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ANALYSIS OF HIGHLY ACCURATE FINITE ELEMENT BASED
ALGORITHMS FOR COMPUTING DISTANCES TO LEVEL SETS
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Abstract. The signed distance function d to an embedded (hyper-) surface Γ is required in the
analysis and implementation of some higher order methods for the numerical treatment of partial
differential equations on surfaces. Two algorithms for the approximation of d are presented in this
paper, which only require a finite element approximation of a (smooth) level set function of Γ. One
method is based on a semismooth Newton method; the other method is a nested fixed point iteration.
Both are generalizations of known methods. We provide full (local) convergence analyses. Moreover,
the methods are compared in two numerical experiments.
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1. Introduction. Let Γ ⊂ RN be a smooth, oriented (hyper-) surface. The
objective of this paper is the convergence analysis of two numerical algorithms to
approximate the signed distance function d of Γ. Closely related to d is the base-
point function p. For any point x in a (tubular) neighborhood U of Γ, cf. [13], the
pair

(
p(x), d(x)

)
∈ Γ× R is a decomposition with the fundamental relation

(1.1) x = p(x) + d(x)n
(
p(x)

)
, x ∈ U,

where n(x) = Dd(x) is the gradient of d. The coordinate system defined by the tan-
gential directions of p and n is orthogonal. It is used in the theoretical analysis of
partial differential equations (PDEs) involving embedded surfaces. It is also required
in numerical methods for such problems: In [6], p and d are used in the implementa-
tion of an adaptive finite element method for the Laplace-Beltrami PDE. In [5] and
[9], higher-order methods for the Laplace-Beltrami PDE are studied which require
(approximations of) p and d. The higher-order discretization of interfacial tension in
two-phase flows studied in [8] needs approximations of p and d. A central point of the
redistancing method for level set functions in [17] is the (higher-order) approximation
of d.

For the simplest surfaces, explicit expressions for d are available, e. g. for a hy-
perplane, a sphere or a torus. The base point p can be computed easily by rearranging
(1.1) in this case. In a bigger class of examples, an explicit expression of a smooth
level set function φ of Γ is known, that is Γ = {x ∈ U | φ(x) = 0}. This case is
considered, for example, in [6], where a straightforward Newton method is used to
compute p and d. Further below, we will generalize the Newton method to the setting
considered in this paper. In more complex examples like two-phase flow problems, φ
is not available in the numerical algorithms. Only a finite element approximation φh
of φ is given. Similarly, instead of Γ, only the level set Γh = {x ∈ RN | φh(x) = 0}
is available in the numerical algorithm. Clearly, only approximations ph and dh of p
and d, respectively, can be computed in this setting.

The approximation of ph and dh. The approximation for which numerical algo-
rithms are considered in this paper was introduced in [17]. To generalize (1.1), a
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suitable approximation of n = Dd is required. As suggested in [17], one first recovers
the gradient Dφh as a continuous (vector-valued) finite element function gh. Simple
schemes based on local averaging are sufficient for this. Scaling gh to unit length
yields the quasi-normal field nh, where “quasi” refers to the fact that nh is gener-
ally not orthogonal to Γh, but the angle between nh and the true normal n̄h of Γh is
“small”. A main result of [17] is as follows: There is an open neighborhood Ũ of Γh
such that the decomposition of x ∈ Ũ into

(
ph(x), dh(x)

)
∈ Γh×R is well-defined and

the generalization of (1.1) holds, more specifically

(1.2) x = ph(x) + dh(x)nh
(
ph(x)

)
, x ∈ Ũ .

Further properties of ph and dh, in particular, optimal approximation results for p
and d, are derived in [17] and [9]; under assumptions of the type

φ ∈ C2,1(U), c−1 ≤ |Dφ| ≤ c in U,(1.3)
‖φ− φh‖L∞(U) ≤ ch

k+1,(1.4)

one obtains, for example, ‖d − dh‖L∞(Ũ) ≤ chk+1. The main topic of the present
paper is the convergence analysis of two algorithms for the computation of ph and dh.

Overview of the numerical methods. The first algorithm for ph and dh in (1.2)
generalizes the Newton method suggested in [6] for the case of a smooth φ,

∂F (y, s) = 0, F (y, s) := |y − x|+ sφ(y),

where ∂F is the Jacobian of F (with respect to y and s). We modify this by replacing φ
with φh and replacingDφ in the Jacobian by the recovered gradient gh. The solution of
this system of equations requires a non-smooth Newton method, cf. [18, 11]. The error
analysis requires a Kantorovich-type convergence theorem for semismooth functions.

The second algorithm for ph and dh in (1.2) is a modification of the algorithm
given in [17], which is a nested iteration. The outer iteration is

(1.5) yk+1 = x− sknh(yk), k ∈ N0,

where sk is determined by a line search from yk and the condition φh
(
x−sknh(yk)

)
=

0. For the line search, a quasi-Newton algorithm is used in [17]. We modify the inner
iteration in order to use a (scalar) non-smooth Newton method, which makes the
Kantorovich theorem available in the analysis.

Main results. The main results of this paper are full (local) convergence proofs for
both algorithms outlined above, cf. Theorems 4.9 and 5.9: There is a neighborhood
Ũ (independent of h) such that both algorithms converge at least linearly for any
starting value x ∈ Ũ to

(
ph(x), dh(x)

)
. The convergence of the Newton method

is locally quadratic. Moreover, the convergence proofs guarantee the existence and
uniqueness of the solutions ph(x) and dh(x). We do not have to presuppose their
existence and the decompsition (1.2). This makes our results independent of the
theoretical analysis in [17].

As far as we know, there is no convergence analysis for the Newton method to
compute ph and dh in the literature if only the approximation φh is available. For the
nested iteration, [17] contains a partial analysis; the convergence and well-posedness
of the outer iteration is shown in a modified setting, where the line search is considered
as “black box”, i. e., an oracle is used for the computation of sk. Hence, our analysis
extends and completes the one in [17].
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Two numerical experiments are performed. The methods are applied to a re-
distancing problem from [17], and a numerical integration over Γh is performed. The
performance of the methods is compared. In both experiments, the Newton method is
slightly more robust. In the second experiment, the nested iteration is slightly faster.

The paper is organized as follows. In Section 2, the semismooth Newton method
and some weak concepts of differentiability are reviewed which are required to state
the Kantorovich-type convergence theorem, Theorem 2.3. In Section 3, two simple,
but non-standard, lemmata on the semismoothness of finite element functions are
proved. A simple gradient-recovery method is reviewed and some of its approximation
properties are recorded. The semismooth Newton method for ph and dh is introduced
and analyzed in Section 4. The nested iteration for ph and dh is introduced and
analyzed in Section 5. In Section 6, some details of the implementation are discussed;
a simple damping scheme is introduced, and a caching strategy for some data is
described. Section 7 contains the two numerical experiments.

2. Preliminaries on semismooth Newton methods. There is a huge amount
of literature on Newton’s method. An introduction to semismooth Newton methods
is given in [18, 11]. A survey of semismooth and smoothing Newton methods is [15].

Remark 2.1 (Notation). As in the introduction, Df denotes the gradient of the
scalar function f . Below, the Jacobian ∂f of a scalar function is often used to unify
the notation for scalar- and vector-valued mappings.

The symbol |·| is used for the absolute value, the Euclidean vector norm, and the
spectral norm of matrices.

The symbol n usually denotes a (quasi-) normal field. In this section, it also
denotes a positive integer. The intended meaning should be clear from the context.

Let F : U ⊆ Rn → Rn be a locally Lipschitzian function (with constant L), that
is, each point x ∈ U has a neighborhood Vx such that

|F (z)− F (y)| ≤ L |z − y| for all y, z ∈ Vx.

