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DATA–FITTED SECOND–ORDER MACROSCOPIC PRODUCTION

MODELS
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Abstract. Starting from discrete event simulations based on sampled data we sim-
ulate the interplay between product density and flux. Data-fitting helps to determine
the right parameters for clearing functions to close first and second order conservation
laws. For the first order case well-known relations from M/M/1-queuing theory can be
reproduced and numerically extended to transient behavior. To include more informa-
tion from the data into the model, a second equation is introduced leading to a second
order production model which is close to the Aw-Rascle-Zhang model known from
traffic flow. Numerical comparisons show similarities and, in particular, differences of
the modeling approaches.
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1. Introduction

Recently, macroscopic or fluid–like models have been introduced to model high–volume
product flow [4, 8, 15, 16, 17, 18, 20, 26]. In some cases the fluid–like models have been
derived as mean field limit [4, 7] to microscopic product dynamics. Those dynamics are
inspired by discrete event simulations (DES), see [14]. The DES is a stochastic simulation
for individual particles whereas the fluid–like continuous models describe the production
flow in an aggregate way leading to coarse-grained and computationally efficient models.
The proposed continuous models are conservation laws

∂tρ+ ∂xF (ρ) = 0

for the product density ρ(x, t) at production stage x ∈ [0, 1] and time t ≥ 0. Here, the flux
function F is called function. Starting with Graves [22] and Karmarkar [27] monotone,
concave clearing functions have been proposed and are now used as modeling technique in
production engineering, see for example [10, 11, 31]. Other approaches to derive clearing
functions through mean field limit [4, 7] or by comparison with observed behavior [6]
have been also studied. Under simplified assumptions the fundamental relation between
F and ρ is obtained rigorously as steady–state by queuing theory. In the case of a single
unlimited buffer, Poisson processes for the arrival of products and a Poisson process

for the production time M/M/1 one obtains F = µW
1+W

, where W =
∫ 1
0 ρ(x, t)dx is the

(total) work-in-progress (wip), see for example [25]. We may use ρ and W equivalently
whenever ρ is constant in x. Here, µ is the production rate and F the arrival rate. In [31],
a clearing function for an M/G/1 is proposed including parameters that may adjusted
to given data. The resulting clearing function is again a steady–state consideration and
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in general for models based on product flow no transient clearing function model has
been derived [32]. It has been observed [30] that in different production periods different
clearing functions may be suitable. We also refer to [9, 16] for an overview.

In this paper we propose a different approach using data to establish the clearing
function, i.e., the fundamental relation between F and ρ. This is inspired by recent
progress in the field of traffic flow [19] where by comparing macroscopic traffic flow
models to traffic data, new relations could be obtained. Existing projects in the field of
traffic flow as the Mobile Millennium Project [1] and the Mobile Century project [3] focus
on the assimilation of data and the reconstruction of traffic states. In contrast, here we
derive new macroscopic models based on sampled data in order to predict production
behavior. Additionally, we extend the usually used scalar clearing function F : R → R

to a system of hyperbolic equations. In view of the terminology in traffic flow the
arising family of clearing functions F : R2 → R

2 is viewed as a second–order model
for production. Those comprise of systems of hyperbolic equations in two variables,
the product density ρ = ρ(x, t) and a product property called Y = Y (x, t). From a
mathematical point of view the arising system of hyperbolic equations inherits features
of the second–order Aw–Rascle–Zhang traffic flow model. Those have been introduced in
[13, 33, 36] and in a discretized setting earlier in [28] and extended by many authors as for
example [19, 24]. As discussed previously non–stationary queuing theory predicts that
there is no fixed functional relationship between product density and flux [32]. However,
transient clearing functions have been proposed starting with the work of [2] and [34]
to incorporate dynamic effects. Here, we propose a different way to include transient
behavior. Since we are interested in the qualitative behavior of aggregate product flow
on possibly large–time scales, we try to capture transient behavior by introducing a
family of clearing functions and by relying on the dynamics induced by the system of
hyperbolic partial differential equations.

A different approach towards second–order models has been discussed in [5]. Therein,
the fluid model hierarchy proposed in [7] has been used to simulate transient influx.
Compared with the presented approach a discussion of theoretical properties as well as
a comparison to a DES has not been conducted. We discuss further differences after
deriving the model in Remark 1 below.

