
Stabilisation of hyperbolic conservation 
laws using 

conservative finite–volume schemes

Michael Herty

Institut für 
Geometrie und Praktische Mathematik
Templergraben 55, 52056 Aachen, Germany

M. Herty is with the Department of Mathematics, RWTH Aachen University, Aachen, GERMANY 
e-mail: herty@igpm.rwth-aachen.de. 
The work of MH is supported by DFG STE2063/1-1 and DFG Cluster of Excellence Integrative Production Technologies 
in High-Wage Countries. Manuscript received XXXX; revised September XXXX.

M
 A

 R
 C

 H
   

   
  2

 0
 1

 5
   

 
P 

R 
E 

P 
R 

I N
 T

   
 4

 1
 8



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Stabilisation of hyperbolic conservation laws using
conservative finite–volume schemes

Michael Herty

Abstract—We discuss numerical stabilisation of dynamics gov-
erned by nonlinear hyperbolic conservation laws through feed-
back boundary conditions. Using a discrete Lyapunov function
we prove exponential decay of the discrete solution to first–
order finite volume schemes in conservative form. Decay rates are
established for a large class of finite volume schemes including
the Lax–Friedrichs scheme. Theoretical results are accompanied
by computational results.

Index Terms—stabilisation, finite–volume schemes, Lyapunov
methods, boundary control, hyperbolic conservation laws

I. INTRODUCTION

WE are interested in the numerical analysis of feedback
boundary control of nonlinear hyperbolic equations.

Today, there exist a variety of analytical results by many
authors on stability for general hyperbolic systems of conser-
vation laws. We do not attempt to review all literature here and
refer to [1]–[6] and the references therein for a more detailed
discussion on analytical properties and existing results. The
obtained results have many applications in engineering [7]
including for example gas dynamics in pipes [8], water flow in
canals [9]–[13] traffic flow [14], [15], supply chain [16] and
electrical transmission lines [17], [18]. Also, more abstract
results are available [19]. Recently, also aspects of switching
systems and their control have been investigated [20]–[24].
Therein, a class of Lyapunov functions and suitable lineariza-
tion has proven useful for analyzing feedback boundary control
problems. For stability of the solution to the partial differential
equation, the exponential decay of such a Lyapunov function
has been established rigorously in a variety of cases, see for
example [4], [25]–[27]. Typically, rather strong assumptions on
the solution to the conservation (or balance) laws are required
to establish decay rates. Therefore, the results are usually
obtained using the equivalent non–conservative reformulation
of the conservation law. Until now, only some of the theoretical
results are accompanied by corresponding numerical analysis
and we refer to [18], [28]–[30] for some recent discussion.

The focus of this paper is the stability analysis of numerical
schemes. In a previous work [30] conditions on a numerical
scheme for exponential decay of the discrete Lyapunov func-
tion have been established. However, therein the continuous
approach has been extended to numerical discretizations of
finite volume schemes. Therefore, the results are only appli-
cable to numerical schemes in non–conservative form. For
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those schemes exponential decay of discrete L2−Lyapunov
functions has been established. However, non–conservative
finite–volume schemes have very limited applications and they
are not commonly used for simulation of hyperbolic problems
[31]. In this paper we study general conservative first–order
finite–volume methods in the context of stabilization. We
establish convergence of the discrete L2−Lyapunov function
under general assumptions on first–order conservative finite
volume schemes. The results are exemplified for the Lax–
Friedrichs and Enquist–Osher scheme by computational re-
sults. So far, the discussion is limited to first–order schemes
as well as scalar conservation laws. Further, we extend slightly
the class of Lyapunov functions for the scalar by considering
t entropy entropy–flux pairs. Those allow stabilization results
without requiring linearization around steady–state as shown
in the examples of Section II.

The paper is organized as follows. In Section II we present
the motivation and some examples where stabilization is
applied. Section III contains the main convergence theorem
for general finite volume scheme and Section IV contains the
accompanying numerical results. We close with an outlook to
systems and high–order schemes in Section V.

II. MOTIVATION AND EXAMPLES

In this section we present formal computations for stabi-
lization of a nonlinear scalar hyperbolic equations. The results
will then be used to rigorously prove stabilization results in
Section III. The precise assumptions on arising functions are
also given in the following section.

Consider a general nonlinear scalar conservation law (1) on
x ∈ [0, 1], t ≥ 0 and for a possibly nonlinear flux g : R→ R.