By Rademacher’s theorem, F is differentiable almost everywhere in U . Let DF denote
the exceptional set of measure 0 and, for x ∈ U \DF , let ∂F (x) denote the Jacobian
matrix of F . The generalized Jacobians of Bouligand and Clarke are defined as

∂bF (x) :=
{

lim
i→∞

∂F (xi)
∣∣∣ (xi)i∈N ⊂ U \DF , xi → x

}
, x ∈ U,

∂cF (x) := conv ∂bF (x), x ∈ U,(2.1)

cf. [11]. The generalized Jacobians are set valued function. If F is continuously
differentiable at x, the reassuring identities ∂bF (x) = ∂cF (x) = {∂F (x)} hold. The
spectral norm of Clarke’s (set-valued) Jacobian matrices is defined as follows,

(2.2) |∂cF (x)| = sup{|M | |M ∈ ∂cF (x)}.

For some computations below, a chain rule for Clarke’s generalized Jacobian is re-
quired; generally, it only yields a set inclusion, cf. [12],

(2.3) ∂c(f ◦ g)(x) ⊆ conv
(
∂cf
(
g(x)

)
∂cg(x)

)
.

A straightforward generalization of Newton’s method is

(2.4) xk+1 := xk −M−1
k F (xk), for some Mk ∈ ∂cF (xk), k ∈ N0,
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where x0 is a suitable initial value. In addition to prescribing an initial value, one must
also specify howMk is chosen in each step to obtain an algorithm. The family of locally
Lipschitzian functions is too big for a “good” convergence theory. A Kantorovich-type
theorem is known in the class of semismooth functions. As this is not a standard tool
in finite element analyses, we give an introduction here.

The one-sided (Gâteaux) directional derivative of F at x ∈ U in the direction
v ∈ Rn is

(2.5) F ′(x; v) := lim
t→0+

1
t

(
F (x+ tv)− F (x)

)
,

if the limit exists. The function F is semismooth at x, if it is locally Lipschitzian and

lim
M∈∂cF (x+tw),w→v,t→0+

Mw

exists for any v ∈ Rn. The following equivalent characterization is used later,
Theorem 2.2 ([11, Thm. 2.9]). The following statements (x ∈ U) are equivalent.
1. F is semismooth at x.
2. F is locally Lipschitzian at x, F ′(x; ·) exists, and, for any M ∈ ∂cF (x + v),

there holds

|Mv − F ′(x; v)| = O(|v|) for v → 0.

The function F is p-semismooth at x ∈ U for some 0 < p ≤ 1, if it is locally
Lipschitzian at x, F ′(x; ·) exists, and, for any M ∈ ∂cF (x+ v), there holds

(2.6) |Mv − F ′(x; v)| = O(|v|1+p) for v → 0.

Clearly, p-semismoothness implies semismoothness. It is well-known that the products
and sums of (p-) semismooth functions are (p-) semismooth. Also, a vector-valued
function is (p-) semismooth if and only if all of its component functions are (p-)
semismooth.

For semismooth functions, the following generalization of Kantorovich’s theorem
is available,

Theorem 2.3 ([16, Thm 3.3]). Suppose that F is locally Lipschitzian and semis-
mooth on the closed ball B := B(x0, r). Further, suppose that there are real constants
β, γ, δ such that ∣∣M−1∣∣ ≤ β for all M ∈ ∂cF (x), x ∈ B,(2.7)

|M(y − x)− F ′(x; y − x)| ≤ γ |y − x| for all M ∈ ∂cF (x), x, y ∈ B,(2.8)
|F (y)− F (x)− F ′(x, y − x)| ≤ δ |y − x| for all x, y ∈ B.(2.9)

If α := β(γ + δ) < 1 and β|F (x0)| ≤ r(1 − α), there exists a unique solution x∗
to F (x) = 0 in B, and the Newton sequence (2.4) is well-defined, remains in B,
and converges at least linearly to to x∗ with rate α. Moreover, the a posteriori error
estimate

(2.10) |xk − x∗| ≤
α

1− α |xk − xk−1| , k ∈ N,

holds.
The requirements of this theorem are similar to that of the classical Kantorovich

theorem. Contrary to the classical theorem, the requirement α < 1 cannot be forced
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by reducing the size of B. Local convergence of higher order is available for p-
semismooth functions,

Theorem 2.4 ([16, Thm. 3.2]). Suppose that x∗ solves F (x) = 0, that F is locally
Lipschitzian and semismooth at x∗, and that all M ∈ ∂cF (x∗) are nonsingular. Then,
the Newton sequence (2.4) is well-defined and convergent to x∗ in a neighborhood of
x∗. If in addition F is p-semismooth at x∗, 0 < p ≤ 1, the convergence of (2.4) is of
order 1 + p.

3. Preliminaries. Let (Th)h>0 be a shape-regular family of triangulations of
the domain Ω ⊂ RN , N ∈ N. The parameter h denotes the mesh width; the maximal
mesh width is denoted by h0 ≥ h > 0. For any point x ∈ Ω, let Tx = {S ∈ Th | x ∈ S}
be the set of (closed) simplexes which contain x. Due to the shape-regularity, the
cardinality |Tx| is bounded by a constant independent of x and h,

(3.1) |Tx| ≤ c for all x ∈ Ω, h > 0.

Let (Xk
h)h>0 be the family of continuous, piecewise polynomial finite element

spaces of degree k,

(3.2) Xk
h =

{
f ∈ C(Ω)

∣∣ f |S ∈ Pk, S ∈ Th} .
The same notation is used for vector- and matrix-valued finite elements. For f ∈ Xk

h ,
S ∈ Th, we write the polynomial f |S simply as fS .

Lemma 3.1. Let f ∈ Xk
h be an arbitrary (vector-valued) finite element function.

Then, f is locally Lipschitzian and Bouligand’s generalized Jacobian is given by

(3.3) ∂bf(x) = {∂fS(x) | S ∈ Tx} for all x ∈ Ω.

Moreover, the directional derivative f ′(x; v) exists for all x ∈ Ω, v ∈ RN , and there
holds
(3.4)
f ′(x; v) = ∂fS(x)v for all S ∈ {T ∈ Tx | x+ εv ∈ T for all (suff. small) ε > 0} .

Proof. Let f ∈ Xk
h and x ∈ Ω be arbitrary. For sufficiently small ε > 0, the

ball B := B(x, ε) satisfies B ∩ Ω ⊂ ∪{S | S ∈ Tx}. For any y ∈ B ∩ Ω, there holds
f(y) = fS(y) for some S ∈ Tx. By (3.1), the cardinality of Tx is finite (independent
of h). As the fS are polynomials (which are locally Lipschitzian), f is Lipschitzian
on B.

For some S ∈ Tx, let (xi)i∈N ⊂ S be a sequence that converges to x. Then,
∂f(xi) = ∂fS(xi) exists for all i ∈ N and {∂fS(x) | S ∈ Tx} ⊆ ∂bf(x). Conversely,
let M ∈ ∂bf(x), and let (xi)i∈N ⊂ Ω be a sequence converging to x such that ∂f(xi)
exists for all i ∈ N and ∂f(xi)→M for i→∞. There is a subsequence of (xi), which
we again name (xi), with xi ∈ B. Due to B ∩Ω ⊂ ∪{S | S ∈ Tx} and Tx being finite,
there exists a simplex S ∈ Tx and a further subsequence (yi)i∈N of (xi) with yi ∈ S,
i ∈ N. Therefore, one has ∂f(yi) = ∂fS(yi) and M ∈ {∂fS(x) | S ∈ Tx}.

Let v ∈ RN be arbitrary and S ∈ Tx be such that the line segment conv{x, x+εv}
is a subset of S for some ε > 0. Then, (3.4) follows immediately from the definition
in (2.5) and f = fS on S.

Lemma 3.2. Let f ∈ Xk
h be an arbitrary (vector-valued) finite element function.

Then, f is (p-) semismooth for all x ∈ Ω (and for all 0 < p ≤ 1).
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Proof. Let f ∈ Xk
h and x ∈ Ω be arbitrary. From Lemma 3.1, it is known that

f is locally Lipschitzian at x and that f ′(x; v) exists for all v ∈ RN . For sufficiently
small ε > 0, the ball B := B(x, ε) satisfies B ∩ Ω ⊂ ∪{S | S ∈ Tx}. Let |v| < ε hold.
Then, the line segment conv{x, y}, y := x + v, is a subset of B, and Ty ⊆ Tx. Let
M ∈ ∂bf(y) be arbitrary. By Lemma 3.1, there is a S ∈ Ty with M = ∂fS(y). Using
Ty ⊆ Tx, one gets S ∈ Tx; therefore, conv{x, y} ∈ S. Due to Lemma 3.1, this implies
f ′(x; v) = ∂fS(x)v. One can write Mv − f ′(x; v) =

(
∂fS(y) − ∂fS(x)

)
v. The mean

value theorem yields

(3.5) |Mv − f ′(x; v)| ≤ c |v|2 for all M ∈ ∂bf(x+ v), v → 0.

