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ROBUST PRECONDITIONING FOR XFEM APPLIED TO
TIME-DEPENDENT STOKES PROBLEMS

SVEN GROSS∗, THOMAS LUDESCHER† , MAXIM OLSHANSKII ‡ , AND ARNOLD

REUSKEN§

Abstract. We consider a quasi-stationary Stokes interface problem with a reaction term pro-
portional to τ = 1/∆t ≥ 0 as obtained by a time discretization of a time-dependent Stokes problem.
The mesh used for space discretization is not aligned with the interface. We use the P1 extended
finite element space for the pressure approximation and the standard conforming P2 finite element
space for the velocity approximation. A pressure stabilization term known from the literature is
added, since the FE pair is not LBB stable. For the stabilized discrete bilinear form we derive a
new inf-sup stability result. A new Schur complement preconditioner is proposed and analyzed.
We present an analysis which proves robustness of the preconditioner with respect to h, τ , with
τ ∈ [0, c0] ∪ [c1h−2,∞), and the position of the interface. Numerical results are included which
indicate that the preconditioner is robust for the whole parameter range τ ≥ 0 and also with respect
to the viscosity ratio µ1/µ2.

AMS subject classifications. 65N15, 65N22, 65N30, 65F10
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1. Introduction. In this paper we treat a Stokes problem on a bounded con-
nected polygonal domain Ω in d-dimensional Euclidean space (d = 2, 3), which is
partitioned into two connected subdomains Ωi, i = 1, 2. For simplicity we assume
that Ω1 is strictly contained in Ω. The interface between the two subdomains is
denoted by Γ, i.e., Γ = ∂Ω1. The normal at Γ is denoted by nΓ. On each of the
two subdomains we assume given constant strictly positive values for density ρi and
viscosity µi and consider the following problem: Find a velocity vector field u and a
pressure function p such that

τρiu− div (µiD(u)) +∇p = f1 in Ωi, i = 1, 2,

div u = 0 in Ωi, i = 1, 2,

[u] = 0 on Γ,

[−pnΓ + µD(u)nΓ] = f2 on Γ,

u = 0 on ∂Ω,

(1.1)

with τ ≥ 0 a given constant, D(u) := ∇u + (∇u)T , and [v] denotes the jump of
the quantity v across the interface Γ. Our interest in problem (1.1) is motivated by
the numerical simulation of two-phase Navier–Stokes equations [12]. After time dis-
cretization one obtains a quasi stationary problem of the form (1.1), where f1 accounts
for inertia terms and external forcing and f2 are surface tension forces. The jump
in normal stress at the interface results in a discontinuity of the pressure across Γ.
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Below we shall introduce a well-posed weak formulation of this problem, in which the
condition [u] = 0 is treated as an essential condition in the choice of the trial space
and the condition on the normal stresses is treated as a natural interface condition.
In two-phase flow applications the interface is unknown and finding its location is
a part of the numerical simulation. Thus often the fluid dynamics problem is cou-
pled with an interface capturing technique. One commonly used interface capturing
technique is the level set method, see [24, 5, 20] and the references therein. If the
level set method is used, then typically in the discretization of the flow equations the
interface is not aligned with the grid. This causes certain difficulties with respect
to an accurate discretization of the flow variables. Recently, extended finite element
techniques (XFEM; also called cut finite element methods or unfitted finite elements)
have been developed to obtain accurate finite element discretizations, see, for exam-
ple, [7, 14, 12, 4]. We consider one particular XFEM, in which the pressure variable is
approximated in a conforming P1-XFE space and the velocity is approximated in the
standard conforming P2-FE space. This pair of spaces is popular in the discretization
of two-phase incompressible flows [10, 21, 22]. The pair is not LBB stable and therefore
a stabilization technique is needed. We use the stabilization suggested in [14]. In the
recent report [15], this finite element discretization method has been analyzed for the
stationary variant of (1.1), i.e., τ = 0. For the corresponding variational formulation,
an inf-sup stability result is derived with the key property that the stability constant
is uniform with respect to h, the viscosity quotient µ1/µ2 and the position of the in-
terface in the triangulation. Based on this result and interpolation error estimates,
optimal discretization error bounds are derived in [15]. We use this discretization
for the quasi stationary problem (1.1). After discretization one obtains a symmetric
saddle point system. Due to the use of the standard P2-FE space for the velocity,
optimal preconditioners for the velocity block in the stiffness matrix are known (e.g.,
multigrid). In [15] a robust Schur complement preconditioner for the stationary case
(τ = 0) is presented. In this paper, we derive a new Schur complement preconditioner
for the quasi-stationary case (τ ≥ 0). We propose a preconditioner that is robust with
respect to h, τ , µ1/µ2 and the position of the interface in the triangulation.
The three main contributions of this paper are the following ones. Firstly, we present
a Schur complement preconditioner that is new. Secondly, for a part of the parameter
range, namely τ ∈ [0, c0] ∪ [c1h

−2,∞), with constants ci > 0, we give a theoretical
analysis from which the robustness property follows. For our analysis, we need an LBB
type stability result for the Darcy limit, i.e. τ →∞. We prove this new result (3.2).
Finally, we give results of systematic numerical experiments, which indicate that the
robustness property of the preconditioner holds for the whole parameter range τ ≥ 0,
and propose a slight modification of the Schur complement preconditioner which has
improved robustnes with respect to the density ratio ρ1/ρ2.

2. Discrete problem: P2-P1XFEM pair. For the finite element method we
first introduce a suitable weak formulation of (1.1). For a subdomain ω of Ω the L2

scalar product on ω is denoted by (·, ·)0,ω. We use the notation (·, ·)0 := (·, ·)0,Ω. The
piecewise constant functions µ, ρ are defined by µ(x) = µi, ρ(x) = ρi for x ∈ Ωi. We
introduce the spaces V := H1

0 (Ω)d, Q := { p ∈ L2(Ω) |
∫

Ω
µ−1p(x) dx = 0 } and the

bilinear forms

a(u, v) :=
1

2

∫
Ω

µD(u) : D(v) dx, b(v, p) = −(div v, p)0.
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The weak formulation reads as follows: Given f ∈ V ′ find (u, p) ∈ V ×Q such that{
a(u, v) + τ(ρu, v)0 + b(v, p) = f(v) for all v ∈ V,

b(u, q) = 0 for all q ∈ Q. (2.1)

The functional f contains contributions from both the volume force f1 and the surface
force f2 in (1.1). We refer to the literature for a derivation of this weak formulation,
which is well-posed [8, 12].

Assume a family of shape regular quasi-uniform triangulations consisting of sim-
plices {Th}h>0. The triangulations are not fitted to the interface Γ. Corresponding
to the family of triangulations, we assume a family of discrete surfaces {Γh}h>0 ap-
proximating Γ. Each Γh is a C0,1 surface and can be partitioned in planar segments
(line segments for d = 2, triangles or quadrilaterals for d = 3), consistent with the
outer triangulation Th, i.e. for any T ∈ Th an intersection T ∩ Γh is either planar or
has zero (d− 1)-measure. We assume that Γh is close to Γ in the following sense:

ess sup
x∈Γh

|n(x)− nh(x)| ≤ c h, (2.2)

where n is the extension of nΓ in a neighborhood of Γ and nh is a unit normal on
Γh. Since the rest of the paper deals with a discrete problem, in what follows and
without ambiguity, Ω1 and Ω2 denote the interior and the exterior of Γh rather than
of Γ. The coefficients ρi, µi are assumed to be piecewise constant with respect this
mesh-dependent partition Ω on Ω1 and Ω2.

We introduce the subdomains

Ωi,h := {T ∈ Th |measd(T ∩ Ωi) > 0 }, i = 1, 2,

and the corresponding standard linear finite element spaces

Qi,h := { vh ∈ C(Ωi,h) | vh|T ∈ P1 ∀ T ∈ Ωi,h }, i = 1, 2.

