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Integrating release and dispatch policies in
production models based on clearing functions

Dieter Armbruster, Michael Herty, Xinping Wang, and Lindu Zhao

Abstract—Aggregate production planning for highly re–
entrant production processes is typically generated by find-
ing optimal release rates based on clearing function models.
For production processes with very long cycle times, like in
semiconductor production, dispatch policies are used to cover
short term fluctuations. We extend the concept of a clearing
function to allow control over both, the release rates and priority
allocations in re-entrant production. This approach is used to
improve the production planning problem using combined release
and the allocation dispatch policy. The control parameter for
priority allocation, called the push-pull point (PPP), separates the
beginning of the factory which employs a push policy from the
end of the factory, which uses a pull policy. The extended clearing
function model describes the output of the factory as a function
of the work in progress (wip) and the position of the PPP. Its
qualitative behavior is analyzed. Numerical optimization results
are compared to production planning based only on releases. It is
found that controlling the PPP significantly reduces the average
wip in the system and hence leads to much shorter cycle times.

Note to Practitioners: Abstract—This study is focussed on
the semiconductor production industry where multiple passes
through the same machines (re-entrant production) are common.
We show that changing priority rules is essentially a re-allocation
of spare production capacity which may lead to significantly
reduced lead times. In addition, a control scheme that determines
the changes in the priority rules is shown to lead to smaller safety
stocks for large demand fluctuations compared to a static priority
rule.

Primary and Secondary Keywords Index Terms—Production
planning, dispatch control, partial differential equations, re-
entrant production.

I. INTRODUCTION

In high-technology capital-intensive industries such as semi-

conductor manufacturing, many machines are repeatedly used

for similar processing operations resulting in a re–entrant

product flow. In such a re-entrant production line, semi-

conductor wafers return to the same set of machines many

times. The associated cycle times are typically on the order

of months. However, the demand fluctuates on a smaller

timescale (typically weeks), strongly impacting the problem of

production planning and generating the need for large safety

stock in inventories. Besides the possibility to vary the inflow

of the factory the only other option to influence the output

of the factory is via dispatch policies. Specifically, re-entrant

production creates the opportunity to set priority rules for the
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various stages of production competing for capacity at the

same machines. This dispatch policy is also called priority

allocation and typically allows for two modes of operation.

A push policy, also known as first buffer first served policy,

gives priority to earlier production steps over later production

steps, and is typically assigned to the front of the factory.

A pull policy, also known as shortest-expected-remaining-

process-time policy, gives priority to later production steps

over earlier production steps and is used at the end of the

factory. The step where push policy switches to pull policy is

called the push-pull point (PPP). Moving the PPP is a change

in dispatch rules that can in principle be done instantaneously

without affecting the work in progress (wip) in the factory at

that moment. However, it has significant short term effects on

the wip as well as the total output.

Push and pull policies are a special cases of dispatch policies

which are widely used methods for shop-control problems

[20], specifically also in the semiconductor industry [7], [22].

We refer to [25], [11] for survey articles. Typically dispatch

policies are First-In, First-Out (FIFO), Shortest Processing

Time (SPT), Earliest Due Date (EDD), Shortest Remaining

Processing Time (SRPT), Least Slack (LS), Least Setup Cost

(LSC), or combinations thereof [27], [18]. Usually a dispatch

policy is fixed over the time interval of interest. However, some

researchers consider dynamic characteristics of the shop-floor

system and develop heuristic dispatching policies following

the change of shop-floor systems [24], [26], [28], [14], [19].

A PPP dispatch policy is a highly simplified version of policies

used in practice at INTEL to deal with short term fluctuations

of the demand. A simulation study based on a discrete event

simulation model of a semiconductor factory [23] showed that

a heuristic PPP dispatching policy, coupled with a CONWIP

starts policy, significantly reduces the difference between

production output and demand for high demand with high

variance.

The production planning problem, i.e. to generate a spe-

cific output within a specific time frame, has recently been

summarized for example in the Operations Research Tutorial

[4]. In general, it refers to two closely related problems: The

forward problem determines the production rate depending

on the current wip and a given release signal. The back-

ward problem determines the releases required to produce

a desired output pattern over time. The simplest approach

involves deterministic linear programming (LP) models based

on discrete time periods. These models divide the planning

horizon into discrete time buckets, and determine the output

in each time bucket under a set of constraints representing

system capacity and dynamics at an aggregate level [13]. More
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sophisticated approaches involved the concept of a clearing

function [16]. Fundamentally, a clearing function describes the

expected aggregate output in a planning period as nonlinear

function of the wip. A general relation between cycle time and

wip for multi-product production is described using (allocated)

clearing functions in [6] and in [21] those functions are

estimated from data. Further details can be found in [4].