We consider a setup as in [4, 16, 20] where a high–volume multi–stage production line
is considered. The quantity of interest is the product or lot density ρ(x, t) describing the
work-in-progress at time t and production stage x. Here, x ∈ [0, 1] does not represent a
physical position but rather the degree of completion or stage of production. The factory
has a prescribed inflow λ(t) over time t at x = 0 and an outflow at x = 1 of finished
products. Since mass conservation holds true the system fulfills the conservation law

(1) ∂tρ(x, t) + ∂xF (ρ(x, t)) = 0, x ∈ [0, 1], t ≥ 0.

The equation (1) is accompanied by initial data ρ(x, 0) = ρ0(x) describing the initial
state of the factory as well as a boundary condition F = λ(t) at x = 0. The paper is
concerned with the detailed data–fitted modeling of the flux function F . The discussion
includes well–posedness of the boundary condition at x = 0. The model (1) is based
on the assumption that the amount of products and the number of production stages
justifies a continuous model. A prototype of a production process consists of a machine
with associate buffer. In case of an M/M/1-process the machine is fed by an arrival
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process with exponentially distributed inter–arrival times (with mean λ). There is no
limit on the storage capacity of the buffer. The average processing rate of the machine is
µ. In case of constant rates elementary queuing theory gives the mean cycle–time τ = 1

µ−λ

and Little’s law ρ = τλ, where the constant ρ is the average number of parts. In case of
constant product density ρ, the total work–in–progress W fulfills W = ρ. This leads to
the relation λ = µρ

1+ρ
and the previously mentioned clearing function F = F (ρ) = µρ

1+ρ
.

As depicted in Figure 1, a DES taken for example as explained in the Appendix A
leads to an average density and flux relations fulfilling the M/M/1-process. However,
each single evaluation of the DES yields a data point in the wip–flux diagram depicted
in Figure 1. For large number of parts and many realizations this resembles clearly the
known relation. We try to capture now time–dependent queuing by fitting a family of
clearing functions to the given diagram in Figure 1. This procedure may also be applied
if for example the data depicted in Figure 1 is obtained not by a DES simulation but by
measured data.

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

rho

F

Figure 1. Discrete event simulation as described in Appendix A in
log-scale to emphasize the behavior at low product densities for fixed
production rate µ = 5. The inter arrival rate λ = F is fixed for every
DES simulation but varying over a range from 0 ≤ λ ≤ µ. Each green
dot represents a single DES simulation. At each simulation the total
work–in–progress W is constant and equal to the constant production
density ρ. Time horizon for the DES is T = 103 and approximately 106

simulations have been performed.

2. Data–fitted clearing family of clearing functions

The starting point for our investigations is a DES leading to the relation of the flux
F and the product density ρ discussed above and depicted in Figure 1 and Figure 2,
respectively. In the M/M/1 case this leads to the equation

(2) F (ρ) = µ
ρ

1 + ρ

with production rate µ. Obviously, the graph fits the average of sampled data points
very well but misses the spread of the data. This is of course a generic problem of scalar
models comprising of a single function used to fit widely scattered data.
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Figure 2. The setting is the same as in Figure 1. The solid (red) line
shows the function (2) for µ = 5.

A possible remedy is to fit not a single function, but a family. An example of a family
of clearing functions is depicted in Figure 3 covering the full range of existing data. The
family is similar to equation (2) but using a variable production rate. To distinguish the
two approaches we introduce a new variable Y > 0 and consider the clearing function
depending on ρ and Y as

(3) F (ρ, Y ) =
Y ρ

1 + ρ
.
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Figure 3. The setting is the same as in Figure 2. The blue lines rep-
resent the graph of the function given in equation (3) for different fixed
values of Y.

Clearly, equation (1) together with equation (3) do not form a closed system. In order
to derive an equation for the dynamics of the new quantity Y we assume as in the Aw–
Rascle–Zhang model [13, 36] that the information Y is transported with the velocity
of the products. This means that Y is essentially a product property propagating in
direction of the stage of completion x. The (average) velocity u of the product is given
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by

u =
F (ρ, Y )

ρ
=

Y

1 + ρ
, ρ > 0

and the equation for (ρ, Y ) therefore reads

∂tρ+ ∂x(ρu) = 0,

∂tY + u∂xY = 0, with Y = (1 + ρ)u.(4)

The system (4) may be written in conservative form and we show below that it is a
well-posed system of hyperbolic conservation laws. Due to the close relation to the Aw–
Rascle–Zhang model we refer to equation (4) as the second–order model. The clearing

function F = ρu = Y ρ
1+ρ

is given by the family of functions (3) obtained by data–fitting

to a DES and using the additional assumption that the newly introduced property Y
propagates in direction of the stage x by the average product velocity u.

