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Modélisation Mathématique et Analyse Numérique

ON THE MACH-UNIFORMITY OF THE LAGRANGE–PROJECTION SCHEME ∗

Hamed Zakerzadeh1

Abstract. In the present work, we show that the Implicit-Explicit Lagrange–projection scheme ap-
plied to the barotropic Euler equations, presented in Coquel et al.’s paper (Math. of Comp. 79.271
(2010): 1493–1533), is asymptotic preserving regarding the Mach number, i.e., it is asymptotically
stable in `∞-norm with unrestrictive CFL condition for all-Mach flows, and asymptotically consis-
tent which means that it gives a consistent discretization to the incompressible Euler equations in
the limit, e.g., it preserves the incompressible limit as to satisfy the div-free condition or the ana-
logues of continuous-level asymptotic expansion for the density. This consistency analysis has been
done formally as well as rigorously. Moreover, we prove that the scheme is positivity-preserving and
entropy-admissible under some Mach-uniform restrictions. The analysis is similar to what has been
presented in the original paper, but with the emphasis on the uniformity regarding the Mach num-
ber, which is crucial for a scheme to be useful in the low-Mach regime. We then extend the modified
(but similar) analysis to the shallow water equations with topography and get similar stability and
consistency results.

Résumé. ...
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1. Introduction

Singular limits of conservation laws (or more generally PDEs), may present severe difficulties to be treated
either in analysis or numerics. The main issue is that the type of the equations changes in the limit [40], e.g.,
when the Mach number approaches zero for the Euler equations. This limit is singular, since the sound speed
(the characteristic speed) goes to the infinity and the PDE changes to be hyperbolic-elliptic, in the so-called
incompressible limit. So, there are difficulties to show the convergence of the solution of compressible Euler
equations to the incompressible one (see [34,40]). Tackling this problem numerically is more complicated, since
as the eigenvalues of the flux Jacobian blow up, the time step should tend to zero due to Courant–Friedrichs–
Lewy (CFL) condition, which leads to very small time steps and thus huge computational cost. Also it has been
shown that in the general case, the usual numerical schemes lose their accuracy in the limit for under-resolved
mesh sizes; see [19,21,25,26,44–46].
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Figure 1. Illustration of Asymptotic Preserving schemes.

Throughout this paper, we assume that at least at the continuous level, the solution of compressible flow
equations with the Mach number ε, converges to the solution of the limit equation, as ε → 0, and try to show
that the counterpart of such a convergence also exists at the discrete level. This is in fact the idea of Asymptotic
Preserving (AP) schemes, which has been introduced by Jin in [30,31] for relaxation systems; see also [32] for a
general review and [36] for older works. Figure 1 illustrates this definition;Mε stands for a continuous physical
model with the (singular) perturbation parameter ε ∈ (0, 1], and Mε

∆ is a discrete-level model which provides
a consistent discretization ofMε. As in [32], ifM0

∆ is a suitable and efficient scheme forM0, then the scheme
is called to be AP.

However, note that there are several definitions of AP schemes in different contexts owing to different inter-
pretations of a suitable and efficient scheme. So we define an AP scheme for the framework of this article more
precisely.

Definition 1.1. [AP schemes] A scheme is called to be AP, provided that it fulfills the following conditions.

(i) It gives a consistent discretization of Mε for all ε, in particular for the limit problem M0.
(ii) It is efficient uniformly in ε, e.g., the CFL condition should be uniform in ε and the implicit step should

be solved efficiently for all ε.
(iii) It is stable in some suitable sense, uniformly in ε.

For brevity, we call these properties respectively Asymptotic Consistency (AC), Asymptotic Efficiency (AEf),
and Asymptotic Stability (AS).

The AP property has been studied widely and several AP (in our terminology AC and AEf) schemes have
been developed for the Euler or shallow water equations; see [4,15,18,27,42]. The bottom line of these schemes
is a mixed implicit-explicit (IMEX) approach, stems from the more general operator splitting method; to split
the flux (or its Jacobian) into two parts and treat one part explicitly in time and the other one implicitly in
time. This approach is definitely necessary to find schemes with ε-uniform CFL conditions. But as mentioned
in [17], it is not sufficient at all to claim for asymptotic stability; see for example [1] whence it is shown that
for an explicit-explicit splitting with Lax–Wendroff scheme, even if both split parts are stable in terms of CFL
condition, the resulting scheme is unconditionally unstable in L2-norm using von Neumann stability analysis.
On the other hand, it is shown in [27] that IMEX schemes are L2-stable, as long as each step is L2-stable. So,
there is a huge gap between these two cases. Note that using IMEX splitting schemes makes the analysis more
delicate compared to explicit splittings; see [8, 9] for some results on the Lagrange-projection scheme (which is
also the topic of this paper) and [47] for a motivating study on linear systems.

Recently, inspired by the Arbitrary Lagrangian-Eulerian (ALE) approach, there have been some works de-
voted to the so-called Lagrange–projection scheme, which have resulted in some rigorous stability results;
see [8, 9, 11, 14] for example. ALE nowadays is a classic approach in mechanics, trying to benefit from the
advantages of Eulerian and Lagrangian formulations simultaneously; see [22] for a nice introduction, and this
is the heart of the Lagrange–projection scheme, as we will see later on in Section 2. However, most of these
works do not take the asymptotic limit into account. For example in [14], a rigorous numerical analysis has
been done for a two-phase model including positivity of the density and entropy stability, but with no concern
about the incompressible limit. Another study was carried over later for balance laws by Chalons et. al [8], in
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particular for the Euler equations with friction. Moreover, in [9], the Lagrange–projection scheme has been ana-
lyzed for the two-dimensional Euler equations, to construct an all-Mach scheme (the scheme with Mach-uniform
consistency). So the focus is on the accuracy problems in the low-Mach regime, which one expects to see for
Godunov-type schemes (of which Lagrange–projection scheme is a member), and to cure them by a careful
look at the truncation error. In fact, it has been shown in [9] that the truncation error of the two-dimensional
Lagrange-projection scheme blows up in the low Mach regime, i.e., it behaves as O( ∆x

Ma ) where Ma stands for
the Mach number. The authors of [9] could show that the truncation error can be made uniform regarding the
Mach number for a particular modification of the scheme, namely by multiplying the dissipation involved in the
discretization of the pressure terms by an O(Ma) term . Although this is a promising step, it is not clear if this
uniform accuracy in terms of the truncation error is equivalent to the asymptotic consistency, due to the lack of
convergence analysis of the scheme. Very recently in [10], the authors have extended the Lagrange–projection
framework to the one-dimensional shallow water equations with particular attention to the well-balancing and
the validity of the entropy inequality.

On the other hand, it is well-known that Godunov-type schemes show no accuracy problem for low-Mach
one-dimensional problems as long as the initial condition is well-prepared (see Definition 3.2). The reader can
consult with [9, 19, 21, 45, 46] for more details. This accuracy of Godunov-type schemes motivates the present
paper, whose goal is to investigate the results of [14] regarding the Mach number. In this paper, we study
the issue of consistency and stability of one-dimensional IMEX Lagrange-projection scheme, or the so-called
LP-IMEX scheme as been proposed in [8], in the incompressible limit. In particular, we show that the stability
conditions in [14] are uniform in the Mach number provided that the initial condition is well-prepared. So, all
the stability properties in [14] hold without any restriction regarding the Mach number. Also we show that the
solution is asymptotically consistent for well-prepared initial data (see Theorem 3.3). Indeed, these estimates
imply convergence of a sub-sequence for fixed grids, as ε tends to zero (see Appendix A). The study has also
been extended to the one-dimensional shallow water equations with topography. The source term presents an
additional difficulty, and in order to prove asymptotic consistency, we had to use a more dissipative relaxation
parameter (see Remark 4.9). Also note that in Sections 3.2 and 4.3 we prove ε-uniform bounds for the (implicit)
solution, which justifies the asymptotic expansions used throughout the paper.

The paper is organized as follows. In Section 2 we introduce the splitting after a brief introduction to the ALE
formalism and relaxation schemes. Then, in Section 3, we introduce the IMEX Lagrange–projection scheme
with a specific relaxation approximation and then discuss the numerical analysis of the scheme. We prove the
formal asymptotic consistency, positivity preserving, stability and entropy stability, all under a non-restrictive
CFL condition. Then we show that the formal asymptotic consistency is in fact rigorous. In Section 4 we show
similar results for the shallow water equations with a different and more diffusive relaxation approximation in
the case of flat or non-flat bottom functions. Appendix A provides some results about the consequences of
entropy stability on the stability of the solution in the limit ε→ 0. We then conclude the discussion with some
possible extensions and future works.

2. Lagrange–projection scheme: Continuous PDE level

In this section, we introduce the splitting to be used, let us call it ALE splitting, which is inspired by the
classical Lagrange–projection scheme (see [23]). For the barotropic Euler equations, one natural way to split
the waves, is to split them into acoustic and transport waves. The high speed acoustic waves are formulated in
the Lagrangian framework and slow transport waves in Eulerian one. The idea is similar as for the Lagrange–
projection scheme, which consists of solving Riemann problems for the acoustic system in the Lagrangian
formulation and then projecting the computed solution onto the fixed Eulerian grid (which is equivalent to the
transport system). In this way, the scheme handles Riemann problems in the Lagrangian coordinates which
is much easier than the Eulerian one, and takes advantage of using a fixed grid; see [23, Chapter III, Section
2.5]. It is in this regard that the ALE splitting (as well as the Lagrange–projection scheme) can be understood
(see [14]) in the framework of ALE, to write the equations in the referential coordinates χ which are necessarily
neither spatial (Eulerian) x nor material (Lagrangian) X. The referential frame has a relative velocity v seen
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from the spatial frame, which is arbitrarily chosen. Note that the Lagrange–projection scheme is a special case
of ALE, in which the velocity v is chosen such that after completing each step, the domain is the same as the
fixed Eulerian one. We refer the reader to [14, Section 3.3] for more details.