In [4] it was also shown that a clearing function approach

can be viewed as a discretization of a continuous flow model,

describing the flow of products through a factory like a fluid

flow. Introducing a variable x to describe the production stage

x ∈ [0, 1] a continuous model based on the clearing function

F may be written as

∂tρ + ∂xF = 0,

where ρ describes the product density at stage x and time t.
Here, x = 0 refers to the point of raw material and x = 1 to

the finished product. Equations of this type have been studied

for example in [3], [9], [12], [1].

Refining a model proposed in [2] we derive an extended

continuum model based on clearing functions to integrate the

impact of the dispatch policies and in particular to allow for

changes in the PPP. We follow the presentation in Asmundsson

et al. [6] and consider the production planning problem as

a nonlinear optimization problem. In section II we present

a detailed derivation of the extended model, its numerical

discretization is discussed in section III. Section IV discusses

the control action while the optimization results for simulta-

neously optimal PPP dispatch policies and release policies are

presented in section V.

II. CLEARING FUNCTION FOR RE–ENTRANT PRODUCTION

LINE WITH PUSH-PULL DISPATCH POLICIES.

Before introducing the model we give a definition of a push-

pull dispatch policy.

Definition 2.1: Let x = ξ be the PPP and p(y) > p(z)
define a higher priority for step y over step z. Then, for two

parts at positions y and z competing for machine capacity,

• if y > z > ξ then p(y) > p(z). This is the pull regime

of the factory.

• if y < z < ξ then p(y) > p(z). This is the push regime

of the factory.

• if z < ξ < y then p(y) > p(z). Every stage in the pull

regime has priority over every stage in the push regime.

A sketch of the factory under consideration including the

different regimes is given in Figure 1.

Fig. 1. Schematic view of a re–entrant production line with inflow λ and
PPP being ξ.

We describe the factory using a clearing function approach

using Kamarkar’s clearing function [16], [15]

F ss = α (1− exp(−βW ss)) . (1)

Here W ss is the average number of parts in the production unit

reflecting the wip, F ss is the corresponding average output

measured in parts per minute and α, β > 0 are two constant

parameters: α is the maximal throughput (the capacity of the

factory) and αβ is the the slope of F ss(W ss) at W ss = 0, i.e.

the marginal increase of the throughput for small wip. Note

that the clearing function is a relationship between steady state

quantities, i.e. for a stationary start rate F ss = λ, equation

(1) describes the relationship between steady state output and

steady state wip. Inverting the clearing function gives us the

steady–state wip W ss as a function for a constant start rate of

λ < α,

W ss(λ) =
1
β

log(
α

α− λ
). (2)

By Little’s law the mean cycle time is given as τ = F ss

W ss .

Defining a velocity v = 1
τ , mass conservation on the average

is reflected in the relation for an equilibrium output.

F = Wv. (3)

¿From equation (3) and (2) we obtain the steady–state velocity

v(λ) = βλ 1
log( α

α−λ ) . Note that this velocity is constant in x

since the wip is an integral quantity.

In order to obtain a stage–dependent model we need to

specify the relationship between the clearing function for a full

factory and a clearing function for a factory that has length or

size y. The most simple modeling assumption is that in steady–

state the function y → F ss(W ss(y)) is linear in y. This

leads to F ss(W ss(y)) = λy or equivalently, still assuming

Karmarkar’s functional form of the clearing function,

W ss(y) =
1
β

log(
α

α− λy
). (4)

Derivation of a clearing function for a pull policy
Since we are interested to address the changes in the output

that are generated by changing dispatch policies the production

rate at position x depends on its distance from the PPP ξ.