We use the same notation Ωi,h for the set of simplices as well as for the subdomain
of Ω which is formed by these simplices, as its meaning is clear from the context. For
the stabilization procedure that is introduced below we need a further partitioning of
Ωi,h. Define the set of elements intersected by Γh:

T Γ
h := {T ∈ Th | measd−1(T ∩ Γh) > 0 },

and let

ωi,h := Ωi,h \ T Γ
h , i = 1, 2.

Note that Th = ω1,h ∪ω2,h ∪T Γ
h holds and forms a disjoint union. The corresponding

sets of faces (needed in the stabilization procedure) are given by

Fi = {F ⊂ ∂T | T ∈ T Γ
h , F 6⊂ ∂Ωi,h }, i = 1, 2,

and Fh := F1 ∪ F2. For each F ∈ Fh a fixed orientation of its normal is chosen
and the unit normal with that orientation is denoted by nF . These definitions are
illustrated, for d = 2, in Fig. 2.1.
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Γh

ω1,h

Ω1,h

F1

Fig. 2.1. Set of faces F1 (in red) and subdomains ω1,h (light-blue) and Ω1,h (light- and darker
blue triangles) for a 2D example.

A given ph = (p1,h, p2,h) ∈ Q1,h ×Q2,h may have two values, p1,h(x) and p2,h(x),
for x ∈ T Γ

h . We define a uni-valued function pΓ
h ∈ C(Ω1 ∪ Ω2) by

pΓ
h(x) = pi,h(x) for x ∈ Ωi.

Proposition 2.1. The mapping ph 7→ pΓ
h is bijective.

Proof. Surjectivity holds by construction. Assume ph, qh ∈ Q1,h×Q2,h with ph 6=
qh. Without loss of generality we can assume p1,h 6= q1,h. There exists T ∈ Ω1,h such
that q1,h 6= p1,h a.e. on T . By the definition of Ω1,h, we have that measd(T ∩Ω1) > 0.
Hence qΓ

h = (qh)|Ω1
6= (ph)|Ω1

= pΓ
h on a subset of Ω1 with positive measure. This

proves injectivity.

On Q1,h×Q2,h we use a norm denoted by ‖ph‖20,Ω1,h∪Ω2,h
:= ‖p1,h‖20,Ω1,h

+‖p2,h‖20,Ω2,h
.

The XFEM space of piecewise linears is defined by

Qh := (Q1,h ×Q2,h)/R = { ph ∈ Q1,h ×Q2,h | (µ−1pΓ
h, 1)0 = 0 }. (2.3)

The space Qh is used for the discretization of the pressure. Note that { pΓ
h | ph ∈ Qh }

is a subspace of the pressure space Q.
For the velocity discretization we use the standard conforming P2-space

Vh := { vh ∈ C(Ω)d | vh|T ∈ Pd2 ∀ T ∈ Th, v|∂Ω = 0 } ⊂ H1
0 (Ω)d.

The pair Vh × Qh is not uniformly LBB stable with respect to how the interface Γh
cuts through the triangulation, cf. [12]. Hence, we need a pressure stabilization. For
this we introduce the bilinear form

j(ph, qh) :=

2∑
i=1

ji(pi,h, qi,h), ph, qh ∈ Q1,h ×Q2,h,

with ji(pi,h, qi,h) := µ−1
i

∑
F∈Fi

h3
F ([∇pi,h · nF ], [∇qi,h · nF ])0,F ,

(2.4)

which is also referred to as a ghost penalty term, cf. [3]. Here [∇pi,h · nF ] denotes
the jump of the normal component of the piecewise constant function ∇pi,h across
the face F . Since pi,h ∈ Qi,h is continuous in Ωi,h, i.e. the tangential component of
∇pi,h has no jump across F ∈ Fi, we replace [∇pi,h · nF ] by [∇pi,h] (to simplify the
notation).
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The discretization of (2.1) that we consider is as follows: determine (uh, ph) ∈
Vh ×Qh such that

k
(
(uh, ph), (vh, qh)

)
= f(vh) for all (vh, qh) ∈ Vh ×Qh, (2.5)

k
(
(uh, ph), (vh, qh)

)
:= a(uh, vh) + b(vh, p

Γ
h) + τ(ρuh, vh)0 + b(uh, q

Γ
h)− εpj(ph, qh),

with a sufficiently large stabilization parameter εp ≥ 0, independent of τ , h, and how
Γh intersects the mesh. In [15] this finite element discretization method was analyzed
for the stationary case, i.e. τ = 0. A uniform LBB type stability result and optimal
order error estimates were derived. In this paper, we prove a different uniform infsup
stability result for the pair of finite element spaces and, based on this result, we focus
on developing a robust preconditioner for the algebraic problem.

3. LBB type stability conditions. In [15] the following LBB type inequality
was derived:

sup
vh∈Vh

(div vh, p
Γ
h)0

‖µ 1
2∇vh‖0

+

(
2∑
i=1

∑
F∈Fi

h3‖µ−
1
2

i [∇pi,h]‖20,F

) 1
2

& ‖µ− 1
2 ph‖0,Ω1,h∪Ω2,h

, (3.1)

for all ph ∈ Qh. This result forms the basis for the analysis of the Schur complement
preconditioner for the case τ = 0 in [15]. Here and in the remainder of this paper we
use the notation A & B, when A ≥ cB holds with a positive constant c independent of
h, the problem parameters ρ, µ, and of how Γh intersects the triangulation. Similarly,
A . B is defined and A ' B obviously means that both A & B and A . B hold.
The goal of this section is to prove the alternative LBB type stability property

sup
vh∈Vh

(div vh, p
Γ
h)0

‖ρ 1
2 vh‖0

+

(
2∑
i=1

∑
F∈Fi

h‖ρ−
1
2

i [∇pi,h]‖20,F

) 1
2

& ‖ρ− 1
2∇pΓ

h‖0,Ω1∪Ω2 + ρ
− 1

2
maxh

− 1
2 ‖[pΓ

h]‖0,Γh
∀ ph ∈ Q1,h ×Q2,h, (3.2)

where [pΓ
h] := (p1,h−p2,h)|Γh

denotes the interfacial jump of pΓ
h and ρmax = max{ρ1, ρ2}.

Recall that the P2-P1XFEM pair (Vh, Qh) is not LBB stable. The second term on
the left hand side is a ghost penalty stabilization as in (2.4), however, with a different
h-scaling. We split the proof of (3.2) into two partial results in the next two lemmata.

Lemma 3.1. The following uniform bound holds for i = 1, 2:

sup
vh ∈ Vh

supp(vh) ⊂ Ωi

(div vh, p
Γ
h)0

‖vh‖0
+

(∑
F∈Fi

h‖[∇pi,h]‖20,F

) 1
2

& ‖∇pΓ
h‖0,Ωi

∀ ph ∈ Qi,h.

(3.3)

Proof. For any two tetrahedra T1, T2 ∈ Ωi,h sharing a face F , the regularity of
triangulation assumption yields the estimate

‖∇pi,h‖20,T1
. ‖∇pi,h‖20,T2

+ h‖[∇pi,h]‖20,F .