We also derive below that the first family of Riemann invariants of (4) are graphs
ρ → F (ρ, Y ) for a fixed value of Y as depicted in Figure 3.

This implies that for initial data with constant Y the predictions of production density
ρ given by equation (4) coincide with those obtained by equation (1) and equation (2).
Hence, equation (4) extends the previously introduced models. Furthermore, we note
that in the Aw–Rascle–Zhang system the relation between Y and ρ has been modeled as
Y = u+p(ρ) for some p ≥ 0 with p(ρ) = ργ , γ > 0. Due to the different relation between
u, ρ and Y the system (4) enjoys some fundamentally different properties compared with
the Aw–Rascle–Zhang type model.

3. Mathematical properties of the second–order model

In order to analyze the properties of the model we reformulate equation (4) in con-
servative form. We only briefly discuss those properties due to the similarity with the
discussion in [13]. The conservative variables are ρ and z = uρ(1 + ρ) = ρY, i.e., the
product density and the weighted product property. Then, the second–order model reads

∂tρ+ ∂x(ρu) = 0,

∂tz + ∂x(zu) = 0, with u = u(ρ, z) =
z

ρ(1 + ρ)
.(5)

The flux function for the system (5) is given by

f(ρ, z) =

(

ρu
zu

)

, u(ρ, z) =
z

ρ(1 + ρ)
.

The Jacobian of the flux function f(ρ, z) is

Df(ρ, z) =

(

− z
(ρ+1)2

1
ρ+1

− z2(2ρ+1)
ρ2(ρ+1)2

2z
ρ(ρ+1)

)

=

(

− uρ
ρ+1

1
ρ+1

−u2(2ρ+ 1) 2u

)

and its eigenvalues are

λ1(ρ, z) =
z

ρ3 + 2ρ2 + ρ
=

u

1 + ρ
, λ2(ρ, z) =

z

ρ(1 + ρ)
= u.

As modeled the speed of information propagation is bounded by the velocity of the
products u which seems a reasonable assumption for production processes, i.e., λ1(ρ, z) ≤
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λ2(ρ, z). Except for vacuum ρ = 0, where formally also f is not defined, the eigenvalues
are strictly separated and the system is strictly hyperbolic.

We compute the associated eigenvectors and consider further features of the sys-
tem (5). The eigenvectors are

r1(ρ, z) =

( 1
u(1+ρ)

1

)

, and r2(ρ, z) =

( 1
u(2ρ+1)

1

)

.

Hence, the first characteristic field is genuine nonlinear ∇λ1 · r1 6= 0 and the second
characteristic field is nonlinearly degenerated ∇λ2 · r2 = 0 for all (ρ, z). The system is
a Temple system. The second field leads to a contact discontinuity traveling at speed
u. The first field has coinciding shock and rarefaction waves. The Rankine–Hugeniot
condition is given by

s
ρ− ρ∗

z − z∗
=

ρu− ρ∗u∗

zu− z∗u∗
.

The Riemann invariants are

w1 :=
z

ρ
= u(1 + ρ) and w2 :=

z

ρ(1 + ρ)
.

The Riemann invariants allow to simply depict the wave curves in the ρ−ρ u plane. The
first family is given by w1 = const and the second family by w2 = const. Therefore, all
points lying on the second family fulfill

const = w2 =
z

ρ(1 + ρ)
= u,

and hence in the plane (ρ, ρ u) the second family comprises of a straight line with slope
given by a constant u∗. Similarly, for the first family we obtain

ρ const = ρ w1 = const
ρ

1 + ρ
.

And for a constant u∗(1 + ρ∗) we get

{(ρ, ρu) : (ρu) = (u∗(1 + ρ∗)
ρ

1 + ρ
}.