We show that (3.5) also holds if ∂bf is replaced with ∂cf . By (2.1) and Lemma 3.1,
any M̃ ∈ ∂cf(y) can be written as a (finite) convex combination M̃ =

∑
i λiMi with

Mi = ∂fSi(y) for some Si ∈ Tx and
∑
i λi = 1, λi ≥ 0. Thus M̃v − f ′(x; v) =∑

i λi
(
Miv − f ′(x; v)

)
. One obtains∣∣M̃v − f ′(x; v)

∣∣ ≤ c |v|2 for all M̃ ∈ ∂cf(x+ v), v → 0.

Applying Theorem 2.2 (and the condition in (2.6) for 0 < p ≤ 1) concludes the proof
of the lemma.

The following properties of the level set function φ and its finite element approx-
imation φh ∈ Xk

h are assumed for the convergence analyses below:
Assumption 3.3. There are open sets U , Ue with Γ ⊂ U ⊂ Ue ⊂ Ω such that

φ ∈ C2,1(Ue) ∩Hk+1,∞(Ue) and

0 < c0 ≤ |Dφ(x)| ≤ c1 for all x ∈ Ue,(3.6)
‖φh − φ‖L∞(Ue) + h ‖D(φh − φ)‖L∞(Ue) + h2 ∥∥D2(φh − φ)

∥∥
L∞(Ue) ≤ ch

k+1,(3.7)

S ∩ U 6= ∅ ⇒ T ⊂ Ue for all S, T ∈ Th with T ∩ S 6= ∅, h ≤ h0.(3.8)

3.1. Gradient recovery and quasi-normal fields. In this section, a simple
gradient recovery based on local averaging is described which is used to define the
quasi-normal field. The gradient recovery technique is straightforward and also ex-
plained in [8, 9].

Let Ih be a (nodal) interpolation operator for Xk
h . Let Uh, h ≤ h0, be the set

∪{S ∈ Th | S ∩ U 6= ∅}; it satisfies U ⊂ Uh ⊂ Ue. A gradient recovery operator
is a mapping Gh : Xk

h → (Xk
h)N with the following (reasonable) approximation and

stability properties:

‖GhIhφ−Dφ‖L∞(Uh) ≤ ch
k,(3.9)

‖Ghfh‖L∞(Uh) ≤ c ‖fh‖H1
∞(Ue) for all fh ∈ Xk

h .(3.10)

A simple method is as follows. Let Nk
h be a set of Lagrangian finite element nodes for

Xk
h and let |Tξ| denote the cardinality of Tξ, ξ ∈ Nk

h . One defines Ghfh, fh ∈ Xk
h , via

(3.11) (Ghfh)(ξ) := 1
|Tξ|

∑
S∈Tξ

DfS for all ξ ∈ Nk
h .

Definition 3.4 ([17, Def. 3.3]). A quasi-normal field is a mapping nh : Γ →
SN−1, SN−1 =

{
x ∈ RN

∣∣ |x| = 1
}
, with the following additional properties. For each
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x ∈ Γ there exist real constants δ̃x < 1, rx > 0, γx, cx with

|nh(x)− nh(y)| ≤ γx |x− y| for all y ∈ B(x, rx) ∩ Γ,(3.12)
|(nh(x), x− y)| ≤ δ̃x |x− y|+ cx |x− y|2 for all y ∈ B(x, rx) ∩ Γ,(3.13)
sup
x∈Γ

δ̃x =: δ̃ < 1, sup
x∈Γ

γx <∞, sup
x∈Γ

cx <∞, inf
x∈Γ

rx > 0.(3.14)

Using the gradient recovery operator Gh on the finite element level set function
φh, the quasi-normal field nh ∈ (Xk

h)N is defined as

(3.15) nh(x) := gh(x)
|gh(x)| , gh(x) := Ghφh(x), for all x ∈ Ω.

Remark 3.5. From (3.9) and (3.10), it follows that nh is a quasi-normal field
in the sense of Definition 3.4, cf. [8, La. 3.1]. Moreover, there holds δ̃ ≤ chk. This
fact is only required in the analysis of the nested iteration, cf. Theorem 5.9.

For the convergence analysis of the Newton method, the following approximation
properties of gh are used.

Lemma 3.6. The following inequalities involving the derivatives of φ hold,

|v − ∂φ(x)| ≤ chk for all v ∈ ∂cφh(x), x ∈ U,(3.16)
|gh(x)−Dφ(x)| ≤ chk for all x ∈ U,(3.17) ∣∣M − ∂2φ(x)

∣∣ ≤ chk−1 for all M ∈ ∂cgh(x), x ∈ U.(3.18)

Proof.
First, we show that, for every S ∈ Th, S ∩ U 6= ∅, there holds

‖D(φh − φ)‖L∞(S) ≤ ch
k,(3.19)

‖gh −Dφ‖L∞(S) ≤ ch
k,(3.20)

‖∂(gh −Dφ)‖L∞(S) ≤ ch
k−1.(3.21)

The inequality (3.19) follows immediately from (3.7). Writing gh−Dφ = gh−Dφh +
Dφh−Dφ, the inequality (3.20) follows from (3.9) and (3.19). Finally, writing ∂gh−
D2φ = ∂(gh − Dφh) + D2(φh − φ), (3.21) is obtained from (3.7), a standard finite
element estimate, and (3.20).

The inequality (3.17) follows from (3.20) because gh and Dφ are continuous. As
(3.19) holds on every (closed) simplex S ∈ Th, S ∩ U 6= ∅, it holds by definition for
Bouligand’s generalized Jacobian in all points covered by the simplices S. We show
that it also holds for Clarke’s generalized Jacobian. Let v ∈ ∂cφh(x) be arbitrary,
x ∈ U . By (2.1) and Lemma 3.1, v =

∑
i λivi with vi = ∂φh|Si(x) for some Si ∈ Tx

and
∑
i λi = 1, λi ≥ 0. Thus, v − ∂φ(x) =

∑
i λi
(
vi − ∂φ(x)

)
. The inequality (3.16)

now follows from (3.19) for the vi. The inequality (3.18) is proved in the same way
using (3.21).

The following elementary estimate for the norm of a block-matrix is used below,

(3.22)
∣∣∣∣(A B
C D

)∣∣∣∣ ≤ 4 max{|A| , |B| , |C| , |D|}.

Furthermore, the well-known perturbation formula for matrices is required; let ε be a
matrix with |ε| < 1, then I + ε is invertible and

(3.23) |I + ε| ≥ 1− |ε| > 0.
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4. The Newton method for ph and dh. For the remainder of this section,
let x ∈ U denote the point for which ph(x) and dh(x) have to be computed. The
following problem is solved: Find a pair (y, s) ∈ Γh × R such that

(4.1) 0 = F (y, s) :=
(
y + sgh(y)− x, φh(y)

)T
.

The dependence of F : RN ×R→ RN ×R on x is not shown explicitly in the notation.
It is easy to see that, if a solution (y, s) ∈ RN × R of (4.1) exists, then y = ph(x)
and |gh(y)|s = dh(x): From (4.1), one immediately obtains y ∈ Γh; furthermore, by
(3.15), x = y + s|gh(y)|nh(y).

We solve (4.1) with the (generalized) Newton method (2.4) and the initial value
(x, 0). In the remainder of this section, the convergence of this algorithm is proved by
applying Theorem 2.3. As Theorem 2.3 is also an existence and uniqueness theorem
for the solution of F (y, s) = 0, it is not necessary to presuppose the existence theory
of [17] for ph(x) and dh(x). The numerical algorithm itself proves the well-definedness
of the problem. This way, we avoid the use of Brouwer’s theorem on the invariance
of the domain which is required in [17].

