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Abstract. In this paper, we propose a Static Condensation Reduced Basis Element (SCRBE)
approach for the Reynolds Lubrication Equation (RLE). The SCRBE method is a computational
tool that allows to efficiently analyze parametrized structures which can be decomposed into
a large number of similar components. Here, we extend the methodology to allow for a more
general domain decomposition, a typical example being a checkerboard-pattern assembled from
similar components. To this end, we extend the formulation and associated a posteriori error
bound procedure. Our motivation comes from the analysis of the pressure distribution in plain
journal bearings governed by the RLE. However, the SCRBE approach presented is not limited
to bearings and the RLE, but directly extends to other component-based systems. We show
numerical results for plain bearings to demonstrate the validity of the proposed approach.

AMS subject classifications: 76D08, 35J25, 65N30, 65N55

Key words: Reynolds lubrication equation, static condensation, domain decomposition, model order re-
duction, reduced basis element method, a posteriori error estimation.

1 Introduction

The Static Condensation Reduced Basis Element (SCRBE) method was recently introduced in [12]
as a computational tool to efficiently analyze parametrized large-scale component-based struc-
tures. Such structures — which are composed of a large number of similar or identical parametrized
components — naturally appear in many engineering applications. A building, for example, is
composed of components like rooms, walls, hallways, and staircases; and each component may be
described through parameters like geometry, material constants, and boundary conditions.

The SCRBE method combines two essential ingredients: non-overlapping domain decompo-
sition (resp. substructuring) methods and reduced basis methods. The idea is to employ static
condensation to eliminate the internal (to each subdomain resp. component) degrees of freedom
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in terms of the corresponding boundary or interface degrees of freedom. Evaluating the entries
of the associated Schur Complement System, however, requires numerous evaluations on the sub-
domain, i.e., bubble solves. If standard discretization techniques like finite elements are used to
solve for the bubble functions, this step can be quite expensive — especially if one is interested in
analyzing many different parameter combinations. This is were the reduced basis method comes
into play.

The reduced basis method [9, 21, 22] is a model order reduction technique which allows effi-
cient and reliable reduced order approximations for a large class of parametrized PDEs and is thus
used to approximate the bubble functions. The offline-online computational decomposition allows
to move expensive precomputations to the offline stage, the bubble solves are then performed ef-
ficiently online. Furthermore, rigorous and efficiently evaluable a posteriori bounds have been
developed for the system-level error of the SCRBE approximation with respect to the underlying
finite element approximation [12]. Within the last two years, the SCRBE method has been ex-
tended to also incorporate port reduction [6,7] and has been successfully extended to treat various
engineering problems [11, 13, 23].

We note that the SCRBE method comprises ideas from the Reduced Basis Element (RBE)
method [17, 18] and the classical Component Mode Synthesis (CMS) [5, 10]. The RBE method
employs the reduced basis method to approximate the bubble functions, but couples the compo-
nents through a mortar-type procedure. The CMS employs a static condensation to “couple” the
components, but uses an eigenmodal expansion to approximate the bubble functions. Indeed, the
SCRBE method advantageously combines both approaches: the reduced basis treatment of bubble
functions enables parametric variations of the components, whereas component coupling through
static condensation enables the derivation of rigorous system-level a posteriori error bounds.

In this paper, we employ the SCRBE method to study the pressure distribution within a plain
bearing governed by the Reynolds Lubrication equation (RLE). Our main contribution is to extend
the SCRBE methodology introduced in [12] to consider a more general domain decomposition.
More precisely, in [12] each component is allowed to have at most one neighbor on each port. This
assumption excludes the typical wireframe approximation [4], where more than two components
“meet” at a junction. Here, we consider a two-dimensional rectangular computational domain,
i.e., an unfolded plain bearing, which is decomposed into small rectangular components forming
a checkerboard pattern; the interface thus contains junctions where four components meet. The
wireframe approximation has implications on the definition of the port degrees of freedom as
well as on the a posteriori error bound. We show how to extend the work from [12] to this case
in the sequel. Furthermore, our second contribution is to present an improved, i.e., sharper, a
posteriori error bound for the system-level formulation compared to the one proposed in [12].
Although we consider only a two-dimensional domain with a checkerboard pattern in this paper,
the derivations presented directly extend also to more general two-dimensional and also three-
dimensional wireframe approximations.

This paper is organized as follows. In Section 2 we introduce our specific problem of interest.
We briefly explain the physical background, summarize the derivation of the Reynolds Lubrication
Equation, derive the parametrized weak formulation, and show results for a model plain bearing.
The SCRBE method is discussed in Section 3, where we review the results from [12] and show
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the extension to account for the wireframe approximation. In Section 4, we present the a pos-
teriori error bound formulation for the more general domain decomposition considered in this
paper. Finally, in Section 5 we present numerical results for the model plain bearing introduced in
Section 2.

2 The Reynolds Lubrication Equation

2.1 Motivation and Strong Formulation

The motivation for our work is to study the pressure distribution within a plain bearing. Plain
bearings are the least expensive and simplest type of bearing and appear in almost all industrial
areas. Since they do not contain rolling elements, plain bearings are compact and lightweight
and at the same time have a high load-carrying capacity. The load-carrying capacity, however,
strongly depends on the pressure distribution within the lubricant. Figure 1(a) shows a sketch of
a plain bearing under a hydrodynamic lubrication state, i.e., the journal is rotating. The centerline
of the rotating journal is shifted from the bearing centerline resulting in a gap height sketched
in Figure 1(b). A lubrication wedge forms, resulting in a pressure build-up carrying the load; we
refer to e.g. [3] for a more detailed explanation. Throughout this paper, we assume a hydrodynamic
lubrication state with full-film condition, i.e., the load is carried exclusively by the lubricant and
there is no contact between the journal and outer bearing surface.

0.03m

0.03m

h in 10−5m

1π 2π

1
2
3
4
5
6

(a) (b)

Figure 1: (a) Sketch of journal and outer bearing surface. (b) Gap height as a function of the circum-
ference with maximal eccentricity of 6·10−5 m.

Plain bearings sometimes contain grooves in the bearing surface to help achieve the full-film
condition. It has recently also been shown in experiments and simulations [2,8,15,16] that grooves
or small dents can not only improve the lubrication properties but also the pressure distribution,
thus increasing the lifespan and allowing for a higher load-capacity. The pattern as well as shape
and size of the grooves resulting in an optimal pressure distribution, however, are generally not
known.

