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HOW TO BEST SAMPLE A SOLUTION MANIFOLD?

WOLFGANG DAHMEN

Abstract. Model reduction attempts to guarantee a desired “model quality”, e.g. given in
terms of accuracy requirements, with as small a model size as possible. This article high-

lights some recent developments concerning this issue for the so called Reduced Basis Method

(RBM) for models based on parameter dependent families of PDEs. In this context the key
task is to sample the solution manifold at judiceously chosen parameter values usually deter-

mined in a greedy fashion. The corresponding space growth concepts are closely related to so

called weak greedy algorithms in Hilbert and Banach spaces which can be shown to give rise
to convergence rates comparable to the best possible rates, namely the Kolmogorov n-widths

rates. Such algorithms can be interpreted as adaptive sampling strategies for approximating

compact sets in Hilbert spaces. We briefly discuss the results most relevant for the present
RBM context. The applicability of the results for weak greedy algorithms has however been

confined so far essentially to well-conditioned coercive problems. A critical issue is therefore
an extension of these concepts to a wider range of problem classes for which the conventional

methods do not work well. A second main topic of this article is therefore to outline recent

developments of RBMs that do realize n-width rates for a much wider class of variational
problems covering indefinite or singularly perturbed unsymmetric problems. A key element

in this context is the design of well-conditioned variational formulations and their numerical

treatment via saddle point formulations. We conclude with some remarks concerning the
relevance of uniformly approximating the whole solution manifold also when the quantity of

interest is only of a functional of the parameter dependent solutions.

1. Introduction

Many engineering applications revolve around the task of identifying a configuration that
in some sense best fits certain objective criteria under certain constraints. Such design or
optimization problems typically involve (sometimes many) parameters that need to be chosen
so as to satisfy given optimality criteria. An optimization over such a parameter domain
usually requires a frequent evaluation of the states under consideration which typically means
to frequently solve a parameter dependent family of operator equations

(1.1) Byu = f, y ∈ Y.

In what follows the parameter set Y is always assunmed to be a compact subset of Rp for
some fixed p ∈ N and By should be thought of as a (linear) partial differential operator whose
coefficients depend on the paramemeters y ∈ Y. Moreover, By is viewed as an operator taking
some Hilbert space U one-to-one and onto the normed dual V ′ of some (appropriate) Hilbert
space V where U and V are identified through a variational formulation of (1.1) as detailed

1991 Mathematics Subject Classification. 65J10, 65N12, 65N15, 35B30.
Key words and phrases. Tight surrogates, stable variational formulations, saddle point problems, double

greedy schemes, greedy stabilization, rate-optimality, transport equations, convection-diffusion equations.
This work has been supported in part by the DFG SFB-Transregio 40, and by the DFG Research Group 1779,

the Excellence Initiative of the German Federal and State Governments, and and NSF grant DMS 1222390.

1



2 WOLFGANG DAHMEN

later, see for instance (4.2). Recall also that the normed dual V ′ is endowed with the norm

(1.2) ‖w‖V ′ := sup
v∈V,v 6=0

〈w, v〉
‖v‖V

,

where 〈·, ·〉 denotes the dual pairing between V and V ′.
Given a parametric model (1.1) the above mentioned design or optimization problems concern

now the states u(y) ∈ U which, as a function of the parameters y ∈ Y, form what we refer to
as the solution manifold

(1.3) M := {u(y) := B−1
y f : y ∈ Y}.

Examples of (1.1) arise, for instance, in geometry optimization when a tranformation of a
variable finitely parametrized domain to a reference domain introduces parameter dependent
coefficients of the underyling partial differential equation (PDE) over such domains, see e.g. [14].
Parameters could describe conductivity, viscosity or convection directions, see e.g. [10, 23, 24].
As an extreme case, parametrizing the random diffusion coefficients in a stochastic PDE e.g.,
by Karhunen-Loew or polynomial chaos expansions, leads to a deterministic parametric PDE
involving, in principle, even infinitely many parameters, p = ∞, see e.g. [8] and the literature
cited there. We will, however, not treat this particular problem class here any further since, as
will be explained later, it poses different conceptual obstructions than those in the focus of this
paper, namely the absence of ellipticity which makes conventional strategies fail. In particular,
we shall explain why for other relevant problem classes, e.g. those dominated by transport
processes, M is not “as visible” as for elliptic problems and how to restore “full visibility”.

1.1. General Context - Reduced Basis Method. A conventional way of searching for a
specific state in M or optimize over M is to compute approximate solutions of (1.1) possibly
for a large number of parameters y. Such approximations would then reside in a sufficiently
large trial space UN ⊂ U of dimension N , typically a finite element space. Ideally one would
try to assure that UN is large enough to warrant sufficient accuracy of whatever conclusions
are to be drawn from such a discretization. A common terminology in reduced order modeling
refers to UN as the truth space providing accurate computable information. Of course, each
such parameter query in UN is a computationally expensive task so that many such queries,
especially in an online context, would be practically infeasible. On the other hand, solving for
each y ∈ Y a problem in UN would just treat each solution u(y) as some “point” in the infinite
dimensional space U , viz. in the very large finite dimensional space UN . This disregards the
fact that all these points actually belong to a possibly much thinner and more coherent set,
namely the low dimensional manifold M which, for compact Y and well posed problems (1.1),
is compact. Moreover, if the solutions u(y), as functions of y ∈ Y, depend smoothly on y
there is hope that one can approximate all elements ofM uniformly over Y with respect to the
Hilbert space norm ‖ · ‖U by a relatively small but judiceously chosen linear space Un. Here
“small” means that n = dimUn is significantly smaller than N = dimUN , often by orders of
magnitude. As detailed later the classical notion of Kolmogorov n-widths quantifies how well a
compact set in a Banach space can be approximated in the corresponding Banach norm by a
linear space and therefore can be used as a benchmark for the effectiveness of a model reduction
strategy.

Specifically, the core objective of the Reduced Basis Method (RBM) is to find for a given
target accuracy ε a possibly small number n = n(ε) of basis functions φj , j = 0, . . . , n, whose
linear combinations approximate each u ∈ M within accuracy at least ε. This means that
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ideally for each y ∈ Y one can find coefficients cj(y) such that the expansion

(1.4) un(x, y) :=

n(ε)∑
j=0

cj(y)φj(x)

satisfies

(1.5) ‖u(y)− un(y)‖U ≤ ε, y ∈ Y.

Thus, projecting (1.1) into the small space Un := span {φ0, . . . , φn} reduces each parameter
query to solving a small n× n system of equations where typically n� N .

1.2. Goal Orientation. Recall that the actual goal of reduced modeling is often not to recover
the full fields u(y) ∈ M but only some quantity of interest I(y) typically given as a functional
I(y) := `(u(y)) of u(y) where ` ∈ U ′. Asking just the value of such a functional is possibly
a weaker request than approximating all of u(y) in the norm ‖ · ‖U . In other words, one may
have |`(u(y))− `(un(y))| ≤ ε without insisting on the validity of (1.5) for a tolerance of roughly
the same size. Of course, one would like to exploit this in favor of online efficiency. Duality
methods as used in the context of goal-oriented finite element methods [3] are indeed known to
offer ways of economizing the approximate evaluation of functionals. Such concepts apply in
the RBM context as well, see e.g. [21, 16]. However, as we shall point out later, guaranteeing
that |`(u(y)) − `(un(y))| ≤ ε holds for y ∈ Y, ultimately reduces to tasks of the type (1.5) as
well. So, in summary, understanding how to ensure (1.5) for possibly small n(ε) remains the
core issue and therefore guides the subsequent discussions.

Postponing for a moment the issue of how to actually compute the φj , it is clear that they
should intrinsically depend on M rendering the whole process highly nonlinear. To put the
above approach first into perspective, viewing u(x, y) as a function of the spatial variables x
and of the parameters y, (1.4) is just separation of variables where the factors cj(y), φj(x) are a
priori unknown. It is perhaps worth stressing though that, in contrast to other attempts to find
good tensor approximation, in the RBM context explicit representations are only computed for
the spatial factors φj while for each y the weight cj(y) has to be computed by solving a small
system in the reduced space Un. Thus, the computation of {φ0, . . . , φn(ε)} could be interpreted
as dictionary learning and, loosely speaking, n = n(ε) being relatively small for a given target
accuracy, means that all elements inM are approximately sparse with respect to the dictionary
{φ0, . . . , φn, . . .}.

The methodology just outlined has been pioneered by Y. Maday, T.A. Patera and collab-
orators, see e.g. [6, 21, 24, 23]. As indicated before, RBM is one variant of a model oder
reduction paradigm that is specially tailored to parameter dependent problems. Among its
distinguishing constituents one can name the following. There is usually a careful division of
the overall computational work into an offline phase, which could be computationally intense
but should remain managable, and an online phase which should be executable with highest
efficiency taking advantage of a precomputed basis and matrix assemblations during the offline
phase. It is important to note that while the offline phase is accepted to be computationally
expensive it should remain offline-feasible in the sense that a possibly extensive search over
the parameter domain Y in the offline phase requires for each query solving only problems in
the small reduced space. Under which circumstances this is possible and how to realize such
division concepts has been worked out in the literature, see e.g. [24, 23]. Here we are content
with stressing that an important role is played by the way how the operator By depends on
the parameter y, namely in an affine way as stated in (2.13) later below. Second, and this is
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perhaps the most distinguishing constituent, along with each solution in the reduced model one
strives to provide a certificate of accuracy, i.e., computed bounds for incurred error tolerances
[24, 23].

