that for the

bound BNB-λ the error is measured in the Xλ(µ)-norm. Overall, we observe a similar
behavior as for the control variable. We do note, however, that the effectivity of
the λ-scaled bound BNB-λ is in most cases approximately one order of magnitude
smaller than for the non-scaled BNB-bound. The scaling thus allows to improve the
effectivity especially for the cost functional error bound.
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Fig. 5.5: Average X-norm error bound effectivities (over M and Ξtest) vs. regulariza-
tion parameter λ for Graetz flow (left) and heat transfer problem (right)

6. Conclusions. The solution of distributed optimal control problems governed
by parametrized elliptic PDEs is a challenging and often time-consuming task, espe-
cially if one is interested in solutions at many different parameter values. We therefore
employed the surrogate model approach and replaced the original high-dimensional
PDE approximation by its reduced basis approximation. We also presented two new
rigorous a posteriori error bounds for the optimal control and associated cost func-
tional. The first one is based on a perturbation argument and is an extension of our
previous work in [6, 14] to distributed optimal control problems. The second one is
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Fig. 5.6: Average cost functional error bound effectivities (over M and Ξtest) vs.
regularization parameter λ for Graetz flow (left) and heat transfer problem (right)

derived directly from the error residual equation of the optimality system and has —
to the best of our knowledge — never been proposed before. We showed that the
reduced basis optimal control problem and the a posteriori error bounds can be eval-
uated efficiently using the standard offline-online computational procedure, resulting
in online computational savings of O(100).

We also compared the two proposed bounds to an a posteriori error bound based
on the Banach-Nečas-Babuška (BNB) theory proposed in [22]. Concerning the com-
putational cost and implementation effort, the proposed bounds present several ad-
vantages compared to the BNB-bound: we only require constants resp. their upper or
lower bounds which are inexpensive and straightforward to evaluate, whereas evalua-
tion of a lower bound of the Babuška inf-sup constant for the BNB-bound is (offline-
)expensive and difficult to implement. Furthermore, although the performance of the
PER-bound is overall similar to the BNB-bound, it has a much wider applicability,
e.g., to parabolic problems involving control constraints [15]. The ALT-bound per-
formed best overall, delivering the sharpest a posteriori error bounds and the best
scaling with respect to the regularization parameter λ. The extension of this bound
to parabolic optimal control problems is a topic of current research.
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