∂ty(t, x) + ∂xg(y(t, x)) = 0. (1)

Clearly, any constant state y0 is a solution to (1). Using
suitable Lyapunov functions we stabilize y0 through feedback
boundary control. Consider a small perturbation u = u(t, x)
of a constant state y0. Then, the perturbation fulfills the
conservation law

∂tu(t, x) + ∂xf(u(t, x)) = 0, f(u) = g(u+ y0). (2)

The feedback boundary condition u(t, 0) = κ u(t, 1) can be
prescribed for (2) provided that f ′(u) = g′(u+y0) ≥ 0 for all
u. For the scalar conservation law (2) we consider an entropy
entropy–flux pairs (η, q), i.e., q′(u) = η′(u)f ′(u) and we have

∂tη(u(t, x)) + ∂xq(u(t, x)) = 0 (3)
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for any smooth solution u to (2). According to [32, Section
6.2] the previous equality can be replaced by an inequal-
ity for convex entropies and solutions u to (2) enjoying
discontinuities. Equation (3) holds as equality in case of
sufficiently smooth solutions u and any smooth function η
We additionally assume that f ′(u) ≥ ν, η ≥ 0, η(0) = 0,
sign(η′(u)) = sign(u). Then, we obtain q(u) ≥ νη(u) ≥ 0
according to Corollary 1. Also, we assume there exists κ ∈ R
such that for all u :

q(κ u)− 1

e
q(u) ≤ 0. (4)

Formally, we establish exponential decay of the Lyapunov
function

L(t) =

∫ 1

0

exp(−x)η(u(t, x))dx (5)

for any initial data u(0, x) = u0(x) and feedback boundary
condition u(t, 0) = κ u(t, 1). Indeed, a simple computation
shows

d

dt
L(t)= −

∫ 1

0

exp(−x)∂xq(u(t, x))dx

= −
∫ 1

0

exp(−x)q(u(t, x))dx

−
(

1

e
q(u(t, 1))− q(u(t, 0))

)
≤ −ν

∫ 1

0

exp(−x)η(u(t, x))dx = −νL(t).

The previous inequality yields exponential decay of rate ν
of the Lyapunov function. The formal result holds true for
any sufficiently regular solution u and corresponding entropy
entropy–flux pair (η, q). We present some examples.
• In the linear case g(u) = a u with a > 0 we have f ′(u) ≥
ν = a and η(u) = u2, and q(u) = au2. For κ2 ≤ 1

e
the assumptions on f, η and q as well as equation (4) is
fulfilled. Obviously, we obtain a result already established
e.g. in [4].

• Consider the stabilization of steady states in Burger’s
equation. The flux is g(y) = 1

2y
2 and the state y0 > 0.

Then, f ′(u) = u + y0 ≥ ν for ν = y0
2 and all |u| ≤ y0

2 .
For η(u) = u2 we obtain q(u) = 2

3u
3 +y0u

2. Hence, for
κ2 ≤ 1

e condition (4) is fulfilled. Note that η(u) = u2k for
k = 1, . . . , is also possible choice within the Lyapunov
function.

• Consider the stabilization of steady states y0 > 0 in
supply chain production models [33], [34]. A typical flux
function is given by the M/M/1 queuing model with ca-
pacity one: g(y) = y

1+y . Hence, f ′(u) = 1
(1+y0+u)2 ≥ ν

provided that |u| ≤ y0 and ν = 1
1+2y0

. Again, in
equation (5) any choice η(u) = u2k for k = 1, . . . , yields
exponential decay.

The previous examples already show that exponential sta-
bility is only expected under constraints on u. Due to Kruzkov
Theorem [32, Theorem 6.2.3] bounds on u(t, x) are imposed
by bounds on the initial data u0 even for weak solutions.
We also recall that the Cauchy problem (2) with initial data

u0(·) ∈ Ck(R) has a unique solution u(·, ·) ∈ Ck([0, T ]×R)
up to time T where 1

T = infy∈R f
′′(u0(y)). We also refer to

[2], [4] for more results on classical solutions to initial and
boundary value problems.

The previous results can be extended to Lyapunov functions
L(t) =

∫ 1

0
exp(−x µ)P (x)ν(u(t, x))dx in a similar fashion

as discussed in [4], [11], [17], [35], [36]. Further, exponential
decay is also established in the following case using a similar
formal computation. For f ′(u) ≤ −ν for all u ∈ U the
Lyapunov function

L̃(t) =

∫ 1

0

exp(x)ν(u(t, x))dx

decays exponentially fast provided feedback boundary condi-
tions of the type

u(1, t) = κ u(0, t)

and q(u)− e q(κu) ≤ 0 is fulfilled.
Corollary 1: Assume f, η, q ∈ C2(R;R) and η(0) = 0, η ≥

0, sign(η′(u)) = sign(u). Let q(u) =
∫ u

0
η′(s)f ′(s)ds.