Remark 4.1. Instead of (4.1), one could also consider

0 =
(
y + snh(y)− x, φh(y)

)T
.

In this case, Lemma (3.6) must be extended with more complicated estimates. For
example, instead of (3.17), one only has |nh(y)−n(y)| ≤ chk+c|d̄h(y)|, y ∈ U , where
d̄h is the exact signed distance function to Γh. The approach ultimately works, but
there seems to be little benefit of the additional complexity.

Due to Lemma 3.2 and the general results in Section 2, F is a (1-) semismooth
function. Its generalized Jacobian in Clarke’s sense is estimated in the subsequent
lemmas.

Lemma 4.2. There holds

(4.2) ∂cF (y, s) ⊆
(
I + s∂cgh(y) gh(y)
∂cφh(y) 0

)
.

Proof. The standard approach to the result would be the repeated application of
the chain rule (2.3). A quick alternative is to use the explicit characterization of ∂bF
in Lemma 3.1,

∂cF (y, s) = conv ∂bF (y, s) = conv {∂FS(y, s) | y ∈ S, s ∈ R}

= conv
{(

I + s∂gh|S(y) gh(y)
∂φh|S(y) 0

) ∣∣∣∣ y ∈ S, s ∈ R
}

⊆ conv
(
I + s∂bgh|S(y) gh(y)
∂bφh|S(y) 0

)
If A ⊆ Rm and B ⊆ Rn are convex sets, the direct product A×B ⊆ Rn+m is convex.
Thus, if one extends ∂bgh and ∂bφh to ∂cgh and ∂cφh in the above formula, the outer
convex hull operation becomes redundant.

Remark 4.3 (Implementation). The Newton method (2.4) requires the evaluation
of ∂cF (y, s). Formula (4.2) cannot be used directly for this as the right-hand side
might be a strict super-set of the left-hand side. However, in the implementation of
the method, one tracks a simplex S ∈ Th with y ∈ S. The proof of Lemma 4.2 shows
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that using the classical Jacobian ∂FS(y, s) always yields an element of ∂bF (y, s) ⊆
∂cF (y, s).

From the triangle inequality and (3.18), one gets

(4.3) |∂cgh(y)| ≤
∣∣D2φ(y)

∣∣+ chk−1 ≤ c ‖φ‖C2(U) + chk−1
0 ≤ c2 for all y ∈ U

for a constant c2 independent of h.
Lemma 4.4. Let c3 := 4c−2

0 max{c20 + c21, c1, 1}. If 8c3 max{c2|s|, chk} ≤ 1, there
holds ∣∣∂cF (y, s)−1∣∣ ≤ 2c3 for all y ∈ U.

Proof. Let y ∈ U and s ∈ R with 8c3 max{c2|s|, chk} ≤ 1 be arbitrary. Let
q := |Dφ(y)|−2. Owing to (3.6), one has q ≤ c−2

0 . Let

M :=
(

I Dφ(y)
Dφ(y)T 0

)
.

It is easy to check that

M−1 =
(
I − qDφ(y)Dφ(y)T qDφ(y)

qDφ(y)T −q

)
.

Using (3.22) and (3.6), one gets |M−1| ≤ 4c−2
0 max{c20 + c21, c1, 1} = c3. By Lemma

4.2, there holds

δ := ∂cF (y, s)−M ⊆
(

s∂cgh(y) (gh −Dφ)(y)
(∂cφh −Dφ)(y)T 0

)
.

Using (3.22), (4.3), and Lemma 3.6, one obtains |δ| ≤ 4 max{|s|c2, chk}. Hence,
|δ| ≤ (2c3)−1. Combining this with the bound on |M−1|, one gets |M−1||δ| ≤ 1

2 . One
writes ∂cF (y, s)−1 = (M + δ)−1 = M−1(I + M−1δ)−1. The conclusion follows from
(3.23).

A smooth approximation of F is required below. This will be the function

(4.4) F̃ (y, s) :=
(
y + sDφ(y)− x, φ(y)

)T
.

Remark 4.5. The solution of F̃ (y, s) = 0 is given by
(
p(y), |Dφ(y)|d(y)

)
∈ Γ×R,

where p(y) and d(y) are the smooth, orthogonal coordinates defined in (1.1). However,
this fact is not used in the analysis below.

Lemma 4.6. There is a positive constant c such that the function

(4.5) b(h, s) = chk−1 max{h, |s|}

provides the upper bound

(4.6)
∣∣∂c(F − F̃ )(y, s)

∣∣ ≤ b(h, s) for all (y, s) ∈ U × R.

Proof. Clarke’s generalized Jacobian of F − F̃ at (y, s) ∈ U × R satisfies

∂c(F − F̃ )(y, s) ⊆
(
s∂c(gh −Dφ)(y) (gh −Dφ)(y)
∂c(φh − φ)(y) 0

)
.
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From Lemma 3.6 and (3.22), one immediately gets (4.6).
Lemma 4.7. For any M ∈ ∂cF (ŷ) there holds

|M(ẑ − ŷ)− F ′(ŷ; ẑ − ŷ)| ≤ 2b(h, s) |ẑ − ŷ| for all ŷ = (y, s), ẑ ∈ U × R.

Proof. Let ŷ, ẑ ∈ U × R be given. By (3.4), there is a matrix M̃ ∈ ∂cF (ŷ) with
F ′(ŷ; ẑ−ŷ) = M̃(ẑ−ŷ). Therefore, one obtainsM(ẑ−ŷ)−F ′(ŷ; ẑ−ŷ) = (M−M̃)(ẑ−ŷ)
and the result follows from Lemma 4.6.

Lemma 4.8. For all ŷ := (y, s) ∈ U × R, ẑ := (z, t) ∈ U × R, ẑ 6= ŷ, such that
the line segment between them satisfies conv{ŷ, ẑ} ⊂ U × R, there holds

|F (ẑ)− F (ŷ)− F ′(ŷ; ẑ − ŷ)| ≤
(

2b
(
h,max{s, t}

)
+ c4 ‖φ‖C2,1(U) |ẑ − ŷ|

)
|ẑ − ŷ|

with a constant c4 independent of h.
Proof. Let e := (ẑ − ŷ)/|ẑ − ŷ|. The line segment conv{ŷ, ẑ} is parameterized by

l(r) = ŷ + re, r ∈ I := [0, |ẑ − ŷ|]. One writes

F (ẑ)− F (ŷ)− F ′(ŷ; ẑ − ŷ) =
∫
I

F ′(l(r); e) dr − F ′(ŷ; e) |ẑ − ŷ|

=
∫
I

F ′(l(r); e)− F ′(ŷ; e) dr.

The integrand is rearranged as a sum of three differences,

F ′(l(r); e)− F ′(ŷ; e) = F ′(l(r); e)− F̃ ′(l(r); e) + F̃ ′(l(r); e)− F̃ ′(ŷ; e)
+ F̃ ′(ŷ; e)− F ′(ŷ; e)

=: A+B + C.

The termB is smooth; hence, the mean value theorem impliesB = F̃ ′′(l(ρ); e)(l(ρ)−ŷ)
for some ρ ∈ I. Therefore, |B| ≤ c|ẑ − ŷ|.

For the term C, one writes F̃ ′(ŷ; e) = ∂F̃ (ŷ)e and F ′(ŷ; e) = Me for some M ∈
∂cF (ŷ). Using Lemma 4.6, one gets |C| ≤ b(h, s). Similarly, one obtains |A| ≤
b(h,max{s, t}).

4.1. The convergence theorem for the Newton method. Consider the
tubular neighborhood Uε =

{
x ∈ Ω

∣∣ |d̄h(x)| ≤ ε
}
,ε > 0, of Γh, where d̄h is the (exact)

signed distance function of Γh. It will be shown that there is a (small) positive value ε
such that the generalized Newton iteration (2.4) for F converges for all initial values
x̂ = (x, 0), x ∈ Uε. Due to (3.6), there holds

(4.7) |F (x̂)| =
∣∣∣(0, φh(x)

)T ∣∣∣ ≤ c1ε for all x ∈ Uε.