In this paper we consider a specific geometric configuration sketched in Figure 2 to derive the
methodology and to subsequently serve as a model problem for the numerical tests. The sketch
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shows the unfolded bearing, i.e., cut open on the left and right boundary, the top and bottom
boundaries thus correspond to the sides of the bearing. We assume that the bearing surface contains
a regular pattern of grooves. To this end, we split the surface into 18×4 equal components, each
containing a groove in the middle. The size and depth of the grooves serve as parameters to
describe the components. Our goal is to develop a numerical method that allows to efficiently
analyze the influence of the grooves on the pressure distribution in the lubricant.

(0,0)

(0.1885,0.02)

Figure 2: Unfolded outer bearing composed of 18×4 components. The size (m) and depth (m) of the grooves
in the middle of each component serve as parameters.

The pressure within the lubricant is governed by the incompressible Navier-Stokes equations

ρ
Du
Dt

=−∇p+µV∆u, div u=0, (2.1)

where ρ is the density, µV the dynamic viscosity, p the pressure, u∈R3 the velocity, and the
material derivative is given by Du

Dt ≡ ∂tu+u1∂xu+u2∂yu+u3∂zu. Given the conditions in a
plain bearing, however, the Navier-Stokes equations can be simplified considerably to arrive at
the Reynolds Lubrication equation [3,20]. To this end, we consider the sketch in Fig. 3 showing a
detail of a plain bearing. We denote the distances of the journal and outer bearing to the center by
h1 and h2 and the corresponding velocities in x-, y-, and z-direction by u1,u2, v1,v2, and w1,w2,
respectively. Under certain assumptions — i.e., (i) incompressibility of the lubricant, (ii) constant
dynamic viscosity µV , (iii) the variation of the height between the bearing parts is small, (iv) the
velocities of the lubricant normal to the bearing is much smaller than the one tangential to the
bearing, and (v) the pressure is constant in the y-direction — we obtain the RLE [3, 20]

∇·( ρh3

12µV
∇p)=u∂x(ρh)+w∂z(ρh)+∂t(ρh), (2.2)

where p(x,z) is the pressure distribution within the lubricant, ρ(x,z)=const the density of the lu-
bricant, µV the dynamic viscosity, h(x,z)=h2(x,z)−h1(x,z) the distance in y-direction between
the journal and outer bearing, and u(x,z) = 1

2 (u2(x,z)+u1(x,z)) and w(x,z) = 1
2 (w2(x,z)+

w1(x,z)) the average velocities of the lubricant in the x- and z- direction, respectively. Note
that the RLE is defined on a two-dimensional domain Ω⊂R2, i.e., the unfolded bearing, and
we thus impose zero Dirichlet boundary conditions on the sides of the bearing (corresponding to
the top and bottom in Figure 2) and periodic boundary conditions where the bearing is cut open
(corresponding to the left and right sides in Figure 2).

In a system level simulation of an engine, for example, the RLE is coupled with a Multibody
simulation (MBS). The motion of the engine parts, e.g. the crankshaft, are computed from the
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Figure 3: The journal and the outer bear-
ing of the plain bearing with their distances
h1,h2 to the center. Furthermore, u1,u2 are
the velocities of the bearing parts in the x-
direction, v1,v2 are the velocities in the y-
direction (height), and w1,w2 are the veloc-
ities in the z-direction.

x
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z
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v1
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h2

MBS, whereas the bearing reactions are computed from the pressure distribution within the bear-
ing governed by the RLE (2.2). In a discrete time simulation setting, the RLE thus needs to be
solved at each timestep: The height h(x,z) and velocities u(x,z) and w(x,z) entering (2.2) are
considered known inputs from the MBS, the pressure distribution p(x,z) is computed, and the
bearing reactions are obtained by integrating the pressure over Ω. The bearing reactions are then
applied to the MBS to step forward in time. A single MBS thus requires numerous solutions of the
RLE. Furthermore, the optimization of the location and size of the grooves in Figure 2 requires
many (optimization) iterations and in turn Mulitbody simulations. Our goal is therefore to develop
a methodology which allows to efficiently solve the RLE.

2.2 Weak Formulation

We first introduce the Hilbert space Xe with H1
0(Ω)⊂ Xe⊂ H1(Ω) where H1(Ω)≡ {v | v∈

L2(Ω),∇v∈ (L2(Ω))2}, H1
0(Ω)≡{v | v∈H1(Ω),v|∂Ω =0}, and L2(Ω) is the space of square

integrable functions over Ω, where Ω is our bounded domain in R2 with Lipschitz continuous
boundary ∂Ω.† The inner product and induced norm associated with Xe are given by (·,·)X and
‖·‖X=

√
(·,·)X, respectively. We assume that the norm ‖·‖X is equivalent to the H1(Ω)-norm and

denote the dual space of Xe by X′e. Furthermore, let D⊂RP be a prescribed compact parameter
set, in which our input parameter µ=(µ1,. . .,µP) resides.

We directly consider a finite element approximation for the infinite-dimensional problem. To
this end, we introduce the piecewise linear conforming finite element space X⊂ Xe. We shall
assume that the space X is sufficiently rich, resulting in typically large N =dim(X), such that
the finite element solutions guarantee a desired accuracy over the whole parameter domain D. In
the reduced basis literature this is usually referred to as the “truth” approximation. We further
recall that the reduced basis approximation shall be built upon – and the reduced basis error thus
evaluated with respect to – the truth solution.