1.3. Central Objectives. When trying to quantify the performance of such methods aside
from the above mentioned structural and data organization aspects, among others, the following
questions come to mind:

(i) for which type of problems do such methods work very well in the sense that n(ε) in (1.5)
grows only slowly when ε decreases? This concerns quantifying the sparsity of solutions.

(ii) How can one compute reduced bases {φ0, . . . , φn(ε)} for which n(ε) is nearly minimal in
a sense to be made precise below?

Of course, the better the sparsity quantified by (i) the better could be the pay-off of an
RBM. However, as one my expect, an answer to (i) depends strongly on the problem under
consideration. This is illustrated also by the example presented in §5.4. Question (ii), instead,
can be addressed independently of (i) in the sense that, no matter how many basis functions
have to be computed in order to meet a given target accuracy, can one come up with methods
that guarantee generating a nearly minimal number of such basis functions? This has to do
with how to sample the solution manifold and is the central theme in this paper.

The most prominent way of generating the reduced bases is a certain greedy sampling of the
manifold M. Contriving greedy sampling strategies that give rise to reduced bases of nearly
minimal length, in a sense to be made precise below, also for non-coercive or unsymmetric
singularly perturbed problems is the central objective in this paper. We remark though that a
greedy parameter search in its standard form is perhaps not suitable for very high dimensional
parameter spaces without taking additional structural features of the problem into account.
The subsequent discussions do therefore not target specifically the large amount of recent work
on stochastic elliptic PDEs, since while greedy concepts are in principle well understood for
elliptic problems they are per se not necessarily adequate for infinitely many parameters without
exploiting specific problem dependent structural information.

First, we recall in §2 a greedy space growth paradigm commonly used in all established RBMs.
To measure its performance in the sense of (ii) we follow [6] and compare the corresponding
distances distU (M, Un) to the smallest possible distances achievable by linear spaces of dimen-
sion n, called Kolmogorov n-widths. The fact that for elliptic problems the convergence rates
for the greedy errors are essentially those of the n-width, and hence rate-optimal, is shown in
§3 to be ultimately reduced to analyzing so called weak greedy algorithms in Hilbert spaces, see
also [4, 13]. However, for indefinite or strongly unsymmetric and singularly perturbed problems
this method usually operates far from optimality. We explain why this is the case and describe
in §4 a remedy proposed in [10]. A pivotal role is played by certain well-conditioned variational
formulations of (1.1) which are then shown to lead again to an optimal outer greedy sampling
strategy also for non-elliptic problems. An essential additional ingredient consists of certain
stabilizing inner greedy loops, see §5. The obtained rate-optimal scheme is illustrated by a
numerical example addressing convection dominated convection-diffusion problems in §5.4. We
conclude in §6 with applying these concepts to the efficient evaluation of quantities of interest.

2. The Greedy Paradigm

The by far most prominent strategy for constructing reduced bases for a given parameter
dependent problem (1.1) is the following greedy procedure, see e.g. [23]. The basic idea is
that, having already constructed a reduced space Un of dimension n, find an element un+1 =
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u(yn+1) in M that is farthest away from the current space Un, i.e., that maximizes the best
approximation error from Un and then grow Un by setting Un+1 := Un + span {un+1}. Hence,
denoting by PU,Un the U -orthogonal projection onto Un,

(2.1) yn+1 := argmax
y∈Y

‖u(y)− PU,Unu(y)‖U , un+1 := u(yn+1).

Unfortunately, determining such an exact maximizer is computationally way too expensive even
in an offline phase because one would have to compute for a sufficiently dense sampling of Y
the exact solution u(y) of (1.1) in U (in practice in UN ). Instead one tries to construct more
efficiently computable surrogates R(y, Un) satisfying

(2.2) ‖u(y)− PU,Unu(y)‖U ≤ R(y, Un), y ∈ Y.
Recall that “efficiently computable” in the sense of offline-feasibility means that for each y ∈ Y,
the surrogate R(y, Un) can be evaluated by solving only a problem of size n in the reduced space
Un. Deferring an explanation of the nature of such surrogates, Algorithm 1 described below
is a typical offline-feasible surrogate based greedy algorithm (SGA). Clearly, the maximizer in
(2.3) below is not necessarily unique. In case several maximizers exist it does not matter which
one is selected.

Algorithm 1 surrogate based greedy algorithm

1: function SGA
2: Set U0 := {0}, n = 0,
3: while argmaxy∈Y R(y, Un) ≥ tol do
4:

(2.3)

yn+1 := argmax
y∈Y

R(y, Un),

un+1 := u(yn+1),

Un+1 := span
{
Un, {u(yn+1)}

}
= span {u1, . . . , un+1}

5: end while
6: end function

Strictly speaking, the scheme SGA is still idealized since:

(a) computations cannot be carried out in U ;

(b) one cannot parse through all of a continuum Y to maximize R(y, Un).

Concerning (a), as mentioned earlier computations in U are to be understood as synonymous
to computations in a sufficiently large truth space UN satisfying all targeted accuracy tolerances
for the underlying application. Solving problems in UN is strictly confined to the offline phase
and the number of such solves should remain of the order of n = dimUn. We will not distinguish
in what follows between U and UN unless such a distinction matters.

As for (b), the maximization is usually performed with the aid of a complete search over a
discrete subset of Y. Again, we will not distinguish between a possibly continuous parameter
set and a suitable training subset. In fact, continuous optimization methods that would avoid
a complete search have so far not proven to work well since each greedy step increases the
number of local maxima of the objective functional. Now, how fine such a discretization for
a complete search should be depends on how smoothly the u(y) depend on y. But even when
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such a dependence is very smooth a coarse discretization of a high-dimensional parameter set
Y would render a complete search infeasible so that, depending on the problem at hand, one
has to resort to alternate strategies such as, for instance, random sampling. However, since it
seems that (b) can only be answered for a specific problem class we will not address this issue
in this paper any further.

Instead, we focus on general principles which guarantee the following. Loosely speaking the
reduced spaces based on sampling M should perform optimally in the sense that the resulting
spaces Un have the (near) “smallest dimension” needed to satify a given target tolerance while
the involved offline and online cost remains feasible in the sense indicated above. To explain
first what is meant by “optimal” let us denote the greedy error produced by SGA as

(2.4) σn(M)U := max
v∈M

inf
ū∈Un

‖v − ū‖U = max
y∈Y
‖u(y)− PU,Unu(y)‖U .

Note that if we replaced in (2.4) the space Un by any linear subspace Wn ⊂ U and infimize the
resulting distortion over all subspaces of U of dimension at most n, one obtains the classical
Kolmogorov n-widths dn(M)U quantifying the “thickness” of a compact set, see (3.2). One
trivially has

(2.5) dn(M)U ≤ σn(M)U , n ∈ N.

Of course, it would be best if one could reverse the above inequality. We will discuss in the
next section to what extent this is possible.

To prepare for such a discussion we need more information about how the surrogate R(y, Un)
relates to the actual error ‖u(y)− PU,Unu(y)‖U because the surrogate drives the greedy search
and one expects that the quality of the snapshots found in SGA depends on how “tight” the
upper bound in (2.2) is.

To identify next the essential conditions on a “good” surrogate it is instructive to consider
the case of elliptic problems. To this end, suppose that

〈Byu, v〉 = by(u, v) = 〈f, v〉, u, v ∈ U,

is a uniformly U -coercive bounded bilinear form and f ∈ U ′, i.e., there exist constants 0 < c1 ≤
C1 <∞ such that

(2.6) c1‖v‖2U ≤ by(v, v), |by(u, v)| ≤ C1‖u‖U‖v‖U , u, v ∈ U, y ∈ Y,

holds uniformly in y ∈ Y. The operator equation (1.1) is then equivalent to: given f ∈ U ′ and
a y ∈ Y, find u(y) ∈ U such that

(2.7) by(u(y), v) = 〈f, v〉, v ∈ U.

Ellipticity has two important well-known consequences. First, since (2.6) implies ‖By‖U→U ′ ≤
C1, ‖B−1

y ‖U ′→U ≤ c−1
1 the operator By : U → U ′ has a finite condition number

(2.8) κU,U ′(By) := ‖By‖U→U ′‖B−1
y ‖U ′→U ≤ C1/c1

which, in particular, means that residuals in U ′ are uniformly comparable to errors in U

(2.9) C−1
1 ‖f −Byū‖U ′ ≤ ‖u(y)− ū‖U ≤ c−1

1 ‖f −Byū‖U ′ , ū ∈ U, y ∈ Y.

Second, by Céa’s Lemma, the Galerkin projection Πy,Un onto Un is up to a constant as good
as the best approximation, i.e., under the assumption (2.6)

(2.10) ‖u(y)−Πy,Unu(y)‖U ≤
C1

c1
inf
v∈Un

‖u(y)− v‖U .
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(When by(·, ·) is in addition symmetric C1/c1 can be replaced by (C1/c1)1/2.) Hence, by (2.9)
and (2.10),

(2.11) R(y, Un) := c−1
1 sup

v∈U

〈f, v〉 − by(Πy,Unu(y), v)

‖v‖U
statisfies more than just (2.2), namely it provides also a uniform lower bound

(2.12)
c1
C1
R(y, Un) ≤ ‖u(y)− PU,Unu(y)‖U , y ∈ Y.