Applying the above inequality to estimate ‖∇pi,h‖20,T over all T ∈ T Γ
h , and using the

fact that any T ∈ T Γ
h can be reached starting from a suitable tetrahedron in ωi,h

crossing a finite independent of h number of faces from Fi, we obtain the estimate∑
F∈Fi

h‖[∇pi,h]‖20,F + ‖∇pi,h‖20,ωi,h
≥ c ‖∇pi,h‖20,Ωi,h

≥ c0‖∇pΓ
h‖20,Ωi

. (3.4)
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Let Vh(ωi,h) be the velocity FE space on the triangulation ωi,h ⊂ Ωi (zero values
on ∂ωi,h). From the literature [2] the following inf-sup property of the Hood-Taylor
P2-P1 pair is known:

sup
vh∈Vh(ωi,h)

(div vh, pi,h)

‖vh‖0,ωi,h

≥ ci‖∇pi,h‖0,ωi,h
, ∀ pi,h ∈ Qi,h, (3.5)

with ci > 0 independent of h. We square (3.5), scale with c−2
i and combine it with

(3.4) to obtain

c−2
i sup

vh∈Vh(ωi,h)

(div vh, pi,h)2

‖vh‖20,ωi,h

+
∑
F∈Fi

h‖[∇pi,h]‖20,F ≥ c0‖∇pΓ
h‖20,Ωi

.

Simple calculations yield (3.3).

We need to derive a uniform bound for the second term on the right-hand side of (3.2).
This is done in Lemma 3.2. For the proof of that lemma we need some special decom-
position of the surface Γh, that we now introduce. We start with the decomposition
of Γh into the set of (planar) segments FΓ := {F := Γh ∩ T | T ∈ T Γ

h }:

Γh =
⋃

F∈FΓ

F.

A subset of “large” surface segments is defined by

F0
Γ := {F ∈ FΓ | measd−1(F ) ≥ γ0h

d−1 },

with a suitable constant γ0. Proposition 4.2 from [6] implies that there exist constants
γ0 > 0 and c > 0 depending on the shape regularity of the outer triangulation Th,
but independent of h and of how Γh intersects the mesh, such that for each F ∈ FΓ

there exists an F 0 ∈ F0
Γ satisfying

dist(F, F 0) ≤ c h. (3.6)

For every Γh∩T = F ∈ F0
Γ let b(F ) be the barycenter of F and v(F ) ∈ ∂T a vertex

of T that is closest to b(F ). Let φ(F ) be the scalar nodal linear finite element basis

function corresponding to the vertex v(F ). Let F̃0
Γ be a maximal subset of F0

Γ such

that supp(φ(F ))∩supp(φ(F̃ )) = ∅ for any F, F̃ ∈ F̃0
Γ, F 6= F̃ . The property (3.6) also

holds with the set F0
Γ replaced by the smaller set F̃0

Γ (and a possibly larger constant

c). The elements in F̃0
Γ are labeled by an index set K, i.e., F̃0

Γ = {Fk | k ∈ K}. Each

F ∈ FΓ \ F̃0
Γ is added to the (or one of the) surface segments Fk ∈ F̃0

Γ which has
smallest distance to F . The resulting enlarged surface macro elements are denoted
by F̃k.

This results in a decomposition of Γh with the following properties
Γh =

⋃
k∈K

F̃k, int(F̃k) ∩ int(F̃j) = ∅ if k 6= j,

∀ k ∈ K ∃Fk ∈ F0
Γ, such that Fk ⊂ F̃k,

|F̃k| ' hd−1, diam(F̃k) . h for all k ∈ K.
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Lemma 3.2. There exists h0 > 0 such that for all h ≤ h0 the uniform bound

sup
vh∈Vh

(div vh, p
Γ
h)0

‖vh‖0
+

(
2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F

) 1
2

& h−
1
2 ‖[pΓ

h]‖0,Γh
(3.7)

for all ph ∈ Q1,h ×Q2,h holds.
Proof. For a given ph ∈ Q1,h × Q2,h, introduce the notation q = [pΓ

h]. We thus
have

h−1‖[pΓ
h]‖20,Γh

= h−1

∫
Γh

q2 dx = h−1
∑
k∈K

∫
F̃k

q2 dx.

Let bk = b(Fk) be the barycenter of a large surface element Fk ⊂ F̃k (as explained
above). For x ∈ F̃k let

∫ x
bk
∇q · t ds be the line integral along the shortest path in F̃k

which connects bk and x. Here t denotes the tangential unit vector along this path.
The domain formed by the simplices in T Γ

h that are intersected by the macro surface

segment F̃k is denoted by T Γ
k . Note that |T Γ

k | ' hd holds. Using this, ‖x− bk‖ . h,
and the estimate in (3.4) we get:

h−1
∑
k∈K

∫
F̃k

∣∣∣∣∫ x

bk

∇q · t ds
∣∣∣∣2 dx . h

∑
k∈K
|F̃k|

2∑
i=1

‖∇pi,h‖2L∞(F̃k)

. hd
∑
k∈K

2∑
i=1

‖∇pi,h‖2L∞(F̃k)
.
∑
k∈K

2∑
i=1

∫
T Γ
k

|∇pi,h|2 dx

.
2∑
i=1

‖∇pi,h‖20,Ωi,h
.

2∑
i=1

‖∇pi,h‖20,ωi
+

2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F

. ‖∇pΓ
h‖20,Ω1∪Ω2

+

2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F .

(3.8)

Using q(x) = q(bk) +
∫ x

bk
∇q · t ds we obtain

h−1‖[pΓ
h]‖20,Γh

≤ 2h−1
∑
k∈K
|F̃k| q(bk)2 + 2h−1

∑
k∈K

∫
F̃k

∣∣∣∣∫ x

bk

∇q · t ds
∣∣∣∣2 dx

. hd−2
∑
k∈K

q(bk)2 + ‖∇pΓ
h‖20,Ω1∪Ω2

+
2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F

. hd−2
∑
k∈K

q(bk)2 +

[
sup
vh∈Vh

(div vh, p
Γ
h)0

‖vh‖0

]2

+

2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F ,

(3.9)

where in the last inequality we used Lemma 3.1. It remains to derive a bound for the
first term on the right-hand side of (3.9), which is denoted by

Q := hd−2
∑
k∈K

q(bk)2.

Recalling that nh denotes the unit normal vector on Γh and vk = v(Fk) for Fk ∈ F0
Γ,

Fk ⊂ F̃k, we define the velocity piecewise linear finite element function uh ∈ Vh:

uh(x) =

{
q(bk)nh(bk) if x = vk, k ∈ K
0 at all other vertices in T Γ

h .
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Due to the construction of the set of surface segments F̃0
Γ it follows that uh is a sum

of nodal (vector) basis functions with non-overlapping supports. From the definition
of uh it follows:

Q = hd−2
∑
k∈K
|uh(vk)|2 & h−2‖uh‖20. (3.10)

Furthermore, on F̃k we have that x 7→ q(bk)uh(x) · nh(bk) is a scalar piecewise linear
non-negative function and on Fk ⊂ F̃k:∫

Fk

q(bk)uh(x) · nh(bk) dx ' |Fk|q(bk)uh(bk) · nh(bk)

' hd−1q(bk)uh(vk) · nh(bk),

(3.11)

where in the second equivalence we used that vk is the closest vertex to bk. Using
(3.11) we get

Q = hd−2
∑
k∈K

q(bk)uh(vk) · nh(bk)

' h−1
∑
k∈K

∫
Fk

q(bk)uh(x) · nh(bk) dx

≤ h−1
∑
k∈K

∫
F̃k

q(bk)uh(x) · nh(bk) dx

= h−1
∑
k∈K

∫
F̃k

q(x)uh(x) · nh(x) dx

+ h−1
∑
k∈K

∫
F̃k

q(bk)uh(x) ·
(
nh(bk)− nh(x)

)
dx

+ h−1
∑
k∈K

∫
F̃k

(
q(bk)− q(x)

)
uh(x) · nh(x) dx

=: h−1

∫
Γh

q(x)uh(x) · nh(x) dx+R1 +R2.