Hence in the pull regime, parts at a position x > ξ always

have priority over parts at a position y < x and hence wip

upstream from x does not matter. Therefore the relevant wip

becomes the wip downstream from a position x. We therefore

define the wip in the pull regime as

W pull = W pull(x) =
∫ 1

x

ρ(x)dx. (5)

In equation (5) ρ(x) is the product density at stage x. Since

priority affects the speed of moving through the production

line, the velocity v(x), even in equilibrium, is not constant

any more. Hence, the fundamental hydrodynamic relationship

between flux (here the production rate) and velocity becomes

F = ρv (6)

and thus replacing F = Wv. Rewriting equation(5) by

ρ(x) = − d
dxW pull(x) and using the steady state wip equation
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(4) with W ss(1 − x) for the wip in the pull regime, we get

the wip profile in the pull regime in terms of the steady state

product density ρpull(x) as

ρpull(x) =
λ

β (α− λ(1− x))
. (7)

Hence for a constant start rate of λ, and the definition of a

flux as in equation (6) we obtain the steady state velocity in

the pull region

vpull(x) = β(α− λ(1− x)).

Derivation of a clearing function for a push policy
It has been shown in [23] that the cycle time of a production

line, run completely in push mode, is higher than the cycle

time of a production line run completely in pull mode.

Specifically, given the same wip, the output and hence the

velocity of a factory in push mode is lower than a factory in

pull mode. Assuming a PPP at ξ, the velocity at x = 0 can

be written as

vpush(x = 0) = K min
ξ≤x≤1

vpull(x) = Kβ(α− λ(1− ξ)).

with K < 1. With the same arguments as for the pull regime

we then get a spatially dependent equilibrium velocity and

equilibrium density in the push regime, i.e. for 0 < x < ξ of

the form:

vpush(x) = Kβ(α− λ(1− ξ)− λx),

ρpush(x) =
λ

vpush(x)
=

λ

Kβ(α− λ(1− ξ)− λx)
, (8)

W push(x) =
1

Kβ
log

(
α− λ(1− ξ)

α− λ(1− ξ)− λx

)
.

Note that in steady–state

W pull(x) =
1
β

log
(

vpull(1)
vpull(x)

)
, (9a)

W push(x) =
1

Kβ
log

(
vpush(0)
vpush(x)

)
, (9b)

vpull(1) = αβ, (9c)

vpush(0) = Kβ(α− λ(t)(1− ξ)). (9d)

Summarizing, the time–dependent model for the part density

ρ(t, x) at time t and stage x ∈ [0, 1] including a PPP at position

ξ ∈ [0, 1] and using the Heaviside function H(x) reads

0 = ∂tρ(t, x) + ∂xF (ρ, x, ξ) (10)

F (ρ, x, ξ) = ρ(t, x)v(ρ, x, ξ),
v(ρ, x, ξ) = H(x− ξ)vpull(1) exp(−βW pull(x))

+ H(ξ − x)vpush(0) exp(−KβW push(x)),

W pull(x) =
∫ 1

x

ρ(t, y)dy, W push(x) =
∫ x

0

ρ(t, y)dy.

with boundary conditions

ρ(t, x)v(ρ, x, ξ)|x=0 = ρ(t, 0)vpush(0) = λ(t). (11)

Note that the flux (production rate) at the position x in the

factory, F (ρ, x, ξ), depends explicitly on the specific PPP ξ

and via the functional dependence on the density on position

x and on time t. A related model has been studied theoretically

in [2].

A. Steady–states

By definition, in steady state the flux (production rate)

is constant along the production line even across the PP

and hence equal to start rate and to the output. However,

since the priorities change discontinuously at the PPP, the

velocities change discontinuously and hence the steady state

wip-profile does too. Figure 2 plots a typical wip-profile given

by equations (7) and (8).

Fig. 2. wip in push and pull region for the parameters K = 0.6, α = 1, β =
1, λ = 0.8 and a PPP at ξ = 0.6.

The total wip in steady state is given as

W =
∫ 1

0

ρ(x)dx = W pull(ξ) + W push(ξ). (12)

Using equation (9) this evaluates to W = − 1
β log(λξ+α−λ

α )+
1

Kβ log(λξ+α−λ
α−λ ) and d

dξ W = λ 1−K
Kβ(λξ+α−λ) > 0. Therefore,

the minimal total wip W is attained for ξ = 0. This reflects a

pure pull policy and is consistent with the fact that a pure pull

policy leads to the shortest cycle time and the lowest wip in

the factory. A graph of W as function of ξ is given in Figure

3.

III. A BUCKET MODEL OF THE CLEARING FUNCTION

An analytical solution for the partial differential equation

(PDE) (10) is in general not possible to obtain. Also, an

accurate numerical solution of equation (10) requires a full

discretization of stage and time of the partial differential

equation using possibly a large number of discretization points.