Finally, suppose that by(·, ·) depends affinely on the parameters in the sense that

(2.13) by(u, v) =

M∑
k=1

θk(y)bk(u, v),

where the θk are smooth functions of y ∈ Y and the bilinear forms bk(·, ·) are independent of
y. Then, based on suitable precomputations (in UN ) in the offline phase, the computation of
Πy,Unu(y) reduces for each y ∈ Y to the solution of a rapidly assembled (n × n)-system, and
R(y, Un) can indeed be computed very efficiently, see [23, 16, 24].

An essential consequence of (2.2) and (2.12) can be formulated as follows.

Proposition 2.1. Given Un ⊂ U , the function un+1 generated by (2.3) for R(y, Un) defined
by (2.11), has the property that

(2.14) ‖un+1 − PU,Unun+1‖U ≥
c1
C1

max
v∈M

min
ū∈Un

‖v − ū‖U .

Hence, maximizing the residual based surrogate R(y, Un) (over a suitable discretization of
Y) is a computationally feasible way of determining, up to a fixed factor γ := c1/C1 ≤ 1, the
maximal distance between M and Un and performs in this sense almost as well as the “ideal”
but computationally infeasible surrogate R∗(µ,Un) := ‖u(y)− PU,Unu(y)‖U .

Proof of Proposition 2.1: Suppose that ȳ = argmaxy∈Y R(y, Un), y∗ := argmaxy∈Y ‖u(y)−
PU,Unu(y)‖U so that un+1 = u(ȳ). Then, keeping (2.12) and (2.10) in mind, we have

‖un+1 − PU,Unun+1‖U = ‖u(ȳ)− PU,Unu(ȳ)‖U ≥
c1
C1
R(ȳ, Un) ≥ c1

C1
R(y∗, Un)

≥ c1
C1
‖u(y∗)− PU,Unu(y∗)‖U =

c1
C1

max
y∈Y
‖u(y)− PU,Unu(y)‖U ,

where we have used (2.2) in the second but last step. This confirms the claim. 2

Property (2.14) turns out to play a key role in the analysis of the performance of the scheme
SGA.

3. Greedy Space Growth

Proposition 2.1 allows us to view the algorithm SGA as a special instance of the following
scenario. Given a compact subset K of a Hilbert space H with inner product (·, ·) inducing the
norm ‖ · ‖2 = (·, ·), consider the weak greedy Algorithm 2 (WGA) below.

Note that again the choice of un+1 is not necessarily unique and what follows holds for any
choice satisfying (3.1).

Greedy strategies have been used in numerous contexts and variants. The current version
is not to be confused though with the weak orthogonal greedy algorithm introduced in [25] for
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Algorithm 2 weak greedy algorithm

1: function WGA
2: Set H0 := {0}, n = 0, u0 := 0, fix any 0 < γ ≤ 1,
3: given Hn, choose some un+1 ∈ K for which

(3.1) min
vn∈Hn

‖vn − un+1‖ ≥ γmax
v∈K

min
vn∈Un

‖v − vn‖ =: γσn(K)H ,

and set Hn+1 := Hn + span {un+1}.
4: end function

approximating a function by a linear combination of n terms from a given dictionary. In con-
trast, the scheme WGA described in Algorithm 2 aims at constructing a (problem dependent)
dictionary with the aid of a PDE model. While greedy function approximation is naturally
compared with the best n-term approximation from the underlying dictionary (see [2, 25] for
related results), a natural question here is to compare the corresponding greedy errors

σn(K)H := max
v∈K

min
vn∈Un

‖v − vn‖ =: max distH(K, Un)

incurred when approximating a compact set K with the smallest possible deviation of K from
any n-dimensional linear space, given by the Kolmogorov n-widths

(3.2) dn(K)H := inf
dimV=n

sup
v∈K

inf
vn∈V

‖v − vn‖ = inf
dimV=n

max distH(K, V ),

mentioned earlier in the preceding section. One trivially has dn(K)H ≤ σn(K)H for all n ∈ N
and the question arises whether there actually exists a constant C such that

(3.3) σn(K)H ≤ Cdn(K)H , n ∈ N.
One may doubt such a relation to hold for several reasons. First, orthogonal greedy function
approximation performs in a way comparable to best n-term approximation only under rather
strong assumptions on the underlying given dictionary. Intutitively, one expects that errors
made early on in the iteration are generally hard to correct later although this intuition turns
out to be misleading in the case of the present set approximation. Second, the spaces Un
generated by the greedy growth are restricted by being generated only from snapshots in K
while the best spaces can be chosen freely, see the related discussion in [4].

The comparison (3.3) was addressed first in [6] for the ideal case γ = 1. In this case a bound
of the form σn(K)H ≤ Cn2ndn(K)H could be established for some absolute constant C. This
is useful only for cases where the n-widths decay faster than n−12−n which indeed turns out to
be possible for elliptic problems (2.7) with a sufficiently smooth affine parameter dependence
(2.13). In fact, in such a case the u(y) can be even shown to be analytic as a function of y, see
[8] and the literature cited there. It was then shown in [4] that the slightly better bound

(3.4) σn(K)H ≤
2n+1

√
3
dn(K)H , n ∈ N,

holds. More importantly, these bounds cannot be improved in general. Moreover, the possible
exponential loss in accuracy is not due to the fact the greedy spaces are generated by snapshots
from K. In fact, denoting by d̄n(K)H the restricted “inner” widths, obtained by allowing
only subspaces spanned by snapshots of K in the competition, one can prove that d̄n(K)H ≤
ndn(K)H , n ∈ N, which is also sharp in general [4].

While these findings may be interpreted as limiting the use of reduced bases generated in a
greedy fashion to problems where the n-widths decay exponentially fast the situation turns out
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to be far less dim if one does not insist on a direct comparison of the type (3.3) with n being
the same on both sides of the inequality. In [4, 13] the question is addressed whether a certain
convergence rate of the n-widths dn(K)H implies some convergence rate of the greedy errors
σn(K)H . The following result from [4] gave a first affirmative answer.

Theorem 3.1. Let 0 < γ ≤ 1 be the parameter in (3.1) and assume that d0(K)H ≤ M for
some M > 0. Then

dn(K)H ≤Mn−α, n ∈ N,
for some α > 0, implies

(3.5) σn(K)H ≤ CMn−α, n > 0,

where C := q
1
2 (4q)α and q := d2α+1γ−1e2.

This means that the weak greedy scheme may still be highly profitable even when the n-
widths do not decay exponentially. Moreover, as expected, the closer the weakness parameter
γ is to one, the better, which will later guide the sampling strategies for constructing reduced
bases.

Results of the above type are not confined to polynomial rates. A sub-exponential decay of
the dn(K)H with a rate e−cn

α

, α ≤ 1 is shown in [4] to imply a rate

(3.6) σn(K)H ≤ C(α, γ)e−c̃n
α̃

, α̃ = α/(1 + α), n ∈ N.

The principle behind the estimates (3.5), (3.6) is to exploit a “flatness” effect or what one
may call “conditional delayed comparison”. More precisely, given any θ ∈ (0, 1) and defining
q := d2(γθ)e2, one can show that ([4, Lemma 2.2])

σn+qm(K)H ≥ θσn(K)H ⇒ σn(K)H ≤ q1/2dm(K)H , n ∈ N.

Thus, a comparison between greedy errors and n-widths is possible when the greedy errors do
not decay too quickly. This is behind the diminished exponent α̃ in (3.6).

These results have been improved upon in [13] in several ways employing different techniques
yielding improved comparisons. Abbreviating σn := σn(K)H , dn := dn(K)H , a central result in
the present general Hilbert space context states that for any N ≥ 0,K ≥ 1, 1 ≤ m < K one
has

(3.7)

K∏
i=1

σ2
N+i ≤ γ−2K

(K
M

)m( K

K −m

)K−m
σ2m
N+1d

2(K−m)
m .

As a first important consequence, one derives from these inequalities a nearly direct comparison
between σn and dn without any constraint on the decay of σn or dn. In fact, taking N =
0,K = n, and any 1 ≤ m < n in (3.7), using the monotonicity of the σn, one shows that

σ2n
n ≤ γ−2n

(
n
m

)m(
n

n−m

)n−m
d

2(n−m)
m from which one deduces

(3.8) σn ≤
√

2γ−1 min
1≤m<n

d
n−m
n

m , n ∈ N.

This, in particular, gives the direct unconditional comparison

σ2n(K)H ≤ γ−1
√

2dn(K)H , n ∈ N.

The estimate (3.8) is then used in [13] to improve on (3.6) establishing the bounds

(3.9) dn(K)H ≤ C0e
−c0nα , ⇒ σn(K)H ≤

√
2C0γ

−1e−c1n
α

, n ∈ N,
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i.e., the exponent α is preserved by the rate for the greedy errors. Moreover, one can recover
(3.5) from (3.7) (with different constants).