(3.12)

We derive a bound for the term R1. Let d be the signed distance function to the
C2-smooth surface Γ, hence ∇d(x) = n(x) for x in a neighborhood of Γ. For x ∈ F̃k
we get, using (2.2),

‖nh(bk)− nh(x)‖ ≤ ‖nh(bk)−∇d(bk)‖+ ‖∇d(x)− nh(x)‖+ ‖∇d(bk)−∇d(x)‖
≤ ch+ ‖D2d‖∞‖bk − x‖ . h.

Hence, noting ‖uh‖L∞(F̃k) ≤ |q(bk)|, we obtain

|R1| . h−1
∑
k∈K
|F̃k||q(bk)|‖uh‖L∞(F̃k)h . hd−1

∑
k∈K

q(bk)2 ' hQ. (3.13)

For deriving a bound for R2 we use q(x)−q(bk) =
∫ x

bk
∇q · t ds and the results in (3.8)
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and in Lemma 3.1:

|R2| .
(
h−1

∑
k∈K

∫
F̃k

∣∣ ∫ x

bk

∇q · t ds
∣∣2dx) 1

2
(
h−1

∑
k∈K
|F̃k|‖uh‖2L∞(F̃k)

) 1
2

.
(
‖∇pΓ

h‖20,Ω1∪Ω2
+

2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F
) 1

2
(
hd−2

∑
k∈K

q(bk)2
) 1

2

.

 sup
vh∈Vh

(div vh, p
Γ
h)0

‖vh‖0
+

(
2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F

) 1
2

 √
Q.

(3.14)

To handle the first term on the right-hand side of (3.12) we use integration by parts,
Lemma 3.1 and (3.10):

h−1

∫
Γh

q(x)uh(x) · nh(x) dx =
(−div uh, ph)0

‖uh‖0
(
h−1‖uh‖0

)
+ h−1

2∑
i=1

∫
Ωi

∇pi,h · uh dx

.

(
sup
vh∈Vh

(div vh, ph)0

‖vh‖0
+ ‖∇pΓ

h‖0,Ω1∪Ω2

)(
h−1‖uh‖0

)
(3.15)

.

(
sup
vh∈Vh

(div vh, ph)0

‖vh‖0
+
( 2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F
) 1

2

)√
Q.

Combination of (3.12)–(3.15) yields, for h ≤ h0 and h0 > 0 sufficiently small,

Q .

[
sup
vh∈Vh

(div vh, ph)0

‖vh‖0

]2

+

2∑
i=1

∑
F∈Fi

h‖[∇pi,h]‖20,F ,

and using this in (3.9) completes the proof.

The analysis above leads to the main result of this section.
Theorem 3.3. There exists h0 > 0 such that for all h ≤ h0 the uniform estimate

(3.2) holds.
Proof. Since the sup in the left part of (3.3) is over finite element velocity functions

with support in Ωi, one can scale (3.3) with ρ
− 1

2
i and add the results for i = 1, 2, which

yields

sup
vh∈Vh

(div vh, p
Γ
h)

‖ρ 1
2 vh‖0

+

(
2∑
i=1

∑
F∈Fi

h‖ρ−
1
2

i [∇pi,h]‖20,F

) 1
2

&
2∑
i=1

‖ρ−
1
2

i ∇pΓ
h‖0,Ωi

= ‖ρ− 1
2∇pΓ

h‖0,Ω1∪Ω2
∀ ph ∈ Q1,h ×Q2,h.

Adding this estimate and the one in (3.7) scaled with ρ
− 1

2
max proves the theorem.

4. Algebraic problem. In this section, we introduce the matrix-vector repre-
sentation of the finite element problem (2.5). For Vh we use the standard nodal basis
denoted by (ψj)1≤j≤m, i.e.,

Vh 3 uh =

m∑
j=1

xjψj . (4.1)
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The vector representation of uh is denoted by x = (x1, . . . , xm)T ∈ Rm. In Qi,h we
have a standard nodal basis denoted by (φi,j)1≤j≤ni

, i = 1, 2, i.e.,

Q1,h ×Q2,h 3 ph = (p1,h, p2,h) =
( n1∑
j=1

y1,jφ1,j ,

n2∑
j=1

y2,jφ2,j

)
. (4.2)

The vector representation of ph is denoted by y = (y1,1, . . . , y1,n1
, y2,1, . . . , y2,n2

)T ∈
Rn1+n2 . We use 〈·, ·〉 and ‖·‖ for the Euclidean scalar product and norm. The bilinear
forms a(·, ·), (ρ·, ·)0, b(·, ·), j(·, ·) have corresponding matrix representations, denoted
by A ∈ Rm×m, C ∈ Rm×m, B ∈ R(n1+n2)×m, J ∈ R(n1+n2)×(n1+n2), respectively. The
following holds:

a(uh, uh) = 〈Ax,x〉 for all uh ∈ Vh,
(ρuh, uh)0 = 〈Cx,x〉 for all uh ∈ Vh,
b(uh, p

Γ
h) = 〈Bx,y〉 for all uh ∈ Vh, ph ∈ Q1,h ×Q2,h,

j(ph, ph) = 〈Jy,y〉 for all ph ∈ Q1,h ×Q2,h.

The matrices A,C are symmetric positive definite. The matrix J is symmetric positive
semi-definite. Let 1 := (1, . . . , 1)T ∈ Rn1+n2 . From b(uh, 1) = 0 for all uh ∈ Vh and
j(1, qh) = 0 for all qh ∈ Q1,h×Q2,h it follows that BT1 = J1 = 0 holds. We introduce
two mass matrices in the pressure space:

M = blockdiag(M1,M2), (Mi)k,l := (µ−1
i φi,k, φi,l)0,Ωi,h

, 1 ≤ k, l ≤ ni, i = 1, 2,

M̂ = blockdiag(M̂1, M̂2), (M̂i)k,l := (µ−1
i φi,k, φi,l)0,Ωi

, 1 ≤ k, l ≤ ni, i = 1, 2.

For these mass matrices we have the relations

〈My,y〉 = ‖µ−
1
2

1 p1,h‖20,Ω1,h
+ ‖µ−

1
2

2 p2,h‖20,Ω2,h
= ‖µ− 1

2 ph‖20,Ω1,h∪Ω2,h
,

〈M̂y,y〉 = ‖µ−
1
2

1 p1,h‖20,Ω1
+ ‖µ−

1
2

2 p2,h‖20,Ω2
=

2∑
i=1

‖µ−
1
2

i pΓ
h‖20,Ωi

= ‖µ− 1
2 pΓ
h‖20.

The matrix-vector representation of the discrete problem (2.5) is as follows. First

note that (µ−1pΓ
h, 1)0 = 0 iff 〈M̂y,1〉 = 0. The discrete problem is given by: Find

x ∈ Rm, y ∈ Rn1+n2 with 〈M̂y,1〉 = 0 such that

K

(
x
y

)
:=

(
A+ τC BT

B −εpJ

)(
x
y

)
=

(
b
0

)
, bj = (f, ψj)0, 1 ≤ j ≤ m. (4.3)

The matrix K of the algebraic system (4.3) is symmetric indefinite. One common
approach to solve the system numerically is to exploit the structure of the matrix and
to apply a Krylov subspace method with block diagonal preconditioner:

K̂ :=

(
Aτ 0
0 Qτ

)
,

where Aτ , Qτ are both SPD matrices and should be chosen as preconditioners of the
(1,1)-block A+ τC and the Schur complement of K, which is given by

Sτ := B(A+ τC)−1BT + εpJ. (4.4)
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We refer to [1] for a review of this and other approaches to the numerical solution of
saddle point algebraic systems. It is well-known that if Aτ is uniformly (with respect
to the relevant parameters) spectrally equivalent to A + τC and Qτ is uniformly
spectrally equivalent to Sτ , a preconditioned MINRES method, with preconditioner
K̂, applied to the system (4.3) has a high rate of convergence for the whole parameter
range. Good preconditioners Aτ for A+ τC are known, e.g. a multigrid method. In
the next section we introduce a Schur complement preconditioner Qτ .