However, when the solution of an optimization problem re-

quires the iteration of solutions of the PDE a simplified model

is necessary to solve the optimization problem with finite
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Fig. 3. Total wip in steady state as a function of the PPP ξ for parameters
K = 0.6, α = 1, β = 1, λ = 0.8.

resources. Our model is motivated by finite–volume methods

for equation (10). It uses only three spatial grid points that are

naturally suggested by the model and is designed to be similar

to the way clearing functions are typically used for example

in [5].

We assume for the moment that ξ ∈ (0, 1) is fixed, dividing

the interval [0, 1] into two cells [0, ξ] and [ξ, 1], respectively.

We denote by ρpush(t) and ρpull(t) the corresponding cell

averages of ρ(x, t),

ρpush(t) =
1
ξ

∫ ξ

0

ρ(t, y)dy, ρpull(t) =
1

1− ξ

∫ 1

ξ

ρ(t, y)dy.

(13)

Note that the following relations always hold by definition of

W

W push(t, ξ) = ξρpush(t), W pull(t, ξ) = (1− ξ)ρpull(t).
(14)

The time–evolution of the cell averages ρpush(t) and ρpull(t)
are obtained by integration of equation (10) on the correspond-

ing intervals and using the inflow condition (11).

∂tρ
push(t) = 1

ξ (λ(t)− F (ρ, ξ−, ξ)) ,

∂tρ
pull(t) = 1

1−ξ (F (ρ, ξ+, ξ)− F (ρ, 1, ξ)) ,
(15)

where ξ± indicates the right and left limit at x = ξ. The

previous formulation is still exact. Within the flux (production

rate) function, the velocity v only depends on the wip given

by equation (14) but the flux F itself depends on the value

of ρ at position x = ξ and x = 1, respectively. In steady

state, in order to conserve mass across x = ξ we have to have

continuity in the flux at x = ξ,

F (ρ, ξ−, ξ) = F (ρ, ξ+, ξ). (16)

Since products flow across the boundary x = ξ from the push

to pull region, the production rate at x = ξ is given by the

output of the push region which is its production rate at this

point. Hence, the fluxes in equation (15) depend on the point

values of ρ(x = ξ, t) and ρ(x = 1, t), respectively.

In order to obtain a closed equation we need to express those

values in terms of the cell averages ρpush(t) and ρpull(t). This

is known in finite volume schemes as the reconstruction of

ρ(t, x), ∀x ∈ (0, 1). Typically, in a finite volume method, a

piecewise constant reconstruction, i.e., ρ(t, x) = ρpush(t)(1−
H(x − ξ)) + ρpull(t)H(x − ξ) is used. However, as can be

easily seen from Figure 2 the steady state wip profile is

far from being piecewise constant. In particular, a piecewise

constant reconstruction will not preserve the steady–state wip

equation (12) and hence violates the clearing function model

assumption of a relationship between steady state wip and

steady state flux.

Therefore we reconstruct ρ(t, x) based on the explicit

formulas for the steady–states. Specifically, assuming a cell

in the push region is in steady state, the values of the cell

average ρpush is determined by 1
ξ

∫ ξ

0
ρpush(x)dx = ρpush

where ρpush(x) is given by the steady state equation (8). Hence

by eliminating λ we can reconstruct ρ(t, x = ξ) as a function

of the cell average

ρ(t, x = ξ) =
1

Kβξ
(exp(Kβξρpush(t))− 1) . (17)

Using W push(ξ) from the steady state relation equation (9b)

and with W push(t, ξ) = ξρpush(t) we find the flux F (ρ, ξ−, ξ)
as

F (ρ, ξ−, ξ) =
vpush(0)

Kβξ
(1− exp(−Kβξρpush(t)) . (18)

Similarly, in the pull region [ξ, 1], using the steady state (7) and

the steady state relation equation (9a) we reconstruct ρ(t, x =
1) and the corresponding flux F (ρ, 1, ξ) as

ρ(t, x = 1) = α
βα(1−ξ) (1− exp(−β(1− ξ)ρpull(t)) ,

F (ρ, 1, ξ) = vpull(1) α
βα(1−ξ) (1− exp(−β(1− ξ)ρpull(t))) .

(19)

Now, we have closed form of the model given by (15) together

with (17) and (19). The only approximation applied is the

reconstruction of the cell densities ρ using the cell averages

ρpush and ρpull. The presented reconstruction preserves the

original steady states. This is summarized in the following

Lemma.