The auxiliary set Ûs0 = Us0 × (−s0, s0) with parameter s0 > 0 is used to obtain the
bounds for the parameters α, β, γ, δ in Theorem 2.3 by choosing s0 sufficiently small.
Moreover, there is an auxiliary parameter 0 < r ≤ s0, also chosen below, which occurs
in the ‘existence part’ of Theorem 2.3.

One chooses h0 ≤ s0 and s0 so small that (cf. Lemma 4.4)

8c3 max{c2, chk−1
0 }s0 ≤ 1 and Us0 ⊂ U.
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By Lemma 4.4,

(4.8)
∣∣∂cF (ŷ)−1∣∣ ≤ 2c3 =: β for all ŷ ∈ Ûs0 .

Possibly decreasing h0 and s0 further, one obtains from (4.5) that

(4.9) 0 < b(h, s) ≤ 1
10β

−1 for all |s| ≤ s0.

From this and Lemma 4.7, one obtains

(4.10) |M(ẑ − ŷ)− F ′(ŷ; ẑ − ŷ)| ≤ γ |ẑ − ŷ| , γ := 1
5β
−1,

for all ŷ = (y, s), ẑ ∈ Ûs0 ,M ∈ ∂cF (ŷ).

The bound in Lemma 4.8 is considered. The parameter r > 0 is chosen such that

(4.11) 2c4 ‖φ‖C2,1(Ω) r ≤
1
10β
−1, 2r ≤ s0.

Let ŷ, ẑ ∈ Ûs0 , |ẑ − ŷ| ≤ 2r, be arbitrary. Using (4.9) and (4.11), one gets

|F (ẑ)− F (ŷ)− F ′(ŷ; ẑ − ŷ)| ≤
(

1
5β
−1 + c4 ‖φ‖C2,1(Ω) 2r

)
|ẑ − ŷ|

≤ δ |ẑ − ŷ| , δ := 3
10β

−1.

(4.12)

From (4.8), (4.10), (4.12), one obtains α := β(γ + δ) = 1
2 < 1. Now the (last) free

parameter ε is chosen such that

(4.13) 0 < ε ≤ r, βc1ε ≤
1
2r.

Using (4.11) and (4.13), one finds ε + r ≤ 2r ≤ s0. Hence, for any starting value
x ∈ Uε, the closed ball B := B(x̂, r) satisfies B ⊂ Ûs0 . Therefore, (4.8), (4.10), and
(4.12) hold on B. Finally, by (4.7) and (4.13), β|F (x̂)| ≤ βc1ε ≤ 1

2r = r(1 − α).
Applying Theorem 2.3 yields

Theorem 4.9. With the positive constants ε ≤ r < s0 as above and h0 ≤ s0,
the following holds for all initial values x ∈ Uε: There is a unique solution (y, s) ∈
B
(
(x, 0), r

)
⊂ Ûs0 to (4.1). In particular, x = y + s|gh(y)|nh(y) and y ∈ Γh. The

Newton method (2.4) for F with initial value ŷ0 := (x, 0) converges to (y, s) at least
linearly with the rate α = 1

2 . Moreover, the a posteriori error estimate

(4.14)
∣∣ŷk − (y, s)T

∣∣ ≤ |ŷk − ŷk−1| , k ∈ N,

holds.
Corollary 4.10. The convergence in Theorem 4.9 is quadratic locally around

the solution of (4.1).
Proof. This follows immediately from Theorem 2.4, Lemma 3.2, and Theorem

4.9.
Remark 4.11. The parameter h0 is not used explicitly in the determination of

the value of the constants β, γ, δ, and r. This is due to the special case k = 1 (linear
finite elements for φh). In this case, b(s, h) in (4.9) can only be controlled via s0, not
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h0. Essentially, this is a consequence of linear finite elements being unsuitable for the
(pointwise) approximation of the second derivatives of φ.

For k ≥ 2, the situation is different. The condition (4.9) can be satisfied by choos-
ing h0 sufficiently small. Also, the second summand in (4.3) can be controlled by h0.
For h0 sufficiently small, the only requirement on s0 is essentially 8c−2

0 max{c20 +
c21, c1, 1}c ‖φ‖C2(Ω) s0 ≤ 1. This inequality depends only on (the slope and curvature
of) φ and on constants which are independent of the finite element interpolation es-
timates in Lemma 3.6. Consequently, the convergence radius r is only constrained by
such quantities, cf. (4.11). Thus, for k ≥ 2 and sufficiently fine meshes, the radius of
convergence of the method only depends on the continuous level set function φ.

5. The nested iteration for ph and dh. As in Section 4, the (arbitrary) point
x ∈ U is fixed, for which ph(x) and dh(x) have to be computed. The nested iteration
is composed of an inner and an outer problem which are both solved iteratively. The
inner problem reads: Given y ∈ U , find an s = s(y) ∈ R such that

(5.1) 0 = φh
(
Gs(y)

)
=: φy(s) with Gs(y) := x− sgh(y).

It is shown below that this problem is well-defined and uniquely solvable, if y is “close
enough” to x and x “close enough” to Γh. To solve (5.1), the (scalar) semismooth
Newton method (2.4) is used with F (s) = φy(s) and the initial value s = 0.

Remark 5.1. Instead of (5.1), one could also consider 0 = φh
(
x− s̃nh(y)

)
. The

solution differs from that of (5.1) only by the scaling s̃ = s|gh(y)|.
The semismooth Newton method is slightly different from the ad hoc quasi-Newton

method used in [17] to solve the inner problem. In the latter, the recovered gradient
gh
(
x − s̃nh(y)

)
is used instead of ∂cφh

(
x − s̃nh(y)

)
in the computation of ∂cφy(s).

There is no convergence analysis for the inner problem in [17].
The outer problem depends on the solution s(y) ∈ R of (5.1) for a given y ∈ U .

The outer problem reads: Find y ∈ U such that

(5.2) y = G(y) with G(y) := Gs(y)(y) = x− s(y)gh(y).

The outer problem is thus a fixed point problem for G which is solved iteratively by

(5.3) yk+1 := G(yk), y0 := x.

Clearly, a solution y of (5.2) satisfies ph(x) = y and dh(x) = s(y)|gh(y)|.
Remark 5.2. In [6], an iterative method is proposed which is similar to the

nested iteration. Instead of solving an inner problem like (5.1), only a single step in
the direction of an approximate normal is performed in each iteration. The method
is used for numerical experiments in [6], but no convergence analysis is given. We do
not consider the method below.

5.1. Analysis of the inner iteration. For y ∈ U , one can write gh(y) =
Dφ(y) +

(
gh(y)−Dφ(y)

)
. Using (3.17) and (3.6), this yields

(5.4) |gh(y)| ≤ c1 + chk for all y ∈ U.

Lemma 5.3. Let y, z ∈ U be such that conv{y, z} ⊂ U . If h and |z − y| are so
small that chk + c1‖D2φ‖C(U)|z − y| ≤ 1

2c
2
0, there holds

vgh(y) ≥ 1
2c

2
0 for all v ∈ ∂cφh(z).
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Proof. Let v ∈ ∂cφh(z) ⊂ R1×N be arbitrary. One writes

(5.5) vgh(y)−Dφ(z)TDφ(z) =
(
v −Dφ(z)T

)
gh(y)

+Dφ(z)T
(
gh(y)−Dφ(y) +Dφ(y)−Dφ(z)

)
.

Using (3.16), (3.17), and (3.6), one gets∣∣vgh(y)−Dφ(z)TDφ(z)
∣∣ ≤ chk |gh(y)|+ c1ch

k + c1 |Dφ(y)−Dφ(z)| .

For Dφ(y) − Dφ(z), one uses the mean value theorem to find |Dφ(y) − Dφ(z)| ≤
‖D2φ‖C(U)|z − y|. With this and (5.4), one obtains∣∣vgh(y)−Dφ(z)TDφ(z)

∣∣ ≤ chk + c1
∥∥D2φ

∥∥
C(U) |z − y| ≤

1
2c

2
0.

The conclusion follows from (5.5) with Dφ(z)TDφ(z) ≥ c20 and the triangle inequality.