We derive the weak formulation of (2.2) by multiplication with a test function v∈X, integration

†The subscripts “e” denote “exact”.
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by parts, and invoking the boundary conditions to obtain: p∈X satisfies

ã(p,v;h)= f̃ (v;h1,h2,u1,u2,w1,w2,v1,v2), ∀v∈X, (2.3)

where the bilinear and linear forms are given by

ã(w,v;h)=
∫

Ω

h3

12µV
∇p·∇v dx, ∀w,v∈X (2.4)

and

f̃ (v;h1,h2,u1,u2,w1,w2,v1,v2)=
∫

Ω
h

1
2
(u1+u2)∂xv+h

1
2
(w1+w2)∂zv dx

−
∫

Ω

((
u1∂xh1+w1∂zh1−v1

)
−
(
u2∂xh2+w2∂zh2−v2

)
v dx

)
, ∀v∈X, (2.5)

respectively. Note that the density cancels since we consider the full-film condition with ρ constant
and that the material derivative of h1,h2 is given by

∂th2−∂th1=
(
u1∂xh1+w1∂zh1−v1

)
−
(
u2∂xh2+w2∂zh2−v2

)
. (2.6)

We may further simplify (2.3) for our specific problem setting. First, we consider the outer
bearing as the reference coordinate system and thus set the velocities u2 = v2 =w2 = 0. Second,
we assume that the journal rotates but has zero axial or radial velocity; we thus have v1=w1=0.
Third, we note that in the SCRBE approach we never solve (2.3) on the whole domain shown in
Figure 2 at once, but only on the components. We thus approximate the gap height as piecewise
linear on each component, i.e., we use a piecewise linear interpolation of the gap height shown in
Figure 1(b). On each component, we may thus express the gap height as h= h0+hxx, where h0
and hx are parameters which are different for each component along the circumference. Finally,
we need to incorporate the depth of the grooves. The computational domain for one component,
Ωcomp, including the domain of the groove in the middle, Ωgr, is sketched in Figure 4. We thus
introduce hgr such that hgr=0 on Ωcomp\Ωgr and hgr is equal to the depth of the groove on Ωgr.

(0,0)

(0.0105,0.005)

Figure 4: Reference component with triangulation and groove.
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The weak formulation (2.3) thus simplifies to: p∈X satisfies

a(p,v;µ)= f (v;µ), ∀v∈X, (2.7)

where

a(w,v;µ)=
∫

Ω

h3

12µV
∇w·∇v dx, ∀w,v∈X and f (v,µ)=−

∫
Ω

h
2

u1∂xv dx, ∀v∈X, (2.8)

the gap height is linearly interpolated on each component and given by

h(x,z)=h0+hxx+hgr, (2.9)

and the input parameter is defined as µ = {u1,h0,hx,hgr} ∈D ⊂R4. After expanding h(x,z)3

we observe that the bilinear and linear forms satisfy and affine parameter dependence (see [1] for
details) and can be written as

a(w,v;µ)=
Qa

∑
q=1

θ
q
a(µ)aq(w,v), ∀w,v∈X (2.10)

and

f (v;µ)=
Q f

∑
q=1

θ
q
f (µ) f q(v), ∀v∈X (2.11)

where the θ
q
a, f :D→R are parameter dependent functions and the aq : X×X→R and f q : X→R

are parameter-independent bilinear and linear forms, respectively.

2.3 Numerical Example

We present a sample solution of the RLE without grooves to explain the general behavior of
the solution; the case with grooves is discussed in Section 5. We introduce the domain Ω =
[0,0.1885m]×[0,0.02m], i.e. the bearing has unfolded length 0.1885m and width 0.02m, which
is subdivided in 18×4 subdomains; see Fig. 2. We consider the viscosity of the lubricant µV =
0.01Pa·s and velocity u1=4πm/s≈12.57m/s. As discussed in the last section, we also introduce a
piecewise linear interpolation (on each subdomain) of the gap height h(x)=(30+20cos( x

0.1885 ))·
10−6. We thus obtain the pressure distribution sketched in Fig. 5.

We observe that the pressure distribution is point-symmetric and — due to the homogeneous
Dirichlet boundary condition — thus also implies a negative pressure and an average pressure
over the domain (i.e, integral) of zero. The negative pressure is obviously not physically plausi-
ble, since the lubricant cannot carry tensile forces. One option to avoid negative pressures is to
consider a bearing under an external pressure, i.e., we apply nonhomogeneous Dirichlet boundary
conditions and simply shift the solution upward. In practice, however, the pressure distribution
is often “corrected” numerically after the computation in that negative pressures are set to zero
and continuity of the pressure gradient is enforced, see e.g. [19]. The details of this correction
are beyond the scope of this paper and we therefore consider the original solution in the sequel to
derive the SCRBE for the Reynolds Lubrication equation.
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Figure 5: Pressure distribution over the unfolded bearing.

3 Static Condensation Reduced Basis Element Method

We turn to the SCRBE method originally introduced in [12]. Throughout the paper we use the
component mode synthesis terminology: “component” refers to a subdomain of the computational
domain, “system” to a configuration of components, and “ports” to the areas where components
connect. With our application and Figure 2 in mind, we extend the approach presented in [12] to
two-dimensional systems where the components are arranged in a checkerboard pattern. Whereas
a component is allowed to have at most one neighbor on each port in [12], the checkerboard pattern
requires that up to 4 components are connected at ports, i.e., at a crossing-point (see Section 3.1).
The extension requires to redefine the port eigenmodes and static condensation (see Section 3.2)
and subsequently adapt the a posteriori error estimation (see Section 4).

We henceforth consider the following problem defined on a bounded domain Ω with boundary
∂Ω: For a given parameter µ∈D, find u(µ)∈X such that

a(u(µ),v;µ)= f (v;µ), ∀v∈X. (3.1)

We assume that a is symmetric, continuous, and coercive with respect to the X-norm and that f
is linear and bounded. These conditions are obviously satisfied for our model problem defined in
(2.7) and (2.8). We next introduce the domain decomposition before discussing the static conden-
sation method and the incorporation of the reduced basis method.

3.1 Domain Decomposition

We assume that the domain Ω can be decomposed into a set CSYS of interconnected parametrized
components and that each component is associated with a subdomain Ωi with boundary ∂Ωi, such
that Ω =

⋃
i∈CSYS

Ωi with Ωi∩Ωi′ = ∅, for i 6= i′. We denote the restriction of a and f to the
subdomains Ωi by ai = a|Ωi

and fi = f|Ωi
, and note that the parameter vector µ might also be

restricted, i.e, µ=(µ1,. . .,µI)∈D=∏i∈CSYS
Di.
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To simplify the discussion, we consider the specific example sketched in Figure 6: the sample
domain shown in Figure 6(a) is decomposed into four equal components shown in Figure 6(b).
The sample component in Figure 6(b) contains eight local ports LPi, i= 1,.. .,8 which are either

GPCB GPLI

GPCI

GPLB

COM3

COM1

COM4

COM2

(a)

LP5 LP1 LP6

LP8 LP3 LP7

LP2LP4

COM1

(b)