Further, assume there exists a set U such that f ′(u) ≥ ν > 0
for all u ∈ U . Then, q(u) ≥ ν η(u) for all u ∈ U .
The proof follows by simple integration.

III. THEORETICAL RESULTS

The main result is Theorem 3.1. We collect some assump-
tions on flux and entropy and entropy–flux pairs, respectively.

f, η, q ∈ C2(R;R), η(0) = 0, η ≥ 0, (6a)
sign(η′(u)) = sign(u), q′(u) = η′(u)f ′(u). (6b)

On the domain x ∈ [0, 1] we introduce an equidistant spatial
grid (xi)

Nx
i=1 with mesh size ∆x. The grid points xi are the

cell centers of a finite volume scheme xi = (∆x)(i+ 1
2 ) and

Nx is such that (Nx + 1
2 )∆x = 1. A general conservative

finite–volume scheme [31] is given by

un+1
i − uni = −λ

(
Fni+ 1

2
− Fni− 1

2

)
(7)

for i = 1, . . . , Nx, and n = 0, . . . , Nt and λ = ∆t
∆x . The

discrete boundary conditions are given by

un0 = κ1u
n
Nx
, and unNx+1 = κNu

n
1 . (8)

and initial conditions for i = 1, . . . , Nx are denoted by

u0
i = ui,0. (9)

Here, uni denotes the cell average of u(·, ·) at time tn = n ∆t,
i.e.,

uni =
1

∆x

∫ x
i+1

2

x
i− 1

2

u(tn, ξ)dξ.

In the first–order numerical finite volume schemes the recon-
struction of the point values of u from the cell averages uni is
obtained through piecewise constant reconstruction. Therefore,
we have that the numerical approximation to u(tn, xi) is given
by

u(tn, xi) ≈ uni .

The exponential stability of a general conservative finite–
volume will be established under strong assumptions on the
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discrete solution (uni )i,n. Those are similar to [4] and assert a
bound on the discrete C2−norm of uni . Here, we do not prove
that the schemes conserves the bound but assume that the
initial data ui,0 is chosen such that (uni )i,n fulfills bounds. The
bounds are well–known for a C2−solution u(t, x) provided
the time t is sufficiently small and the initial data u0(x) is
sufficiently smooth. We assume there exists a bounded set
U ⊂ R with the following property: For any initial data
(ui,0)i ∈ U the solution (uni )ni obtained through equation (7),
(8) and (9) fulfills for all i = 1, . . . , Nx and n = 0, . . . , Nt :

uni ∈ U , |
uni−1 − uni

∆x
| ≤ Cx, (10a)

|
uni−1 − 2uni + uni+1

(∆x)2
| ≤ Cxx. (10b)

Clearly, (10) are the discrete analog of the C0, C1 and
C2−norm of u(t, x), respectively. The numerical flux Fn

i+ 1
2

=

F (uni+1, u
n
i ) is expected to fulfill F (u, u) = f(u). We assume

that the numerical flux F = F (x, y) : U × U → R is at least
twice differentiable. Further, we assume that first and second
derivatives of F on U are bounded.

F ∈ C2(R2;R), sup
u∈U
‖DF (u, u)‖ ≤ CDF , (11a)

sup
u,v∈U

‖D2F (u, v)‖ ≤ CD2F . (11b)

We collect the assumptions on η, q and f on the set U in
equation (12).

f ′(u) ≥ ν ∀u ∈ U , sup
u∈U
‖q′′(u)‖ ≤ CD2q, (12a)

sup
u∈U
‖f ′(u)‖ ≤ CDf , sup

u∈U
‖f ′′(u)‖ ≤ CD2f , (12b)

sup
u∈U
‖η′(u)‖ ≤ CDη, sup

u∈U
‖η′′(u)‖ ≤ CD2η. (12c)

Theorem 3.1: Consider the conservative finite–volume
scheme (7) and boundary conditions (8). Let xi = ∆x (i+ 1

2 )
for some 0 < ∆x ≤ 1 and Nx, such that (Nx + 1

2 )∆x = 1.
Let tn = n∆t. Assume there exists ∆t > 0 and a bounded
set U ⊂ R such that the CFL condition

sup
u∈U
|f ′(u)|λ ≤ 1

and (10) holds true. Assume the numerical flux F fulfills
F (u, u) = f(u) and (11). Further, the entropy–entropy-flux
pair (η, q) fulfills assumption (6) and (12). Assume there exists
κ1 such that

e q(κ1u)− q(u) ≤ 0,∀u ∈ U .