Now, consider the system of barotropic Euler equations:

∂tρ+ ∂x(ρu) = 0, (2.1)

∂t(ρu) + ∂x
(
ρu2 + p(ρ)

)
= 0, (2.2)

when p(ρ) = κργ with κ > 0 and γ > 1 is the barotropic pressure law. For the rest of this paper, we set k = 1
2

and γ = 2. As an entropy function, we choose the total energy of the solution ρE which can be shown to be

strictly convex with respect to the conservative variables. The total energy density is written as E = E + u2

2

where E(ρ) := κ
γ−1ρ

γ−1 is the internal energy density (see [38]).

The ALE splitting splits the original system, (2.1)-(2.2) into the following acoustic and transport sub-systems

∂tρ+ ρ∂xu = 0, (2.3)

∂t(ρu) + ρu∂xu+ ∂xp = 0, (2.4)

and

∂tρ+ u∂xρ = 0, (2.5)

∂t(ρu) + u∂x(ρu) = 0, (2.6)

and solve them successively. Simply by using Taylor expansion it can be seen that this splitting is in general
(globally) first-order accurate in time. We refer the reader to [28] for more details about the operator splitting
methods. Note that the transport part is simply a transport of conservative variables (ρ, ρu) with the velocity
field u.

2.1. Lagrange step

In the Lagrangian coordinates, the frame moves with the velocity field. So, what the observer sees is the
acoustic part, (2.3)-(2.4). It is not difficult to show that they can also be written as

∂tτ − ∂zu = 0, (2.7)

∂tu+ ∂zp = 0, (2.8)

where τ is specific volume (the reciprocal of ρ) and z := ρdx is the mass coordinate. This is exactly the
classical form of the barotropic Euler equations in the Lagrangian framework. To obtain the non-dimensionalized
equations, we set

τ̂ := τρ◦, û :=
u

u◦
, p̂ :=

p

p◦
, p◦ := ρ◦c

2
◦,

where c◦ is the characteristic sound speed, defined as c◦ :=

√
κγργ−1

◦ , and ρ◦ and u◦ are characteristic density

and velocity. Also we denote the Mach number as the ratio of characteristic speed to the sound speed, Ma := u◦
c◦

.
Thus, after suppressing hats, the equations become

∂tτ − ∂zu = 0, (2.9)

∂tu+
1

ε2
∂zpz = 0, (2.10)

where ε :=
√
γMa. From now on and for simplicity, we call ε the Mach number, though it is different from Ma

by the factor
√
γ.
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Assuming a one-dimensional torus as the spatial domain Ω := T, which means the periodic boundaries, we
define the domain of solutions as ΩT := T× R+ in space and time. So, we are left with a Cauchy initial value
problem which needs solution of the Riemann problems. To ease the situation, we relax the system so that all
characteristic fields would be linearly degenerate, which is easy to solve the Riemann problem for. We actually
substitute the source of genuine nonlinearity p(ρ) with some variable π, called relaxation pressure and add
another equation for π. This is the heart of so-called relaxation schemes; we refer the reader to [5,12,33,39] for
more details.

In the non-dimensionalized form, the Suliciu relaxation system [5,13] reads as

∂tτ − ∂zu = 0, (2.11)

∂tu+ ∂zΠ = 0, (2.12)

∂tΠ + α2∂zu = Λ(p− π), (2.13)

with the definitions

Πε := Π :=
π

ε2
, αε := α :=

a

ε
, Λε := Λ :=

λ

ε2
,

where a is a constant to be specified and λ is the relaxation parameter.

Remark 2.1. One can choose α differently, for example as a
ε2 , which is more diffusive compared to the current α.

For now, we stick to a
ε , and later on in Section 4 for the shallow water equations, we use the diffusive relaxation

system.

At least formally, one can observe that in the asymptotic regime λ → ∞, π tends to p and the original
system would be recovered. Now, one can easily check that the relaxation system only has linearly-degenerate
characteristic fields. To use the feature of linear degeneracy, at first we solve the problem out of equilibrium,
setting λ = 0, and then we project the out-of-equilibrium solution to the equilibrium manifold, cf. [14].

In order to prevent the instabilities to happen for this relaxation system, or in other words to enforce the
dissipativity of Chapman–Enskog expansion (see [12, 39]), the parameter a must be chosen sufficiently large
according to the so-called sub-characteristic or Whitham stability condition

α2 >
max(−pτ )

ε2
, (2.14)

see [7] for the proof.
Since the relaxation system with λ = 0 is strictly hyperbolic with eigenvalues given by 0,±a—compared

to exact eigenvalues 0,±c for the original system—the sub-characteristic condition means that information
propagates faster in the relaxation model. Also linear degeneracy of the fields allows us to analytically solve
the Riemann problem when λ = 0. This property justifies by itself the introduction of the proposed relaxation
model and its simplicity [9].

So, for λ = 0, one can simply put the relaxation system (2.11)-(2.13) into an equivalent diagonal form
like [8, eq. (12)]

τt − uz = 0, (2.15)

⇀
wt +α

⇀
wz = 0,

⇀
w:= Π + αu =

π

ε2
+
a

ε
u, (2.16)

↼
wt −α

↼
wz = 0,

↼
w:= Π− αu =

π

ε2
− a

ε
u. (2.17)

Note that
⇀
w and

↼
w are two of Riemann invariants of the relaxation system; the third one is I := Π +α2τ . So,

instead of the (2.15) one can use It = 0.
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Remark 2.2. Note that the naturally-split systems (2.3)-(2.4) and (2.5)-(2.6) are not conservative if they are
written in the Eulerian coordinates, so to circumvent the complications coming with non-conservative products
(see [16] for example) and also for solving Riemann problems with more ease and efficiency, we have changed
the coordinates to Lagrangian, which provides a conservative formulation.

2.2. Projection step

Like the acoustic part, the transport part (2.5)-(2.6) can be written in the Lagrangian coordinates which
provides a conservative form. In fact, since we remap the values onto the Eulerian grid, at the end of each
step, the referential and spatial (Eulerian) coordinate should coincide. So following the notation in [14], the
projection step can be summarized as

∂tU + u∂xU = 0, (2.18)

where U := (ρ, ρu)
T

stands for the conservative variables. For further details on the derivation of the split
systems, the reader can consult with [14]

3. Lagrange–projection scheme: Discrete numerical level

As mentioned above, for linearly-degenerate systems, it is straightforward to solve the Riemann problem.
Moreover in this case, after writing the equations in terms of Riemann invariants, it would be in fact trivial
since along each characteristic line, one of the Riemann invariants remains constant. In this way, there are just
a set of two symmetric scalar linear advection equations to be solved for

⇀
w and

↼
w, while I does not change at

all.
At the beginning of the Lagrange (acoustic) step from n to n†, the Eulerian and Lagrangian coordinates

coincide with each other, also pnj = πnj . The implicit Lagrange step reads as

τn†j = τnj +
∆t

∆znj

(
ũn†j+1/2 − ũ

n†
j−1/2

)
. (3.1)

⇀
wn†j =

⇀
wnj −

a∆t

ε∆znj

(
⇀
wn†j −

⇀
wn†j−1

)
, (3.2)

↼
wn†j =

↼
wnj +

a∆t

ε∆znj

(
↼
wn†j+1 −

↼
wn†j

)
, (3.3)

where ∆zn := ρnj ∆x and j ∈ S denotes cell indices when S is a periodic set (the discretization of Ω). Also ũn†

comes from solving a simple Riemann problem for the relaxation system with characteristic 0,±aε (see [14]),
and it is

ũn† :=
1

2aε
(aε(uL + uR)− (πR − πL)) .

So, the interface velocity is defined as

ũn†j+1/2 :=
un†j + un†j+1

2
− 1

2aε

(
πn†j+1 − π

n†
j

)
. (3.4)

Note that there are several (equivalent) variants of the scheme (3.1)-(3.3), in different coordinates or with/without
using the Riemann invariants; see [14] for further details.

In the next step, the explicit projection step from n† to n+1, we map updated values onto the fixed Eulerian
grid. There are 4 cases based on the upwind direction [8, eq. (34)], which can be summarized as

Un+1
j = Un†j +

∆t

∆x

[
(ũn†j−1/2)

+Un†j−1 +
(

(ũn†j+1/2)
− − (ũn†j−1/2)

+
)
Un†j − (ũn†j+1/2)

−Un†j+1

]
, (3.5)
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with the definitions ·+ := ·+|·|
2 and ·− := ·−|·|

2 .
This step, projects the values on the updated grid onto the fixed Eulerian one. Adding these two steps to

each other is what we call LP-IMEX scheme.

3.1. Numerical analysis of LP-IMEX scheme

Considering the LP-IMEX scheme introduced in the previous section, one can obtain the stability results,
gathered in Theorem 3.3. But at first, let us define the limit of barotropic Euler equations and the so-called
well-prepared initial datum.

Definition 3.1. The formal limit of barotropic Euler equations is defined to be

ρ(0) = const., ρ(1) = const.,

div u(0) = 0,

∂tu(0) + ∂x

(
u2

(0) + p(2)

)
= 0,

where the asymptotic expansion is

ρ(x, t) = ρ(0) + ερ(1) + ε2ρ(2),

u(x, t) = u(0) + εu(1) + ε2u(2).

Definition 3.2. For the barotropic Euler equations (2.1)–(2.2), the well-prepared initial datum is defined as
(see [21,34,35,41])

π
(0)
WP (x) = p

(0)
WP (x) = p(0) + ε2p(2)(x), (3.6)

u
(0)
WP (x) = u(0) + εu(1)(x), (3.7)

with constant p0 and u0.

Theorem 3.3. The Lagrange–projection scheme (3.1)–(3.3) and (3.5), with well-prepared initial datum, satisfies
the following properties.