5. Schur complement preconditioner. In this section we introduce a precon-
ditioner for the Schur complement Sτ .

An ansatz for the Schur complement preconditioner is obtained by looking at the
continuous level. It is known that for the Schur complement corresponding to the
weak formulation (2.1), with µ1 = µ2 = ρ1 = ρ2 = 1, a uniform preconditioner (with
respect to τ) is given by

Q−1
τ := I − τ∆−1

N , (5.1)

cf. [19, 16, 18]. Here ∆−1
N is the solution operator of the following Neumann problem:

given f ∈ L2
0(Ω), determine p ∈ H1(Ω) ∩ L2

0(Ω) such that

(∇p,∇q)0 = (f, q)0 for all q ∈ H1(Ω). (5.2)

The preconditioner (5.1) interpolates between two extreme cases τ = 0 (the Stokes
problem) and τ → ∞ (the pressure Poisson problem). We shall use the same inter-
polation idea on the discrete level and for variable coefficients.

For τ = 0, it is shown in [15] that the preconditioner Q0 := M̂ + εpJ is spectrally
equivalent to S0, i.e. Q0 ' S0, with spectral constants independent of h, µ, and of
how Γ intersects the triangulation (note that ρ occurs in neither Q0 nor S0).

For the other extreme case, τ → ∞, a preconditioner for Sτ is constructed by
using a suitable discrete version of the Neumann problem (5.2) with variable diffusion
coefficient: Determine p ∈ H2(Ω1 ∪ Ω2) ∩ L2

0(Ω) such that

−div ρ−1∇p = f in Ωi, i = 1, 2,

[ρ−1∇p · n] = 0 on Γ,

[p] = 0 on Γ,

∇p · n∂Ω = 0 on ∂Ω.

(5.3)

A convergent second order accurate discretization in the XFEM space is obtained
by enforcing weak continuity at the interface using the Nitsche method. This dis-
cretization was introduced and analyzed in [13]. We recall some results from that
paper. One defines the Nitsche-XFEM discretization of the Neumann problem (5.3)
as follows: Find ph ∈ Qh such that

(ρ−1∇ph,∇qh)0,Ω1∪Ω2
− ({{ρ−1∇ph · n}}, [qh])0,Γh

− ({{ρ−1∇qh · n}}, [ph])0,Γh

+ λh−1ρ−1
min[ph], [qh])0,Γh

= (f, qh)0 for all qh ∈ Qh.
(5.4)

Here we used the average {{w}} := κ1w1 + κ2w2 with element-wise constants κi =

κi(T ) = |Ωi∩T |
|T | for T ∈ T Γ

h , ρmin = min{ρ1, ρ2}. The parameter λ > 0 is needed for

stabilization. The bilinear form for this discrete problem is given by

sh(ph, qh) := (ρ−1∇ph,∇qh)0,Ω1∪Ω2
− ({{ρ−1∇ph · n}}, [qh])0,Γh

− ({{ρ−1∇qh · n}}, [ph])0,Γh
+ λh−1ρ−1

min([ph], [qh])0,Γh
.

(5.5)
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It is known that this bilinear form is uniformly, with respect to h, ρi and the location
of Γh in the triangulation, equivalent to a simplified one, where the averaging terms
are deleted, cf. Lemmas 4 and 5 in [13]:

sh(ph, ph) ' |||ph|||2h := ‖ρ− 1
2∇ph‖20,Ω1∪Ω2

+ λh−1ρ−1
min‖[ph]‖20,Γh

, (5.6)

for all ph ∈ Qh. For the corresponding matrix representation we introduce matrices
P,N ∈ R(n1+n2)×(n1+n2) (where P is used to denote Poisson and N denotes N itsche):

2∑
i=1

∫
Ωi

ρ−1
i ∇pΓ

h · ∇p̃Γ
h dx = 〈Py, ỹ〉 for all ph, p̃h ∈ Q1,h ×Q2,h, (5.7)

h−1ρ−1
min([pΓ

h], [p̃Γ
h])0,Γh

= 〈Ny, ỹ〉 for all ph, p̃h ∈ Q1,h ×Q2,h. (5.8)

Hence, 〈Py,y〉+ λ〈Ny,y〉 = |||ph|||2h holds. For this XFEM discrete Laplacian we use
the notation

L := P + λN. (5.9)

This matrix L is a stable approximation of the part BC−1BT in the Schur comple-
ment Sτ , cf. (4.4). Efficient preconditioners for L are studied in [17], and used in
section 7. In section 6 we show that for sufficiently large τ , the Schur complement
matrix Sτ is spectrally equivalent to 1

τL + εpJ , uniformly in h and the location of
Γh in the triangulation. Motivated by the structure of the preconditioner on the con-
tinuous level, we use a linear interpolation between the preconditioners for the two
extreme cases, τ = 0 and τ → ∞, similar to (5.1). This leads to the following Schur
complement preconditioner:

Q−1
τ := (M̂ + εpJ)−1 + τ(L+ τεpJ)−1, τ ∈ [0,∞). (5.10)

Experiments in Section 7 illustrate the robustness of this preconditioner.
Remark 1. The XFEM discrete Laplacian L in the preconditioner Q−1

τ can be
replaced by the matrix corresponding to the bilinear form sh(·, ·) in (5.5). We use
the matrix L corresponding to ||| · |||2h since it is easier to implement and the results
are very satisfactory, cf. Section 7. Furthermore, the matrix L is always symmetric
positive definite, whereas the matrix corresponding to sh(·, ·) is positive definite only
for λ sufficiently large.

6. Analysis of the Schur complement preconditioner. We are not able to
prove robustness of the preconditioner Qτ for the whole range τ ∈ [0,∞), cf. Remark 2
below. Although such robustness is observed in numerical experiments, we can only
handle the two extreme cases, τ ∈ [0, κ0c0]∪[c1κ1h

−2,∞), with ci > 0 given constants
and

κ0 =
µmin

ρmax
, κ1 =

µmax

ρmin
,

with µmax := max{µ1, µ2}, µmin := min{µ1, µ2}, ρmax := max{ρ1, ρ2}, ρmin :=
min{ρ1, ρ2}. The two parameter ranges τ ∈ [0, κ0c0] and τ ∈ [c1κh

−2,∞) are treated
in the two subsections below.

In the remainder we assume that the stabilization parameters λ > 0 and εp > 0
are fixed, independent of h, τ , ρ, µ. For two SPD matrices A1, A2, we use the notation
A1 . A2, A1 ' A2 to indicate that spectral inequalities are uniform in h, τ , ρ, µ and
the location of the interface in the triangulation. In this section, the constants in the
inequalities may depend on c0, c1.
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6.1. Uniform spectral equivalence for τ ∈ [0, c0κ0]. The results for this case
easily follow from the analysis in [15].

Lemma 6.1. For τ ∈ [0, c0κ0] the uniform spectral equivalence

Sτ ' M̂ + εpJ

holds.
Proof. Note that

A ≤ A+ τC .

(
1 + τ

ρmax

µmin

)
A

holds. Hence, for τ ∈ [0, c0κ0] we have Sτ ' BA−1BT + εpJ = S0. The uniform

equivalence S0 ' M̂ + εpJ is derived in Theorem 6.2 and Lemma 6.3 in [15]. The
analysis is based on the LBB stability estimate (3.1).

Lemma 6.2. For τ ∈ [0, c0κ0] the uniform spectral equivalence

Qτ ' M̂ + εpJ

holds on the pressure subspace of all ph ∈ Q1,h ×Q2,h with (µ−1pΓ
h, 1)0 = 0.