As expected this is precisely F (ρ, Y ∗) given by (3) for the constant Y ∗ = u∗(1 + ρ∗).
Having the wave curves at hand, the solution to the Riemann problem is immediate. In
general for non–vacuum data, it may consist of a superposition of a (slow) rarefaction
or shock wave with w2 = cst and a (fast) contact discontinuity with w1 = cst. For a
left state (ρℓ, zℓ) and a given right state (ρr, zr) we obtain a shock wave if ρℓ < ρr and
w2(ρℓ, zℓ) = w2(ρr, zr) of speed s = ρℓzℓ−ρrzr

ρℓ−ρr
. In the other case we obtain a rarefaction

wave. The construction is similar to the Aw–Rascle–Zhang model and therefore not
repeated here. The reader is referred to [13, Section 2]. Hence, apart from vacuum
ρ = 0 the system (5) is a strictly hyperbolic system of Temple type. The wave curves
are depicted in Figure 4.

In the ρ − ρ u plane the graph of the Riemann invariants for the first family w1 =
const > 0 are concave and monotone increasing functions. Therefore, all waves of the
first family have non–negative speed provided that ρ > 0 and u > 0, respectively. This is
different compared with traffic flow models but in accordance with the expected behavior
of a production line. No information may travel backwards in the production line which
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Figure 4. Above: Wave curves of the hyperbolic system (5) in the ρ−
ρu plane. The state Ul = (ρl, ρlul) is the constant left initial datum
of a Riemann problem and the state Ur the right initial datum. The
intermediate state is denoted by Um. Below: The corresponding picture
in the x− t plane in case of a shock wave, i.e., ρl < ρr, is given.

resembles the fact that we have an infinite buffer resulting in the data of Figure 1. In
case of finite buffers we expect a different behavior as discussed in [6].

Remark 1. The presented model (4) may also be compared with a second order model
proposed in [5] restated here for convenience

∂tρ+ ∂x(ρu) = 0 and ∂tu+ u∂xu = 0.(6)

The model (6) coincides with pressure–less gas dynamics and the dynamics of the average
parts velocity is decoupled from the evolution of the density. In particular, there exits
Riemann data such that solutions to equation (6) lead to δ−concentrations. The model
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is also not strictly hyperbolic since it has a coinciding eigenvalue λ1 = λ2 = u and any
solution to the Riemann problem is either a constant, a traveling contact discontinuities
separated by vacuum or a singular measure in ρ. Neglecting the concentrations lead to
a diagram consisting of only straight lines with slope uℓ and ur, respectively, compare
Figure 4. The presented model on the other hand also allows for smooth solutions in the
case Yℓ = Yr and ρℓ > ρr and does not give rise to any concentrations in the density.

3.1. Particle interpretation of second–order model. The derived second–order
model may be reinterpreted as a particle model by transformation to Lagrange (mass)
coordinates. Those equations form a deterministic formulation of the underlying DES
in terms of the particle density and the average velocity. Besides the modeling point
of view this also leads to equation (9) that may be used to derive suitable boundary
conditions for equation (5).

We assume for the following computation x ∈ R. Even so u(x, t) is not a conserved
variable we write the model for (ρ, u)(X, t) in Lagrange coordinates (X, t) to provide
an explanation. Clearly, z and Y may be computed out of (ρ, u) as z = uρ(1 + ρ) and
Y = u(1 + ρ), respectively. Note that contrary to the scalar model (1) and (2), the
variables ρ and u are independent. In (ρ, u) the system reads in Eulerian coordinates
(x, t) :

∂tρ+ ∂x(ρ u) = 0,

∂t(u(1 + ρ)) + u ∂x(u(1 + ρ)) = 0.

The Lagrange coordinates [12, 35] are defined by

X = X(x, t) =

∫ x

ρ(ξ, t)dξ, t = t

and

∂tX = −(ρu), ∂xX = ρ.

Hence, conservation of mass is given by ∂t∂xX = ∂x∂tX. Next, we introduce the
density ρ̄ and the velocity ū in Lagrange coordinates as

ρ(t, x) = ρ̄(t,X(x, t)), u(t, x) = ū(t,X(x, t)).