Although not needed in the present context the second group of results in [13] should be
mentioned that concerns the extension of the weak greedy algorithm WGA to Banach spaces X
in place of the Hilbert space H. Remarkably, a direct comparison between σn(K)X and dn(K)X
similar to (3.7) is also established in [13]. The counterpart to (3.8) reads σ2n ≤ 2γ−1

√
ndn i.e.,

one looses a factor
√
n which is shown, however, to be necessary in general.

All the above results show that the smaller the weakness parameter γ the stronger the
derogation of the rate of the greedy errors in comparison with the n-widths.

4. What are the Right Projections?

As shown by (3.5) and (3.9), the weak greedy algorithm WGA realizes optimal rates for
essentially all ranges of interest. A natural question is under which circumstances a surrogate
based greedy algorithm SGA is in this sense also rate-optimal, namely ensures the validity of
(3.5) and (3.9). Obviously, this is precisely the case when new snapshots generated through
maximzing the surrogate have the weak greedy property (3.1). Note that Proposition 2.1 says
that the residual based surrogate (2.11) in the case of coercive problems does ensure the weak-
greedy property so that SGA is indeed rate-optimal for coercive problems. Note also that the
weakness parameter γ = c1/C1 is in this case the larger the smaller the condition number of
the operator By is, see (2.8). Obviously, the key is that the surrogate not only yields an upper
bound for the best approximation error but also, up to a constant, a lower bound (2.12), and
the more tightly the best approximation eror is sandwiched by the surrogate the better the
performance of SGA. Therefore, even if the problem is coercive for a very small γ = c1/C1, as
is the case for convection dominated convection-diffusion problems, in view of the dependence
of the bounds in (3.5) and (3.9) on γ−1, one expects that the performance of a greedy search
based on (2.11) degrades significantly.

In summary, as long as algoritm SGA employs a tight surrogate in the sense that

(4.1) cSR(y, Un) ≤ inf
v∈Un

‖u(y)− v‖U ≤ R(y, Un), y ∈ Y,

holds for some constant cS > 0, independent of y ∈ Y, algorithm SGA is rate-optimal in the
sense of (3.5), (3.9), i.e., it essentially realizes the n-width rates over all ranges of interest,
see [10]. We refer to c−1

S := κn(R) as the condition of the surrogate R(·, Un). In the RBM

community the constant c−1
S is essentially the stability factor which is usually computed along

with an approximate reduced solution. Clearly, the bounds in §3 also show that the quantitative
performance of SGA is expected to be the better the smaller the condition of the surrogate,
i.e., the larger cS .

As shown so far, coercive problems with a small condition number κU,U ′(By) represent an
ideal setting for RBM and standard Galerkin projection combined with the symmetric surrogate
(2.11), based on measuring the residual in the dual norm ‖ · ‖U ′ of the “error-norm” ‖ · ‖U ,
identifies rate-optimal snapshots for a greedy space growth. Of course, this marks a small
segment of relevant problems. Formally, one can still apply these projections and surrogates
for any variational problem (2.7) for which a residual can be computed. However, in general,
for indefinite or unsymmetric singularly perturbed problems, the tightness relation (4.1) may
no longer hold for surrogates of the form (2.11) or, if it holds the condition κn(R) becomes
prohibitively large. In this latter case, the upper bound of the best approximation error is too
loose to direct the search for proper snapshots. A simple example is the convection-diffusion
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problem: for f ∈ (H1
0 (Ω))′ find ∈ H1

0 (Ω), Ω ⊂ Rd, such that

(4.2) ε(∇u,∇v) + (~b · ∇u, v) + (cu, v) =: by(u, v) = 〈f, v〉, v ∈ H1
0 (Ω),

where, for instance, y = (ε,~b) ∈ Y := [ε0, 1]× Sd−1, Sd−1 the (d− 1)-sphere.

Remark 4.1. It is well nown that when c − 1
2div~b ≥ 0 the problem (4.2) has for any f ∈

H−1(Ω) := (H1
0 (Ω))′ a unique solution. Thus, for U := H1

0 (Ω) (2.6) is still valid but with
κU,U ′(By) ∼ ε−1 which becomes arbitrarily large for a correspondingly small diffusion lower
bound ε0.

The standard scheme SGA indeed no longer performs nearly as well as in the well conditioned
case. The situation is even less clear when ε = 0 (with modified boundary conditions) where no
“natural” variational formulation suggests itself (we refer to [10] for a detailed discussion of these
examples). Moreover, for indefinite problems the Galerkin projection does generally perform
like the best approximation which also adversily affects tightness of the standard symmetric
residual based surrogate (2.11).

Hence, to retain rate-optimality of SGA also for the above mentioned extended range of
problems one has to find a better surrogate than the one based on the symmetric residual
bound in (2.11). We indicate in the next section that such better surrogates can indeed be
obtained at affordable computational cost for a wide range of problems through combining
Petrov-Galerkin projections with appropriate unsymmetric residual bounds. The approach can
be viewed as preconditioning the continuous problem already on the infinite dimensional level.

4.1. Modifying the Variational Formulation. We consider now a wider class of (not nec-
essarily coercive) variational problems

(4.3) b(u, v) = 〈f, v〉, v ∈ V,
where we assume at this point only for each f ∈ V ′ the existence of a unique solution u ∈ U ,
i.e., the operator B : U → V ′, induced by b(·, ·), is bijective. This is well known to be equivalent
to the validity of

(4.4)


inf
w∈W

sup
v∈V

b(w, v)

‖w‖U‖v‖V
≥ β, sup

v∈V
sup
w∈U

b(w, v)

‖w‖U‖v‖V
≤ Cb,

for v ∈ V ∃w ∈W, such that b(w, v) 6= 0,

for some constants β,Cb. However, one then faces two principal obstructions regarding an RBM
based on the scheme SGA:

(a) first, as in the case of (4.2) for small diffusion, κU,V ′(B) ≤ Cb/β could be very large so
that the corresponding error-residual relation

(4.5) ‖u− v‖U ≤ β−1‖f −Bv‖V ′ , v ∈ U,
renders a corresponding residual based surrogate ill-conditioned.

(b) When b(·, ·) is not coercive, the Galerkin projection does, in general, not perform as well
as the best approximation.

The following approach has been used in [10] to address both (a) and (b). The underlying
basic principle is not new, see [1], and variants of it have been used for different purposes
in different contexts such as least squares finite element methods [18] and, more recently, in
connection with discontinuous Petrov Galerkin methods [9, 11, 12]. In the context of RBMs the
concepts of natural norms goes sort of half way by sticking in the end to Galerkin projections
[24]. This marks an essential distinction from the approach in [10] discussed later below.
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The idea is to change the topology of one of the spaces so as to (ideally) make the corre-
sponding induced operator an isometry, see also [9]. Following [10], fixing for instance, ‖ · ‖V ,
one can define

(4.6) ‖w‖Û := sup
v∈V

b(w, v)

‖v‖V
= ‖Bw‖V ′ , w ∈ U,

which means that one has for Bu = f

(4.7) ‖u− w‖Û = ‖f −Bw‖V ′ , w ∈ U,

a perfect error-residual relation. It also means that, replacing ‖ · ‖U in (4.4) by ‖ · ‖Û , yields

the inf-sup constant β̂ = 1. Alternatively, fixing ‖ · ‖U , one may set

(4.8) ‖v‖V̂ := sup
w∈U

b(w, v)

‖w‖U
= ‖B∗v‖U ′ , v ∈ V,

to again arrive at an isometry B : U → V̂ ′, meaning

(4.9) ‖u− w‖U = ‖f −Bw‖V̂ ′ , w ∈ U.

Whether the norm for U or for V is prescribed depends on the problem at hand and we refer
to [7, 10, 9] for examples of both type.

Next note that for any subspace W ⊂ U one has

(4.10) uW = argmin
w∈W

‖u− w‖Û = argmin
w∈W

‖f −Bw‖V ′ ,

and analogously for the pair (U, V̂ ), i.e., the best approximation in the Û -norm is a minimum
residual solution in the V ′-norm.

To use residuals in V ′ as surrogates requires fixing a suitable discrete projection for a given
trial space. In general, in particular when V 6= U , the Galerkin projection is no longer appro-
priate since inf-sup stability of the infinite dimensional problem is no longer inherited by an
arbitrary pair of finite dimensional trial and test spaces. To see which type of projection would
be ideal, denote by RU : U ′ → U the Riesz map defined for any linear functional ` ∈ U ′ by

〈`, w〉 = (RU `, w)U , w ∈ U.

Then, by (4.6), for any w ∈W ⊂ U , taking v := RVBw ∈ V one has

b(w, v) = 〈Bw, v〉 = 〈Bw,RVBw〉 = (Bw,Bw)V ′ = (w,w)Û .

Thus, in particular,

b(u− uh, RV bw) = (u− uh, w)Û ,

i.e., given W ⊂ U , using V (W ) := RVB(W ) as a test space in the Petrov-Galerkin scheme

(4.11) b(uh, v) = 〈f, v〉, v ∈ V (W ) := RVB(W ),

is equivalent to computing the Û -orthogonal projection of the exact solution u of (4.3) and

hence the best Û -approximation to u. One readily sees that this also means

(4.12) inf
w∈W

sup
v∈V (W )

b(w, v)

‖w‖Û‖v‖V
= 1,

i.e., we have a Petrov-Galerkin scheme for the pair of spaces W,V (W ) with perfect stability

and the Petrov-Galerkin projection is the best Û -projection. Unfortunately, this is not of
much help yet, because computing the ideal test space V (W ) = RVB(W ) = B−∗R−1

Û
(W ) is
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not numerically feasible. Nevertheless, it provides a useful orientation for finding good and
practically realisable pairs of trial and test spaces, as explained next.