Proof. The spectral inequality Q−1
τ ≥ (M̂ + εpJ)−1 follows from the definition of

Qτ . For τ > 0, we also have the chain of inequalities

Q−1
τ . (M̂ + εpJ)−1 ⇔ (τ−1L+ εpJ)−1 . (M̂ + εpJ)−1

⇔ M̂ + εpJ . τ−1L+ εpJ ⇔ M̂ . τ−1L+ εpJ. (6.1)

Take p ∈ H1(Ω1 ∪ Ω2) with (µ−1p, 1)0 = 0. We use the orthogonal decomposition
p = p0 + p⊥0 (orthogonal with respect to (µ−1·, ·)0), with

p0 = α

{
µ1|Ω1|−1 in Ω1

−µ2|Ω2|−1 in Ω2,

α ∈ R. We then have (p⊥0 , 1)0,Ωi
= 0, i = 1, 2. Using a trace inequality for (p⊥0 )|Ωi

we
get

‖µ− 1
2 p0‖20 . µ−1

min‖[p0]‖20,Γh
. µ−1

min‖[p]‖20,Γh
+ µ−1

min‖[p⊥0 ]‖20,Γh

. µ−1
min‖[p]‖20,Γh

+ µ−1
min‖∇p⊥0 ‖20,Ω1∪Ω2

.

Using this and a Poincare inequality on Ωi, we get:

‖µ− 1
2 p‖20 = ‖µ− 1

2 p⊥0 ‖20 + ‖µ− 1
2 p0‖20 . ‖µ− 1

2∇p⊥0 ‖20,Ω1∪Ω2
+ ‖µ− 1

2 p0‖20
. ‖µ− 1

2∇p⊥0 ‖20,Ω1∪Ω2
+ µ−1

min‖[p]‖20,Γh
= ‖µ− 1

2∇p‖20,Ω1∪Ω2
+ µ−1

min‖[p]‖20,Γh
.

Hence, for ph ∈ Q1,h ×Q2,h with (µ−1pΓ
h, 1)0 = 0 we obtain

〈M̂y,y〉 = ‖µ− 1
2 pΓ
h‖20 . ‖µ− 1

2∇pΓ
h‖20,Ω1∪Ω1

+ µ−1
min‖[pΓ

h]‖20,Γh

.
ρmax

µmin
‖ρ− 1

2∇pΓ
h‖20,Ω1∪Ω1

+ h
ρmin

µmin
h−1ρ−1

min‖[pΓ
h]‖20,Γh

.
ρmax

µmin

(
〈(P +N)y,y〉

)
.
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This yields, that for τ ≤ c0κ0 the uniform spectral inequality M̂ . 1
τL and thus (6.1)

holds.
As a direct consequence of the two lemmata above we obtain the following.

Corollary 6.3. Take τ ∈ [0, κ0c0]. The uniform spectral equivalence

Q
− 1

2
τ SτQ

− 1
2

τ ' I

holds.

6.2. Uniform spectral equivalence for τ ∈ [c1κ1h
−2,∞). We introduce

Ŝτ :=
1

τ
BC−1BT + εpJ.

Note that for τ ≥ c1κ1h
−2 we have

τC ≤ A+ τC .

(
h−2µmax

ρmin
+ τ

)
C . τC.

Therefore,

Sτ ' Ŝτ for τ ≥ c1κ1h
−2. (6.2)

Lemma 6.4. For τ ∈ (0,∞) the uniform spectral inequality

Ŝτ . τ−1L+ εpJ (6.3)

holds.
Proof. Note the identities

〈BC−1BTy,y〉 1
2 = max

x∈Rm

〈Bx,y〉
〈Cx,x〉 1

2

= max
uh∈Vh

b(uh, p
Γ
h)

‖ρ 1
2uh‖0

. (6.4)

The following trace inequality from [13]

‖w‖2L2(Γh∩T ) ≤ c
(
h−1
T ‖w‖20,T + hT ‖w‖21,T

)
for all w ∈ H1(T ), (6.5)

holds with a constant c independent on how Γh intersects the simplex T . Using (6.5)
and the finite element inverse estimate ‖uh‖1,T ≤ h−1

T ‖uh‖0 we get

|b(uh, pΓ
h)| =

∣∣∣∣∣
∫

Γh

uh · n[pΓ
h] ds−

2∑
i=1

∫
Ωi

uh · ∇pΓ
h dx

∣∣∣∣∣
≤ ‖uh‖0,Γh

‖[pΓ
h]‖0,Γh

+ ‖ρ 1
2uh‖0 ‖ρ−

1
2∇pΓ

h‖0,Ω1∪Ω2

. h−
1
2 ‖ρ 1

2uh‖0 ρ−
1
2

min‖[pΓ
h]‖0,Γh

+ ‖ρ 1
2uh‖0 ‖ρ−

1
2∇pΓ

h‖0,Ω1∪Ω2
.

Employing this in (6.4) yields

〈BC−1BTy,y〉 . h−1ρ−1
min‖[pΓ

h]‖20,Γh
+ ‖ρ− 1

2∇pΓ
h‖20,Ω1∪Ω2

= 〈Ny,y〉+ 〈Py,y〉 . 〈Ly,y〉,

from which the result (6.3) easily follows.
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The proof of the lower spectral bound for Ŝτ relies on the LBB stability result (3.2)
for the P2-P1XFEM pair with ghost penalty stabilization.

Lemma 6.5. Take τ ∈ [c1κ1h
−2,∞). There exists h0 > 0 such that for h ≤ h0

the uniform spectral inequality

Ŝτ &
ρmin

ρmax
(τ−1L+ εpJ)

holds.
Proof. Thanks to the relations (6.4) and the definitions of J , P , and N , we rewrite

the LBB stability result (3.2) in matrix notation as

BC−1BT + h−2κ1J & P +
ρmin

ρmax
N &

ρmin

ρmax
L.

The estimate of the lemma now follows for τ & h−2κ1.
It remains to show that the proposed preconditioner Qτ is spectrally equivalent

to τ−1L+ εpJ . This is the assertion of the next lemma.
Lemma 6.6. For τ ∈ [c1κ1h

−2,∞) the uniform spectral equivalence

Qτ ' τ−1L+ εpJ

holds.
Proof. The spectral inequality Q−1

τ ≥ (τ−1L+ εpJ)−1 follows from the definition
of Qτ . Observe the chain of the inequalities:

Q−1
τ . (τ−1L+ εpJ)−1 ⇔ (M̂ + εpJ)−1 . (τ−1L+ εpJ)−1

⇔ τ−1L+ εpJ . M̂ + εpJ ⇔ τ−1L . M̂ + εpJ. (6.6)

Using (6.5) and a standard finite element inverse inequality we get

h2〈Ly,y〉 = h2
2∑
i=1

‖ρ− 1
2∇pΓ

h‖20,Ωi
+ hλρ−1

min‖[pΓ
h]‖20,Γh

.
µmax

ρmin

2∑
i=1

(
h2‖µ−

1
2

i ∇pi,h‖20,Ωi,h
+ h‖µ−

1
2

i pi,h‖20,Γh

)
.
µmax

ρmin

2∑
i=1

(
h2‖µ−

1
2

i ∇pi,h‖20,Ωi,h
+ ‖µ−

1
2

i pi,h‖20,Ωi,h

)
.
µmax

ρmin

2∑
i=1

‖µ−
1
2

i pi,h‖20,Ωi,h
.
µmax

ρmin
〈My,y〉.

In Lemma 6.3 in [15] the uniform spectral equivalence M ' M̂ + εpJ is shown.
Combining these results we get, for τ ≥ c1κ1h

−2:

τ−1L . h2 ρmin

µmax
L .M ' M̂ + εpJ,

which proves the last estimate in (6.6).