Figure 6: (a) Sample domain Ω⊂R2 decomposed into four equal rectangular components, showing four
kinds of global ports: 4 GPLI, 8 GPLB, 1 GPCI, 8 GPCB. (b) A local component with 8 local ports (LP), 4 lines
LPs and 4 point LPs.

a line or a (corner) point. We denote the set of LPs on a component by PCOM and the number
of LPs on component i by nLP

i . In the sequel, the distinction between line LPs (LP1,. . .,LP4) and
point LPs (LP5,. . .,LP8) will be important. We thus also introduce the set of line LPs and corner
LPs denoted by P l

COM and P c
COM, respectively; note that PCOM =P l

COM∪P c
COM. We denote

the portion ∂Ωi associated to a specific LP by ΓLP, for a line LP we denote the (closed) domain
including the two neighboring point LPs by ΓLP, e.g., ΓLP1 contains the two corner points LP5
and LP6. Each local port is associated to a unique global port GP∈PSYS of the same kind, i.e.,
line to line and point to point. We therefore introduce the mapping π which maps a specific LP of
component i to a GP, π :PCOM×CSYS→PSYS, π(LP,i)=GP, as well as the pseudo inverse map
π−1

i which maps a GP to a LP on component i. We denote by PSYS the set and by nGP the number
of global ports which have no intersection with the homogeneous Dirichlet boundary conditions
of the system. In Figure 6(a) we may distinguish four different GPs: (i) a line GP lying in the
interior of the domain Ω, denoted by GPLI; (ii) a line GP lying on the boundary ∂Ω, denoted by
GPLB; (iii) a point GP lying in the interior of Ω, denoted by GPCI; and (iv) a point GP lying
on the boundary ∂Ω, denoted by GPCB; in total, the system sketched in Figure 6(a) has 21 GPs.
As opposed to the framework introduced in [12], we observe that a component may have up to
three neighbors on a point GP. We denote the domain associated to a specific GP by ΓGP and
— following the notation for the LPs — we use ΓGP for a line GP including the two neighboring
points.

We present a simple example with only 4 components to illustrate the above concepts. In
Figure 7 we sketch an unfolded bearing consisting of only 4 components with homogeneous
Dirichlet conditions on the top and bottom boundaries and periodic boundary conditions on the
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left and right boundary. The global ports on the Dirichlet boundary are marked with a dashed
line, the components and global ports are numbered in consecutive order. Note that the global
ports on the left and right boundary coincide because of the periodic boundary condition. Overall
we thus have: 6 GPLI, 0 GPLB, 2 GPCI, 0 GPCB. In Table 1 we show the corresponding map
π :PCOM×CSYS→PSYS, π(LP,i)=GP from the sample component shown in Figure 6(b) to the
system level configuration in Figure 7.

(LP,i) GP (LP,i) GP (LP,i) GP (LP,i) GP
1,1 1 1,2 6 1,3 − 1,4 −
2,1 2 2,2 3 2,3 7 2,4 8
3,1 − 3,2 − 3,3 1 3,4 6
4,1 3 4,2 2 4,3 8 4,4 7
5,1 4 5,2 5 5,3 − 5,4 −
6,1 5 6,2 4 6,3 − 6,4 −
7,1 − 7,2 − 7,3 5 7,4 4
8,1 − 8,2 − 8,3 4 8,4 5

Table 1: Mapping π(LP,i)=GP for configuration in Fig. 7 with 4 components and 8 GPs. Note that some
LPs are mapped to a GP with homogeneous Dirichlet boundary conditions, which is denoted by −.

GP3

GP4
GP1

GP5

GP2

GP6

GP8 GP7

GP4

GP3

GP8COM3

COM1

COM4

COM2

Figure 7: All global ports in a simple configuration with ho-
mogeneous conditions at top/bottom (dashed) and a peri-
odic conditions left/right.

We next recall the finite element
approximation space X of dimension
dim(X) = N . We assume that the tri-
angulation over X honors the decomposi-
tion into components defined above. To
this end, we define (i) the restriction of
functions in X to the ith component as Xi;
(ii) the restriction to the ith component
with homogeneous Dirichlet boundary con-
ditions on each ΓLP, LP∈PCOM, by Xi,0;
and (iii) the restriction to a global port as
X(ΓGP), which — in the case of a line GP
— contains also the neighboring point GPs,
whereas X(ΓGP) denotes the restriction to
GP without the neighboring points. In the case of a point GP, X(ΓGP) simply represents the
single node of the triangulation lying on GP. Finally, we denote the degrees of freedom on a GP
by NGP =dim(X(ΓGP))

‡; for a point GP we thus simply have NGP = 1. Finally, considering a
specific component i with nLP

i local ports, we denote the overall number of degrees of freedom by
N LP

i .
Although we restrict our attention to two-dimensional domains and the specific decomposition

‡Note that for a line GP with two neighboring points we have NGP =dim(X(ΓGP))=dim(X(ΓGP))−2, i.e. we do
not include the two boundary points into the count for the degrees of freedom
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sketched in Figure 6(a), the approach also extends for example to three-dimensional domains
composed out of cuboids.

3.2 Static Condensation

3.2.1 Eigenmodes

Following [12], we express the degrees of freedom on ΓGP in terms of an eigenfunction expansion.
However, given the more general domain decomposition introduced above, we need to adjust the
definitions of the eigenfunctions and their harmonic extension to our setting. Furthermore, we
need to strictly distinguish between point and line ports. We start with the latter: introduce a
basis for the line ports, where the basis functions consist of the complete set of eigenvectors,
{χk ∈X0(ΓGP) : 1≤ k≤NGP}, where X0(ΓGP)= {v∈X(ΓGP);v|∂ΓGP

=0}, associated with the
generalized eigenvalue problem∫

ΓGP

∇χk ·∇v=λk

∫
ΓGP

χGP,k v, ∀v∈X0(ΓGP), (3.2)

with ‖χk‖L2(ΓGP)
=1, and the λk∈R denote the real positive eigenvalues. We elliptically lift these

line port eigenmodes to the interior of neighboring components to obtain a set of interface func-
tions ΨGP,k, k=1,.. .,NGP. Note that ΨGP,k has support only over the (at most) two components,
which connect at the line GP and is zero on all other components. We denote the restriction of
ΨGP,k to a neighboring component i by ψLP,i,k∈Xi, which is computed from∫

Ωi

∇ψLP,i,k ·∇v=0, ∀v∈Xi;0, (3.3)

ψLP,i,k =χk, on ΓLP (3.4)

ψLP,i,k =0, on ΓLP′ , LP′∈PCOM\LP. (3.5)

Note that — thanks to the definition of the port basis functions χk with homogeneous Dirichlet
boundary conditions on the line GP — we obtain consistent boundary conditions for ψLP,i,k on Ωi.
I.e, ψLP,i,k is equal to χk on ΓLP and zero on all other LPs.