A simple calculation yields that (1 + ρ)∂tu + u∂xu = 0 and the resulting equations for
(ρ̄, ū)

(7) ∂t

(

1

ρ̄

)

− ∂X ū = 0, ū(1 + ρ̄) = C,

where C may depend on X but not on t. Clearly, the second equation shows that Ȳ =
ū(1+ ρ̄) is a property of the product since it remains constant in time when transported
with the flow, i.e., in Lagrange coordinates (X, t). The quantity 1

ρ̄
has the unit of an

average spacing. Hence, if we semi–discretize the previous equations in X and denote
the grid points by Xi we obtain a labeling of the products by Xi, i = 1, . . . , P . Then,
Xi+1 −Xi = ∆X. We write ρ̄(Xi, t) = ρ̄i(t) and similarly for ū. Due to the definition of
X we may view each grid point Xi in Lagrangian coordinates as a generic product. For
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non–negative ū we obtain

(8)
d

dt

(

1

ρ̄i(t)

)

=
ūi+1(t)− ūi(t)

∆X
, ūi(t) =

Yi(0)

1 + ρ̄i(t)

for C = Yi(0). Let us denote by xi the position of product i in Euclidean geometry.
The distance between two particles i and i+1 is xi+1 − xi and the local density around
particle i is computed by using the specific volume ∆X

ρ(xi, t) =
∆X

xi+1 − xi
.

Denoting by ρi(t) = ρ(xi, t) and u(xi, t) = ui(t), and using the definition of ρ̄ and ū we
obtain from equation (8)

d

dt
(xi+1 − xi) = ui+1(t)− ui(t), ui(t) =

Yi(0)

1 + ∆X
xi+1−xi

or

(9)
d

dt
xi(t) = ui(t), ui(t) =

Yi(0)

1 + ∆X
xi+1(t)−xi(t)

, i = 1, . . . , P.

Note that we may have also written the equations in the form d
dt
xi = ui,

d
dt
Yi = 0.

However, the system (9) allows for the following interpretation in terms of a production
line. Each product i follows the classical dynamics of being moved forward in stage x
by the velocity ui. As in the scalar model (1) and (2) the velocity of the product ui
does not change during production which coincides with the fact that products may
not influence the machine performance. Also, in a DES as soon as the product enters
the production process the products exit time is computable given the state of the full
system. Therefore, the product velocity remains constant. Note that the behavior in
traffic or gas dynamics is different in this respect. Contrary, to the simpler scalar model
(1) and (2) we observe that ui even so it remains constant throughout the production
process it may change with respect to i. Those changes are given precisely by the value
of Yi(0). Hence, the second–order model allows to assign a possibly different velocity to
each product i upon entering the production process. This yields the second boundary
condition for system (3). Therefore, the information of the new variable Y enters in fact
only through its value at the boundary x = 0. Clearly, if Yi(0) = Y ∗ independent of i, the
model (3) reduces to the scalar model with capacity µ = Y ∗. Therefore, non–constant
values of Yi are understood as modeling of a production line having product dependent
capacities. We may also state this differently: upon entering the production line each
product i moves through the factory as in a classical M/M/1-queuing system having a
capacity of Yi. Hence, Yi − Y ∗ is a measure for the product dependent deviation of a
standard production process having capacity Y ∗ for the production process encountered
by product i.

3.2. Discussion of boundary conditions in Eulerian coordinates. The system (5)
allows for waves of non–negative speed only. Therefore at x = 0 we need to prescribe
two boundary conditions. Clearly,

(ρu)(x = 0, t) = λ(t)
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is the natural boundary condition for the conservation of mass equation. We propose
the following condition on (zu), respectively on Y . We have that

(zu) = (ρu)

(

ρu

ρ
+ (ρu)

)

.

Note that (ρu)(0, t) is given by the influx λ(t), but ρ(0, t) is unknown. In absence of
any other information on the boundary conditions we proceed by approximating ρ(0, t)
as follows: In view of the discussion of the Lagrange form of the model we know that

Y = (zu)
(ρu) describes changes in the capacity of the production. Typically, those changes

are due to the load of the factory. The load is given by the total wipW (t) :=
∫ 1
0 ρ(x, t)dx.

We therefore prescribe as second boundary condition Λ(t) if W (t) 6= 0 :

(10) (zu)(0, t) = Λ(t) := λ(t)

(

λ(t)

W (t)
+ λ(t)

)

.

In case of W (t) = 0 we simply use Λ(t) = λ2(t). Hence, the left boundary conditions are
determined by the current load of the factory introducing a modification of the current
capacity according to

Y (0, t) = λ(t)

(

1 +
1

W (t)

)

for W (t) 6= 0. This condition is still not well–defined due to the implicit dependence on

ρ(t). We therefore replace W (t) by W (t−) with W (0−) =
∫ 1
0 ρ0(ξ)dξ being the initial

wip.