Define the discrete Lyapunov function at time tn = ∆t n
for n = 0, . . . , Nt as

Ln := ∆x

Nx∑
i=1

exp(−xi)η(uni ). (13)

Then, there exists constants C1, C2 > 0 such that for all initial
data ui,0 ∈ U and all times tn, n = 0, . . . ,

Ln+1 ≤ exp(−e− 1

e
ν tn+1)L0 + C1∆t+ C2tn+1(∆t)3.

(14)
Proof: Since F (u, u) = f(u) for all u, we have

Fy(u, u) = f ′(u)−Fx(u, u). The difference in the numerical
fluxes yields for some ξx, ξy ∈ U

Fni− 1
2
− Fni+ 1

2
= (uni−1 − uni )Fy(uni , u

n
i )

+(uni − uni+1)Fx(uni , u
n
i ) +

1

2
Fyy(uni , ξy)(uni−1 − uni )2

−1

2
Fxx(ξx, u

n
i )(uni+1 − uni )2

= (uni−1 − uni )f ′(uni )− Fx(uni , u
n
i )
(
uni+1 − 2uni + uni−1

)
+

1

2
Fyy(uni , ξy)(uni−1 − uni )2 − 1

2
Fxx(ξx, u

n
i )(uni+1 − uni )2

Furthermore, we obtain for ξη, ξq ∈ U

η(un+1
i )− η(uni )

=−λη′(uni )(Fni+ 1
2
− Fni− 1

2
) +

1

2
η′′(ξη)(uni − un+1

i )2

=λ(uni−1 − uni )q′(uni ) + R̃

=λ(q(uni−1)− q(uni )) +R,

wherein R and R̃ are given by

R =R̃− 1

2
λq′′(ξq)(u

n
i − uni−1)2

R̃ =
1

2
η′′(ξη)(uni − un+1

i )2

+λη′(uni )Fx(uni , u
n
i )
(
uni+1 − 2uni + uni−1

)
−λη′(uni )

1

2
Fyy(uni , ξy)(uni−1 − uni )2

+λη′(uni )
1

2
Fxx(ξx, u

n
i )(uni+1 − uni )2

We estimate R by R ≤ (∆x)(∆t)C for a constant

C :=
1

2
CD2qCx + CxxCDFCDη + CDηCD2FCx

+
1

2
CD2ηλ(CDfCx + CDFCxx + CD2FCx)2

The constant is obtained using the bounds given by assumption
(10), (11), (12) and ∆x ≤ 1:

λ

2
q′′(ξq)(u

n
i − uni−1)2 ≤ (∆x)2λ

2
CD2qCx,

λη′(uni )Fx(uni , u
n
i )
(
uni+1 − 2uni + uni−1

)
≤ (∆x)2λCDηCDFCxx,

and

−λη′(uni )
1

2
Fyy(uni , ξy)(uni−1 − uni )2

+λη′(uni )
1

2
Fxx(ξx, u

n
i )(uni+1 − uni )2

≤ (∆x)2λCDηCD2FCx,
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and

1

2
η′′(ξη)(uni − un+1

i )2

≤1

2
CD2ηλ

2
(

(uni−1 − uni )f ′(uni )

−Fx(uni , u
n
i )
(
uni+1 − 2uni + uni−1

)
+

1

2
Fyy(uni , ξy)(uni−1 − uni )2

−1

2
Fxx(ξx, u

n
i )(uni+1 − uni )2

)2

≤1

2
CD2ηλ

2(∆x)2

×(CDfCx + CDFCxx∆x+ ∆xCD2FCx)2

Combining the previous computations we estimate the time
derivative of the discrete Lyapunov function (13).

Ln+1 − Ln

∆t
=

1

λ

Nx∑
i=1

exp(−xi)
(
η(un+1

i )− η(uni )
)

≤
Nx∑
i=1

exp(−xi)
(
q(uni−1)− q(uni )

)
+

Nx∑
i=1

exp(−xi)(∆x)(∆t)C

≤
Nx∑
i=1

q(uni ) exp(−xi) (exp(−∆x)− 1)

+BC + (∆t)C

We obtain for the discrete boundary condition (8)

BC=exp(−x1)q(un0 )− q(unNx
) exp(−xNx+1)

=exp(−∆x/2)

(
q(κunNx

)− 1

e
q(unNx

)

)
≤0.

We estimate exp(−∆x) − 1 ≤ − e−1
e ∆x for ∆x ≤ 1. Using

Corollary 1 we finally obtain

Ln+1≤Ln + ∆t

Nx∑
i=1

q(uni ) exp(−xi) (exp(−∆x)− 1)

+(∆t)2C

≤Ln −∆t
e− 1

e
ν∆x

Nx∑
i=1

η(uni ) exp(−xi)

+(∆t)2C

≤(1−∆t
e− 1

e
ν)Ln +

n∑
i=0

(1− e− 1

e
ν∆t)iC(∆t)2

≤exp(−e− 1

e
ν∆t(n+ 1))L0

+C(∆t)2
n∑
i=0

exp(−e− 1

e
ν∆t i).