As a direct consequence of lemmata 6.4–6.6 and (6.2) above we obtain the following.
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Corollary 6.7. Take τ ∈ [c1κ1h
−2,∞). Then the uniform spectral equivalence

ρmin

ρmax
I . Q

− 1
2

τ SτQ
− 1

2
τ . I

holds
Remark 2. The analysis in this section proves the robustness of the Schur com-

plement preconditioner Qτ only for τ ∈ [0, c0κ0] ∪ [c1κ1h
−2,∞). Two approaches

are known in the literature which might help to extend the robustness property to
τ ∈ [0,∞). The first one from [19] uses an interpolation argument based on the H2

regularity of the differential problem, which the interface Stokes problem does not
possess. The second approach from [18] uses a uniform boundedness of the Bogov-
ski operator in the differential setting and requires the construction of a uniformly
bounded Fortin projector to the finite element space. This approach requires that the
finite pair that is used is LBB stable. However, the pair (Vh, Qh) that we consider is
not LBB stable.

7. Numerical experiments.

7.1. Discretization error. In [14] the P2-P1XFEM pair with ghost penalty
stabilization is considered only for a stationary Stokes interface problem, and it is
shown that the method then has optimal discretization error bounds. In this section
we consider a time dependent Stokes problem with a pressure solution that is discon-
tinuous across a stationary interface and illustrate that the proposed discretization
has (optimal) second order accuracy. We consider the unsteady Stokes equations on
the domain Ω = [−1, 1]3 with constant density and viscosity coefficients ρ = µ = 1.
We take the following analytical solutions:

ua(t, x) = e−‖x‖
2

−x2

x1

0

 (1− e−t), (7.1)

pa(t, x) = x3
1(1− e−t) +

{
1, x ∈ Ω1,

0, x ∈ Ω2,
(7.2)

where Ω1 = {x ∈ Ω : ‖x‖ < rΓ}, Γ = {x ∈ Ω : ‖x‖ = rΓ}, Ω2 = Ω \Ω1 with rΓ = 2/3.

A force f = fΩ + f̂Γ with a body force fΩ and interface force f̂Γ(v) := σ
∫

Γ
v · nΓ ds

with σ = 1 is imposed on the right hand side in (2.1) such that the unsteady Stokes
equations have as solution u = ua and p = pa. The choice of the velocity field ua
is consistent with a stationary interface Γ, since u · nΓ = 0 holds. Note that instead
of a surface tension force, where the interface curvature has to be approximated, the
artificial surface force f̂Γ has been chosen for which a second-order discretization is
available. The discretization of the surface tension force is crucial for the convergence
order of two-phase flow simulations, cf. [11, 9], but these effects are not studied here.

In the initial triangulation Th0
, i.e. refinement level 0, the domain is subdivided

into 4 × 4 × 4 cubes each consisting of 6 tetrahedral elements. For the experiments
the mesh is successively uniformly refined, halving the mesh size h in each refinement
step. Hence, the mesh for refinement level 3 consists of 32× 32× 32× 6 tetrahedral
elements. For the piecewise linear approximation Γh of the interface Γ we use the
zero level of the piecewise linear interpolation Ih/2 dΓ on Th/2 of the signed distance
function dΓ to Γ. For time discretization we apply the implicit Euler method, with
a uniform time step denoted by ∆t. The simulations are performed until the final
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Fig. 7.1. Discretization errors for simultaneous temporal and spatial refinement.

time t = tf := 0.1 is reached. The coarsest time step size is ∆t = 0.01. For each
spatial refinement step the time step size ∆t is divided by four. This results in a
time step size ∆t = 1.5625 · 10−4 on refinement level 3, and requires 640 time steps
to reach t = tf . In each time step we use the finite element discretization described
in section 2, with a constant stabilization parameter value εp = 0.1. Figure 7.1 shows
the convergence results for the pressure error ep(x) = p(x, tf )− ph(x, tf ) with respect
to the L2-norm and velocity error eu(x) = u(x, tf ) − uh(x, tf ) with respect to the
H1-norm for tf = 0.1. The results show a clear second order convergence behavior.
In further experiments (not presented here) one observes that the velocity L2 error
‖eu‖0 also has a second order convergence behavior. This can be explained by the
fact that the time discretization error dominates the total error.

7.2. Schur complement preconditioner. We consider the preconditioner

Q−1
τ :=

(
M̂ + εpJ

)−1

+ τ (L+ τεpJ)
−1
, (7.3)

with τ = 1/∆t. Spectral condition numbers κ(Q−1
τ Sτ ) := λmax(Q−1

τ Sτ )/λmin(Q−1
τ Sτ )

of the preconditioned Schur complement are shown in Table 7.1 for varying mesh size h
and time step size ∆t. We use the parameter values εp = 0.1 (stabilization parameter
in discretization method) and λ = 1 (parameter in Nitsche-XFEM discretization,
cf. (5.9)). To obtain the eigenvalues MATLAB’s eigs was utilized. Different from the

∆t = 10−1 ∆t = 10−3 ∆t = 10−5 ∆t = 10−7 ∆t = 10−9

l = 0 49.88 25.45 20.99 20.94 20.94
l = 1 49.52 25.63 21.33 21.14 21.13
l = 2 91.19 79.90 19.59 16.20 16.15

Table 7.1
Spectral condition numbers of preconditioned Schur complement Q−1

τ Sτ for fixed εp = 0.1,
λ = 1 and varying time step size ∆t and mesh width h.

previous experiment, to reduce memory requirements in the MATLAB computation
an adaptive refinement around the interface Γ was applied. Refinement level l = 0
denotes the unrefined mesh, which is the same as in the previous experiment, whereas
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l = 1, 2 means that the mesh is refined once/twice around the interface. The results
reveal very strong robustness for ∆t . 10−5. For larger ∆t there is a dependence of the
condition number on the refinement level l. For the condition number computations,
more refinement levels could not be used due to memory limitations. In the next
experiment iteration numbers for the preconditioned system are investigated, which
can also be computed on finer grids.

Table 7.2 shows the iteration numbers for MINRES, with a relative tolerance of
10−6, using the proposed Schur complement preconditioner applied to the previous

defined system. Here, again ∆t and the mesh size are varied. The part
(
M̂ + εpJ

)−1

in the Schur complement preconditioner is approximated by a Jacobi preconditioned
CG solver with relative tolerance 10−4. The part (L+ τεpJ)

−1
is approximated

by a symmetric Gauss-Seidel preconditioned CG solver with relative tolerance 10−4.
A symmetric Gauss-Seidel preconditioned CG solver with relative tolerance 10−2 is
used as preconditioner Aτ for the (1, 1)-block A + τC. The rather small relative
tolerance 10−4 in the CG solvers is needed to preserve the symmetry of the Schur
complement preconditioner. For values larger than that MINRES sometimes diverges
due to symmetry loss.
The results are in accordance with the observations made in the previous experiment,

∆t = 10−1 ∆t = 10−3 ∆t = 10−5 ∆t = 10−7 ∆t = 10−9

l = 0 64 46 41 41 42
l = 1 64 53 50 53 53
l = 2 63 52 47 47 49
l = 3 64 49 45 44 45

Table 7.2
Iteration numbers of MINRES with constant εp = 0.1, λ = 1 and varying step size ∆t and

mesh width h.

but we observe a stronger robustness with respect to variations in mesh size.