Lemma. The approximate model given by equation
(15),(17),(18) and (19) are a closed system of equations for
the evolution of the cell averages ρpush(t) and ρpull(t). Its
steady–state solution (ρpush, ρpull) lead to wips in the push
and the pull section given by equation (14) that coincide with
the steady–state wip of the continuous model (9) evaluated at
x = ξ and x = 1 respectively.

Note that by using the definitions of vpush(0) and vpull(1)
we may reformulate the fluxes as

F (ρ, ξ−, ξ) = F (ρ, ξ+, ξ)

=
α− λ(1− ξ)

ξ
(1− exp(−Kβξρpush(t)) ,

F (ρ, 1, ξ) =
α

(1− ξ)
(1− exp(−β(1− ξ)ρpull)) .

For the numerical treatment of equation (15) it is advanta-

geous to consider the formulation in terms of W push(t, ξ)
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and W pull(t, ξ) given by (14) instead of the cell averages.

Therefore, we multiply by ξ and 1 − ξ, use the previously

computed flux and obtain the following equivalent set of

equations.

∂tW
push(t, ξ) = λ(t)

−α−λ(t)(1−ξ)
ξ (1− exp(−KβW push(t, ξ))) ,

∂tW
pull(t, ξ) = α−λ(t)(1−ξ)

ξ (1− exp(−KβW push(t, ξ)))
− α

(1−ξ) (1− exp(−βW pull(t, ξ)) .

Next, we discretize the system in time to advance the push

and pull wip from time tn to time tn + Δt for some Δt. An

explicit in time discretization would require to fulfill the CFL

condition [8] i.e., Δt ≤ min{ξ,1−ξ}
max{vpull(1),vps(0)} . In order to avoid

possibly small time–steps we instead discretize equation (10)

implicit in time with time step Δt = 1. We further introduce

the following notation

W−
t := W push(ξ, tn), W+

t := W pull(ξ, tn),
Rt := λ(tn),

Yt := Y (tn) ≡ α−Rt(1− ξ)
ξ

(
1− exp(−KβW−

t )
)

Xt := X(tn) ≡ α

(1− ξ)
(
1− exp(−βW+

t )
)
.

Using the new notation the fully discretized model finally

reads for t = 0, 1, . . . ,

W−
t = W−

t−1 + (Rt − Yt) , (20a)

Yt =
α−Rt(1− ξ)

ξ

(
1− exp(−KβW−

t )
)

(20b)

W+
t = W+

t−1 + (Yt −Xt), (20c)

Xt =
α

(1− ξ)
(
1− exp(−βW+

t )
)
. (20d)

Comparing (20) with the model equation (10) which is con-

tinuous in space and time we observe that the complexity

of the partial differential equation is reduced to a coupled

set of four difference equations. Not coincidentally, these

difference equations have the same structure as the mass

balance equations set up in standard production planning

models based on nonlinear clearing function models [5], [6].

IV. MOVING THE PUSH–PULL POINT

The model discussed in the previous section requires the

PPP to be fixed over time. We are, however, interested to use

a moving PPP as a controller for the output of the production

system. A change in the position of the push–pull point, leads

to additional waves traveling through the production line, see

[2], [23], that can be tracked only by solving the fully time

dependent PDE model. Instead, even though equation (20) is

only derived from equation (10) for constant λ and ξ, we

intend to use this model also in the case when λ and ξ change

over time by approximating the impact of the change in the

PPP through the differences in the total wip in the production

line. The underlying assumption is that the system has returned

to steady state much faster than the timescales that govern our

control changes.

To determine the impact of such a control change, we

assume the push–pull point changes within one time unit from

ξt−1 = ξ to ξt = ξ. The resulting steady–state wip-profile will

be of the type shown in Figure 2 but with a discontinuity at

ξ instead of ξ. If λ (resp. R) is constant, the difference in the

work–in–progress in the push and pull region induced by the

different steady states can be computed as

W− =

⎛
⎝ W̄− ξ

ξ
ξ ≤ ξ

W̄− + W̄+ ξ−ξ

1−ξ
ξ > ξ

⎞
⎠ , (21)

W+ =

⎛
⎝W̄+ + W̄−

(
1− ξ

ξ

)
ξ < ξ

W̄+ 1−ξ

1−ξ
ξ ≥ ξ

⎞
⎠ , (22)

where the wip before and after the jump is called W̄± and

W±, respectively. Then, the complete model approximating

the dynamics of (10) reads

W−
t = [W−

t−1 − Yt + Rt][ ξt

ξt−1
H(ξt−1 − ξt) + H(ξt − ξt−1)]

+ [W+
t−1 + Yt −Xt]

ξt−ξt−1
1−ξt−1

H(ξt − ξt−1),

W+
t = [W−

t−1 − Yt + Rt](1− ξt

ξt−1
)H(ξt−1 − ξt)

+ [W+
t−1 + Yt −Xt][ 1−ξt

1−ξt−1
H(ξt − ξt−1) + H(ξt−1 − ξt)].