3.3. Relaxation model. The model (5) can be extended to a case where the production
facility at some given time ε adjusts the current capacity to a desired value of µ. This
may be incorporated in the previous model by introducing a relaxation term similar to
[23] leading to the slightly extended equations (11) in conservative form:

∂tρ+ ∂x(ρu) = 0,

∂tz + ∂x(zu) =
1

ε
(µρ− z) , with z = uρ(1 + ρ).(11)

Note that in the quasi–linear form it is easy to see that the term is a relaxation on Y,
i.e.,

∂tY + u∂xY =
1

ε
(µ− Y ) .

Obviously, for small values of ε and µ independent of (x, t) we obtain Y = µ+O(ε) and
u = µ(1+ρ)+O(ε) and therefore an approximation to the dynamics of the scalar model
(1) and (2).

3.4. Relation to continuous models with buffers. From a modeling point of view
it may be desirable to rewrite the derived model in semi–discretized form. For scalar
models this interpretation has been given in [21]. Due to the non–negative eigenvalues
of the flux we apply an Upwind semi–discretization by the method of lines of equation
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(5) on an equidistant grid with cell centers xi, i = 1, . . . , N and cell size ∆x, such that

N∆x = 1 and ρi(t) =
1
∆x

∫

x
i+1

2
x
i−

1
2

ρ(ξ, t)dξ.

∂t

(

ρi
zi

)

+
1

∆x
(fi − fi−1) = 0, fi =

(

ρiui
ziui

)

, i = 1, . . . , N

The flux f0 is according to the previous discussion given by

f0 =

(

λ(t), λ2(t)(1 +
1

W (t)
)

)T

.

Introducing a new variable for the first cell as (q, Z) = ∆x(ρ1, z1) and using the boundary
condition leads to the coupled system

d

dt
q = λ− ρ1u1,

d

dt
ρi =

1

∆x
(ρiui − ρi−1ui−1) , i = 1, . . . , N,(12)

and similar equations for (Z(t), zi(t)) omitted for brevity. Equation (12) may be in-
terpreted as a rate equation for the inventory q due to its unit of parts. Note that the
formulation (12) is in particular suitable for future extensions to a network of production
lines. Therein, the inflow λ would be replaced by the total inflow from all connected
prior production lines.

4. Numerical results

The numerical solution of the scalar model (1), (2) and the second order model (5)
are discretized using a first–order explicit finite volume method. The discrete flux is
obtained using an Upwind discretization due to the non–negative characteristic speed.
As before an equidistant discretization in space with grid points xi for i = 1, . . . , N and
distance ∆x = xi+1 − xi is used. The cell average at the discrete time tn is denoted by

ρni = 1
∆x

∫ xi+
∆x

2

xi−
∆x

2

ρ(ξ, tn)dξ and similarly for u and Y. The time discretization is given

by tn = tn−1 + (∆t)n−1 for all n and where at each time step (∆t)n is obtained using
the CFL condition (∆t)n = min

i=1,...,un

i
6=0
{1
2 ,

∆x
un

i

}. The factor 1
2 has been added to avoid the

case of zero velocities. If not stated otherwise the initial data is ρ(x, t = 0) = 1
2 and

u(x, t = 0) = µ.
The scheme is modified in order to treat the source term (11) by using a first–order

splitting in time. First, we solve the conservation law (5) (tn, tn+1) and then explicitly
solve the system of ordinary differential equations ∂tρ = 0, ∂tz = 1

ε
(µρ− z) . This

approach avoids a modification of previous CFL condition.
All implementations are done in Matlab. For the DES we translated a standard DES

code as discussed in the Appendix A into Matlab. Additionally, the production rate
is fixed at µ = 5 and the time horizon is set to T = 103. In all results the boundary
condition at x = 0 is chosen to be (ρu)(0, t) = λ(t) and (zu)(0, t) = Λ(t).

Besides knowledge on the structure a motivation to use PDE based models to simulate
transient queuing system is the reduced computational complexity compared to DES
simulations. In order to quantify we record Matlab CPU times for our implementations
performed on a standard Desktop PC. We consider a ramp–up and ramp–down scenarios
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discussed below in more detail and compare the computational times for the second–
order model for various spatial grids with DES simulations. Since the DES describes
a stochastic process a single DES simulation is not sufficient to obtain information on
aggregated quantities of the modeled system as obtained through the PDE. Therefore,
in Table 1 we consider different number of simulations to be compared with different
spatial resolutions of the PDE. Clearly, the DES computation time increases linearly
with the number of runs and the CPU times for the PDE simulation increases as the
grid is refined. We observe that a fine resolution of the second-order PDE is as expensive
as roughly 25 DES simulations. The relative error of the PDE is below 1% for any grid
resolution higher than 20 spatial points. Since the CFL condition depends on the velocity
u different temporal grids are required for ramp up and ramp down simulations.