Lemma 5.4. For all y ∈ U s, t ∈ R with Gs(y) ∈ U there holds∣∣M(t− s)− φ′y(s; t− s)
∣∣ ≤ chk |t− s| for all M ∈ ∂cφy(s).

Proof. As φy is continuous and piecewise polynomial (as a function of s), the
results of Lemmas 3.1 and 3.2 hold for φy. By (2.3), one has the inclusion ∂cφy(s) ⊆
−∂cφh

(
Gs(y)

)
gh(y). By Lemma 3.1, one can write φ′y(s; t− s) = M1gh(y)(t− s) for

some M1 ∈ ∂cφh(z) with z := Gs(y). Let M = M2gh(y) ∈ ∂cφh(z)gh(y) be arbitrary.
Then,

M(t− s)− φ′y(s; t− s) = (M2 −M1)gh(y)(t− s)

=
((
M2 −Dφ(z)

)
+
(
Dφ(z)−M1

))
gh(y)(t− s).

Using (5.4) with the triangle inequality and (3.16) concludes the proof.
A smooth approximation of φy, y ∈ U , (with respect to s) is given by

(5.6) φ̃y(s) := φ
(
Gs(y)

)
= φ

(
x− sgh(y)

)
.

Lemma 5.5. For all y ∈ U and s, t ∈ R with conv{Gs(y), Gt(y)} ⊂ U there holds∣∣φy(t)− φy(s)− φ′y(s; t− s)
∣∣ ≤ (chk + c ‖φ‖C1,1(U) |t− s|

)
|t− s| .

Proof. With e := t− s, one has

φy(t)− φy(s)− φ′y(s; t− s) =
∫

(s,t)
φ′y(r; e) dr − φ′y(s; e) |e|

=
∫

(s,t)
φ′y(r; e)− φ′y(s; e) dr.

The integrand is rearranged as a sum of three differences,

φ′y(r; e)− φ′y(s; e) = φ′y(r; e)− φ̃′y(r; e) + φ̃′y(r; e)− φ̃′y(s; e)
+ φ̃′y(s; e)− φ′y(s; e)

=: A+B + C.
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The term B is smooth; hence, the mean value theorem implies B = φ̃′′y(ρ; e)(ρ − s)
for some ρ ∈ (s, t). Therefore, |B| ≤ c|t− s|.

For the term C, one writes φ̃′y(s; e) = ∂φ
(
Gs(y)

)
gh(y)e and φ′y(s; e) = Mgh(y)e

for some M ∈ ∂cφh
(
Gs(y)

)
. Using (5.6), (3.16), and (5.4), one gets |C| ≤ chk.

Similarly, one obtains |A| ≤ chk.

5.2. The convergence theorem for the inner iteration. Consider the tubu-
lar neighborhood Uε =

{
x ∈ Ω

∣∣ |d̄h(x)| ≤ ε
}
, ε > 0, of Γh. It will be shown that there

is a (small) positive value ε and a (small) positive radius r0 such that the generalized
Newton iteration (2.4) for (5.1) with initial value s = 0 converges for all points x ∈ Uε
and all y ∈ B(x, r0). There holds

(5.7) |φy(0)| = |φh(x)| ≤ c1ε for all x ∈ Uε, y ∈ U.

The auxiliary parameter r > 0 is used to obtain the bounds for the parameters
α, β, γ, δ in Theorem 2.3 by choosing r sufficiently small.

Choose r0 > 0 and h0 so small that

(5.8) chk0 + c1‖D2φ‖C(U)2r0 ≤ 1
2c

2
0 and {x+ δ | x ∈ Ur0 , |δ| < r0} ⊂ U.

From (5.4), one gets |Gs(y) − x)| = |−sgh(y)| ≤ |s|max{1, c1 + chk}. Choose r and
h0 such that h0 ≤ r and

(5.9) rmax{1, c1 + chk0} ≤ r0.

Owing to (5.8) and (5.9), there holds

(5.10) Gs(y) ∈ B(x, r0) ⊂ U for all x ∈ Ur0 , y ∈ B(x, r0), s ∈ B(0, r).

By Lemma 5.3 and (5.8), one has

(5.11)
∣∣∂cφy(s)−1∣∣ ≤ β := 2c−2

0 for all x ∈ Ur0 , y ∈ B(x, r0), s ∈ B(0, r).

Possibly reducing h0 and r, one can ensure

(5.12) chk0 ≤
1
5β
−1 =: γ, chk0 + c ‖φ‖C1,1(U) 2r ≤ 3

10β
−1 =: δ.

From this and the Lemmas 5.4 and 5.5, one obtains for all x ∈ Ur0 , y ∈ B(x, r0), and
s, t ∈ B(0, r) that∣∣M(t− s)− φ′y(s; t− s)

∣∣ ≤ γ |t− s| for all M ∈ ∂cφy(s),∣∣φy(t)− φy(s)− φ′y(s; t− s)
∣∣ ≤ δ |t− s| .

One checks α := β(γ + δ) = 1
2 < 1. Now the (last) free parameter ε is chosen such

that

(5.13) 0 < ε ≤ r, βc1ε ≤
1
2r.

By (5.7) and (5.13), β|φy(0)| ≤ βc1ε ≤ 1
2r = r(1− α). Applying Theorem 2.3 yields

Theorem 5.6. With the positive constants ε ≤ r < r0 as above, the following
holds for all all points x ∈ Uε and all y ∈ B(x, r0): There is a unique solution
s(y) ∈ B

(
0, r) to (5.1). In particular, x− s(y)|gh(y)|nh(y) ∈ Γh. The Newton method
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(2.4) for φy with initial value s = 0 converges to s(y) at least linearly with the rate
α = 1

2 . Moreover, one has the a posteriori error estimate

(5.14) |sk − s(y)| ≤ |sk − sk−1| , k ∈ N.

Corollary 5.7. The convergence in Theorem 5.6 is quadratic locally around the
solution of (5.1).

Proof. This follows immediately from Theorem 2.4, Lemma 3.2, and Theorem
5.6.

5.3. The convergence theorem for the nested iteration. The proof of con-
vergence is a straightforward application of Banach’s contraction mapping principle.
It is similar to the proof of [17, Thm. 5.1]. We extend the latter by considering the
inner iteration (5.1) instead of an “oracle” that yields s(y). Thus, Theorem 5.6 can
be used, which allows us to avoid an implicit function theorem for Lipschitz functions
in the proof (which is required in [17]).

Lemma 5.8. Let ε ≤ r < r0 be as in Theorem 5.6 and x ∈ Uε be arbitrary. Then,
either s(y)φh(x) > 0 or s(y) = 0 = φh(x) for each y ∈ B(x, r0).

Proof. Let l(t) := (1 − t)G(y) + tx, t ∈ R. Due to (5.8) and (5.10), there holds
l(t) ∈ B(x, r0), t ∈ [0, 1]. As φh(l(0)) = 0 and φh(l(1)) = φh(x), one gets

φh(x) =
∫ 1

0
Dφh

(
l(τ)

)T (
x−G(y)

)
dτ = s(y)

∫ 1

0
Dφh

(
l(τ)

)
gh(y) dτ.

The conclusion follows from Lemma 5.3 because the integrand is bounded from below
by 1

2c
2
0 > 0.

Theorem 5.9. Let ε < r ≤ r0 be as in Theorem 5.6. In addition to (5.8), let
r0 be so small that 2cr0 ≤ 1 − δ̃ − cr0, where δ̃ < 1 is defined in (3.14); c represents
constants from the proof below. Then, for any x ∈ Uε, the iterates of the fixed point
iteration (5.3) are well-defined, remain in B(x, r0), and converge linearly to the unique
solution of (5.2) in B(x, r0).

Proof. Let x ∈ Uε and y, z ∈ B(x, r0) be arbitrary. By Theorem 5.6, there are
unique solutions s(y) and s(z) of (5.1) in B(0, r), which makes G in (5.2) well-defined
on B(x, r0). By (5.10), one has G(y), G(z) ∈ B(x, r0)—hence, G maps B(x, r0) to
itself. Let δ := G(z) − G(y) = s(y)gh(y) − s(z)gh(z). By Lemma 5.8, s(y) and s(z)
have the same sign; the triangle inequality gives

(5.15)
∣∣s(y) |gh(y)| − s(z) |gh(z)|

∣∣ ≤ |s(y)gh(y)− s(z)gh(z)| = |δ| .