4.2. A Saddle Point Formulation. We briefly recall now from [9, 10] an approach to deriving
from the preceding observations a practically feasible numerical scheme which, in particular, fits
into the context of RBMs. Taking (4.10) as point of departure we notice that the minimization
of ‖f −Bw‖V ′ over W is a least squares problem whose normal equations read: find uW ∈W
such that (with RV ′ = R−1

V )

(4.13) 0 = (f −BuW , Bw)V ′ = 〈R−1
V (f −BuW ), Bw〉, w ∈W.

Introducing the auxiliary variable r := R−1
V (f −BuW ) which is equivalent to

(4.14) 〈RV r, v〉 = (r, v)V = 〈f −Buw, v〉, v ∈ V,

the two relations (4.13) and (4.14) can be rewritten in form of the saddle point problem

(4.15)
(r, v)V + b(uW , v) = 〈f, v〉, v ∈ V.
b(w, r) = 0, w ∈W.

The corresponding inf-sup constant is still one (since the supremum is taken over all of V ) and
(·, ·)V is a scalar product so that (4.15) has a unique solution uW , see e.g. [5]. Taking for any
w ∈W the test function v = RVBw ∈ V in the first line of (4.15), one obtains

(r, v)V = (r,RVBw)V = 〈r,Bw〉 = b(w, r) = 0,

by the second line in (4.15) so we see that 〈f,RVBw〉 = b(uW , RVBw) holds for all w ∈ W
which means that uW solves the ideal Petrov-Galerkin problem (4.11). Thus (4.15) is equivalent
to the ideal Petrov Galerkin scheme (4.11).

Of course, (4.15) is still not realizable since the space V is still the full infinite dimensional
space. One more step to arrive at a realizable scheme is the following: given the finite dimen-
sional space W find a finite dimensional space Z ⊂ V so that when V in (4.15) is replaced by
Z, one obtains a stable finite dimensional saddle point problem which is the same as saying
that its inf-sup constant is safely bounded away from zero. Since Z = V would yield perfect
stability the choice of Z ⊂ V can be viewed as a stabilization. To quantify this we follow [10]
and say that for some δ ∈ (0, 1), Z ⊂ V is δ-proximal for W ⊂ U if Z is suffciently close to the
ideal test space V (W ) = RVB(W ) in the sense that

(4.16) ‖(I − PV,Z)RVBw‖V ≤ δ‖RVBw‖V , w ∈W.

The related main findings from [10] can be summarized as follows.

Theorem 4.2. (i) The pair (uW,Z , rW,Z) ∈W × Z ⊂ U × V solves the saddle point problem

(4.17)
(rW,Z , v)V + b(uW,Z , v) = 〈f, v〉, v ∈ Z,
b(w, uW,Z) = 0, w ∈W,

if and only if uW,Z solves the Petrov-Galerkin problem

(4.18) b(uW,Z , v) = 〈f, v〉, v ∈ PV,Z(RVB(W )).

(ii) If Z is δ-proximal for W , (4.18) is solvable and one has

(4.19)
‖u− uW,Z‖Û ≤ 1

1−δ infw∈W ‖uW,Z − w‖Û ,

‖u− uW,Z‖Û + ‖rW,Z‖V ≤ 2
1−δ infw∈W ‖uW,Z − w‖Û .
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(iii) Z is δ-proximal for W if and only if

(4.20) inf
w∈W

sup
v∈Z

b(w, v)

‖w‖Û‖v‖V
≥
√

1− δ2.

Note that (4.17) involves ordinary bilinear forms and finite dimensional spaces W,Z and (iii)
says that the V -projection of the ideal test space RVB(W ) onto Z is a good test space if and
only if Z is δ-proximal for W . Loosely speaking, Z is large enough to “see” a substantial part
of the ideal test space RVB(W ) under projection. The perhaps most important messages to be
taken home regarding the RBM context read as follows.

Remark 4.3. (i) The Petrov-Galerkin scheme (4.18) is realized through the saddlepoint problem
(4.17) without explicitly computing the test space PV,Z(RVB(W )).

(ii) Moreover, given W , by compactness and (4.16), one can in principle enlarge Z so as to
make δ as small as possible, a fact that will be explointed later.

(iii) The solution component uW,Z is a near-best approximation to the exact solution u in the

Û -norm.

(iv) rW,Z can be viewed as a lifted residual which tends to zero in V when W grows and can be
used for a-posteriori error estimation, see [9]. In the Reduced Basis context this can be exploited
for certifying the accuracy of the truth solutions and for constructing computationally feasible
surrogates for the construction of the reduced bases.

5. The Reduced Basis Construction

We point out next how to use the preceding results for sampling the solution manifold M
of a given paramteric family of variational problems: given y ∈ Y, f ∈ V ′y , find u(y) ∈ Uy such
that

(5.1) by(u(y), v) = 〈f, v〉, v ∈ Vy,
in a way that the corresponding subspaces are rate-optimal. We will always assume that the
dependence of the bilinear form by(·, ·) on y ∈ Y is affine in the sense of (2.13).

As indicated by the notation the spaces Uy, Vy for which the variational problems are well-
posed in the sense that the induced operator By : Uy → V ′y is bijective, could depend on y
through y-dependent norms. However, to be able to speak of a “solution manifold” M as
a compact subset of some “reference Hilbert space”, the norms ‖ · ‖Uy should be uniformly
equivalent to some reference norm ‖ · ‖U which has to be taken into account when formulating
(5.1). In fact, under this condition, as shown in [10], for well-posed variational formulations of
pure transport problems the dependence of the test spaces Vy on y ∈ Y is essential, in that

(5.2) V :=
⋂
y∈Y

Vy,

is a strict subset of each individual Vy. This complicates the construction of a tight surrogate.
We refer to [10] for ways of dealing with this obstruction and confine the subsequent discussion
for simplicity to cases where the test norms ‖ · ‖Vy are also uniformly equivalent to a single
reference norm ‖ · ‖V , see the example later below.

Under the above assumptions, the findings of the preceding section will be used next to
contrive a well-conditioned tight surrogate even for non-coercice or severely ill-conditioned
variational problems which is then in general unsymmetric, i.e., Vy 6= Uy. These surrogates
will then be used in SGA. To obtain such a residual based well-conditioned surrogate in the
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sense of (4.1), we first renorm the pairs of spaces Uy or Vy according to (4.6) or (4.8). In
anticipation of the example below, for definiteness we concentrate on (4.6) and refer to [10] for
a discussion of (4.8). As indicated above, we assume further that the norms ‖ · ‖Ûy , ‖ · ‖Vy are

equivalent to reference norms ‖ · ‖Û , ‖ · ‖V , respectively.

5.1. The Strategy. Suppose that we have already constructed a pair of spaces Un ⊂ Uy, Vn ⊂
Vy, y ∈ Y, such that for a given δ < 1

(5.3) inf
w∈Un

sup
v∈Vn

by(w, v)

‖w‖Ûy‖v‖Vy
≥
√

1− δ2, y ∈ Y,

i.e., Vn ⊂ V is δ-proximal for Un ⊂ U . Thus, by Theorem 4.2, the parametric saddle point
problem

(5.4)
(rn(y), v)Vy + by(un(y), v) = 〈f, v〉, v ∈ Vn,
b(w, rn(y)) = 0, w ∈W,

has for each y ∈ Y a unique solution (un(y), rn(y)) ∈ Un×Vn. By the choice of norms we know
that

(5.5) ‖u(y)− un(y)‖Ûy = ‖f −Bµun(y)‖V ′y , y ∈ Y,

i.e.,

(5.6) R(y, Un × Vn) := ‖f −Bµun(y)‖V ′y , y ∈ Y

suggests itself as a surrogate. There are some subtle issues about how to evaluate R(y, Un×Vn)
in the dual V ′N of a sufficiently large truth space VN ⊂ Vy, y ∈ Y, so as to faithfully reflect errors

in Ûµ, not only in the truth space UN ⊂ Uy but in Û , and how these quantities are actually
related to the auxiliary variable ‖rn(y)‖Vy which is computed anyway. As indicated before,
these issues are aggrivated when the norms ‖ · ‖Vy are not all equivalent to a single reference
norm. We refer to a corresponding detailed discussion in [10, §5.1] and continue working here
for simplicity with the idealized version (5.6) and assume its offline feasibility.

Thus, we can evaluate the errors ‖u(y)−un(y)‖Ûy and can determine a maximizing parameter

yn+1 for which

(5.7) ‖u(yn+1)− un(yn+1)‖Ûy = max
y∈Y
‖f −Bµun(y)‖V ′y .

Now relation (4.19) in Theorem 4.2 tells us that for each y ∈ Y
(5.8) ‖u(y)− un(y)‖Ûy ≤ (1− δ)−1 inf

w∈Un
‖u(y)− w‖Ûy ,

i.e., un(y) is a near best approximation to u from Un which is, in fact, the nearer to the best
approximation the smaller δ. By (5.5) and (5.8), the surrogate (5.6) is indeed well-conditioned
with condition number close to one for small δ.