N 5 10 20 40 80
ramp down 1.7272 3.3946 6.3684 12.3503 24.4537
ramp up 2.0352 3.7179 7.2867 14.4310 29.3513

runs 5 10 25 50 100
ramp down 4.9651 10.161 24.1237 48.3448 102.9073
ramp up 4.9229 9.6539 23.9623 48.8150 102.6155

Table 1. Comparison of Matlab CPU times (in seconds) for the simu-
lation of the second–order relaxation model with N spatial grid points on
[0, 1] and ε = 100 and different inflow scenarios. The bottom part refers
to the DES simulation where runs denote the number of DES simulations.

Besides possibly computational advantages we perform qualitative comparison be-
tween the scalar model and the derived system. At first, we consider a ramp–up scenario
at which the inflow λ(t) changes linearly increasing between two constants, the other
one is a ramp-down scenario where the change happens in the opposite direction.

In the numerical implementation of the boundary condition section 3.2 we use at time
n the following condition discretizing the previous equation

Y n+1(x = 0) = λn+1

(

1 +
1

max{W n, δ}

)

,

where δ is set to 1
2 .

For the ramp–up and ramp–down scenario a comparison of the outflux (ρu)(1, t) for
the scalar model as well as the system using different relaxation rates ε is presented in
Figure 5. As expected small relaxation values lead to a similar dynamic of the second–
order to the scalar model. A similar result is observed in the ramp–down case and
shown in Figure 6. Note that the curves of the influx λ(t) and the second-order model
for ε = 10000 coincide.

Finally, we present a comparison to a time–dependent DES for a ramp–up and a ramp–
down scenario. We implemented a simple M/M/1 discrete event simulator as described
in the Appendix A. For many parts, constant inflow and sufficiently large simulation time
the DES yields the well–known flux F and wip ρ relation given by equation (2). We
modify the DES by allowing the influx to change over time as in the previous simulations.

We then record the average cumulative outflux 1
t

∫ t

0 F (s)ds obtained from the DES for
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Figure 5. Left: Numerical simulation of the outflux (ρu)(1, t) for the
scalar model (1) and (2) and the second order model (5) using the indi-
cated relaxation rates ε. Right: Solution Y (1, t) for different relaxation
rates ε. The boundary condition at x = 0 is given by λ(t) and equation
(10) for the second order model.
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Figure 6. Left: Numerical simulation of the outflux (ρu)(1, t) for the
scalar model (1) and (2) and the second order model (5) using the indi-
cated relaxation rates ε. Right: Solution Y (1, t) for different relaxation
rates ε. The boundary condition at x = 0 is given by λ(t) and equation
(10) for the second order model.

t = 0, . . . , T. The averaged cumulative outflux is then compared to simulations of the
scalar model given by equation (1) and (2) and the second–order model (5), respectively.
The results for a ramp–up scenario are depicted in Figure 7 and for a ramp–down scenario
in Figure 8, respectively.

For every DES we obtain a data point indicated in both figures as green dots. The red
line is the cumulative outflux using the scalar model. In particular, for the ramp–down
scenario we observe that the scalar model underestimates the outflux generated by the
DES. The simulation results for the second–order model are obtained using different



14 L. FORESTIER–COSTE, S. GÖTTLICH, AND M. HERTY
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Figure 7. Numerical simulation of the cumulative outflux
1
t

∫ t

0 (ρu)(1, s)ds for the scalar model (1) and (2) and the second order
model (5) using the indicated relaxation rates ε. Data points are ob-
tained for various simulations using the DES given in Appendix A for
time dependent influx given by a ramp–up scenario.

relaxation rates ε. Clearly, for small values of the relaxation rate the prediction is close
to the scalar model, however, for values of the relaxation of order ten, we obtain a better
fit to the DES results compared with the scalar model. This provides numerical evidence
that a single PDE might not be sufficient to capture the true DES dynamics. The effect
is also visible in the ramp–up scenario but not as pronounced. Here, the scalar model
already predicts the behavior of the DES. However, the second–order model for ε = 10
yields a slightly better result for large times t.