For the point GPs, we simply define “global” piecewise-linear hat functions, which are defined
on the wireframe, i.e., we set ΨGP=1 at the corresponding GP and to zero at the neighboring point
GPs. In Figure 6(a) this would correspond to setting (say) ΨGP = 1 on GPCI and to zero on the
eight point GPs on the boundary. The interface function for a point GP thus has support on up to
four components.

3.2.2 Bubble Functions and Schur Complement System

Given the definition of the interface functions, we can follow the approach presented in [12] to
define the bubble functions and subsequently set up the Schur Complement System (SCS). We
express the truth solution of (3.1) in terms of bubble and interface functions as

u(µ)= ∑
i∈CSYS

bi(µ)+ ∑
GP∈PSYS

NGP

∑
k=1

UGP,k(µ)ΨGP,k (3.6)
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where bi(µ)∈Xi;0 for each i∈CSYS, and the UGP,k(µ) with 1≤ k≤NGP and GP∈PSYS are the
coefficients of the interface functions. We like to stress that the bubble functions live in the truth
finite element space and that the number of coefficients on one global port is equal to the number
of degrees of freedom on this particular port. We next insert (3.6) into (3.1) and test on the bubble
space of component i, Xi;0, to obtain

ai

(
bi(µ)+ ∑

LP∈PCOM

nπ(LP,i)

∑
k=1

Uπ(LP,i),k(µ)ψLP,i,k,v;µ

)
= fi(v;µ), ∀v∈Xi;0. (3.7)

It follows from linearity and superposition that we can express bi(µ) as

bi(µ)=bi, f (µ)+ ∑
LP∈PCOM

nπ(LP,i)

∑
k=1

Uπ(LP,i),k(µ)bLP,i,k(µ), (3.8)

where bi, f (µ)∈Xi;0 satisfies

ai(bi, f (µ),v;µ)= fi(v;µ), ∀v∈Xi;0, (3.9)

and bLP,i,k(µ)∈Xi;0, defined by N LP
i subproblems, satisfies

ai(bLP,i,k(µ),v;µ)=−ai(ψLP,i,k,v;µ), ∀v∈Xi;0. (3.10)

We note that the previous three equations are well-posed, since the bilinear form a restricted
to component i is coercive and continuous on Xi;0 due to the homogeneous Dirichlet boundary
conditions. Plugging (3.8) into (3.6) we obtain

u(µ)= ∑
i∈CSYS

bi, f (µ)+ ∑
GP∈PSYS

NGP

∑
k=1

UGP,k(µ)ΦGP,k(µ), (3.11)

where
ΦGP,k(µ)=ΨGP,k+ ∑

i∈ωGP

bπ−1
i (GP),k(µ), (3.12)

and ωGP denotes the components over which ΨGP has support. Defining the “skeleton space”,
XS (µ)≡span{ΦGP,k(µ) : 1≤k≤NGP, ∀GP∈PSYS}, inserting (3.11) into (3.1), and testing with
functions in XS we finally obtain the SCS

∑
GP∈PSYS

NGP

∑
k=1

UGP,k(µ)a(ΦGP,k(µ),v;µ)= f (v;µ)− ∑
i∈CSYS

a(bi, f (µ),v;µ), v∈XS (µ). (3.13)

Since the computation of the truth quantities bi, f (µ)∈Xi;0 from (3.9) and bLP,i,k(µ)∈Xi;0 from
(3.10) has to be performed for every new parameter µ, we follow [12] and introduce associated
reduced basis approximations. To this end, we introduce reduced basis spaces X̃ f ,i;0 and X̃LP,i,k;0
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for the bubble functions that are constructed using a Greedy procedure [24]. We then define the
reduced basis approximation b̃i, f ∈ X̃ f ,i;0 to bi, f (µ) such that

ai(b̃i, f (µ),v;µ)= fi(v;µ), ∀v∈ X̃ f ,i;0, (3.14)

and the reduced basis approximation b̃LP,i,k(µ)∈XLP,i,k;0 to bLP,i,k(µ) such that

ai(b̃LP,i,k(µ),v;µ)=−ai(ψLP,i,k,v;µ), ∀v∈ X̃LP,i,k;0. (3.15)

Following the same steps as above and appropriately replacing the truth quantities by their reduced
basis counterparts, we define a reduced basis “skeleton space”, X̃S (µ)≡span{Φ̃GP,k(µ) : 1≤k≤
NGP, ∀GP∈PSYS}, to obtain the reduced basis SCS

∑
GP∈PSYS

NGP

∑
k=1

ŨGP,k(µ)a(Φ̃GP,k(µ),v;µ)= f (v;µ)− ∑
i∈CSYS

a(b̃i, f (µ),v;µ), v∈ X̃S (µ). (3.16)

We note that the number of coefficients ŨGP,k(µ) with 1≤ k≤NGP and GP∈PSYS and thus the
degrees of freedom of the reduced basis SCS is equivalent to the number of coefficients of the
(original) truth system (3.13). However, replacing the truth bubble functions with their reduced
basis approximations allows to invoke an offline-online decomposition and thus an online-efficient
procedure to assemble (3.16). For the well-posedness of (3.16) we refer the reader to [12].