The term (∆t)
n∑
i=0

exp(− e−1
e ν∆t i) represents a first–order

quadrature rule applied to∫ tn+1

0

exp(−e− 1

e
νs)ds

= − e

ν(e− 1)

(
exp(−e− 1

e
νtn+1)− 1

)
≤ 1.

The discretization error is bounded by Cquadtn+1(∆t)2 for
some constant Cquad. Therefore, we obtain the estimate

Ln+1 ≤ exp(−e− 1

e
νtn+1)L0+C∆t

(
1 + Cquadtn+1(∆t)2

)
.

We comment on the convergence properties for n → ∞,
∆t→ 0 and boundary conditions (8).

• A boundary condition at x = 0 only is required according
to (6), i.e., f ′(u) ≥ 0. For a general three–stencil scheme
also a condition for uNx+1 is imposed in equation (8).
However, Theorem 3.1 shows that the decay is indepen-
dent of the choice of kN . This is coincides with the
expected behavior of the continuous Lyapunov function.

• The constant C1 and C2 include in particular the constant
Cxx. The later is related to the numerical diffusion of
the solution u. This shows that the finite–volume scheme
introduces additional numerical viscosity leading to a
deterioration of the exponential decay rate. We refer to
[31], [37] for more details on numerical viscosity of finite
volume methods.

• Consider the limit ∆t → 0, Nt → ∞ such that T =
Nt∆t remains a fixed arbitrary terminal time. Then, we
obtain

L(T ) = LNt ≤ exp(−e− 1

e
νT )L(0),

corresponding to the expected result for the continuous
result.

• In the general case the discrete Lyapunov function does
not yield exponential decay for fixed ∆t and Nt → ∞.
However, for fixed ∆t and up to time T = O( 1

(∆t)2 ) we
obtain for all n such that n∆t ≤ T :

Ln ≤ exp(−e− 1

e
νtn)L0 +O(∆t).

This implies that L(0) decays exponentially up to a value
of order O(∆t). Hence, finer temporal meshes lead to a
longer time horizon where we observe the exponential
decay.

In the following we present some examples fulfilling the
assertions of Theorem 3.1. The Enquist–Osher flux is given
by

Fni+ 1
2

=
1

2

(
f(uni ) + f(uni+1)

)
− 1

2

∫ un
i+1

un
i

|f ′(s)|ds.

Under assumption (6) and (12) the flux simplifies

Fni+ 1
2

= f(uni ),
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for the Enquist–Osher scheme. The Lax–Friedrichs flux is
given by.

Fni+ 1
2

= − 1

2λ

(
uni+1 − uni

)
+

1

2

(
f(uni+1) + f(uni )

)
,

In both cases (11) is fulfilled provided (6) and (12) holds.
Corollary 2: Assume (6), (10) and (12). Then, (11) is

fulfilled for the the Lax–Friedrichs flux and the Enquist–Osher
flux, respectively.

Proof: Under assumption (6) and (12) the numerical flux
F is given by

Fni+ 1
2

= f(uni ),

for the Enquist–Osher scheme and

Fni+ 1
2

= − 1

2λ

(
uni+1 − uni

)
+

1

2

(
f(uni+1) + f(uni )

)
,

for the Lax–Friedrichs schemes. Therefore, condition (11) is
fulfilled.

Lemma 3.2 (Upwind discretization for linear flux): Let
f(u) = a u with a > 0. Then, η(u) = u2 and q(u) = au2

fulfill assumption (6).
Consider the conservative finite–volume scheme (7) with

boundary conditions (8). Let xi = ∆x (i + 1
2 ) for some 0 <

∆x ≤ 1 and Nx, such that (Nx + 1
2 )∆x = 1. Let tn = n∆t

and assume
aλ = 1.

Let the numerical flux be given by the Enquist–Osher scheme,
i.e.,

Fni+ 1
2

= auni .

Then, (11) holds with CDF = a and CD2F = 0.
Let κ2 ≤ 1

e . Then, for the discrete Lyapunov function (13)
the estimate (14) holds true with C1 = C2 = 0. Therefore, the
discrete Lyapunov function decays exponentially fast.

Proof: For κ2 ≤ 1
e we note that eq(κu) − q(u) ≤ 0.

Further, we note that for the Enquist–Osher (or Upwind) flux
we have Fx = Fyy = 0 and therefore

Fni− 1
2
− Fni+ 1

2
= (uni−1 − uni )a.