Remark 3. The Jacobi preconditioned CG method is an efficient solver for
the linear system with matrix M̂ + εpJ , because this matrix is uniformly spectrally
equivalent to the well-conditioned mass matrix M . An efficient robust solver for the
systems with matrix L + τεpJ is much more difficult. For very large τ values (i.e.,
very small ∆t) this matrix has an extremely large condition number. Furthermore,
the matrix J has a very large kernel. For not too small values of ∆t the performance of
the symmetric Gauss-Seidel preconditioned CG method is acceptable. As an example,
for ∆t = 10−3 the iteration counts for the inner CG solver for l = 0, 1, 2, 3 are
42, 26, 22, 24, respectively. Note that the system with matrix L+ τεpJ has dimension
equal to the number of pressure unknowns, which is much smaller than the number of
velocity unknowns. Hence, somewhat higher iteration counts for solving the system
with matrix L+τεpJ are still acceptable in view of the total costs of one preconditioned
MINRES iteration. For very small ∆t the counts are no longer acceptable. For
example, for ∆t = 10−9 and l = 0, 1, 2, 3 the iteration numbers are 58, 148, 455, 1480,
respectively. We are not aware of a solver for the system with matrix L+ τεpJ that
is robust and efficient for the whole h and ∆t range. One possible approach, which
turned out to be rather promising in our experiments, is to use a special subspace
decomposition as in [23], in which information on the kernel of J is used.
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In the following experiment again the spectral condition numbers are studied, but
now for a fixed mesh refinement level l = 1 and time step size ∆t = 10−5 and varying
stabilization parameter εp and Nitsche parameter λ. We recall that εp is used in the
FE method for the original time-dependent Stokes problem, while λ appears in the
definition of the preconditioner and hence can be chosen to optimize the algebraic
solver performance. The results are presented in Table 7.3. Robustness with respect

εp = 10−4 εp = 10−3 εp = 10−2 εp = 10−1 εp = 1 εp = 10

λ = 0.01 2143 2132 2112 2104 2103 2103
λ = 0.1 219 215.5 211.9 210.5 210.3 210.3
λ = 1 27.24 24.68 22.36 21.33 21.08 21.04
λ = 10 19.06 20.21 20.18 20.12 20.11 20.11
λ = 100 143 111.1 105.7 108.5 111.2 112.6

Table 7.3
Spectral condition numbers of the preconditioned Schur complement Q−1

τ Sτ for fixed l = 1,
∆t = 10−5 and varying λ and εp.

to εp can be observed. The results show that in the preconditioner the Nitsche term
in (5.9) is essential. One can observe that for λ→ 0 and thus a vanishing penalization
of discontinuities at the interface, the condition number increases very strongly. On
the other hand, for λ & 10 one can observe the effect of over-penalization, i.e. a too
strong weight is laid on the continuity across the interface.

Overall, the preconditioner shows robustness for the case of constant coefficients
ρ1,2 = µ1,2 ' 1. The robustness holds for a certain range of Nitsche parameter values
λ ∈ [1, 10].

7.3. Jumping coefficients. In this experiment we study the performance of
the preconditioner with respect to variations in the coefficients ρi and µi. We show
results for the iteration numbers of MINRES for the discrete problem on uniform
meshes and use the same settings as described in Section 7.2. Table 7.4 shows the
iteration numbers of MINRES for varying mesh size h and viscosity ratio µ2/µ1. The

µ2/µ1 = 10−5 10−3 10−1 1 10 103 105

l = 0 44 46 47 46 46 47 47
l = 1 55 53 54 53 52 53 52
l = 2 51 50 52 52 53 52 52
l = 3 54 52 48 49 51 49 49

Table 7.4
Iteration numbers of MINRES with ∆t = 10−3, µ2 = ρ2 = ρ1 = 1, εp = 0.1, λ = 1, and

varying mesh size h and viscosity µ1.

iteration numbers are almost constant for the different viscosity ratios and hence the
preconditioner shows a strong robustness with respect to jumps in the viscosities.

We also consider the robustness with respect to jumps in density, for a case
with a constant viscosity. Table 7.5 shows the results for varying mesh size and
density ratios. We observe a very mild dependence of the iteration numbers for ratios
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ρ2/ρ1 = 10−5 10−3 10−1 1 10 103 105

l = 0 60 73 61 46 45 67 269
l = 1 70 79 65 53 53 101 433
l = 2 72 83 66 52 54 133 595
l = 3 88 87 68 49 53 153 634

Table 7.5
Iteration numbers of MINRES with ∆t = 10−3, ρ1 = µ1 = µ2 = 1, εp = 0.1, λ = 1 and varying

mesh size h and density ρ2.

ρmax/ρmin ∈ [10−5, 10], but a significant increase for ρmax/ρmin ≥ 103, especially on
the largest refinement level l = 3. For the case with extremely large density jumps
the behavior can be improved using an idea from [14]. We take an element-dependent
Nitsche parameter

λT = {ρ−1}
(
D + C

γT
αT

)
(7.4)

with constants D > 0 and C > 1. Here, the averaging operator is defined as {a} :=
κ1a1 + κ2a2 with the element-dependent weights

κ1|T =
ρ−1

2 α1,T

ρ−1
1 α2,T + ρ−1

2 α1,T

, κ2|T =
ρ−1

1 α2,T

ρ−1
1 α2,T + ρ−1

2 α1,T

,

and αi,T := |T ∩ Ωi|/h3
T with hT the diameter of element T ∈ Th. The other terms

in (7.4) are αT := α1,T + α2,T and γT := |Γ ∩ T |/h2
T . The previous experiment

was repeated, but now with an element-dependent Nitsche parameter λ = λT . Ta-
ble 7.6 shows the corresponding iteration numbers, where the free parameters in λT
are chosen as D = 0.5 and C = 1.5. The iteration numbers for the element-dependent

ρ2/ρ1 = 10−5 10−3 10−1 1 10 103 105

l = 0 69 71 61 48 46 50 46
l = 1 80 80 66 54 52 60 65
l = 2 85 85 66 51 53 54 54
l = 3 92 89 68 50 50 54 55

Table 7.6
Iteration numbers of MINRES with ∆t = 10−3, ρ1 = µ1 = µ2 = 1, εp = 0.1 and varying mesh

size h and density ρ2 for the element-dependent Nitsche parameter λT .

Nitsche parameter λT are comparable to those obtained for the constant Nitsche pa-
rameter λ for the case of a small or moderate density ratio ρmax/ρmin ∈ [10−5, 10],
but are also very robust for large density ratios ρmax/ρmin ≥ 103. For the extreme
case of ρ2/ρ1 = 105 and l = 3 the iteration number is reduced by a factor of 11 when
taking λT instead of λ while the computational effort for the application of the Schur
complement preconditioner stays essentially the same.

8. Conclusions. In this paper we studied the efficient preconditioning of lin-
ear saddle point systems resulting from the finite element discretization, with the
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pair P1-XFE (for pressure) and P2 (for velocity), of a quasi-stationary Stokes inter-
face problem. In the discretization a ghost penalty pressure stabilization technique
known from the literature is used. The resulting discretization has optimal approxi-
mation properties and is robust with respect to non-alignment of the (approximate)
interface in the triangulation. We introduced and analyzed a new Schur complement
preconditioner. Numerical experiments illustrate the performance of this precondi-
tioner, in particular its robustness with respect to variation in h, τ , the position of
the interface in the triangulation and the viscosity quotient µ1/µ2. Using a suitable
element-dependent Nitsche parameter leads to robustness with respect to the den-
sity quotient ρ1/ρ2, too. We mention two topics that deserve further investigations.
Firstly, the theoretical robustness analysis covers only the extreme ranges for the
problem parameter τ , namely τ sufficiently small (τ ∈ [0, c0κ0]) or τ sufficiently large
(τ ∈ [c1κ1h

−2,∞)). It is not clear how to analyze the intermediate τ range. Secondly,
in the Schur complement preconditioner linear systems with matrix L+ τεpJ have to
be solved approximately. For “very large” τ values the efficient solution of these sys-
tems turns out to be difficult, and the development of an appropriate preconditioner
for this matrix deserves further attention.
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