3.2.3 Computational Procedure

We choose Φ̃GP′,k′ , 1≤ k′≤NGP and GP′ ∈PSYS, as test functions in (3.16) to obtain the linear
algebraic system

Ã(µ)Ũ(µ)= F̃(µ) (3.17)

of size nsc≡∑GP∈PSYS
NGP, where Ũ(µ)∈Rnsc is the vector of coefficients Ũk,GP(µ), the ma-

trix Ã(µ)∈Rnsc×nsc has entries Ã(GP′,k′),(GP,k)(µ)≡ a(Φ̃GP′,k′(µ),Φ̃GP,k(µ);µ), 1≤k,k′≤NGP,
GP,GP′ ∈ PSYS, and the right-hand side F̃(µ) ∈Rnsc has entries F̃GP′,k′(µ)≡ f (Φ̃GP′,k′ ;µ)−
∑i∈CSYS

a(bi, f (µ),Φ̃GP′,k′ ;µ),1≤ k′≤NGP, GP′∈PSYS.
The matrix Ã(µ) and vector F̃(µ) can be assembled using a local to global mapping. To this

end, we introduce a “local stiffness matrix” Ãi∈RN
LP
i ×N LP

i and a “local load vector” F̃i∈RN
LP
i

for component i given by

Ãi
(k′,LP′),(k,LP)(µ) ≡ ai(ψLP,i,k+ b̃LP,i,k,ψLP′,i,k′+ b̃LP′,i,k′ ;µ),

F̃i
k′,LP′(µ) ≡ fi(ψLP′,i,k′+ b̃LP′,i,k′ ;µ)−ai(b̃i, f (µ),ψLP′,i,k′+ b̃LP′,i,k′ ;µ),

for 1≤ k≤nπ(LP,i), ∀LP∈CSYS, and 1≤ k′≤nπ(LP′,i), ∀LP′∈CSYS. The assembly then follows
directly from the local to global mapping GP=π(LP,i).
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4 A Posteriori Error Estimation

We next turn to the a posteriori error estimation. The goal of this section is to derive a bound
for the error U(µ)−Ũ(µ), i.e., between the solution of the reduced basis SCS (3.16) and the
truth SCS (3.13). The derivation is based on the results in [12]. Our contribution is to extend the
methodology to the more general domain decomposition introduced above.

4.1 Preliminaries

The error in the reduced SCS is due to the reduced basis approximation of the bubble functions.
We therefore introduce the residuals r f ,i(·;µ) : Xi;0→R given by

r f ,i(v;µ)≡ fi(v;µ)−ai(b̃i, f (µ),v;µ), ∀v∈Xi;0, (4.1)

and rLP,i,k(·;µ) : Xi;0→R, 1≤ k≤nπ(LP,i), LP∈PCOM, given by

rLP,i,k(v;µ)≡−ai(ψLP,i,k+ b̃LP,i,k(µ),v;µ), ∀v∈Xi;0. (4.2)

It then follows from the standard reduced basis a posteriori error bounds (see e.g. [21]) that the
error between bi, f (µ) from (3.9) and its reduced basis approximation b̃i, f (µ) given by (3.14) sat-
isfies

‖bi, f (µ)− b̃i, f (µ)‖Xi≤
‖r f ,i(·;µ)‖X′

αLB
i (µ)

, (4.3)

where ‖r f ,i(·;µ)‖X′ is the dual norm of the residual (4.1) and αLB
i (µ) is a lower bound of the

coercivity constant, αi(µ)≡infv∈Xi;0
ai(v,v;µ)
‖v‖2

Xi

, such that 0<αLB
i (µ)≤αi(µ), ∀µ∈D. The coercivity

lower bound can be computed using the Successive Constraint Method [14]. Furthermore, the
error between bLP,i,k(µ) from (3.10) and its reduced basis approximation b̃LP,i,k(µ) given by (3.15)
satisfies

‖bki(µ)− b̃ki(µ)‖Xi≤
‖rLP,i,k(·;µ)‖X′i

αLB
i (µ)

, (4.4)

where ‖rLP,i,k(·;µ)‖X′i
is the dual norm of the residual (4.2). For notational convenience, we define

the associated energy norm bounds by

∆ f ,i(µ)≡
‖r f ,i(·;µ)‖X′√

αLB
i (µ)

and ∆LP,i,k(µ)≡
‖rLP,i,k(·;µ)‖X′i√

αLB
i (µ)

. (4.5)

It then follows that the error in a single entry of the local stiffness matrix for a specific com-
ponent i is bounded by

|Ai
(LP′,k′),(LP,k)(µ)−Ãi

(LP′,k′),(LP,k)(µ)|≤∆LP,i,k(µ)·∆LP′,i,k′(µ), (4.6)
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and the error of the local stiffness matrix measured in the Frobenius norm, ‖·‖F, thus satisfies

‖Ai(µ)−Ãi(µ)‖2
F≤ ∑

LP∈PCOM

nπ(LP,i)

∑
k=1

∑
LP′∈PCOM

nπ(LP′ ,i)

∑
k′=1

(
∆LP,i,k(µ)∆LP′,i,k′(µ)

)2

=

(
∑

LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

. (4.7)

We refer the reader to [12] for the proof.

4.2 SCS Error Bound

We first consider the error in the statically condensed system matrix. The nsc system level de-
grees of freedom each correspond to a specific interface degree of freedom k, 1≤ k≤NGP, i.e.,
interface function, on a global port GP, GP∈PSYS. Given the inverse map (LP,i) =π−1

i (GP)
defined previously, which maps a global port to a LP on component i, we can thus associate
each system level degree of freedom to a local port degree of freedom of a component, i.e.,
(GP,k)→ (π−1

i (GP),k) = (LP,i,k), where we assume a consistent numbering of the interface
functions on the GPs and LPs. We note, however, that a global port can map onto up to four LPs
on four components. To obtain a bound for the (global) SCS matrix, we thus need to keep track
of how many LPs and thus components are “connected” at each GP in order to correctly sum up
their contributions.

To this end, we define the error in the SCS matrix, E(µ)=A(µ)−Ã(µ), with entries E`,`′(µ),
1≤ `,`′≤ nsc. The goal in this section is to relate ‖A(µ)−Ã(µ)‖2

F to local errors ‖Ai(µ)−
Ãi(µ)‖2

F and to subsequently invoke (4.7) to derive efficiently computable error bounds for ‖A(µ)−
Ã(µ)‖2

F.
We start to analyze the contributions of E`,`′(µ) and first note that an entry E`,`′(µ) is nonzero

only if the two GP degrees of freedom associated to ` and `′ have joint support. Moreover, we can
group the SCS degrees of freedom in three sets based on the number of components on which the
associated GPs have joint support: 1,2 or 4 components. We distinguish the following three cases
(cf. Figure 6(a)):

1. Set S1: joint support on one component. This is the case for entries (`,`′), which are both
associated to different line GPs, i.e., GP 6=GP′. In the previous example depicted in Fig. 7
there are no such global ports.

2. Set S2: joint support on two components. This is the case for entries (`,`′), which are both
associated to the same line GP, i.e., GP=GP′, and for entries (`,`′), where one entry is
associated to a line GP and the other entry is associated to a point GP. Referring to Fig. 7
such global ports are GP,GP′∈{1,2,3,6,7,8}.