(23)

Here, Xt and Yt are given as before in equation (20). We

may further add an inventory to the model buffering the

outgoing parts Xt and comparing with a given demand Dt. In

discretized form the inventory evolution It over time reads

It = It−1 + Xt −Dt. (24)

Non-negativity constraints complete the model

0 < ξt < 1, 0 ≤W+
t , 0 ≤W−

t , 0 ≤ Rt, 0 ≤ It. (25)

Contrary to [5] the final model is nonlinear in the dynamics.

However, by relaxing the equality constraints on Xt and Yt to

inequalities

0 ≤ Xt ≤ α

(1− ξt)
(
1− exp(−βW+

t )
)
. (26)

and

0 ≤ Yt ≤ α−Rt(1− ξt)
ξt

(
1− exp(−KβW−

t )
)
, (27)

we significantly reduce computational time. This is possible,

since the flux is monotone in W±
t .

The final production planing problem is therefore given by

the nonlinear programming problem

min
Rt,ξt

∑
t

Rt + Xt + Yt + W+
t + W−

t + It (28)

subject to (23), (24), (25), (26), and (27). (29)

Notice that the nonlinearity only enters through the movement

of the PPP ξt and through the clearing function. If we fix

ξ = 0 we obtain the model presented in [6] (using Karmarkar’s

clearing function) where it also has been shown that problem

(28) can be solved efficiently. The variables and relations are

depicted in Figure 4.
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Fig. 4. Schematic view of the production planning problem equation (28)
with inflow Rt and PPP ξt.

V. NUMERICAL RESULTS

To understand the interplay between the dispatch policy

(moving the PPP) and the starts policy we study the production

planning model introduced in Section 4 numerically. Using

K = 0.6, α = 1 and β = 1 parametrizes a typical clearing

function model which leads to a dependence of the total wip

on the PPP ξ as depicted in Figure 3.

The nonlinear optimization problem (28) is solved using

an interior–point method implemented in Matlab’s fmincon
function. Convergence for all scenarios shown below has been

observed. Matlab’s optimization method is used as black–box

solver with no further modifications. The initial value for the

optimization is set as the steady state computed in Section

II-A and for ξ = 0.01.

We consider two scenarios: As reference scenario we

optimize a model with the PPP set equal to zero. Then,

the optimization problem (28) reduces to finding the optimal

inflow over time Rt for t = 1, . . . , T which is an allocation

problem for wip, inventory and inflow rate, given a desired

demand Dt over a time horizon T . For a deterministic and

constant demand, the optimal solution is the steady state with

a pure pull policy and constant inflow rate.

Our test scenario involves solving the full optimization

problem (28) for the unknown inflow Rt as well as the

time–dependent PPP position ξt. Due to the relatively small

number of unknowns in the model we do not observe any

computational disadvantage when optimizing with variable

PPP compared to the case of ξt = 0. Since the equations (28)

are formally not defined for ξt = 0 we bound the possible

values of ξ by ξ ∈ [0.005, 0.995].
To average over the stochastic demand realizations we solve

3000 realizations of the optimization problem (28) for each

fixed ε and each scenario and average to compute mean and

variance of all variables. The following figures show the means

and Table I and II present standard errors. We choose to

optimize over a time horizon of T = 20 but restrict our figures

to always show only the time interval t ∈ [5, 15] to avoid initial

or terminal transition layers.

Case of deterministic demand
For a steady state influx of λ = 0.75, a constant deterministic

demand Dt = λ and ξ = 0.01, based on Section II-A

we obtain the steady–state wip of W− = 0.0493 and

W+ = 1.3567, respectively with an optimal input Rt = λ,

optimal inventory of It = 0 and optimal PPP at ξ = 0.01.

Both scenarios converge to this solution. Figure 5 shows this

for the optimization of our test and reference scenario.