From δ = s(y)|gh(y)|
(
nh(y) − nh(z)

)
+
(
s(y)|gh(y)| − s(z)|gh(z)|

)
nh(z) and (5.15),

one obtains

|δ|2 ≤ |s(y)| |gh(y)| |nh(y)− nh(z)| |δ|+ |δ| |(nh(z), δ)| .

Using |s(y)| ≤ r, (5.4), and (3.12), this implies

|δ| ≤ cr |z − y|+ |(nh(z), δ)| .

Using (3.12), (3.13), and |G(z)− z| ≤ 2r0,

|(nh(z), δ)| ≤ |(nh(z)− nh(G(z)), δ)|+ |(nh(G(z)), δ)|
≤ c2r0 |δ|+ δ̃G(z) |δ|+ cG(z) |δ|

2

≤ (cr0 + δ̃G(z)) |δ| .
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Altogether, one obtains

|δ| ≤ cr

1− δ̃ − cr0
|z − y| ≤ 1

2 |z − y| .

The conclusion follows from Banach’s contraction mapping principle.

6. Implementation details. Both the Newton method for (4.1) and the New-
ton method for the inner iteration (5.1) can be made more robust by damping big
Newton steps. This is important on coarse meshes and in the context of redistancing,
where one considers distorted level set functions (as opposed to distance-like level set
functions). The following simple scheme based on the Armijo rule (with backtrack-
ing), cf. [14], is used in the implementation: Let f(x) be one of the functions F (x̂),
φy(s). Using the current iterate xn, the (undamped) Newton step δn, and αi = 2−i,
i ∈ N0, find the smallest i satisfying

|f(xn + αiδn)|2 ≤ |f(xn)|2 + 0.02f(xn)T∂cf(xn)δn.

The next Newton iterate is defined as xn+1 = xn+αiδn. This requires a few additional
evaluations of f , but not of ∂cf . Hence, this damping strategy is computationally
cheap. As it always considers α0 = 1 first, the quadratic convergence of the Newton
method close to the solution is not compromised.

A common sub-problem of (4.1) and (5.1) is the computation of a simplex Sn+1 ∈
T which contains the next (tentative) iterate xn+1, cf. Remark 4.3. Several ap-
proaches to this problem are possible, which differ in speed and memory consump-
tion. For example, as such a simplex Sn is known for xn, one could search xn+1 in
increasingly larger neighborhoods of Sn in T . The size of such neighborhoods grows
rapidly, at least for N ≥ 3. On the other hand, additional damping may be necessary
if the size of the neighborhoods is insufficient.
In the experiments below, the coarse meshes have a regular block structure. A cuboid
C containing xn+1 can be located easily, i. e. with a small, constant number of flops.
All cuboids of the coarse mesh are partitioned into six tetrahedra using the Kuhn
triangulation (N = 3). The tetrahedra in C are searched sequentially for xn+1. On
average, this requires three containment tests to locate a tetrahedron S0

n+1 in the
coarse mesh. Then, given a tetrahedron Sin+1 on refinement level i, which contains
xn+1, its children are searched, and Si+1

n+1 is a child containing xn+1. As the number
of children is at most eight, on average 3 + 4l containment tests are required to find
the desired tetrahedron Sn+1 with xn+1 ∈ Sn+1, where l is the number of refinement
levels of the mesh. Thus, the number of containment tests grows as O(l).
The search strategy can also be applied if the coarsest mesh is not block structured.
In this case, the linear search on the coarsest refinement level must be replaced by
the search in a space-partitioning data structure like an octree or a kd-tree, cf. [3, 1].
This salvages the average number of O(l) containment tests per search point.

As a further optimization, before starting the recursive search of Sn+1, one tests,
whether xn+1 ∈ Sn, that is Sn+1 = Sn. This occurs frequently, particularly on fine
meshes. Related to this, the gradients of the shape functions and the values of φh on
Sn are cached. Both, the Newton method and the nested iteration, are accelerated
by this caching. The benefit is higher for the Newton method than for the nested
iteration.
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l e∞ factor # calls

4 0.01378∗
0.002708∗

– 24688

5 4.778e-4
4.778e-4∗

28.8
5.66 99644

6 6.692e-05 7.13 403620
7 8.697e-06 7.69 1606268
8 1.169e-06 7.43 6411644
9 1.449e-07 8.06 25671768

Table 7.1
Redistancing: Error in the degrees of freedom at Γh. (∗ No convergence for some points, cf.

Table 7.2 and Table 7.3; the first error is for the Newton method, the second for the nested iteration.)

7. Numerical experiments. The Newton method for (4.1) and the nested it-
eration for (5.2) are compared in two experiments. In Section 7.1, the redistancing
problem of [17, 7] is reconsidered; a perturbed level set function for a torus is given,
and the value of dh is required in all degrees of freedom close to Γh. In Section 7.2,
higher order numerical integration is performed on Γh. For example, such integrals are
required for the methods in [6, 8, 9]. In both setups, the run time of the two algorithms
is considered as a measure of the overall performance. Furthermore, the number of
(outer) iterations is given, and the time for searching a simplex Sn+1 containing the
next iterate xn+1, cf. Section 6.

In both experiments, the domain Ω is a cube. The coarse mesh has a regular
block structure. Each cuboid is partitioned into six tetrahedra by inserting a space
diagonal and its projections on the faces of the cube. The resulting Kuhn triangulation
is refined using a red-green refinement algorithm, cf. [2, 10]. Refinement is applied
to all tetrahedra, which are intersected by Γh until the required refinement level l is
reached. As the discrete level set functions φh ∈ X2

h, the nodal interpolants of the
level set functions φ given below are used. The recovered gradient gh ∈ X2

h of φh is
computed with (3.11). The stopping criterion for the Newton method is

|F (xn)| ≤ 1e-8.

The stopping criterion for the nested iteration is

|φh(xn)| ≤ 5e-9 and |xn − xn−1| ≤ 1e-8.

7.1. Redistancing. Let Ω = (−1, 1)3 and Γ be the torus which is the level set
of the perturbed distance function

φ(x) =

√x2
3 +

(√
x2

1 + x2
2 −R

)2
− r

(9 + 4 cos(αx1x2/ |x|)
)

with R = 0.4, r = 0.2, and α = 50. This is the setup with the strongest perturbation
considered in [17]; the perturbation preserves the torus as zero level, but introduces a
large, oscillating gradient. The mesh width at Γh on refinement level l is h(l) = 2

3 ·2
−l.

Let N(T Γ
h ) be the set of all vertices and edge-barycenters of the tetrahedra which

are cut by Γh. The error measure e∞ = maxv∈N(T Γ
h

)|dh(x)− d(x)| which is also used
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time [s] iterations
l td tloc average min max no conv. #damping
4 0.683 0.495 4.195 1 50 134 51390
5 1.14 0.755 3.395 1 7 0 16
6 5.99 4.20 3.132 1 6 0 0
7 19.5 14.2 2.824 1 6 0 0
8 78.8 59.3 2.539 1 5 0 0
9 334 260 2.452 1 5 0 0

Table 7.2
Redistancing: Performance of the Newton method.

time [s] outer iterations inner iterations
l td tloc average min max no conv. average #damping
4 1.80 1.25 9.189 2 50 335 2.396 117542
5 1.79 1.18 6.073 2 50 28 1.502 11050
6 6.33 4.49 4.836 2 11 0 1.207 9168
7 19.1 14.2 4.110 2 7 0 1.034 3136
8 78.2 60.5 3.634 2 5 0 0.9435 524
9 331 263 3.279 1 4 0 0.9672 0

Table 7.3
Redistancing: Performance of the nested iteration.

in [17] is reported in Table 7.1. The Newton method and the nested iteration produce
the same result with a relative error of less than 1e-4 for l ≥ 5. The error is close to
the one reported in [17, Tab. 8.3]; it shows a O(h3) behavior on the finer meshes. We
cannot expect to reproduce the results of [17] exactly because a different (simpler)
gradient recovery method is used in our paper. As in [17], there are convergence
problems for the nested iteration for l ∈ {4, 5}. The Newton method converges in all
points on the levels l ≥ 5. For l = 4, the Newton method has convergence problems
as well.