3. Set S4: joint support on four components. This is the case for entries (`,`′), which are both
associated to point GPs and so `= `′. Referring to Fig. 7 such global ports are GP=GP′∈
{4,5}.
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We note that a finer distinction would be possible by explicitly accounting for line and point
GPs on the boundary. However, the classification introduced above suffices for our purpose.

Since the union of the sets S1, S2, and S4 contains all possible interactions and thus nonzero
entries of E(µ), we can write

‖E(µ)‖2
F =

nsc

∑
`,`′=1

E`,`′(µ)
2= ∑

`,`′∈S1

E`,`′(µ)
2+ ∑

`,`′∈S2

E`,`′(µ)
2+ ∑

`,`′∈S4

E`,`′(µ)
2. (4.8)

We first focus on the set S2. We know that for `,`′∈S2 each entry of A(µ) and Ã(µ) is assem-
bled from a sum of two local stiffness matrices. Let `=(GP,k), we introduce — for notational
convenience — the mapping Ji that maps `=(GP,k) to the corresponding (LP,k) on component
i (note that Ji is in fact already defined through the previously introduced mapping π resp. π−1

i ).
We can thus write, for all `,`′∈S2,

E`,`′(µ)
2=
(
A`,`′(µ)−Ã`,`′(µ)

)2

=
(
A

i1
Ji1 (`),Ji1 (`

′)(µ)−Ã
i1
Ji1 (`),Ji1 (`

′)(µ)+A
i2
Ji2 (`),Ji2 (`

′)(µ)−Ã
i2
Ji2 (`),Ji2 (`

′)(µ)
)2,

≤2
(
|Ai1
Ji1 (`),Ji1 (`

′)(µ)−Ã
i1
Ji1 (`),Ji1 (`

′)(µ)|
2+|Ai2

Ji2 (`),Ji2 (`
′)(µ)−Ã

i2
Ji2 (`),Ji2 (`

′)(µ)|
2)

=2
2

∑
m=1
|Aim
Jim (`),Jim (`′)(µ)−Ã

im
Jim (`),Jim (`′)(µ)|

2, (4.9)

where we used the inequality (a+b)2≤ 2(a2+b2). We can proceed similarly for the set S4 by
using the inequality (a+b+c+d)2≤4(a2+b2+c2+d2) to bound the left hand side of (4.8) by

‖A(µ)−Ã(µ)‖2
F≤ ∑

`,`′∈S1

|Ai
Ji(`),Ji(`′)

(µ)−Ãi
Ji(`),Ji(`′)

(µ)|2

+2 ∑
`,`′∈S2

2

∑
m=1
|Aim
Jim (`),Jim (`′)(µ)−Ã

im
Jim (`),Jim (`′)(µ)|

2

+4 ∑
`,`′∈S4

4

∑
m=1
|Aim
Jim (`),Jim (`′)(µ)−Ã

im
Jim (`),Jim (`′)(µ)|

2. (4.10)

It remains to bound the right hand side of (4.10) in terms of the a posteriori error bound introduced
in the last section. We first note that we can bound the sum of the errors over all entries of the
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component stiffness matrices and all components using (4.7) by

∑
`,`′∈S1

|Ai
Ji(`),Ji(`′)

(µ)−Ãi
Ji(`),Ji(`′)

(µ)|2

+1 ∑
`,`′∈S2

2

∑
m=1
|Aim
Jim (`),Jim (`′)(µ)−Ã

im
Jim (`),Jim (`′)(µ)|

2

+1 ∑
`,`′∈S4

4

∑
m=1
|Aim
Jim (`),Jim (`′)(µ)−Ã

im
Jim (`),Jim (`′)(µ)|

2

= ∑
i∈CSYS

‖Ai(µ)−Ãi(µ)‖2
F

(4.7)
≤ ∑

i∈CSYS

(
∑

LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

. (4.11)

Second, recalling the definition of the set S2 we can bound the sum of the errors over S2 using

∑
`,`′∈S2

2

∑
m=1
|Aim
Jim (`),Jim (`′)(µ)−Ã

im
Jim (`),Jim (`′)(µ)|

2≤ ∑
i∈CSYS

∑
LP∈P l

COM

(nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+ ∑
i∈CSYS

∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∑
LP′∈P c

COM

nπ(LP′ ,i)

∑
k′=1

(
∆LP,i,k(µ)∆LP′,i,k′(µ)

)2. (4.12)

Finally, since S4 contains only contributions from two point GPs (resp. LPs) we have similarly

∑
`,`′∈S4

4

∑
m=1
|Aim
Jim (`),Jim (`′)(µ)−Ã

im
Jim (`),Jim (`′)(µ)|

2≤ ∑
i∈CSYS

∑
LP∈P c

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
4. (4.13)

It thus follows from (4.10) by invoking (4.11), (4.12), and (4.13) that the error in the SCS stiffness
matrix error is bounded by

‖A(µ)−Ã(µ)‖2
F≤ ∑

i∈CSYS

(
∑

LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+1 ∑
i∈CSYS

∑
LP∈P l

COM

(nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+1 ∑
i∈CSYS

∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∑
LP′∈P c

COM

nπ(LP′ ,i)

∑
k′=1

(
∆LP,i,k(µ)∆LP′,i,k′(µ)

)2

+3 ∑
i∈CSYS

∑
LP∈P c

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
4. (4.14)

We summarize this result in

Lemma 4.1. For any µ∈D, the error in the right-hand side and the stiffness matrix of the Schur
Complement System satisfies ‖F(µ)−F̃(µ)‖2≤σ1(µ) and ‖A(µ)−Ã(µ)‖F≤σ2(µ), where

σ1(µ)
2≡2 ∑

i∈CSYS

∆ f ,i(µ)
2

 ∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2+2 ∑

LP∈P c
COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2

, (4.15)
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and

σ2(µ)
2≡ ∑

i∈CSYS

{(
∑

LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+ ∑
LP∈P l

COM

(nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2

+ ∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∑
LP′∈P c

COM

nπ(LP′ ,i)

∑
k′=1

(∆LP,i,k(µ)∆LP′,i,k′(µ))
2+3 ∑

LP∈P c
COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
4

}
.

(4.16)

Proof. The result (4.16) directly follows from our derivation leading up to (4.14). The proof
for (4.15) follows similar arguments and is thus omitted.