A natural strategy is now to enlarge Un to Un+1 := Un + span {u(yn+1)}. In fact, this
complies with the weak gready step (3.1) in §3 with weakness parameter γ = (1− δ) as close to
one as one wishes, when δ is chosen accordingly small, provided that the pair of spaces Un, Vn
satisfies (5.3). A repetition would therefore, in principle, be a realization of Algorithm 1, SGA,
establishing rate-optimality of this RBM. Obviously, the critical condition for such a procedure
to work is to ensure at each stage the validity of the weak-greedy condition (3.1) which in the
present situation means that the companion space Vn is at each stage δ-proximal for Un. So far
we have not explained yet how to grow Vn along with Un so as to ensure δ-proximality. This is
explained in the subsequent section.
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Remark 5.1. One should note that, due to the possible parameter dependence of the norms
‖ · ‖Ûy , ‖ · ‖Vy on y, obtaining tight surrogates with the aid of an explicit Petrov-Galerkin for-

mulation, would be infeasible in an RBM context because one would have to recompute the
corresponding (parameter dependent) test basis for each parameter query which is not online-
feasible. It is therefore actually crucial to employ the saddle point formulation in the context of
RBMs since this allows us to determine a space Vn of somewhat larger dimension than Un but
stabilizes the saddle point problem for all y simultaneously.

5.2. A Greedy Stabilization. A natural option is to enlarge Vn by the second component
rn(yn+1) of (5.4). Note though that the lifted resilduals rn tend to zero as n→∞. Hence, the
solution manifold of the (y-dependent version of the) saddle point formulation (4.15) has the
form

M×{0},
where M is the solution manifold of (5.1) (since r(y) = 0 for y ∈ Y). Thus, the spaces Vn are
not needed to approximate the solution manifold. Instead the sole purpose of the space Vn is
to guarantee stability. At any rate, the grown pair Un+1, Vn + span {rn(yn+1)} =: V 0

n+1 may
fail to satisfy now (5.3).

Therefore, in general one has to further enrich V 0
n+1 by additional stabilizing elements again

in a greedy fashion until (5.3) holds for the desired δ. For problems that initially arise as natural
saddle point problems such as the Stokes system, enrichments by so called supremizers (to be
defined in a moment) have been proposed already in [14, 15, 22]. In these cases it is possible to
enrich V 0

n+1 by a fixed a priori known number of such supremizers to guarantee inf-sup stability.
As shown in [10], this is generally possible when using fixed (parameter independent) reference
norms ‖·‖Û , ‖·‖V for U and V . For the above more general scope of problems a greedy strategy
was proposed and analyzed in [10], a special case of which is also considered in [15] without
analysis. The strategy in [10] adds only as many stabilizing elements as are actually needed to
ensure stability and works for a much wider range of problems including singularly perturbed
ones. In cases where not all parameter dependent norms ‖ · ‖Vy are equivalent such a strategy
is actually necessary and its convergence analysis is then more involved, see [10].

To explain the procedure, suppose that after growing Un to Un+1 we have already generated
an enrichment V kn+1 of V 0

n+1 (which could be, for instance, either V 0
n+1 := Vn+ span {rn(yn+1)}

or V 0
n+1 := Vn) but the pair Un+1, V

k
n+1 still fails to satisfy (5.3) for the given δ < 1. To describe

the next enrichment from V kn+1 to V k+1
n+1 we first search for a parameter ȳ ∈ Y and a function

w̄ ∈ Un for which the inf-sup condition (5.3) is worst, i.e.,

(5.9) sup
v∈V kn+1

bȳ(w̄, v)

‖v‖Vȳ‖w̄‖Ûȳ
= inf
y∈Y

(
inf

w∈Un+1

sup
v∈V kn+1

by(w, v)

‖v‖Vy‖w‖Ûy

)
.

If this worst case inf-sup constant does not exceed yet
√

1− δ2, the current space V kn+1 does
not contain an effective supremizer for ȳ, w̄, yet. However, since the truth space satisfies the
uniform inf-sup condition (5.3) there must exist a good supremizer in the truth space which
can be seen to be given by

(5.10) v̄ = argmax
v∈Vȳ

bȳ(w̄, v)

‖v‖Vȳ‖w̄‖Ûȳ
,

providing the next enrichment

(5.11) V k+1
n+1 := span{V kn+1, v̄}.
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We defer some comments on the numerical realization of finding ȳ, v̄ in (5.9), (5.10) to the next
section.

This strategy can now be applied recursively until one reaches a satisfactory uniform inf-sup
condition for the reduced spaces. Again, the termination of this stabilization loop is easily
ensured when (2.13) holds and the norms ‖ · ‖Ûy , ‖ · ‖Vy are uniformly equivalent to reference

norms ‖ · ‖Û , ‖ · ‖V , respectively, but is more involved in the general case [10].

5.3. The Double Greedy Scheme and Main Result. Thus, in summary, to ensure that
the greedy scheme SGA with the particular surrogate (5.6), based on the corresponding outer
greedy step for extending Un to Un+1, has the weak greedy property (3.1), one can employ an
inner stabilizing greedy loop producing a space Vn+1 = V k

∗

n+1 which is δ-proximal for Un+1. Here
k∗ = k∗(δ) is the number of enrichment steps needed to guarantee the validity of (5.3) for the
given δ. A sketchy version of the corresponding “enriched” SGA, developed in [10], looks as
follows:

Algorithm 3 double greedy algorithm

1: function SGA-dou
2: Initialize U1, V

0
1 , δ ∈ (0, 1), target accuracy tol, n← 1,

3: while σn(M) > tol do
4: while Un, V

0
n fail to satisfy (5.3) do

5: compute Vn with the aid of the inner stabilizing greedy loop,
6: end while
7: given Un, Vn, satisfying (5.3), compute Un+1, V

0
n+1 with the aid of the outer greedy

step 4, (2.3) in algorithm SGA for the surrogate (5.6),
8: end while
9: end function

As indicated above, both Algorithm 1, SGA and Algorithm 3, SGA-dou are surrogate based
greedy algorithms. The essential difference is that for non-coercive problems or problems with
an originally large variational condition number in SGA-dou an additional interior greedy
loop provides a tight well-conditioned (unsymmetric) surrogate which guarantees the desired
weak greedy property (with weakness constant γ as close to one as one wishes) needed for
rate-optimality.

Of course, the viability of Algorithm SGA-dou hinges mainly on two questions:
(a) how to find the worst inf-sup constant in (5.9) and how to compute the supremizer in

(5.10)?
(b) does the inner greedy loop terminate (early enough)?
As for (a), it is well known that, fixing bases for Un, V

k
n , finding the worst inf-sup constant

amounts to determine for y ∈ Y the cross-Gramian with respect to by(·, ·) and compute its
smallest singular value. Since these matrices are of size n × (n + k) and hence (presumably)
of “small” size, a search over Y requires solving only problems in the reduced spaces and are
under the assumption (2.13) therefore offline-feasible. The determination of the corresponding
supremizer v̄ in (5.10), in turn, is based on the well-known observation that

argmax
v∈Vȳ

bȳ(w̄, v)

‖v‖Vȳ
= RVȳBȳw̄,
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which is equivalent to solving the Galerkin problem

(v̄, z)Vȳ = bȳ(w̄, z), z ∈ Vȳ.
Thus, each enrichment step requires one offline-Galerkin solve in the truth space.

A quantitative answer to question (b) is more involved. We are content here with a few
related remarks and we refer to a detailed discussion of this issue in [10]. As mentioned before,
when all the norms ‖ · ‖Ûy , ‖ · ‖Vy , y ∈ Y, are equivalent to reference norms ‖ · ‖Û , ‖ · ‖V ,

respectively, the inner loop terminates after at most the number of terms in (2.13). When the
norms ‖ · ‖Vy are no longer uniformly equivalent to a single reference norm termination is less
clear. Of course, since all computations are done in a truth space which is finite dimensional,
compactness guarantees termination after finitely many steps. However, the issue is that the
number of steps should not depend on the truth space dimension. The reasoning in [10] used
to show that (under mild assumptions) termination happens after a finite number of steps
which is independent of the truth space dimension, is based on the following fact. Defining
U1
n(y) := {w ∈ Un : ‖w‖Ûy = 1}, solving the problem

(5.12) (ȳ, w̄) := argmax
y∈Y;w∈U1

n(y)

inf
φ∈V kn

‖RVyByw − φ‖Vy ,

when all the ‖ · ‖Ûy -norms are equivalent to a single reference norm, can be shown to be

equivalent to a greedy step of the type (5.9) and can hence again be reduced to similar small
eigenvalue problems in the reduced space. Note, however, that (5.12) is similar to a greedy
space growth used in the outer greedy loop and for which some understanding of convergence is
available. Therefore, successive enrichments based on (5.12) are studied in [10] regarding their
convergence. The connection with the inner stabilizing loop based on (5.9) is that

argmax
y∈Y;w∈U1

n(y)

inf
φ∈V kn

‖RVȳBȳw̄ − φ‖Vȳ ≤ δ,

just means

inf
φ∈V kn

‖RVyByw − φ‖Vy ≤ δ‖RVyBy‖Vy = δ‖w‖Ûy , w ∈ Un, y ∈ Y,

which is a statement on δ-proximality known to be equivalent to inf-sup stability, see Theorem
4.2, and (4.16).