(i) It can be expressed in the locally conservative form.
(ii) The scheme is AC, which means that it gives a consistent discretization of incompressible Euler equations

in terms of Definition 3.1.
(iii) Under some non-ε-restrictive CFL constraint (3.20), the scheme is positivity preserving, i.e., ρnj > 0

provided that ρnj > 0 for all j ∈ S. Moreover the density is bounded away from zero, i.e., there exists some
ρnLB > 0 such that ρnj ≥ ρnLB for all j ∈ S.

(iv) Under (3.20) and sub-characteristic condition (3.32), the solution fulfills the local (cell) entropy (energy)
inequality, i.e.,

(ρE)
n+1
j − (ρE)

n
j

∆t
+

(
ρEũ+

π̃ũ

ε2

)n†
j+1/2

−
(
ρEũ+

π̃ũ

ε2

)n†
j−1/2

∆x
≤ 0, (3.8)

which is consistent with

∂t (ρE) + ∂x

(
(ρE +

p

ε2
)u
)
≤ 0 in D′(ΩT ).

(v) Under (3.20) and sub-characteristic condition (3.32), the computed density, momentum and velocity are
stable, i.e., bounded in `∞-norm, uniformly in ε.
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We analyze the properties of this scheme in the subsequent subsections. Note that the locally conservative
form of the scheme is proved in [14].

Remark 3.4. Throughout this section and the subsequent one, it is very natural to ask about the order of
magnitudes of quantities (in terms of ε). For now, we only do the analysis formally; i.e., we only take the
explicit ε into account and assume that all other quantities are O(1). But in a separate section, Section 3.2, we
justify this assumption.

3.1.1. Proof of asymptotic consistency (ii)

At first, we show that the solution is close to the incompressible limit in the sense of Definition 3.1, i.e, constant
density up to the second order of asymptotic expansions, and a divergence free (solenoidal) zeroth-order velocity
component. Then, using these results, we prove that the scheme provides a consistent discretization of the PDE
in the limit ε→ 0. Thus, the asymptotic consistency in the sense of Definition 1.1 holds.

Considering Definitions 3.1 and 3.2, we consider a well-prepared solution at the step n, i.e.,

ρnj = ρn0c + ε2ρn(2)j , (3.9)

pnj = πn0c + ε2πn(2)j , (3.10)

unj = un0c + εun(1)j , (3.11)

where ρn0c, π
n
0c and un0c are constant values. Here, we want to show that the scheme (3.1)–(3.3) preserves the

well-preparedness of the solution at the step n to the intermediate step n† and then to the next time step n+ 1.
For the Lagrange step, we start with the O(1/ε) terms in the mass equation, which yield

πn†(0)j+1 − 2πn†(0)j + πn†(0)j−1 = 0,

thus πn†(0)j is a linear sequence over j ∈ S and due to periodic B.C. πn†(0)j = πn†(0) which is constant in space.

Since π and ρ are two independent variables at this level, we cannot conclude immediately that the same
is true for the density. But one can find their relation by combining (3.1)–(3.3) to find the update for the
relaxation pressure as

ρnj
πn†j − πnj

∆t
+

a2

∆x

(
ũn†j+1/2 − ũ

n†
j−1/2

)
= 0. (3.12)

Then using continuity (3.1), it yields

a2
(
τn†j − τ

n
j

)
+
(
πn†j − π

n
j

)
= 0. (3.13)

From (3.13) it is clear that

a2
(
ρn†j − ρ

n
j

)
= ρnj ρ

n†
j

(
πn†j − π

n
j

)
. (3.14)

So, its O(1) part is

a2
(
ρn†(0)j − ρ

n
(0)j

)
= ρn(0)jρ

n†
(0)j

(
πn†(0)j − π

n
(0)j

)
,

which gives that

ρn†(0)j

(
a2 − ρn0c

(
πn†(0) − π

n
0c

))
= a2ρn0c =⇒ ρn†(0)j = ρn†(0) const. in space
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Then, due to periodic B.C. and by a spatial summation on (3.1), it can be found out that ρn†(0)j is constant in

time as well, i.e., ρn†(0)j = ρn0c. Also from the update of relaxation pressure π, (3.12), and again periodic B.C. and

spatial summation, the numerical fluxes cancel out with each other and it turns out that πn†(0)j = πn0c, constant

in both time and space.
Next, we continue with momentum equation (there is no difference between

⇀
wj and

↼
wj in this regard).

ρnj
(πn†j
ε2

+
a

ε
un†j
)

= ρnj
(πnj
ε2

+
a

ε
unj
)
− a∆t

ε2∆x

(πn†j − πn†j−1

ε
+ a
(
un†j − u

n†
j−1

))
.

So if one balances O(1/ε2) terms, one obtains

ρn0cπ
n†
(0)j = ρn0cπ

n
0c −

a∆t

∆x

(
πn†(1)j − π

n†
(1)j−1 + a

(
un†(0)j − u

n†
(0)j−1

))
,

which yields

πn†(1)j − π
n†
(1)j−1 + a

(
un†(0)j − u

n†
(0)j−1

)
= 0. (3.15)

So, there is the possibility that both πn†(1)j and un†(0)j be constant in space. To show it, note that from O(1) terms

in continuity equation, one gets

ρn(0)j =ρn†(0)j

(
1 +

∆t

2a∆x

(
a
(
un†(0)j+1 − u

n†
(0)j−1

)
−
(
πn†(1)j−1 − 2πn†(1)j + πn†(1)j+1

)))
− ∆t

2a∆x
ρn†(1)j

(
πn†(0)j−1 − 2πn†(0)j + πn†(0)j+1

)
.

So,

a
(
un†(0)j+1 − u

n†
(0)j−1

)
−
(
πn†(1)j−1 − 2πn†(1)j + πn†(1)j+1

)
= 0 (3.16)

Combining (3.16) and (3.15) yields that πn†(1)j = πn†(1) and un†(0)j = un†(0). So, div un†(0) = 0.

Again, similar to the zeroth order, one can show that ρn†(1)j is constant in space and even πn†(1)j and ρn†(1)j are

constant in time, i.e., πn†(1)j = πn1c and ρn†(1)j = ρn1c. Hence, the solution of the Lagrange step is close to the

incompressible limit.

For the projection step, we show asymptotic consistency for the first case, ũn†j−1/2 < 0 and ũn†j+1/2 < 0. The

other cases can be done in a very similar way. In this case, it can be seen that

ρn+1
j = ρn†j −

∆t

2a∆x

(
ρn†j+1 − ρ

n†
j

)(
−
πn†j+1 − π

n†
j

ε
+ a
(
un†j+1 + un†j

))
.

So O(1) terms give,

ρn+1
(0)j = ρn†(0)j −

∆t

2a∆x

[
−
(
ρn†(0)j+1 − ρ

n†
(0)j

)(
πn†(1)j+1 − π

n†
(1)j

)
−
(
ρn†(1)j+1 − ρ

n†
(1)j

)(
πn†(0)j+1 − π

n†
(0)j

)
+ a
(
ρn†(0)j+1 − ρ

n†
(0)j

)(
un†(0)j+1 + un†(0)j

)]
,
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thus ρn+1
(0)j = ρn†(0)j = ρn0c and as a result pn+1

(0)j = pn0c; it is constant as well. Similarly, one can find that the first

order components are also constant in time and space; if they do not exist in the initial condition, so at the
time tn+1 there is no O(ε) pressure fluctuation:

ρn+1
(1)j = ρn†(1)j −

∆t

2a∆x

[
−
(
ρn†(0)j+1 − ρ

n†
(0)j

)(
πn†(2)j+1 − π

n†
(2)j

)
−
(
ρn†(1)j+1 − ρ

n†
(1)j

)(
πn†(1)j+1 − π

n†
(1)j

)
−
(
ρn†(2)j+1 − ρ

n†
(2)j

)(
πn†(0)j+1 − π

n†
(0)j

)
+ a
(
ρn†(0)j+1 − ρ

n†
(0)j

)(
un†(1)j+1 + un†(1)j

)
+ a
(
ρn†(1)j+1 − ρ

n†
(1)j

)(
un†(0)j+1 + un†(0)j

)]
,

and ρn+1
(1)j = ρn†(1)j = ρn0c = 0.

To show the div-free condition, one can consider O(1) terms of the momentum equation:

ρn+1
(0)j u

n+1
(0)j = ρn†(0)ju

n†
(0)j −

∆t

2a∆x

[
−
(
ρn†(0)j+1u

n†
(0)j+1 − ρ

n†
(0)ju

n†
(0)j

)(
πn†(1)j+1 − π

n†
(1)j

)
−
(
ρn†(1)j+1u

n†
(0)j+1 − ρ

n†
(1)ju

n†
(0)j

)(
πn†(0)j+1 − π

n†
(0)j

)
−
(
ρn†(0)j+1u

n†
(1)j+1 − ρ

n†
(0)ju

n†
(1)j

)(
πn†(0)j+1 − π

n†
(0)j

)
+ a
(
ρn†(0)j+1u

n†
(0)j+1 − ρ

n†
(0)ju

n†
(0)j

)(
un†(0)j+1 + un†(0)j

)]
.