Further, we note that

η(un+1
i )− η(uni ) =

−λ(2uni )(Fni+ 1
2
− Fni− 1

2
) + (uni − un+1

i )2

= λ(uni−1 − uni )auni + R̃

= λ(q(uni−1)− q(uni ))− λa(uni − uni−1)2 + R̃

where
R̃ = (uni − un+1

i )2.

Hence, the constant C appearing in the proof of Theorem 3.1
is equal to zero and therefore also C1 = C2 = 0.

In the following we prove exponential convergence for a
linear flux f(u) = au and the Lax–Friedrichs scheme. We
prove exponential stability of discrete Lyapunov function with
η(u) = u2. Lax–Friedrichs scheme is the prototype of a central
scheme [38] and therefore the discretization is independent of
the sign of a. Lemma 3.3 is a particular case of Theorem 3.1

that allows improve the obtained bounds using the properties
of linear transport.

Lemma 3.3 (Lax–Friedrichs discretization for linear flux):
Consider the linear transport equation (2) with f(u) = a u.
Let xi = ∆x(i+ 1

2 ) for some 0 < ∆x ≤ 1 and Nx such that
(Nx + 1

2 )∆x = 1. Let tn = n∆t. Let λ = ∆t
∆x and assume

∆t be such that the CFL condition

e

e+ 1
≤ |a|λ ≤ 1

holds. The Lax–Friedrichs discretization is given by

un+1
i − uni = −λ

(
Fni+ 1

2
− Fni− 1

2

)
,

Fni+ 1
2

= − 1

2λ

(
uni+1 − uni

)
+
a

2

(
uni+1 + uni

)
,

for i = 0, . . . , Nx and n = 0, . . . . The initial condition is
discretized as ui,0 = ui,0. We consider boundary feedback
control as

unNx+1 = κNu
n
1 ,

un0 = κ1u
n
Nx
.

Consider the discrete Lyapunov function

Ln = ∆x

Nx∑
i=1

exp(− a

|a|
x) (uni )

2
. (15)

Then, for any given ui,0 ∈ R the Lyapunov function decays
exponentially fast to zero provided that κ2

1 ≤ 1
e and κ2

N ≤ 1
e .

There exists

ν :=
e− 1

2eλ

such that

Ln ≤ exp(−νtn)L0. (16)

Proof: Define

D :=
1

2
(1 + aλ) .

We have 0 ≤ D ≤ 1 due to the CFL condition. A simple
computation shows that the Lax–Friedrichs scheme can be
rewritten as

un+1
i = uni+1(1−D) +Duni−1

and therefore

(un+1
i )2 ≤ (uni+1)2(1−D) +D(uni−1)2.
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The discrete finite difference approximation is therefore esti-
mated as follows:

Ln+1 − Ln

∆t

=
1−D
λ

Nx∑
i=1

exp(− a

|a|
xi)
(
(uni+1)2 − (uni )2

)
+
D

λ

Nx∑
i=1

exp(− a

|a|
xi)
(
(uni−1)2 − (uni )2

)
=

1−D
λ

Nx∑
i=1

(uni )2

(
exp(− a

|a|
xi−1)− exp(− a

|a|
xi)

)

+
D

λ

Nx∑
i=1

(uni )2

(
exp(− a

|a|
xi+1)− exp(− a

|a|
xi)

)
+

1−D
λ

(
exp(− a

|a|
xNx

)(unNx+1)2 − exp(− a

|a|
x0)(un1 )2

)
+
D

λ

(
exp(− a

|a|
x1)(un0 )2 − exp(− a

|a|
xNx+1)(unNx

)2

)
.

We estimate the terms independently. Since κ2
N , κ

2
1 ≤ 1

e we
have κ2

N ≤ exp( a
|a| (xNx

− x0)) and κ2
1 ≤ exp(− a

|a| ). Hence,

1−D
λ

(
exp(− a

|a|
xNx)κ2

N (un1 )2 − exp(− a

|a|
x0)(un1 )2

)
+
D

λ

(
exp(− a

|a|
x1)κ2

1(unNx
)2 − exp(− a

|a|
xNx+1)(unNx

)2

)
≤ 0,

Further, we simplify

1−D
λ

Nx∑
i=1

(uni )2

(
exp(− a

|a|
xi−1)− exp(− a

|a|
xi)

)

+
D

λ

Nx∑
i=1

(uni )2

(
exp(− a

|a|
xi+1)− exp(− a

|a|
xi)

)

=
1−D
λ

Nx∑
i=1

(uni )2 exp(− a

|a|
xi)

(
exp(

a

|a|
∆x)− 1

)

+
D

λ

Nx∑
i=1

(uni )2 exp(− a

|a|
xi)

(
exp(− a

|a|
∆x)− 1

)

=
X
λ

Nx∑
i=1

(uni )2 exp(− a

|a|
xi)

=
X

∆xλ
Ln,

for

X =(1−D)

(
exp(

a

|a|
∆x)− 1

)
+D

(
exp(− a

|a|
∆x)− 1

)
.