A central result from [10] can be formulated as follows, see [10, Theorem 5.5].

Theorem 5.2. If (2.13) holds and the norms ‖·‖Ûy , ‖·‖Vy are all equivalent to a single reference

norm ‖ · ‖Û , ‖ · ‖V , respectively, and the surrogates (5.6) are used, then the scheme SGA-dou
is rate optimal, i.e., the greedy errors σn(M)Û decay at the same rate as the n-widths dn(M)Û ,
n→∞.

Recall that the quantitative behavior of the greedy error rates are directly related to those
of the n-widths by γ−1 = c−1

S , see Theorem 3.1. This suggests that a fast decay of dn(M)Û is
reflected by the corresponding greedy errors already for moderate values of n which is in the
very interest of reduced order modeling. This will be confirmed by the expamples below. In
this context an important feature of SGA-dou is that through the choice of the δ-proximility
parameter the weakness parameter γ can be driven towards one, of course, at the expense
of somewhat larger spaces Vn+1. Hence, stability constants close to one are built into the
method. This is to be contrasted by the conventional use of SGA based on surrogates that are
not ensured to be well conditioned and for which the computation of the certifying stability
constants tends to be computationally expensive.
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5.4. A Numerical Example. The preceding theoretical results are illustrated next by a nu-
merical example that brings out some of the main features of the scheme. While the double
greedy scheme applies to non-coercive or indefinite problems (e.g. see [10] for pure trans-
port) we focus here on a classical singularly perturbed problem because it addresses also some
principal issues for RBMs regarding problems with small scales. Specifically, we consider the
convection-diffusion problem (4.2) on Ω = (0, 1)2 for a simple parameter dependent convection
field

~b(y) :=

(
cos y
sin y

)
, y ∈ [0, 2π), c = 1,

keeping for simplicity the diffusion level ε fixed but allowing it to be arbitrarily small. All
considerations apply as well to variable and parameter dependent diffusion with any arbitrarily
small but strictly positive lower bound. The “transition” to a pure transport problem is dis-
cussed in detail in [10, 28]. Parameter dependent convection directions mark actually the more
difficult case and are, for instance, of interest with regard to kinetic models.

Let us first briefly recall the main challenges posed by (4.2) for very small diffusion ε. The
problem becomes obviously dominantly unsymmetric and singularly perturbed. Recall that for
each positive ε the problem possesses for each y ∈ Y a unique solution u(y) in U = H1

0 (Ω)
that has a zero trace on the boundary ∂Ω. However, as indicated earlier, the condition number
κU,U ′(By) of the underlying convection-diffusion operator By, viewed as an operator from U =
H1

0 (Ω) onto U ′ = H−1(Ω), behaves like ε−1, that is, it becomes increasingly ill conditioned.
This has well known consequences for the performance of numerical solvers but above all for
the stability of corresponding discretizations.

We emphasize that the conventional mesh dependent stabilizations like SUPG (cf. [17]) do
not offer a definitive remedy because the corresponding condition, although improved, remains
very large for very small ε. In [19] SUPG-stabilization for the offline truth calculations as well as
for the low-dimensional online Galerkin projections are discussed for moderate Peclét-numbers
of the order of up to 103. In particular, comparisons are presented when only the offline phase
uses stabilization while the un-stabilized bilinear form is used in the online phase, see also the
references in [19] for further related work.

As indicated earlier, we also remark in passing that the singularly perturbed nature of the
problem poses an additional difficulty concerning the choice of the truth space UN . In fact,
when ε becomes very small one may not be able to afford resolving correspondingly thin layers
in the truth space which increases the difficulty of capturing essential features of the solution
by the reduced model.

This problem is addressed in [10] by resorting to a weak formulation that does not use H1
0 (Ω)

(or a renormed version of it) as a trial space but builds on the results from [7]. A central idea
is to enforce the boundary conditions on the outflow boundary Γ+(y) only weakly. Here Γ+(y)
is that portion of ∂Ω for which the inner product of the outward normal and the convection
direction is positive. Thus, solutions are initially sought in the larger space H1

0,Γ−(y)(Ω) =:

U−(y) enforcing homogeneous boundary conditions only on the inflow boundary Γ−(y). Since
the outflow boundary, and hence also the inflow boundary depend on the parameter y, this
requires subdividing the parameter set into smaller sectors, here four, for which the outflow
boundary Γ+ = Γ+(y) remains unchanged. We refer in what follows for simplicity to one such
sector denoted again by Y.
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Figure 5.1. left: ε = 2−5, n = 6, nV = 13; middle: ε = 2−7, n = 7, nV =
20; right: ε = 2−26, n = 20, nV = 57.

The following prescription of the test space falls into the category (4.6) where the norm for
U is adapted. Specifically, choosing

sy(u, v) :=
1

2

(
〈Byu, v〉+ 〈Byv, u〉

)
,

‖v‖2Vy := sy(v, v) = ε|v|2H1(Ω) +
∥∥∥(c− 1

2
div~b(y)

)1/2

v
∥∥∥2

L2(Ω)
,

in combination with a boundary penalization on Γ+, we follow [7, 28] and define

‖u‖2Ūy := ‖B̄yu‖2V̄ ′y = ‖B̄yu‖2V ′y + λ‖u‖2Hb(µ),

where Hb(y) = H
1/2
00 (Γ+(y)), V̄y := Vy ×Hb(y)′ and B̄y denotes the operator induced by this

weak formulation over Ūy := H1
0,Γ−(y)(Ω) ×Hb(y). The corresponding variational formulation

is of minimum residual type (cf. (4.10)) and reads

(5.13) u(y) = argminw∈U−(y)

{
‖B̄yw − f‖2V̄ ′y + λ‖w‖2Hb(y)

}
.

One can show that its (infinite dimensional) solution, whenever being sufficiently regular, solves
also the strong form of the convection diffusion problem (4.2). Figure 5.1 illustrates the effect
of this formulation where we set n = dimUn, nV := dimVn

The shaded planes shown in Figure 5.1 indicate the convection direction for which the snap-
shot is taken. For moderately large diffusion the boundary layer at Γ+ is resolved by the truth
space discretization and the boundary conditions at the outflow boundary are satisfied exactly.
For smaller diffusion in the middle example the truth space discretization can no longer resolve
the boundary layer and for very small diffusion (right) the solution is close to the one for pure
tranbsport. The rationale of (5.13) is that all norms commonly used for convection diffusion
equations resemble the one chosen here, for instance in the form of a mesh dependent “broken
norm”, which means that most part of the incurred error of an approximation is concentrated in
the layer region, see e.g. [27, 26]. Hence, when the layers are not resolved by the discretization,
enforcing the boundary conditions does not improve accuracy and, on the contrary, may degrade
accuracy away from the layer by causing oscillations. The present formulation instead avoids
any non-physical oscillations and enhances accuracy in those parts of the domain where this is
possible for the afforded discretization, see [7, 10, 28] for a detailed discussion. The following
table quantifies the results for the case of small diffusion ε = 2−26 and a truth discretization
whose a posteriori error bound is 0.002.
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Figure 5.2. Convection-diffusion equation, ε = 2−26, maximal a-posteriori
error 0.00208994

Table 1. Convection-diffusion equation, ε = 2−26, maximal a-posteriori error
0.00208994

n nV δ surrogate surr/a-post n nV δ surrogate surr/a-post

2 5 1.36e-03 2.10e-01 1.01e+02 14 39 1.17e-04 8.15e-03 3.90e+00
4 9 1.10e-02 7.51e-02 3.59e+01 16 45 9.79e-05 7.56e-03 3.62e+00
6 15 1.75e-03 4.95e-02 2.37e+01 18 51 6.32e-05 7.40e-03 3.54e+00
8 21 9.16e-04 2.34e-02 1.12e+01 20 57 4.74e-05 6.09e-03 2.92e+00
10 27 3.65e-04 2.05e-02 9.82e+00 22 63 2.36e-05 5.43e-03 2.60e+00
12 33 3.34e-04 1.56e-02 7.45e+00 24 65 2.36e-05 4.73e-03 2.27e+00

The columns 3 and 8 show the δ governing the condition of the saddle point problems (and
hence of the corresponding Petrov-Galerkin problems), see (5.3), the greedy space growth is
based upon. Hence the surrogates are very tight giving rise to weakness parameters very close
to one. As indicated in Remark 4.3 one can use also an a posteriori bound for the truth
solution based on the corresponding lifted residual. Columns 5 and 10 show therefore the
relative accuracy of the current reduced model and the truth model. This corresponds to the
stability constants computed by conventional RBMs. Even for elliptic problems these latter
ones are significantly larger than the ones for the present singularly perturbed problem which
are guaranteed to be close to one by the method itself. Based on the a posteriori bounds for
the truth solution (which are also obtained with the aid of tailored well-conditioned variational
formulations, see [7]), the greedy space growth is stopped when the surrogates reach the order of
the truth accuracy. As illustrated in Figure 5.2, in the present example this is essentially already
the case for ≤ 20 trial reduced basis functions and almost three times as many test functions. To
show this “saturation effect” we have continued the space growth formally up to n = 24 showing
no further significant improvement which is in agreement with the resolution provided by the
truth space. These relations agree with the theoretical predictions in [10]. Figure 5.2 illustrates
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also the rapid gain of accuracy by the first few reduced basis functions which supports the fact
that the solution manifold is “well seen” by the Petrov-Galerkin surrogates. More extensive
numerical tests shown in [10] show that the achieved stability is independent of the diffusion
but the larger the diffusion the smaller become the dimensions n = dimUn, nV = dimVn for the
reduced spaces. This indicates the expected fact that the larger the diffusion the smoother is
the dependence of u(y) on the parameter y. In fact, when ε→ 0 one approaches the regime of
pure transport where the smoothness of the parameter dependence is merely Hölder continuity
requiring for a given target accuracy a larger number of reduced basis functions, see [10].