Thus un+1
(0)j = un†(0)j = un0c, and the zeroth order component of velocity filed is solenoidal. Hence, combining the

results for the Lagrange and projection steps together, it is obvious that the limit properties is satisfied.
To prove asymptotic consistency in the sense of Definition 1.1, it remains to show the consistency of the

discretization in the limit. For the Lagrange step the consistency holds if the velocity update

un†j − unj
∆t

+
1

2∆znj ε
2

(
πn†j+1 − π

n†
j−1

)
− a/ε

2∆znj

(
un†j+1 − 2un†j + un†j−1

)
= 0, (3.17)

is a consistent discretization of ∂tu+ 1
ε2 ∂zπ = 0 in the limit, when (3.17) gives

un†(0)j − u
n
(0)j

∆t
+

1

2∆zn(0)j

(
πn†(2)j+1 − π

n†
(2)j−1

)
− a

2∆zn(0)j

(
un†(1)j+1 − 2un†(1)j + un†(1)j−1

)
= 0. (3.18)

It is clear that (3.18) is the Rusanov scheme applied to ∂tu(0) + ∂zπ(2) = 0, so the Lagrange step is AC.
To show the consistency of the discretization in the limit also for the projection step, comparing (2.18) and

(3.5), it is sufficient to confirm that ũn†(0)j+1/2 is consistent with u(0). This is in fact the case, due to the definition

of ũn†j+1/2 in (3.4) and the asymptotic behavior of un†(0)j and πn†(1)j , namely that un†(0)j and πn†(1)j are constant in

space. So, the projection step (3.5) is a consistent discretization of (2.18). Hence the scheme is AC in the sense
of Definition 1.1.

3.1.2. Proof of density positivity (iii)

In this section, we show that the density is positive due to a time restriction which is not restrictive for small
ε. From [14, eq. (2.25a)] we first define local acoustic CFL ratios µj , and local apparent propagation factor ej
as

µj :=
a∆t

∆znj
, ej :=

µj/ε

1 + µj/ε
.
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Then, one can write (3.2) as

⇀
wn†j = ej

⇀
wn†j−1 +(1− ej)

⇀
wnj .

Since 0 < ej < 1 (which can be satisfied for all ε uniformly), the updates for
⇀
wj and

↼
wj are monotone, i.e., no

new extremum can be generated. To show it for
⇀
wn†, assume that i is the index of maximum value of

⇀
wn†j , that

is
⇀
wn†i ≥

⇀
wn†j , ∀j ∈ S. So,

⇀
wn†i ≤ ei

⇀
wn†i +(1− ei)

⇀
wni .

Thus
⇀
wn†i ≤

⇀
wni and then maxj

⇀
wn†j ≤ maxj

⇀
wnj . So, it is bounded from above. The proofs for the lower-bound

and
↼
wn† are likewise. Hence,

⇀
mn≤⇀wn†j ≤

⇀
M

n
,

↼
mn≤↼wn†j ≤

↼
M

n
.

(3.19)

Having (3.19), one can show the following theorem.

Theorem 3.5. For some ∆t satisfying

∆t

∆x
≤ 2a/ε(

⇀
M

n − ↼
mn
)+

−
(
⇀
mn −

↼
M

n
)− , (3.20)

the LP-IMEX scheme preserves the positivity of density provided that ρ0
j > 0 for all j ∈ S.

Proof. In lines of [14], for the Lagrange step to satisfy positivity, one gets from τ -update that

∆t

∆x

(
ũn†j−1/2 − ũ

n†
j+1/2

)
< 1, (3.21)

ensures ρn†j > 0 for all j ∈ S. But on the other hand, ∆t should be such that the projection step is a convex
combination, thus

∆t

∆x

((
ũn†j−1/2

)+

−
(
ũn†j+1/2

)−)
< 1, (3.22)

Between (3.21) and (3.22) the stronger condition should be chosen, which is (3.22). Then, based on the definition
of ũn†, we express ∆t in terms of

⇀
M ,

↼
M ,

⇀
m and

↼
m and then the proof holds. �

The next goal is to show that this bound for the time step is uniform in ε, i.e., it does not vanish as the Mach
number goes to zero. One can pose the following corollary.

Corollary 3.6. For well-prepared initial data, the time step restriction (3.20) is uniform in ε.

Proof. Recall that asymptotic consistency implies that with well-prepared initial datum and for ε � 1, the
density (and thus the pressure) has a constant part as the zeroth-order term in the asymptotic expansion. So

the differences
⇀
M

n − ↼
mn

and
⇀
mn −

↼
M

n
are not of O(1/ε2) but O(1/ε) and thus (3.20) is uniform in ε. In other

words, the solution can be expanded w.r.t. ε, so

⇀
M

n ≤ pn0
ε2

+ max
j
pn2,j +

a

ε

(
un0 + εmax

j
(un1,j)

)
,

⇀
mn ≥ pn0

ε2
+ min

j
pn2,j +

a

ε

(
un0 + εmin

j
(un1,j)

)
,

↼
M

n ≤ pn0
ε2

+ max
j
pn2,j −

a

ε

(
un0 + εmax

j
(un1,j)

)
,

↼
mn ≥ pn0

ε2
+ min

j
pn2,j −

a

ε

(
un0 + εmin

j
(un1,j)

)
.
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Thus,

⇀
M

n − ↼
mn≤ a

ε

(
2un0 + ε

(
max
j

(un1,j) + min
j

(un1,j)

))
+

(
max
j
pn2,j −min

j
pn2,j

)
,

⇀
mn −

↼
M

n≤ a

ε

(
2un0 − ε

(
max
j

(un1,j) + min
j

(un1,j)

))
−
(

max
j
pn2,j −min

j
pn2,j

)
,

and one gets

lim
ε→0

 2a/ε(
⇀
M

n − ↼
mn
)+

−
(
⇀
mn −

↼
M

n
)−
 ≥ 2a/ε

O( 1
ε ) +O(1)

≥ C. (3.23)

Hence, there is an O(1) constant which bounds (3.20) from below, i.e., the condition (3.20) is uniform in ε. �

Now, to show that for a finite time the density is bounded from below, one should prove the following lemma.

Lemma 3.7. Under the condition (3.20), the computed density ρn+1
j is bounded away from zero in a finite

time, where the lower-bound is given by

ρn+1
LB :=

minj ρ
n
j

1 +
∆tε

2a∆x

[(
⇀
M

n
+

↼
M

n
)
−
(⇀
mn

+
↼
mn)] > 0. (3.24)

Proof. From the τ -update (3.1) and ũn†j+1/2 = ε
2a

(
⇀
wn†j −

↼
wn†j+1

)
, one can get

ρnj = ρn†j

(
1 +

ε∆t

2a∆x

(
⇀
wn†j −

↼
wn†j+1 −

⇀
wn†j−1 +

↼
wn†j

))
.

So, to find the minimum value of the computed density, one should find the maximum value of the right-hand
side. Due to (3.19) and under the condition (3.21), it can be seen that

ρn† ≥
ρnj

1 + ∆tε
2a∆x

[(
⇀
M

n
+

↼
M

n
)
−
(⇀
mn

+
↼
mn)] .

Thus, since the projection step is a convex combination under (3.20), the lower-bound is obtained as (3.24). �

3.1.3. Proof of local energy inequality (iv)

We show that the solution of the scheme satisfies the energy inequality under an ε-independent time re-
striction. For the Lagrange step, based on [14, Theorem 2.3], we define the entropy function for symmetric
advections problem, (2.16)-(2.17), as

η(
⇀
w,

↼
w) := s(

⇀
w) + s(

↼
w), s(w) :=

ε2w2

4a2
.

So, it can be rewritten as

η(
⇀
w,

↼
w) =

1

2

(
u2 +

π2

ε2a2

)
= E − E

ε2
+

π2

2a2ε2
, (3.25)

since after non-dimensionalization, one gets E = E
ε2 + u2

2 where E(ρ) = κ
γ−1ρ

γ−1. For later use, we should

mention that such a definition of internal energy fulfills the Weyl’s assumptions as defined below.
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Definition 3.8. The Weyl’s assumption for the internal energy function are (see [14,49])

E > 0, Eτ = −p < 0, Eττ > 0, Eτττ < 0.

We also define an entropy flux function ψ(
⇀
w,

↼
w) as

ψ(
⇀
w,

↼
w) :=

a

ε2
(s(

⇀
w)− s(↼w)) =

πu

ε2
. (3.26)

Then, the cell entropy inequality reads as

ηn†j − ηnj
∆t

+
ψn†j+1/2 − ψ

n†
j−1/2

∆znj
≤ 0. (3.27)

Substituting (3.25) and (3.26), one can relate the entropy inequality for symmetric advections problem, to the
energy inequality for the barotropic Euler equations, i.e.,

ρnj
En†j − Enj

∆t
+

(πu
ε2

)n†
j+1/2

−
(πu
ε2

)n†
j−1/2

∆x
≤
ρnj
ε2

En†j − Enj −
(
πn†j

)2

−
(
πnj
)2

2a2


︸ ︷︷ ︸

=:Rn†j

. (3.28)

Then, to prove entropy stability of the scheme, one should show that the entropy residual Rn†j is non-positive.

Considering πnj = pnj , we rewrite Rn†j as

Rn†j := En†j − E
n
j −

pnj
2a2

(
πn†j − p

n
j

)
−

(
πn†j − pnj

)2

2a2

(due to (4.12)) = En†j − E
n
j + pnj

(
τn†j − τ

n
j

)
− a2

2

(
τn†j − τ

n
j

)2

.

On the other hand, from Taylor expansion with integral remainder, one gets

En†j = Enj + Eτ |xj ,tn
(
τn†j − τ

n
j

)
+

∫ τn†j

τnj

Eττ (ξ)
(
τn†j − ξ

)
dξ.