We have exp(∆x) − 1 ≤ (e − 1)∆x and exp(−∆x) − 1 ≤
− e−1

e ∆x for 0 < ∆x ≤ 1. According to the CFL condition we
have e

e+1 ≤ |a|λ < 1. If a > 0 then 2D = 1 + aλ ≥ 1 + e
e+1

and 2(1−D) ≤ 1− e
e+1 . If a < 0, then 2(1−D) ≥ 1 + e

e+1
and 2D ≤ 1− e

e+1 . Hence, if a > 0 we estimate

X ≤ (e− 1)∆x

2
(1− e

e+ 1
)− (1 +

e

e+ 1
)
∆x(e− 1)

2e

= −e− 1

2e
∆x+R.

For a < 0 we have

X ≤−∆x(e− 1)

2e
(1 +

e

e+ 1
) +

(e− 1)∆x

2
(1− e

e+ 1
)

= −e− 1

2e
∆x+R.

In both cases we have R given by

R =
(e− 1)∆x

2
(1− e

e+ 1
)− e

e+ 1

∆x(e− 1)

2e
= 0.

Therefore,

Ln+1 − Ln

∆t
≤ −e− 1

2eλ
Ln = −νLn.

The previous inequality yields the exponential decay (16) for
any initial data ui,0.

For any fixed a the equation linear transport equation and
does require only one boundary conditions for well–posedness.
Due to the central scheme we have to describe two conditions
for a well–posed problem. Consider for example the case a >
0. The condition on the damping required to proceed in the
previous proof reads κ2

N ≤ exp(a(xNx
− x0)). This does not

necessarily introduce a damping and shows that the influence
of the right boundary condition is very weak in the discrete
scheme. This is consistent with the expected behavior of the
continuous equation.

The proof of Lemma 3.3 simplifies in case of Upwind or
Enquist–Osher fluxes. For this particular case a similar result
has already been established in [30] and therefore it is omitted
here.

IV. COMPUTATIONAL RESULTS

We present computational results for Theorem 3.1 and
Lemma 3.3. If not stated otherwise we use Nx = 100 equi–
distant spatial grid points on [0, 1]. As in Theorem 3.1 we
have the cell–centers given by xi = ∆x(i+ 1

2 ). The temporal
stepsize ∆t is chosen to fulfill the CFL condition. We chose
the feedback control κ2

1 = κ2
N = 1

e corresponding to the
lowest possible damping of the data. If not stated otherwise
we consider the stationary state y0 = 1. As initial perturbation
we chose

ui,0 = cy0 sin (2πxi)

for a constant cy0 . The constant cy0 is chosen such that
f ′(u) ≥ ν for all u = ui,0. We consider f(u) = a(u + y0),
f(u) = (u + y0)2 (Burgers) and f(u) = u+y0

1+y0+u (supply
chain). We present results for a Lyapunov function with
η(u) = u2 and η(u) = u4, respectively.

In Figure 1 we present results corresponding to Theorem
3.1. We use the Enquist–Osher scheme for feedback stabiliza-
tion of Burgers’ equation. We present the values Ln for the
Lyapunov function given by (13), as well as, the theoretical



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 7

bound exp(− e−1
e νt)L0 and the size of the temporal grid ∆t.

The later indicates the threshold in the estimate (14). All plots
are in logarithmic scale. In Figure 1 we present results for
η(u) = u2 and for η(u) = u4. We observe that the decay is
stronger than the theoretical bound suggests. Also, we observe
the strong decay even for values of order smaller than O(∆t).
This shows that the presented estimate (14) is not a sharp
bound. The decay is similar for both Lyapunov functions.
In Figure 2 we use the same scheme, feedback condition
and Lyapunov functions but consider the flux function of
the supply chain model. As expected a similar behavior as
for Burger’s example is observed. The actual decay of the
Lyapunov function is bounded by the theoretical bound and
the temporal grid. As in the previous computational results we
observe that the bound is not sharp. The results for the Lax–
Friedrichs scheme are similar and we present only results for
the stabilization of Burger’s equation. In Figure 3 we show the
exponential decay for a Lyapunov function with η(u) = u2

and η(u) = u4, respectively. The decay in the computed
values of the Lyapunov function is stronger compared with the
Enquist–Osher scheme. A possible reason could be the larger
numerical viscosity of the Lax–Friedrichs scheme compared
with the Enquist–Osher scheme.