6. Is it Necessary to Resolve All of M?

The central focus of the preceding discussion has been to control the maximal deviation

(6.1) σn(M)U = max
y∈Y
‖u(y)− PU,Unu(y)‖U ,

and to push this deviation below a given tolerance for n as small as possible. However, in many
applications one is not interested in the whole solution field but only in a quantity of interest
I(y), typically of the form I(y) = `(u(y)) where ` ∈ U ′ is a bounded linear functional. Looking
then for some desired optimal state I∗ = `(u(y∗)) one is interested in a guarantee of the form

(6.2) |`(un(y))− `(u(y))| ≤ tol, y ∈ Y,

where the states un(y) belong to a possibly small reduced space Un in order to be then able to
carry out the optimization over y ∈ Y in the small space Un ⊂ U . Asking only for the values
of just a linear functional of the solution seems to be much less demanding than asking for the
whole solution and one wonders whether this can be exploited in favor of even better online
efficiency.

Trying to reduce computational complexity by exploiting the fact that, retrieving only a
linear functional of an unknown state - a scalar quantity - may require less information than
recovering the whole state, is the central theme of goal oriented adaptation in finite element
methods, see [3]. Often the desired accuracy is indeed observed to be reached by significantly
coarser discretizations than needed to approximate the whole solution within a corresponding
accuracy. The underlying effect, sometimes referred to as “squared accuracy” is well understood
and exploited in the RBM context as well, see [16, 21]. We briefly sketch the main ideas for the
current larger scope of problems and point out that, nevertheless, a guarantee of the form (6.2)
ultimately requires controling the maximal deviation of a reduced space in the sense of (6.1).
Hence, an optimal sampling of a solution manifold remains crucial.

First, a trivial estimate gives for ` ∈ U ′

(6.3) |`(un(y))− `(u(y))| ≤ ‖`‖U ′‖un(y)− u(y)‖U
so that a control of σn(M)U would indeed yield a guarantee. However, the n needed to drive
‖`‖U ′σn(M)U below tol is usually larger than necessary.

To explain the principle of improving on (6.3) we consider again a variational problem of
the form (4.3) (suppressing any parameter dependence for a moment) for a pair of spaces U, V
where we assume now that κU,V ′(B) ≤ Cb/cb is already small, possibly after renorming an
initial less favorable formulation through (4.6) or (4.8). Let u ∈ U again denote the exact
solution of (4.3). Given a ` ∈ U ′ we wish to approximate `(u), using an approximate solution
ū ∈W ⊂ U defined by

(6.4) b(ū, v) = 〈f, v〉, v ∈ Ṽ (W ) ⊂ V,
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where Ṽ (W ) is a suitable test space generated by the methods discussed in §4.1. In addition
we will use the solution z ∈ V of the dual problem:

(6.5) b(w, z) = −`(w), w ∈ U,
together with an approximation z̄ ∈ Z ⊂ V defined by

(6.6) b(w, z̄) = −`(w), w ∈ W̃ (Z) ⊂ U,

again with a suitable test space W̃ (Z). Recall that we need not determine the test spaces

Ṽ (W ), W̃ (Z) explicitly but rather realize the corresponding Petrov-Galerkin projections through
the equivalent saddle point formulations with suitable δ-proximal auxiliary spaces generated by
a greedy stabilization.

Then, defining the primal residual functional

(6.7) rū(v) := r(ū, v) := b(u− ū, v) = 〈f, v〉 − b(ū, v),

and adapting the ideas in [16, 21] for the symmetric case V = U to the present slightly more
general setting, we claim that

(6.8) ˆ̀(ū) := `(ū)− r(ū, z̄)
is an approximation to the true value `(u) satisfying

(6.9) |ˆ̀(ū)− `(u)| ≤ C inf
w∈W

‖u− w‖U inf
v∈Z
‖z − v‖V ,

where C depends only on the inf-sup constant of the finite dimensional problems. In fact, since
by (6.5),

`(u)− `(ū) = b(ū− u, z) = −r(ū, z),
one has `(u) = `(ū)− r(ū, z) and hence

|ˆ̀(ū)− `(u)| = |`(ū)− r(ū, z̄)− `(ū) + r(ū, z)| = |r(ū, z − z̄)| = |b(u− ū, z − z̄)|
≤ Cb‖u− ū‖U‖z − z̄‖V ,

which confirms the claim since ū, z̄ are near-best approximations due to the asserted inf-sup
stability of finite dimensional problems.

Clearly, (6.9) says that in order to approximate `(u) the primal approximation in U need
not resolve u at all as long as the dual solution z is approximated well enough. Moreover, when
` is a local functional, e.g. a local avarage approximating a point evaluation, z is close to the
corresponding Green’s function with (near) singularity in the support of `. In the elliptic case z
would be very smooth away from the support of ` and hence well approximable by a relatively
small number of degrees of freedom concentrated around the support of `. Thus, it may very
well be more profitable to spend less effort on approximating u than on approximating z.

Returning to parameter dependent problems (5.1), the methods in §5 can now be used
as follows to construct possibly small reduced spaces for a frequent online evaluation of the
quantities I(y) = `(u(y)). We assume that we already have properly renormed families of
norms ‖ · ‖Uy , ‖ · ‖Vy , y ∈ Y, with uniform inf-sup constants close to one. We also assume
now that both families of norms are equivalent (by compactness of Y uniformly equivalent) to
reference norms ‖ · ‖U , ‖ · ‖V , respectively. Hence we can consider two solution manifolds

Mpr := {u(y) = B−1
y f, y ∈ Y} ⊂ U, Mdual := {z(y) := B−∗y `, y ∈ Y} ⊂ V,

and use Algorithm 3, SGA-dou to generate (essentially in parallel) two sequences of pairs of
reduced spaces

(Un, Vn), (Zn,Wn), n ∈ N.
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Here Vn ⊂ V,Wn ⊂ U are suitable stabilizing spaces such that for m < n and for the corre-
sponding reduced solutions um(y) ∈ Um, zn−m(y) ∈ Zn−m the quantity

(6.10) In,m(y) := `(um(y))− r(um(y), zn−m(y))

satisfies

(6.11) |I(y)− In,m(y)| ≤ Cσm(Mpr)Uσn−m(Mdual)V ,

with a constant C independent of n,m. The choice of m < n determines how to distribute the
computational effort for computing the two sequences of reduced bases and their stabilizing
companion spaces. By Theorem 5.2, one can see that whichever n-width rate dn(Mpr)U or
dn(Mdual)V decays faster one can choose m < n to achieve for a total of dimUm+dimZn−m =
n the smallest error bound. Of course, the rates are not known and one can use the tight
surrogates to bound and estimate the respective errors very accurately. For instance, when

dn(Mpr)U ≤ Cn−α, dn(Mdual)V ≤ Cn−β , m =
⌊(

α
α+β

)
n
⌋

yields an optimal distribution with

a bound

(6.12) |I(y)− In,m(y)| ≤ C
(α+ β

β

)β(α+ β

α

)α
n−(α+β).

In particular, when β > α the dimensions on the reduced bases for the dual problem should
be somewhat larger but essentially using the same dimensions for the primal and dual reduced
spaces yields the rate n−(α+β) confirming the “squaring” when α = β. In contrast, as soon as
either one of the n-width rates decays exponentially it is best to grow only the reduced spaces
for the faster decay while keeping a fixed space for the other side.

7. Summary

We have reviewed recent developments concerning reduced basis methods with the following
main focus. Using Kolmogorov n-width as a benchmark for the performance of reduced basis
methods in terms of minimizing the dimensions of the reduced models for a given target accu-
racy, we have shown that this requires essentially to construct tight well-conditioned surrogates
for the underlying variational problem. We have explained how renormation in combination
with inner stabilization loops can be used to derive such residual based surrogates even for
problem classes not covered by conventional schemes. This includes in a fully robust way in-
definite as well as ill-conditioned (singularly perturbed) coercive problems. Greedy strategies
based on such surrogates are then shown to constitute an optimal sampling strategy, i.e., the
resulting snapshots span reduced spaces whose distances from the solution manifold decay es-
sentially at the same rate as the Kolmogorov n-widths. This means, in particular, that stability
constants need not be determined by additional typically expensive computations but can be
pushed by the stabilizing inner greedy loop as close to one as one wishes. Finally, we have
explained why the focus on uniform approximation of the entire solution manifold is equally
relevant for applications where only functionals of the parameter dependent solutions have to
be approximated.
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