Then, Weyl’s assumptions and change of variables in the integral (re-parameterization) yield that

En†j = Enj − pnj
(
τn†j − τ

n
j

)
+
(
τn†j − τ

n
j

)2
∫ 1

0

Eττ (τ
n+1/2
j )(1− ζ)dζ, (3.29)

where τ
n+1/2
j := ζτn†j + (1− ζ)τnj . So, for the entropy residual to be non-positive, one gets

Rn†j =
(
τn†j − τ

n
j

)2
∫ 1

0

(
Eττ (τ

n+1/2
j )− a2

)
(1− ζ)dζ (3.30)

=
(
τn†j − τ

n
j

)2
∫ 1

0

(
−pτ (τ

n+1/2
j )− a2

)
(1− ζ)dζ ≤ 0, (3.31)
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and a sufficient condition would be to set the integrand to be negative. Since pτ = κγρ1+γ it yields

a2 ≥ κγmax
j

max
ζ

((
ρ
n+1/2
j

)γ+1
)

= max
j

((
ρn†j

)3

,
(
ρnj
)3)

= max
(
‖ρn†‖3`∞ , ‖ρ

n‖3`∞
)
, (3.32)

which satisfies the sub-characteristic condition as well as the energy inequality for the Lagrange step.
For the projection step, it is clear that due to Jensen’s inequality the energy inequality holds as

(ρE)n+1
j ≤ ρnjE

n†
j −

∆t

∆x

(
(ρEũ)

n†
j+1/2 − (ρEũ)

n†
j−1/2

)
. (3.33)

Combining (3.28) and (3.33) we get the energy inequality (3.8) under an ε-uniform time restrictions (3.20) and
sub-characteristic condition (3.32).

3.1.4. Proof of `∞-stability (v)

In this section, we prove the stability of LP-IMEX scheme in `∞-norm.

Lemma 3.9. For the well-prepared initial data, the computed density, momentum and velocity are stable in
`∞-norm uniformly in ε.

Proof. As we have shown in the Appendix A for fixed ε, the entropy stability is enough to conclude the `∞
stability provided that the density is shown to be positive. Thus, the density, velocity and so the momentum
are stable. For the proof of ε-uniformity of these result, we refer the reader to Appendix A. �

3.2. Rigorous analysis of asymptotic consistency

The proofs of asymptotic consistency for numerical schemes are often based on the formal asymptotic expan-
sion as we presented in Section 3.1, i.e., using a well-prepared initial datum one analyzes the update as ε→ 0.
The analysis is rather formal; one usually does not show how the variables change in terms of ε, but inserts an
asymptotic expansion into the scheme and does the formal asymptotic analysis, assuming implicitly that all the
variables are O(1) in terms of ε. In this part, we show that it is possible for LP-IMEX to go further and show
asymptotic consistency more rigorously.

In this approach, the main point is to study the implicit step to check how the updated solution behaves as
ε→ 0. Once we show that the unique updated solution does not blow up for the limit, one can combine it with
the update and show asymptotic consistency, e.g., by studying the kernel of the solution operator of the implicit
step. Such an analysis can also be done by combining the formal analysis in Section 3.1 with Theorem 3.10
below. The approach we present here to justify the formal analysis is akin to what has been used by Bispen
in [3], in the context of the Finite Volume Evolution Galerkin (FVEG) scheme [4].

Note that for the scheme written in the form of (3.1)-(3.3) ,
⇀
wn† and

↼
wn† should be computed implicitly,

and then τn† is obtained explicitly. Now, let us define N := |S| and consider the matrix
⇀
J µ as the N × N

coefficient matrix for the implicit update of
⇀
w, i.e.

⇀
J µ

⇀
wn† =

⇀
y , (3.34)

with

⇀
J µ:=

a∆t

εµ


1 +

εµ∆zn1
a∆t 0 · · · −1

−1 1 +
εµ∆zn2
a∆t 0 · · ·

0
. . .

. . . 0

0
. . . −1 1 +

εµ∆znN
a∆t

 , (3.35)
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where µ ∈ {1, 2} corresponds to the relaxation approximation as α = a
εµ , and

⇀
y is a vector specified in the

case of barotropic Euler equations by (3.2), as
⇀
y := ∆zn � ⇀

wn, where � denotes the entry-wise or Hadamard
product. Notice that for the scheme (3.1)-(3.3), µ = 1, and the reason to generalize the µ is the extension of
the scheme for the shallow water equations with µ = 2 that we will present later on in Section 4. Likewise we
denote

↼
J µ and

↼
y ; but, we will only present the proofs in this section and Section 4 for

⇀
w since they are very

similar for
↼
w. With these definitions, one can pose the following theorem.

Theorem 3.10. Consider the matrix
⇀
J µ as defined in (3.35). Then

(i)
⇀
J µ is non-singular for all ε > 0;

(ii) limε→0 ‖
⇀
J
−1

µ ‖ is bounded for any natural matrix norm.

Proof. To prove (i), we show that
⇀
J µ has non-zero eigenvalues with positive real part. It is clear that matrix

⇀
J µ is

strictly diagonally dominant (SDD), and it is a classical result that SDD matrices are non-singular; see [29, Thm.
6.1.10]. This is enough to show the non-singularity of

⇀
J µ, and so to conclude that the solution of the implicit

step,
⇀
wn†, is unique. However it is worth to remark that using the Gerschgorin’s circle theorem [29, Chap. 6],

it is also possible to show that the eigenvalues have positive real parts.
For the point (ii), from [48], the infinity-norm of the inverse of matrix M ∈ Rn×n, provided that M is SDD,

can be bounded as

‖M−1‖∞ ≤ max
1≤i≤n

1

∆i(M)
, ∆i(M) := |Mii| −

∑
j 6=i

|Mij |. (3.36)

For
⇀
J µ, one can find ∆i(

⇀
J µ) = ∆zni > 0. So there is an ε-uniform bound for the infinity-norm of matrix inverse.

Since N is fixed, all matrix norms are equivalent which implies the point (ii). �

From Theorem 3.10 one can immediately conclude that a unique solution ‖⇀wn†‖ (thus a unique numerical
solution) exists, which has the same order as ‖⇀wn‖ in terms of ε. Also by Theorem 3.10 and (3.34), one can

see that
⇀
wn†j −

⇀
wn†j−1= O(ε2), thus (due to similar results for

↼
w) πn†(0) and un†(0) are constant in space. This is

exactly the argument we made in the asymptotic consistency analysis in Section 3.1 but it is more rigorous
since Theorem 3.10 has shown the behavior of

⇀
w and

↼
w in terms of ε, rigorously. Since the projection step is

explicit, its asymptotic consistency can be simply studied as in Section 3.1.

Remark 3.11. This approach proves asymptotic consistency rigorously, i.e., the solution at any time step moves
to the limit as ε → 0. This is the result that makes the uniformity proofs of the previous sections rigorous, as
been mentioned earlier in Remark 3.4.

Remark 3.12. To summarize, the scheme is AC and AS, and since the
⇀
J µ and

↼
J µ can be inverted simply due

to their structure and that the time step is ε-uniform, it is also AEf. Thus the scheme is AP in the sense of
Definition 1.1.

4. Shallow water equations with topography

In this section, we show that similar stability arguments work for the LP-IMEX scheme applied to the
non-dimensionalized shallow water equations with non-flat bottom:

∂th+ ∂x(hu) = 0, (4.1)

∂t(hu) + ∂x

(
hu2 +

p(h)

ε2

)
= −hbx

ε2
, (4.2)

where h stands for the water height and ε denotes the Froude number, defined as the ratio of characteristic
speed to the speed of gravity waves. Also b(x) is the bottom function, and the pressure function is chosen as
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before p(h) = h2

2 . Note that for this shallow water model to be valid, the bottom slope bx should be small
enough such that tan θ ≈ θ where tan θ is the bottom slope; see [6] for details.

As one can see later on in Section 4.2.1, the asymptotic consistency of the Lagrange–projection scheme for
shallow water equations with non-flat bottom cannot be shown, if one uses the same α = a

ε as in Section 3.
So, here we propose a more diffusive relaxation system by using α = a

ε2 . We omit the details of splitting and
numerical scheme, and refer the reader to [8] and [11]. We should only emphasize that we treat the source
term implicitly in the Lagrange step, so the projection step is exactly like the homogeneous case (the barotropic
Euler equations).

The Lagrange step of the scheme can be written as

τn†j = τnj +
∆t

∆znj

(
ũn†j+1/2 − ũ

n†
j−1/2

)
. (4.3)

⇀
wn†j =

⇀
wnj −

a∆t

ε2∆znj

(
⇀
wn†j −

⇀
wn†j−1

)
− ∆ta

ε2

∆znj−1/2

∆znj

bx,j−1/2

ε2
, (4.4)

↼
wn†j =

↼
wnj +

a∆t

ε2∆znj

(
↼
wn†j+1 −

↼
wn†j

)
+

∆ta

ε2

∆znj+1/2

∆znj

bx,j+1/2

ε2
, (4.5)

where bx,j+1/2 :=
bj+1−bj

∆x is the one-sided discretization of the bottom function, and the interface velocity is
defined as

ũn†j+1/2 :=
un†j + un†j+1

2
− 1

2a

(
πn†j+1 − π

n†
j

)
− 1

2a

(
∆znj+1/2bx,j+1/2

)
. (4.6)

Notice that this choice of bx,j+1/2 provides C-property (well-balancing for the lake at rest [5]) as we will see
later on. The projection step is like (3.5).

Let us define the limit solution and the well-prepared initial datum for the shallow water equations.

Definition 4.1. The formal limit of shallow water equations (4.1)–(4.2) is defined to be

η(0) = h(0) + b = const., h(1) = const.,

divm(0) = 0,

∂tm(0) + ∂x

(
m2

(0)

h(0)
+ p(2)

)
= −h(2)bx,

where η := h+ b is the water surface, and the asymptotic expansion is written as

h(x, t) = h(0) + εh(1) + ε2h(2),

m(x, t) = m(0) + εm(1) + ε2m(2).

Definition 4.2. For the shallow water equations (4.1)–(4.2), the well-prepared initial datum is defined as

h
(0)
WP (x) = h(0)(x) + ε2h(2)(x),

(hu)
(0)
WP (x) = m(0) + εm(1)(x),

(4.7)

where h(0)(x) = η(0) − b(x) with constant η(0) and m(0).