5 6 7 8 9 10 11 12 13 14 15
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0.6
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1

1.2

1.4

t

Rt ξt
Xt Yt W−

t W+
t

It

Fig. 5. Optimal values for different state variables under PPP policy with
deterministic customer demand Dt = 0.75.

Case of stochastic demand
We define stochastic demands as Dt = 0.75 + εZt where Zt

is a random variable with uniform rectangular distribution in

[− 1
2 , 1

2 ] at every point in time and ε is a parameter that controls

the variance of the demand. We vary ε ∈ (0.25, 1.5). This in

particular implies that for ε = 1 the demand might be as low as

0.25 and also possibly higher than the maximum production

capacity of one. Note that for the given sets of parameters

using Little’s law, the cycle time in steady state for a pure pull

policy is τpull = 1.87 and for a pure push policy is τpush =
3. Since the demand variations occur on a timescale that is

significantly shorter than the cycle time, the reference scenario

will not be able to follow these fluctuations via changes in

the inflow. As a result, the inventory increases approximately

linearly with ε for the reference scenario (Figure 6).

For the test scenario, the variation in ξ creates additional

variability that need to be covered by an increased inventory.

Hence for small noise levels, the inventory for the moving

PPP is higher than for the reference scenario. Only for noise

levels ε > 1 is the inventory of the reference scenario higher

(Figure 6).

In Figure 7 we present the mean of all variables in the two

scenarios for the noise level ε = 1 as a function of time. Figure

7 (a) shows that for the reference scenario the average values

of fluxes and wip converge well to the steady–state values.

Here the optimal strategy is to buffer the variable demand via

inventory and to not adjust the inflow.

Figure 7 (b) shows some residual variance for the average

over 3000 runs in the test scenario. We find that on average,

the PPP sits at ξ = 0.4. The major difference between the two

scenarios is the wip-level. In the test scenario, the total wip

on average is W = W+ +W− ≈ 0.65+0.1 = 0.75 compared

to W ≈ 1.4 for the reference scenario.

Figure 8 shows that the reduction in wip is mostly due to

a strong reduction in the wip in the pull region (W+). The



7

0.25 0.5 0.75 1 1.25 1.5
0

1

2

3

4

5

6

ε

A
cc

um
ul

at
ed

 I

PPP policy
Fixed PPP

Fig. 6. Mean inventory levels as a function of the noise strength ε.
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Fig. 7. Optimal values for different state variables under fixed PPP (left)
and variable PPP (right) with stochastic demand Dt = 0.75 + ε Zt where
Zt is a random variable with rectangular distribution in [− 1

2
, 1
2
] and ε = 1.

reduction is strong for all noise levels and increases slightly

with increasing noise amplitude. By Little’s law this wip

reduction leads to a significant reduction in the cycle time:

For a noise level ε = 1, a total wip of W ≈ 0.75 and an

average influx of λ = 0.75, the cycle time τ ≈ 1 compared

to, as discussed above, τpull = 1.87 for a pure pull policy and

τpush = 3 for a pure push policy.

There is one additional puzzling result in Figure 7(b): The
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Fig. 8. Average accumulated wip in the push region (left), in the pull region
(right) as a function of the noise level ε for the reference scenario (fixed PPP
policy) and the test scenario (variable PPP policy).

average flux at the PPP (Y) is significantly less than the steady

state flux. This seems to contradict mass conservation since

clearly we have to have on average a total flux of λ = 3/4
everywhere. The reason why mass conservation is valid even

for a lower mean flux at the PPP, is that the PPP is changing at

every time step and on average there will be an equal number

of jumps upstream and downstream. Looking at the wip-profile

in Figure 2 we see that the gain in W+ for a jump upstream

is much larger than its loss in wip for a jump downstream.

Hence the jump action of the PPP acts like a pump, moving

wip downstream making up for the missing flux at the PPP.

Finally, in Table I and II we show the standard errors

for some of the variables, accumulated for t = 5 . . . 15. We

observe that for the reference scenario the mismatch between

demand and outflow has a standard error of less than 3% for

all noise levels, indicating that all 3000 samples pretty much

behave the same way. For the test scenario the standard error

for the same variable lies between 6 and 9% with an outlying

maximal value of 12% occurring for small noise ε = 0.25.

Similar observations with similar standard error values can be

made for cumulative wips and inventories.