Note that in the derivation of the scalar and second–order model only the machine ca-
pacity µ enters in the scalar model and in the relaxation term of the second–order model.
It is therefore not immediate that the PDE (2) and (5) yields similar results. Figure
7 and Figure 8 show that the qualitative and quantitative behavior of time dependent
DES are well–captured by the proposed models.

Finally, we present a combined ramp–up and ramp-down example in Figure 9. The
observation for the combined example are similar to the simple ramp–up and ramp–down
scenarios with a slightly too low predicted flow value for the scalar model.
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Figure 8. Numerical simulation of the cumulative outflux
1
t

∫ t

0 (ρu)(1, s)ds for the scalar model (1) and (2) and the second
order model (5) using the indicated relaxation rates ε. Data points are
obtained for various simulations usind the DES given in Appendix A for
time dependent influx given by a ramp–down scenario.

Conclusion and Future Work

In this work, we have developed first and second order macroscopic production models
based on a discrete event simulator feeded with sampled data. The resulting models can
be interpreted as an extension of classical M/M/1 queuing theory models to transient
regimes. However, the proposed procedure is not limited to M/M/1 assumptions and
can be extended to other distributions for the arrival and serving process. This would
of course lead to other clearing functions.

As shown in our numerical experiments, the benefit of the second order model is that
more information on the production process is available. Mathematically, the product
information Y is transported with the velocity of the products and is able to reproduce
typical scalar conservation laws for production and more involved second-order traffic-
like models, e.g., the Aw–Rascle–Zhang model, as well.

Various future work options are possible. For production purposes, usually complex
systems are of interest meaning that different production steps are interlinked in the
sense of a network. Suitable coupling conditions by installing buffers can be discussed
for the second-order model.
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Figure 9. Right: Numerical simulation of the cumulative outflux
1
t

∫ t

0 (ρu)(1, s)ds for the scalar model (1) and (2) and the second order
model (5) using the indicated relaxation parameter ε. Data points are
obtained for various simulations using the DES given in Appendix A.
The influx is depicted as black line in the left diagram. Further, we show
the total outflux for the scalar model and the system for relaxation times
parameter ε as indicated.

In the sense of optimal control questions concerning the overall performance may arise.
The impact of second order production models is completely open at this point.

Acknowledgments. This work has been supported by the Cluster of Excellence ’Inte-
grative Production Technology for High-Wage Countries’ and the BMBF project KinOpt.

Appendix A. A simple discrete event simulator

The idea to write a discrete event simulator is taken from Figure 1.6 in Simulat-
ing Computer Systems, Techniques and Tools by M. H. MacDougall [29] except for
sampling. The book introduces a discrete-event simulation language called smpl for
M/M/1-models and presents a C language implementation available for free download
at http://ece.ut.ac.ir/Classpages/S86/ECE462/#Software. The buffer policy is
’first–come, first-served’. We use the presented algorithms as example of a straight–
forward implementation. In the notation of the present paper the probability distribu-
tion for the interval times has mean λ and the probability distribution for the production
time has mean µ. Then, for the inter-arrival times the density of the exponential proba-
bility distribution is given by s → λ exp(−λs). Running different realizations of the DES
for fixed rates λ and µ = 5 yields the result presented in Figure 1. This is the classical
result in queuing theory and the expected relation of equation (2) between rate λ = F
and work–in–progress W (or in this case equivalently ρ) is observed.

However, in Figure 7 and 8 the influx is chosen to be time-dependent λ = λ(t) but the
production rate µ is left constant. The detailled dependence of λ on time t is given in
Section 4. The smpl code can be easily modified to include time dependent rates λ(t).
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(S. Göttlich) University of Mannheim

E-mail address, Corresponding author: goettlich@uni-mannheim.de

(M. Herty) RWTH Aachen University

E-mail address: herty@igpm.rwth-aachen.de


	IGPM408-Deckblatt.pdf
	IGPM408-Original
	1. Introduction
	2.  Data–fitted clearing family of clearing functions 
	3. Mathematical properties of the second–order model
	3.1. Particle interpretation of second–order model 
	3.2. Discussion of boundary conditions in Eulerian coordinates 
	3.3. Relaxation model
	3.4. Relation to continuous models with buffers

	4.  Numerical results 
	Conclusion and Future Work
	Acknowledgments

	Appendix A.  A simple discrete event simulator 
	References