Before we discuss the stability results of shallow water equations with non-flat bottom, very briefly we review
the results for the flat bottom case as it has the same system of equations as barotropic Euler equations, but
this time the numerical approach uses different relaxation for the Lagrange step.
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4.1. Numerical analysis of LP-IMEX scheme for flat bottom

The results of this section are similar to Section 3.1, though with some differences. Also they will be used
later on for the non-flat bottom case. The following theorem summarizes the results.

Theorem 4.3. The LP-IMEX scheme (4.3)–(4.5) and (3.5), with well-prepared initial datum and flat bottom
assumption bx ≡ 0, satisfies the following properties.

(i) It can be expressed in locally conservative form.
(ii) The scheme is AC, which means that it gives a consistent discretization of the zero-Froude limit of shallow

water equations in terms of Definition 4.1.
(iii) Under some non-ε-restrictive CFL constraint (4.13), the scheme is positivity preserving, i.e., hnj > 0

provided that h0
j > 0 for all j ∈ S. Moreover the height is bounded away from zero, i.e., there exists some

hnLB > 0 such that hnj ≥ hnLB for all j ∈ S.
(iv) Under (4.13) and sub-characteristic condition (4.17), the solution fulfills the local (cell) entropy (energy)

inequality (3.8).
(v) Under (4.13) and sub-characteristic condition (4.17), the computed height, momentum and velocity are

stable, i.e., bounded in `∞-norm, uniformly in ε.

We analyze the properties of this scheme in the subsequent subsections. Like Section 3.1, the proof of locally
conservative form is skipped.

4.1.1. Proof of asymptotic consistency (ii)

To show that the solution approaches the limit manifold, we use the well-prepared data at time step n and
prove that the computed solution is also well-prepared. The initial datum reads as

hnj = hn0c + ε2hn(2)j , (4.8)

pnj = πn0c + ε2πn(2)j , (4.9)

unj = un0c + εun(1)j , (4.10)

where hn0c, π
n
0c and un0c are constant values.

For the Lagrange step, we start by combining (4.3)–(4.5) to find the update for the relaxation pressure as

hnj
πn†j − πnj

∆t
+

a2

ε2∆x

(
ũn†j+1/2 − ũ

n†
j−1/2

)
= 0. (4.11)

If one combines it with the continuity equation (4.3), it yields

a2

ε2

(
τn†j − τ

n
j

)
+
(
πn†j − π

n
j

)
= 0. (4.12)

So its O(1/ε2) and O(1/ε) components give

a2

ε2

(
hn†(k)j − h

n
(k)j

)
= hn(k)jh

n†
(k)j

(
πn†(k)j − π

n
(k)j

)
, for k = 0, 1

which yields

hn†(0)j = hn(0)j = hn(0) const. in space

hn†(1)j = hn(1)j = hn(1) const. in space
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Next, we continue with the O(1/ε2) terms in the momentum equation, both
⇀
wj and

↼
wj . Simply, one can see

that
⇀
wn†(0)j and

↼
wn†(0)j are constant in space. Thus πn†(0)j and un†(0)j are constant, so the div-free condition is also

fulfilled. The similar argument can be done for πn†(1)j and un†(1)j . Hence, it turns out that the Lagrange step is

AC.
For the projection step, we show the asymptotic consistency for the case, ũn†j−1/2 < 0 and ũn†j+1/2 < 0. The

other cases can be done in a very similar way. The update for density is

hn+1
j = hn†j −

∆t

2a∆x

(
hn†j+1 − h

n†
j

)(
a
(
un†j+1 + un†j

)
−
(
πn†j+1 − π

n†
j

))
.

So, if we gather O(1) and O(ε) terms, one can simply see that hn+1
(0)j = hn†(0)j = hn0c. Similar argument holds for

hn+1
(1)j and thus pn+1

(0)j and pn+1
(1)j .

To show the div-free condition, one should consider O(1) terms of the momentum update:

hn+1
(0)j u

n+1
(0)j = hn†(0)ju

n†
(0)j −

∆t

2a∆x

(
hn†(0)j+1 − h

n†
(0)j

)(
a
(
un†(0)j+1 + un†(0)j

)
−
(
πn†(0)j+1 − π

n†
(0)j

))
.

un+1
(0)j = un†(0)j = un0c, and the zeroth order component of velocity filed is solenoidal. Hence, combining the

asymptotic consistency results for the Lagrange and projection steps together, it is obvious that the limit
properties is satisfied.

The consistency of the discretization in the limit can be shown similar to Section 3.1, so the scheme is AC.

4.1.2. Proof of height positivity (iii)

In this section, we show that the height is positive due to a time restriction which is not restrictive for small
ε. Also we show that the computed height has an ε-uniform lower-bound. Very similarly to Section 3.1, one can
again show (3.19). Having (3.19) provides the following theorem.

Theorem 4.4. For some ∆t satisfying

∆t

∆x
≤ 2a/ε2(

⇀
M

n − ↼
mn
)+

−
(
⇀
mn −

↼
M

n
)− , (4.13)

the LP-IMEX scheme preserves the positivity of height provided that h0
j > 0 for all j ∈ S. Also (4.13) does not

vanish as the Mach number goes to zero, so it non-restrictive for ε� 1.

Proof. The proof is similar as in Section 3.1; finally one gets

lim
ε→0

 2a/ε2(
⇀
M

n − ↼
mn
)+

−
(
⇀
mn −

↼
M

n
)−
 ≥ 2a/ε2

O( 1
ε2 ) +O( 1

ε ) +O(1)
≥ C. (4.14)

Hence, the condition (4.13), which provides positivity of the height, is uniform in ε. �

Now, one can prove the following lemma similarly to Section 3.1.

Lemma 4.5. Under the condition (4.13), the computed height hn†j is bounded away from zero in a finite time,
where the lower-bound is given by

hn+1
LB :=

minj h
n
j

1 +
∆tε2

2a∆x

[(
⇀
M

n
+

↼
M

n
)
−
(⇀
mn

+
↼
mn)] > 0.
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4.1.3. Proof of local energy inequality (iv)

The proof here is similar as in Section 3.1, only one should use s(w) := ε4w2

4a2 , which gives

η(
⇀
w,

↼
w) =

1

2

(
u2 +

π2

a2

)
= E − E

ε2
+

π2

2a2
. (4.15)

Following the same procedure, one can easily obtain

Rn†j =
(
τn†j − τ

n
j

)2
∫ 1

0

(
−pτ (τ

n+1/2
j )− (a/ε)2

)
(1− ζ)dζ ≤ 0, (4.16)

which yields

a2 ≥ ε2 max
(
‖hn†‖3`∞ , ‖h

n‖3`∞
)
, (4.17)

which satisfies the sub-characteristic condition as well as the energy inequality for the Lagrange step.
There is no change in the proof of entropy inequality for the projection step, thus the result holds under the

ε-uniform time restrictions (4.13) and sub-characteristic condition (4.17).

Remark 4.6. It is clear from (4.16) that the energy dissipation is very large for small ε; in fact this is more than
enough. Thus one expects the scheme to be diffusive. Note also that although the sub-characteristic condition
suggests the parameter a to be of O(ε2), such a choice ruins the ε-uniformity of the time step restrictions. So,
as has been already done in the asymptotic consistency analysis, a = O(1) should be chosen.

4.1.4. Proof of `∞-stability (v)

Similarly to Section 3.1, one can show that for the well-prepared initial data, the computed height, momentum
and velocity are stable in `∞-norm uniformly in ε. We skip the proof here.

Remark 4.7. Note that since the Theorem 3.10 applies to this case as well with µ = 2, the asymptotic consistency
analysis we have presented is rigorous. Also, one can conclude AP property very similarly.

4.2. Numerical analysis of LP-IMEX scheme for non-flat bottom

For the non-flat bottom case, one can summarize the stability properties in the following theorem.

Theorem 4.8. The LP-IMEX scheme (4.3)–(4.5) and (3.5), applied to the shallow water equations with well-
prepared initial datum, satisfies the following properties.

(i) It can be expressed in locally conservative form for the density.
(ii) The scheme is AC up to O(∆x), i.e., it preserves the div-free condition for the zero-Froude limit has and

(approximately) correct asymptotic expansion for the computed solution in terms of Definition 4.1, up to
O(∆x).

(iii) Under some non-ε-restrictive CFL constraint (4.19), the scheme is positivity preserving, i.e., hnj > 0

provided that h0
j > 0 for all j ∈ S.

(iv) Moreover, the scheme preserves the Lake at Rest (LaR), so it is well-balanced.

Now, we go through the proof of each part briefly, since the proofs are very similar to the case of flat bottom,
Section 4.1.

4.2.1. Proof of asymptotic consistency (ii)

As in Definition 4.1. the argument for the asymptotic consistency is very similar to the flat bottom case,
though with two important differences. The shallow water equations with non-flat bottom have different limit
as ε→ 0: the limit density (or height) is no longer constant, but the surface elevation is constant. Also rather
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than div-free velocity field, the momentum field should be solenoidal. Here we start with a well-prepared initial
datum in the sense of Definition 4.2.

For the Lagrange step, from (4.12) it can be obtained that

hn†(0)j = hn(0)j , hn†(1)j = hn(1)j = hn(1) = const. in space.

For the velocity, with the help of O(1/ε4) terms of (4.4) and (4.5) we obtain that un†(0) should be constant and(
πn†(0)j+1 − π

n†
(0)j

)
+ ∆zn(0)j+1/2bx,j+1/2 = 0. (4.18)

Remark 4.9. If one uses α = a
ε , the asymptotic consistency of the water height hn† cannot be concluded since

(4.12) should be replaced by (3.13). This is the reason we have used the diffusive relaxation system with α = a
ε2 .