Finally, we present results for the Lax–Friedrichs scheme
and linear transport with both positive and negative transport.
We chose λ|a| = 1 and the lowest possible feedback damping
κ2

1 = κ2
N = 1

e . We set η(u) = u2. In Figure 4 we present
the decay of the Lyapunov function as well as the theoretical
bounds for linear transport with a < 0 and a > 0, respectively.
We observe that the actual decay is stronger than the computed
numerical bound. The Lax–Friedrichs scheme as a symmetric
flux with respect to the sign of a. As expected the behavior
of Lyapunov function is therefore similar for a < 0 and a >
0, respectively. The numerical decay rates are summarized in
Table I.

TABLE I
DECAY OF THE DISCRETE LYAPUNOV FUNCTION FOR DIFFERENT
NUMERICAL GRIDS Nx. WE CONSIDER A LINEAR FLUX AND THE
LAX–FRIEDRICHS SCHEME. IN THE MIDDLE WE COMPUTE THE

NUMERICAL DECAY RATE AS − ln
(

L(t)
L(0)

)
1
T

. THE LAST COLUMN

CORRESPONDS TO THE THEORETICAL RATE OBTAINED IN LEMMA 3.3.

Nx Numerical rate Theor. rate
25 2.42 0.35
50 1.77 0.35
100 1.42 0.35
200 1.24 0.35

V. CONCLUSION

We present stabilization results for nonlinear conservation
laws using feedback boundary control. In the discrete case
stabilization is proven for general finite volume schemes. The
result is obtained under assumptions on uniform bounds on
entropy, entropy–flux and discrete C2−norm of the solution
u. Some assumptions are relaxed depending on the numerical
scheme. Convergence of Lax–Friedrichs scheme in case of
linear transport is also established. Numerical results illustrate
the expected behavior.

Fig. 1. Decay of the discrete Lyapunov function in logarithmic scale (blue
crosses). Feedback stabilization of the state y0 = 1 with low damping κ2 =
1
e

and dynamics governed by the Burgers equation. Numerical flux is the
Enquist–Osher flux. In red dots the theoretical decay rate − e−1

e
ν is shown. In

green the size of the temporal grid ∆t is shown. Left picture is the Lyapunov
function for η(u) = u2 and to the right for η(u) = u4.

In view of the existing theoretical results on stabilization of
systems of conservation laws, it would be desirable to have
similar results as Theorem 3.1 for systems. However, the the-
oretical proof [4] follows by linearization and diagonalization
of the hyperbolic system. However, most even the simplest
available finite–volume schemes do not use this technique
but rely on a central approximation as for example the Lax–
Friedrichs scheme. A possible remedy might be the use of
a suitable entropy function, however, in the case of systems
those might not exist.

Nowadays, high–order schemes are common and important
in the discretization of hyperbolic equations. An extension
of the previous results to high–order schemes is therefore
desirable. However, the current estimate relies on Taylor
expansion of the numerical flux up to second–order. This
restricts strongly the use of limiters in the high–order scheme
and therefore it is expected that the current approach does not
transfer directly to high–order discretizations.
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Fig. 2. Decay of the discrete Lyapunov function in logarithmic scale (blue
crosses). Feedback stabilization of the state y0 = 1 with low damping κ2 =
1
e

and dynamics governed by the supply chain flux. Numerical flux is the
Enquist–Osher flux. In red dots the theoretical decay rate − e−1

e
ν is shown. In

green the size of the temporal grid ∆t is shown. Left picture is the Lyapunov
function for η(u) = u2 and to the right for η(u) = u4.
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[33] C. D’Apice, S. Göttlich, M. Herty, and B. Piccoli, Modeling, simulation,
and optimization of supply chains. Philadelphia, PA: Society for Indus-
trial and Applied Mathematics (SIAM), 2010, a continuous approach.
[Online]. Available: http://dx.doi.org/10.1137/1.9780898717600

[34] D. Armbruster and R. Uzsoy, “Continuous dynamic models, clearing
functions, and discrete-event simulation in aggregate production plan-
ning,” in New Directions in Informatics, Optimization, Logistics, and
Production, J. C. Smith, Ed. INFORMS, 2012, vol. TutORials in
Operations Research.

[35] M. Gugat and M. Herty, “Existence of classical solutions and feedback
stabilization for the flow in gas networks,” ESAIM Control Optim.
Calc. Var., vol. 17, no. 1, pp. 28–51, 2011. [Online]. Available:
http://dx.doi.org/10.1051/cocv/2009035

[36] T. Li and B. Rao, “Exact boundary controllability of unsteady flows in
a tree-like network of open canals,” C. R. Math. Acad. Sci. Paris, vol.
339, pp. 867–872, 2004.
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