VI. SUMMARY

Extending the standard model of approximating the pro-

duction rate of a factory via a clearing function [16], we
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ε
∑15

t=5
|Xt −Dt|

∑15

t=5
W−

t

∑15

t=5
W+

t

∑15

t=5
It

0.25 0.0033 0.0027 0.0224 0.0037
0.5 0.0075 0.0064 0.0498 0.013

0.75 0.0124 0.0112 0.0761 0.03
1.0 0.0177 0.0142 0.0964 0.0537

1.25 0.0233 0.0171 0.1194 0.0817
1.5 0.0294 0.0192 0.1366 0.1093

TABLE I
STANDARD ERROR, ε, OF SELECTED ACCUMULATED VARIABLES FOR

DIFFERENT STOCHASTIC DEMANDS AND USING A FIXED PUSH–PULL

POINT.

ε
∑15

t=5
| Xt −Dt |

∑15

t=5
W−

t

∑15

t=5
W+

t

∑15

t=5
It

0.25 0.1213 0.0527 0.1281 0.0734
0.5 0.074 0.0308 0.0877 0.0515

0.75 0.0659 0.0275 0.0615 0.0487
1.0 0.0673 0.0309 0.0688 0.0545

1.25 0.0788 0.0361 0.076 0.0726
1.5 0.0893 0.0375 0.0792 0.0746

TABLE II
STANDARD ERROR, ε, OF SELECTED ACCUMULATED VARIABLES FOR

DIFFERENT STOCHASTIC DEMANDS FOR VARIABLE PUSH–PULL POINT.

have developed a clearing function model for a re-entrant

factory that includes a push dispatch policy (first buffer first

served policy) at the front of the factory and a pull policy

(shortest-expected-remaining-process-time policy) at the end

of the factory. The transition point between the two dispatch

policies is called the PPP and is used as an additional control

parameter besides the start rate into the factory to optimize

the production planning problem.

For constant PPP we have developed a partial differential

equation based on the notion of continuous transport that

models the progress of wip through the factory under the two

dispatch policies. The resulting PDE serves as the bases for a

linearized approximation of the influence of jumps in the PPP.

The accurate production planning problem would require to

optimize a cost function, under the constraint that wip and

fluxes are related through the PDE for this model. Such an

approach has been done for a uniform FIFO dispatch policy,

optimizing the start rate, based on the use of adjoint calculus

for constraint optimization problems [17]. In this paper, to

keep things simple, we have discretized the PDE into two

buckets, the push bucket and the pull bucket using a numerical

finite volume scheme. While the resulting numerical errors

are necessarily high due to the use of large step sizes, the

scheme looks exactly like traditional discretizing of production

planning as discussed in [4], [6].

We have studied the resulting nonlinear optimization prob-

lem for the time dependent influx and the time dependent

PPP in a representative case, where the change in the demand

occurs on a time scale that is faster than can be controlled by

changing the releases into the factory. As a result, without the

control action of the dispatch policy, the inventory needed to

satisfy the demand increases linearly with the variance of the

demand signal.

Using the changing PPP as a dispatch control leads to

increased variance in the lead time and in the outflow of the

factory, hence requiring a higher inventory than for the pure

influx control for small variation in the demand signal, entirely

consistent with standard theory on safety stock [10]. However,

the inventory stays essentially constant as the variance of the

demand signal increases, leading to inventories that are lower

than those for pure influx control for large changes in the

demand. The main benefit of the extra control action is the

reduced average wip in the factory which translates via Little’s

law into a reduced cycle time: The optimized test scenario,

based on variable releases and variable PPP has a cycle time

that is less than half of the cycle time obtained by a fixed PPP

in the middle of the factory. In hindsight this is intuitive: Since

we were running the factory at a utilization of 0.75, 25% of

the factory’s capacity is unused in steady state. Moving the

PPP moves regions of high wip into the high priority regions

allowing productive use of that extra capacity leading to a

reduced cycle time.

We expect that the increased variance in the outflow due

to the changes in the dispatch control are to a large extend a

result of the two bucket approximation of the PDE, and to a

smaller extend to the linear approximation of the changes in

wip due to PPP jumps. Hence a more accurate solution of the

optimization problem, solving the PDE with high accuracy in

every optimization step, should lead to a better match between

outflow and demand for every time step and hence to a reduced

inventory. We will pursue this research direction in the future.
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differenzengleichungen der mathematischen physik, Mathematische An-
nalen, 100 (1928), pp. 32–74.



9
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