We now show the asymptotic consistency of the projection step for the case, ũn†j−1/2 < 0 and ũn†j+1/2 < 0. The

other cases can be done in a very similar way. The O(1) height update gives

hn+1
(0)j = hn†(0)j −

∆t

2a∆x

(
hn†(0)j+1 − h

n†
(0)j

)(
a
(
un†(0)j+1 + un†(0)j

)
−
(
πn†(0)j+1 − π

n†
(0)j

)
−∆zn(0)j+1/2bx,j+1/2

)
= hn(0)j +

∆t

∆x
un†(0) (bj+1 − bj)

= hn(0)j +O(∆x)

for smooth bottom functions, due to (4.18) and since un†(0) is a constant as mentioned above in the asymptotic

consistency of Lagrange step. So, it yields that the scheme is not exactly AC for h(0), as long as the limit
velocity is non-zero. But for small bed slope assumption, the scheme is AC up to O(∆x), for h(0)j . So, it is AC
up to O(∆x). Regarding h(1)j , due to asymptotic analysis (4.7), one can see that the situation is similar, i.e.,
h(1)j is constant in time and space up to O(∆x)-deviations.

Similarly, one can obtain that for the momentum the situation is the same, since

(hu)n+1
(0)j = (hu)n†(0)j −

∆t

2a∆x

(
(hu)n†(0)j+1 + (hu)n†(0)j

)(
a
(
un†(0)j+1 + un†(0)j

)
−
(
πn†(0)j+1 − π

n†
(0)j

)
−∆zn(0)j+1/2bx,j+1/2

)
= hn(0)ju

n†
(0)j −

∆t

∆x
un†(0)j

(
hn(0)j+1 − h

n
(0)j

)
= hn(0)ju

n†
(0)j +O(∆x).

Note that hn(0)ju
n†
(0)j variations are as small as O(∆x), so the momentum is consistent with the limit system up

to the order O(∆x).
Regarding the consistency of the discretization in the limit for the Lagrange step, one can, similar to Section

3.1, show that

(hu)
n†
(0)j − (hu)

n
(0)j

∆t
− 1

2∆x

(
πn†(2)j+1 − π

n†
(2)j−1

)
+

a

2∆x

(
un†(2)j+1 − 2un†(2)j+1 + un†(2)j+1

)
= − 1

2∆x

(
∆zn(2)j−1/2

bj − bj−1

∆x
+ ∆zn(2)j+1/2

bj+1 − bj
∆x

)
,

which is a consistent discretization of ∂tu+∂zπ = − bxε2 in the limit. We refer the reader to consult with [8, Sect.
3.2.2] for this equation of the continuous Lagrange step; the only difference with [8, eq. (11)] is about the source
term which has been gravity and friction in [8]. The proof for the projection step is clear using the definition of
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ũn†j+1/2 and the relation (4.18). Hence the scheme is AC up to the O(∆x)-deviations from the zero-Froude limit

manifold.

4.2.2. Proof of height positivity (iii)

Compared to the time step restriction for the flat bottom case, there is an additional contribution due to the
source terms, which has the same singularity as in the convection part. Thus, it is not difficult to show that

due to (4.18) and since un†(0) is constant in space, the condition (3.22) — with the interface velocity as defined

in (4.6) — can be fulfilled uniformly in ε. So under the (stronger) following CFL condition (4.19), the scheme
is positivity preserving, and it is non-restrictive for small ε.

∆t

∆x
≤ 2a/ε2(

⇀
M

n† − ↼
mn†

)+

−
(
⇀
mn† −

↼
M

n†)−
+ 1

ε2

(
∆znj+1/2

∣∣bx,j+1/2

∣∣+ ∆znj−1/2

∣∣bx,j−1/2

∣∣) . (4.19)

Note that for this case,
⇀
M ,

⇀
m,

⇀
M and

↼
m are calculated at the time step n†, due to the lack of a relation like

(3.19).

4.2.3. Proof of well-balancing (C-property) (vi)

Lake at Rest or LaR is a very important equilibrium state which every shallow water scheme has to preserve.
It simply describes a steady water state with flat surface and zero velocity. The failure in satisfying LaR at the
discrete level, leads to spurious oscillations. To show that the scheme is well-balanced, i.e., it preserves LaR, at
first we show that the scheme may have such a solution if one starts with LaR initial datum. Then, we argue
that since the solution of the scheme is unique, then this should be the only case which can happen.

Looking at the projection step, one can see that to have a discrete solution at LaR equilibrium, the solution
on the manifold

U∆
LaR :=

{
Uj =

[
hj

(hu)j

]
|hj = η − bj , uj = 0,∀j ∈ S

}
,

with zero velocity and flat water surface, it is sufficient if one has Un† ∈ U∆
LaR and ũn†j+1/2 = 0 for all j ∈ S.

Then, we can see that such a state is compatible with the scheme, i.e., the scheme may have such a solution.
It is clear for the projection step, but let us clarify it for the Lagrange step. For the Lagrange step, we have
three equations. The density equation is compatible with zero interface velocity and steady density. From
the discussion on the asymptotic consistency, we have (4.12) which clearly shows that for steady density, the
relaxation pressure would be also steady, so the solution remains at the equilibrium. It only remains to show
the compatibility condition for the velocity after the Lagrange update. One can find that un† = unj ≡ 0 from

un†j = unj −
∆t

2ε2∆znj

(
πn†j+1 − π

n†
j−1 + hn†j−1/2(bj − bj−1) + hn†j+1/2(bj+1 − bj)

)
., (4.20)

due to what we got above about the πn† and the flat surface.
Up to now, we have shown the existence of such a solution. By Theorem 3.10, one can simply show that the

solution is also unique (which should be the well-balanced solution), thus the well-balancing is concluded.

4.3. Rigorous analysis of asymptotic consistency

For the case of non-flat bottom, Theorem 3.10 also applies. But, since

⇀
y =

⇀
y (Un, b) = ∆zn �⇀

wn − a∆t

2ε4
∆zn− �∆b−,
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where ∆zn− and ∆b− are the vectors of ∆znj−1/2 and (bj − bj−1) respectively, one can see that ‖
⇀
y ‖ = O(1/ε4).

So using the boundedness of ‖
⇀
J 2 ‖ is futile to rigorously show asymptotic consistency. However, one can use

the structure of ‖
⇀
J
−1

µ ‖, which proposes the following lemma.

Lemma 4.10. Denote
⇀̃
J µ := εµ

a∆t

⇀
J µ. Then,

(i) Denote the adjugate matrix of
⇀̃
J µ by adj

(
⇀̃
J µ

)
, and the all-ones matrix of size N by 1N . Then

adj
(
⇀̃
J µ

)
= (1 +O(εµ)) 1N ,

(ii) det
(
⇀̃
J µ

)
= O(εµ).

Proof. It is known that the inverse of a circulant matrix is also circulant [24]. So, it is enough if we show that

the entries of the first column of adj
(
⇀̃
J µ

)
are 1 + O(ε2), which correspond to the first row of the cofactor

matrix. We denote χj :=
εµ∆znj
a∆t and for simplicity of the notation, we assume that χj = χ is constant; the

proof is similar for the non-constant case. For the cofactor matrix, one can see that the entry of the first row
and j-th column is

cof
(
⇀̃
J µ

)
1j

= (−1)j+1 det

[
K1 O(j−1)×(N−j)

O(N−j)×(j−1) K2

]
,

where Oq×r is a zero matrix of size q × r, and K1 and K2 are defined as

K1 =


−1 1 + χ 0 · · · 0

0 −1 1 + χ
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · · · · −1


(j−1)×(j−1)

, K2 =


1 + χ 0 · · · 0

−1 1 + χ
. . .

...
...

. . .
. . . 0

0 · · · −1 1 + χ


(N−j)×(N−j)

.

Then, it is clear that

cof
(
⇀̃
J µ

)
1j

= (−1)2j(1 + χ)N−j = (1 + χ)N−j .

Hence, all the entries of cof
(
⇀̃
J µ

)
and so adj

(
⇀̃
J µ

)
are 1 +O(εµ). As we mentioned, the proof for the scheme

(4.3)-(4.5) with non-constant χj is similar.
For the point (ii), at first we show that the circulant matrix of central upwind discretization δ+ defined as

δ+ := Circ(1, 0, . . . , 0︸ ︷︷ ︸
N−2 times

,−1)

has rank N − 1. To show that, we recall the explicit relation for the eigenvalues of a circulant matrix [24, eq.

(3.7)], which for δ+ gives 1−ωN−1
j as the eigenvalues for j = 0, 1, . . . ,N − 1, where ωj := e

2πij
N is the N th-root

of unity. So, for the eigenvalues to be zero, e
2πijN
N = 1, which is only possible for j = 0, so there is exactly one

zero eigenvalue, and the rank of δ+ is N − 1. From this result, and by assuming χj to be constant, among the

eigenvalues of
⇀̃
J µ denoted by λj for j = 1, 2, . . . ,N , there is exactly one which has been shifted to O(εµ), while
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all other eigenvalues are O(1); thus

det
(
⇀̃
J µ

)
=

N∏
j=1

λj = O(εµ). (4.21)

For the case of non-constant χj , one can use the perturbation theory of eigenvalues like [43, Appendix K] and [2].
For example, using [43, Appendix K], one can simply find that the eigenvalues of δ+ would be perturbed by
(N + 2)εµ/N which vanishes as ε→ 0. So, the perturbation is small in terms of ε, and the same result as 4.21
holds. �

Lemma 4.10 implies that the implicit operator is almost constant up to some deviations of order O(εµ).
Using this and periodic boundary conditions, one can show the following theorem.

Theorem 4.11. The norm of the updated Lagrange solution
⇀
wn†, is at most as large as ‖⇀wn‖ = O(1/ε2), for

periodic or compactly supported boundary conditions.