In Table 7.2 and Table 7.3, the following performance data are shown:
l the refinement level,
td the total time (in seconds) spent in the method,
tloc the part of td (in seconds) spent locating the tetrahedron Sn+1 on level l con-

taining xn+1,
(outer) iterations the average/min./max. number of (outer) iterations per degree

of freedom (dof) and the number of dof without convergence after 50 itera-
tions,

inner iterations the average number of inner iterations per outer iteration (only in
Table 7.3),

#damping the total number of rejected steps-sizes of the Newton method (in the
inner iteration).

The number of distance computations (‘#calls’ in Table 7.1) scales with a factor
4 when l is incremented as there is one computation per dof close to Γh. The time
required by the Newton iteration and the nested iteration is comparable for l > 6. It
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Fig. 7.1. Area computation: Γh; the grayscale (color in the online version) indicates |Dφh|.

is dominated by tloc and also scales with a factor of about 4. Both methods require
fewer iteration to converge on the finer levels, but the effect of this on td is dominated
by the computation of Sn+1 as well. The Newton method requires no damping steps
for l ≥ 6, whereas the inner iteration of the nested iteration requires some damping up
to l = 8. The Newton method converges in all dof for l ≥ 5, but the nested iteration
converges only for l ≥ 6. In this sense, the Newton method is more robust. However,
the error e∞ of the nested iteration is hardly affected by this for l ∈ {4, 5}, whereas
e∞ is bigger for the Newton method on level 4, comparable to h(4) ≈ 0.04. For
l ∈ {4, 5}, the nested iteration is slower than the Newton method. This is explained
by the large number of damping steps, each of which requires a search for Sn+1. This
is visible in the larger values of tloc.

7.2. Area computation. Let Ω = (−3, 3)3 and Γ be the zero level of the fol-
lowing polynomial of degree 12,

f(x) = p(x1, x2, x3) · p(x2, x3, x1) · p(x3, x2, x1)− 3 with
p(x) = (x2

1 + x2
2 − 1.82)2 + (x2

3 − 1)2,

which is taken from [4].1 The mesh width at Γh on refinement level l is h(l) = 6 · 2−l.
The discrete level set function φh is the nodal interpolant of φ in X2

h. On the global
regular refinement T̃h of Th, the function φh can be interpreted as a finite element in
X1
h(T̃h). This function and its zero level are denoted as φ̂h and Γ̂h. For any T ∈ Th,

both φ̂h|T and Γ̂h∩T can be evaluated on a tetrahedron by tetrahedron basis without
actually computing (and storing) T̃h as a whole.

1We correct a typographical error in [4, Example 5.3] which caused some multiplication signs to
be printed as plus signs. The resulting zero level, Fig. 7.1, is then in agreement with the one shown
in [4, Fig. 5].
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Γh Γ̂h |Dφh| curvature
l area error area error min max max #calls
6 74.6729 9.83e-2 74.6117 3.70e-2 13.4 83.9 44.4 2117304
7 74.5803 5.62e-3 74.5826 8.00e-3 13.8 89.5 28.0 8462496
8 74.5750 3.73e-4 74.5764 1.73e-3 13.8 89.8 23.1 33839400
9 74.5747 1.84e-5 74.5751 4.84e-4 13.8 89.3 21.7 135454704
10 74.5746 — 74.5748 1.24e-4 13.8 89.3 20.9 541725408

Table 7.4
Area computation.

The piecewise linear approximation Γ̂h of Γ is used as the domain of a parame-
trization of Γh via ph|Γ̂h : Γ̂h → Γh. With the transformation rule for integrals, the
integral of a function f over Γh can be represented as∫

Γh
f(x) dσ(x) =

∫
Γ̂h
f ◦ ph(x)J(x) dσ(x), J(x) =

√(
∂ph(x)U(x)

)T
∂ph(x)U(x),

where U(x) ∈ R3×2 is an orthogonal matrix that spans the tangential space of Γ̂h at
x; ∂ph(x) is the Jacobian of ph, which can be computed in closed form from (1.1) as
a function of ph(x), nh

(
ph(x)

)
, and ∂gh

(
ph(x)

)
. The right-hand side is accumulated

tetrahedron by tetrahedron using a fifth order accurate quadrature rule with positive
weights and seven quadrature points in the interior of the reference triangle. As the
focus of the experiment is on ph, the simple function f(x) = 1 is used, which gives
the area of Γh up to quadrature and approximation errors.

Table 7.4 shows the area of Γh and of Γ̂h. The errors are computed with respect to
|Γh| for l = 10. The difference between the Newton method and the nested iteration is
less than 1e-7 for l ≥ 6. The error of |Γ̂h| shows an O(h2)-behavior. The error of |Γh|
shows an O(h4)-behavior, which is better than the expected O(h3)-behavior. This is
probably due to the very simple integrand.
The minimum and maximum of |Dφh| is sampled in the quadrature points on Γh
and shown in column six and seven. They show that the level set function is steep.
The maximum of the curvature radius of Γh (sampled over the quadrature points) is
shown in column eight of Table 7.4. Together with the fact that the domain has a
side-length of 6, the observed maximum curvature of circa 20 explains the relatively
high refinement level l ≥ 6 used in the computations: For the mesh width, there holds
h(5) ≈ 0.19, h(6) ≈ 0.09. Both values are bigger than the minimum curvature radius
of about 0.05. The methods converge nevertheless because the points to which they
are applied lie on Γ̂h such that their distance to Γh is O(h2), that is 0.035 and 0.0088.
Neither the Newton method nor the nested iteration produce useful results for l = 5.
Compared to the redistancing experiment, the number of distance computations is an
order of magnitude larger. There are seven quadrature points per surface triangle; this
makes the caching mechanism for Sn+1 explained in Section 6 particularly efficient.
This manifests itself in a smaller value of tloc/td in Table 7.2 compared to Table 7.5
and in Table 7.3 compared to Table 7.6.

The tables 7.5 and 7.6 show the same performance data as the tables 7.2 and 7.3.
The columns ‘no conv.’ and ‘#damping’ are absent from Table 7.5 as the Newton
method converges in all points and no step size is rejected in this experiment.

The time required by both methods scales with a factor between 3 and 4 if l
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time [s] iterations
l td tloc average min max
6 4.946 1.46 2.459 1 5
7 16.36 3.50 2.019 0 3
8 45.90 5.87 1.835 0 3
9 148.4 12.2 1.549 0 2
10 459.1 30.8 1.166 0 2

Table 7.5
Area computation: Performance of the Newton method.

time [s] outer iterations inner iterations
l td tloc average min max no conv. average #damping
6 8.152 2.24 3.367 1 50 42 2.993 79242
7 16.19 4.00 2.707 1 4 0 1.477 1296
8 39.03 6.74 2.228 1 3 0 1.130 132
9 120.2 14.1 1.998 1 3 0 0.9651 0
10 434.7 39.5 1.990 1 2 0 0.8026 0

Table 7.6
Area computation: Performance of the nested iteration.

is incremented by 1, whereas the number of calls scales with the factor 4. This is
explained by the decrease of the average iteration number on finer meshes. Although
this effect is also present in the redistancing experiment, it is dominated there by tloc.
In the present experiment, the effect of tloc is reduced by the higher efficiency of the
caching mechanism for Sn+1. This makes the nested iteration about 10 per cent faster
than the Newton iteration on the finer meshes.
The Newton method is slightly more robust in the sense that it converges in all points
for l ≥ 6. The nested iteration fails in 42 points for l = 6. However, the effect
on the area computation is negligible. This could be due to the fact that the inner
iteration converged in the final step of these 42 computations, returning some point
on Γh “close” to the true base point.

8. Acknowledgement. I thank Arnold Reusken for reading and discussing the
initial version of this paper. His feedback led to an improved presentation.
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