Proof. Set µ = 2. Then by Lemma 4.10, the leading part of
⇀̃
J
−1

2 is constant. For the statement of the theorem

to be true, we should show that such a structure makes
⇀̃
J
−1

2

⇀
y of O(1/ε2). In other words, it filters the O(1/ε4)

part of the
⇀
y ; we denote it as

⇀
y ∗ := −a∆t

2ε4 ∆zn− �∆b−. So, one can find that

y∗j = −a∆t

2ε4
(
ρnj + ρnj−1

)
(bj − bj−1)

= −a∆t

2ε4

(
2ηn(0)j − bj − bj−1 +O(ε2)

)
(bj − bj−1)

= −a∆t

2ε4

(
2ηn(0)c − bj − bj−1

)
(bj − bj−1) +O(1/ε2),

due to the well-preparedness of initial datum.

Now, it is enough to show that
⇀
y ∗ belongs to the kernel of the leading order of

⇀̃
J
−1

µ , i.e., ‖
⇀̃
J
−1

µ

⇀
y ∗‖ = O(1/ε2).

One can show it simply by making a spatial summation and use the boundary condition, i.e.,∑
j

y∗j = −a∆t

2ε4

∑
j

[
2ηn(0)c (bj − bj−1)−

(
b2j − b2j−1

)]
= 0.

Hence, the O(1/ε4) terms vanish and one is left with the contributions of order O(1/ε2). �

Note that the similar results of Lemma 4.10 and Theorem 4.11, hold for
↼
J µ and

↼
w respectively. This implies

the following corollary.

Corollary 4.12. The asymptotic consistency analysis for the scheme LP-IMEX scheme, (4.3)-(4.5) and (3.5)
is rigorous, i.e, the asymptotic expansion is valid.

Proof. Due to Theorem 4.11, the implicit step preserves the order of ‖⇀w‖. So, the order of un+1 and πn+1 are
O(1), and the asymptotic consistency analysis is rigorous. This concludes the rigorous asymptotic consistency
of the implicit step, and also the whole scheme since the explicit step has already been shown to be AC. �

Appendix A. Entropy stability in the zero-Mach limit

In this section, we discuss the consequences of entropy stability for ε→ 0 to show the stability of the solution
and, due to the compactness, its strong convergence to some limit. Note that this is not the classical convergence
result for ∆x→ 0. Here the main objective is to discuss the stability region which entropy stability provides. It
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also gives some a priori information about the asymptotic consistency, although it cannot recover it completely
since it does not use any detail of spatial or time integration, and even the splitting. This analysis assumes the
positivity of density and energy inequality, so it is not limited to LP-IMEX scheme.

The procedure is as follows: Firstly, we recall that positivity and energy inequality gives boundedness of the
density and, but not directly in the limit ε → 0. We then show this boundedness ε → 0, thus the existence of
a converging subsequence due to the compactness. Then, we show that the limit density is the incompressible
limit solution.

Denote entropy function J := ρE and assume a fixed grid of size N . We make a spatial summation on (3.8)
to get ∑

j

J (Un+1
j ) ≤

∑
j

J (Unj ) =⇒
∑
j

J (Un+1
j ) ≤

∑
j

J (U0
j ) ≤ Cε <∞. (A.1)

If in addition we assume positivity, then since J (U) = 1
2

(ρu)2

ρ + κ/ε2

γ−1 ρ
γ is always positive, thus

0 < J (Un+1
j ) ≤ Cε ∀j ∈ S.

One immediate result, for fixed ε, is the `∞-boundedness, i.e., ρ ∈ `∞(S) and u ∈ `∞(S). So the energy inequality

accompanied with positivity, provides a stability region Ξ0
ε which depends on the initial condition as well as ε.

But how does the stability region Ξ0
ε change if rather than fixed ε, we consider ε → 0? If one keeps the grid

fixed and considers ε→ 0, the boundedness of the density is rather clear, either due to positivity accompanied
with the conservation of scheme, or due to the boundedness of the entropy. But it is not straightforward to
conclude the boundedness of the velocity. This is the first question we want to answer in this section.

Also note that the boundedness of the density sequence w.r.t. ε provides strong convergence. In other words,
solutions with positive density, owing to the compactness of the space, have a converging sequence of vectors
{ρεk,n} for any time step n that converges strongly to some limit ρε∞,n, i.e.,

lim
k→∞

∥∥ρεk,n − ρε∞,n∥∥
`p

= 0.

Here εk is a sequence approaching 0, to the incompressible limit. But it is not clear whether or not the limit
is in the space of incompressible solutions. To determine whether the limit is the correct limit, is the second
question we discuss in this section.

In what follows, with the help of energy inequality we show that the computed density by the scheme
actually converges to its incompressible limit. We then show that the same assumptions are not enough to
prove asymptotic consistency of the velocity, i.e., the div-free condition; nonetheless the boundedness of the
velocity sequence, so its convergence to some limit, can be obtained. We discuss the results in the following
lemma.

Lemma A.1. Consider N -vector sequence
{
ρεk,n

}
in k, accompanied with well-prepared initial data, as the

discrete density solution of the barotropic Euler equations (2.1)-(2.2). Assume that the scheme satisfies density
positivity and energy inequality. Then as ε→ 0 the sequence is bounded and approaches the incompressible limit{
ρ0,n

}
with the rate of O(ε). Moreover the sequence of velocity {uεk,n} is bounded in `∞.

Remark A.2. Both from formal asymptotic expansion and rigorous analysis [35], one expects to see the conver-
gence of density to its incompressible limit with O(ε2) rate. However the convergence rate of Lemma A.1 is not
optimal. We see that exactly due to this issue, the asymptotic consistency of the velocity cannot be obtained
by these assumptions.

Proof. Consider the well-prepared initial datum as ρε,0i := ρ0,0 + δε,0i with δε,0i = O(ε2). Then write the density
at the time step n as ρε,ni := ρ0,0 +δε,ni . Then due to conservation of scheme ‖ρε,n‖`1 =

∥∥ρε,0∥∥
`1

, one can simply
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get ∑
i

δε,ni =
∑
i

δε,0i = NO(ε2). (A.2)

So, it seems that in the limit the density, in general, oscillates around a constant state. But this does not give
us convergence since the perturbations have no sign. By energy inequality one can see that

∑
i

(
ρ0,0 + δε,ni

)2 ≤∑
i

(
ρ0,0 + δε,0i

)2

+ C0ε
2, C0 :=

∑
i

(
ρ0,0 + δε,0i

)(
u0,0 + µε,0i

)2

, (A.3)

where µε,0i = O(ε) to fulfill the well-preparedness of initial datum. Then combining (A.2) and (A.3) yields

‖δε,n‖2`2 =
∥∥δ0,n

∥∥2

`2
+ C0ε

2 = O(ε2),

which shows that each component converges to the incompressible limit with— at least —O(ε) rate; thus, the
sequence is bounded in terms of ε. However, this rate is smaller that what one would expect; this is all can be
got by these assumptions. Furthermore, by straightforward calculations, one can show that∥∥ρε,n∥∥2

`2
−
∥∥ρε,0∥∥2

`2
= ‖δε,n‖2`2 +O(ε4) = O(ε2)

and then by the complete energy inequality, not (A.3), one can obtain∥∥∥(ρu2
)ε,n∥∥∥

`1
−
∥∥∥(ρu2

)ε,0∥∥∥
`1
≤ O(1),

thus
∥∥∥(ρu2

)ε,n∥∥∥
`1

is bounded, and since the density converges to the incompressible limit uniformly which is

away from zero, the velocity is bounded as well. �

Remark A.3. It is not difficult to show, with the additional assumption of ‖δε,n‖`2 = O(ε2), that
∥∥µε,n∥∥

`2
=

O(ε). Thus the asymptotic consistency would be obtained completely.

The similar analysis can be done for the case of shallow water equations. Here we state the main result and
the sketch of the proof.

Lemma A.4. Consider N -vector sequence {hεk,n} in k, accompanied with well-prepared initial data, as the
discrete height solution of the shallow water equations (4.1)-(4.2). Assume that the sequence satisfies height
positivity and energy inequality. Then as ε → 0 the sequence is bounded and approaches the zero-Froude limit{
h0,n

}
with the rate of O(ε). Moreover the sequence of velocity {uεk,n} is bounded in `∞.

Proof. Consider the well-prepared initial datum as hε,0i := η− bi + δε,0i with δε,0i = O(ε). Then write the height
at the time step n as hε,nj := η − bi + δε,ni . Using mass conservation one can find

∑
i δ
ε,n
i =

∑
i δ
ε,o
i and from

energy inequality

∑
i

(
(η − bi + δε,ni )

2
+ 2bi (η − bi + δε,ni )

)
≤
∑
i

((
η − bi + δε,0i

)2

+ 2bi

(
η − bi + δε,0i

))
+ C0ε

2,

with C0 :=
∑
i

(
h0,0 + δε,0i

)(
u0,0 + µε,0i

)2

, one concludes that ‖δε,n‖`2 = O(ε), thus by arguments similar to

Lemma A.1 the velocity is also bounded. �
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2. Conclusion and future works

In this paper, we have investigated the stability results of the LP-IMEX scheme for one-dimensional barotropic
Euler equations, which has been presented in [14], regarding the uniformity in terms of Mach number with well-
prepared initial data. We have shown that the scheme is asymptotically consistent (not only formally but also
rigorously), also have obtained a Mach-uniform time step restriction which provides entropy inequality, density
positivity, as well as stability of the solution in `∞-norm. Also, we have extended the analysis to the shallow
water equations with non-flat bottom as an important example of balance laws.

The natural next step would be to extend this analysis to the full Euler equations or multiple space dimensions,
which are formidable tasks, particularly the latter as has been discussed to some extent in [9,20]. Also as been
done in [37] by the compensated compactness approach, it is of interest to prove the convergence of the scheme
to the unique entropy solution.

Acknowledgments

The author would like to gratefully thank Sebastian Noelle from RWTH Aachen for many helpful discussions
and suggestions in the preparation of this paper. He also would like to acknowledge Christophe Chalons and
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