We next introduce the smallest eigenvalue λ̃min(µ)> 0 of the reduced basis SCS stiffness
matrix Ã(µ). Following the idea presented in [12], Corollary 5.5, we propose an a posteriori
error bound for ‖U(µ)−Ũ(µ)‖2 in

Lemma 4.2. We have ‖(A(µ)−Ã(µ))Ũ(µ)‖2≤σ3(µ), where

σ3(µ)
2≡ ∑

i∈CSYS

(
∑

LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)(

∑
LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)|ŨJ −1
i (LP,k)(µ)|

)2

+ ∑
i∈CSYS

(
∑

LP∈P l
COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)(

∑
LP∈P l

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)|ŨJ −1
i (LP,k)(µ)|

)2

+ ∑
i∈CSYS

(
∑

LP∈P l
COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)(

∑
LP∈P c

COM

nπ(LP,i)

∑
k=1

(∆LP,i,k(µ)|ŨJ −1
i (LP,k)(µ)|)

2
)

+3 ∑
i∈CSYS

∑
LP∈P c

COM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2(∆LP,i,k(µ)|ŨJ −1

i (LP,k)(µ)|)
2, (4.17)

and the inverse operator J −1
i maps an LP degree of freedom (LP,k) of component i to a global

entry in the SCS solution `=(GP,k).

Proof. The first part of the proof, i.e., obtaining a bound for ‖(Ai(µ)−Ãi(µ))Ũi(µ)‖2
2, follows

directly from the proof of Corollary 5.5 in [12]. However, when summing up the contributions
over all components i∈CSYS, we again consider the set S1, S2, and S4 separately and bound the
terms following the ideas in (4.10)–(4.14) to arrive at (4.17).

Finally, we obtain the bound for the system level error in

Proposition 4.1. If λ̃min(µ)−σ2(µ)>0, the error, ‖U(µ)−Ũ(µ)‖2, satisfies for all µ∈D

‖U(µ)−Ũ(µ)‖2≤∆U(µ)≡ σ1(µ)+σ3(µ)+‖F̃(µ)−Ã(µ)Ũ(µ)‖2

λ̃min(µ)−σ2(µ)
. (4.18)
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Proof. The proof follows directly from the proof of Proposition 4.3 in [12] and invoking Lemma 4.1
and 4.2.

Remark 4.1. We can obtain a much simpler but slightly more conservative bound for ‖A(µ)−
Ã(µ)‖F by assuming that a component always has the maximum possible number of neighbors
per port. Since an interior point GP is connected to four components, we directly obtain the bound

‖A(µ)−Ã(µ)‖F≤
{

4 ∑
i∈CSYS

(
∑

LP∈PCOM

nπ(LP,i)

∑
k=1

∆LP,i,k(µ)
2
)2
}1/2

(4.19)

instead of (4.16).

5 Numerical Results

We return to our application introduced in Section 2. We consider the unfolded bearing sketched
in Figure 2, which is composed of 18×4 similar components Ωi; we thus have 72 components. We
recall the governing equation (2.7) and the input parameter µ={u1,h0,hx,hgr}∈D⊂R4, where the
parameter domain is given byD=[12m/s,13m/s]×[10−5m,5×10−5m]×[−4×10−5,4×10−5]×
[0.5×10−5m,1.5×10−5m] with the additional constraint that h0+hx

x
∆x ∈ [10−5m,5×10−5m],

where x∈ [0,∆x] and ∆x is the component size in the x-direction, see Fig. 2. For completeness
we note that x is shifted by x−k·∆x, k=0,.. .,17 according to the position of the component. The
dynamic viscosity is set to µV = 0.01Pa·s for all results. We next consider a single component
with the groove in the middle sketched in Figure 4 and introduce a piecewise linear finite element
approximation subspace of dimension dim(Xi)=480.

In the offline stage, we first compute the eigenmodes and their harmonic extensions following
the procedure outlined in Section 3.2.1. The reduced basis spaces X̃ f ,i;0 and X̃LP,i,k;0 for the bubble
functions introduced in Section 3.2.2 are constructed using a Greedy procedure [24]. To this end,
we introduce a regular 7×5×9×4 train sample Ξtrain of size ntrain=1568 (we exclude parameters
in the training set where the constraint on h0+hx

x
∆x is not fulfilled) and stop the Greedy procedure

when the desired relative error tolerance εen
rel=1E−2 is reached.

We next turn to the online stage and consider the specific parameter value u1=4πm/s and hgr=
10−5m. Note that the parameters h0 and hx change for each component along the circumference
of the bearing to model the gap height sketched in Figure 1(b). In Figure 8(a) and (b) we plot the
solution of the reduced basis SCS projected onto the (system level) finite element space X and the
error between the reduced basis SCS solution and a finite element (system level) solution (i.e., on
the space X), respectively. We observe that the SCRBE solution is very close to the finite element
solution: the relative L∞-norm of the error is 1.6E−4 and the relative H1-norm 6.2E−5. We also
observe from Figure 8(a) that the influence of the grooves on the pressure is clearly visible

To assess the overall quality of the SCRBE solution and SCRBE error bounds, we introduce
a regular test sample Ξtest of size ntest = 99. For the test sample, we also consider different gap
heights by varying the amplitude and the eccentricity of the bearing. We again first compare the
SCRBE solution to a finite element solution: the maximum relative L∞ error over Ξtest is 2.4E−4
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(a) (b)

Figure 8: (a) SCRBE solution and (b) error between finite element and SCRBE solution.

and the maximum relative H1 error is 6.9E−5 showing that the reduced basis SCS solution is very
accurate over the parameter domain. We next compute the maximum absolute and relative system
level a posteriori error bound (4.18) presented in Table 2. We also compute an a posteriori error
bound following Remark 4.1, i.e., bounding the Frobenius norm error of the component stiffness
matrices by assuming the maximum number of neighbors for all ports. This bound is denoted with
a hat and presented in the right two columns of Table 2. We observe that we obtain a very good
accuracy for both bounds and that the latter bound is approximately 50% larger than the more
elaborate bound.

∆U
max ∆U

max/‖Ũ(µ)‖2 ∆̂U
max ∆̂U

max/‖Ũ(µ)‖2

1.1E+4 8.3E−4 1.7E+4 1.3E−3

Table 2: Maximum absolute and maximum relative error bound over Ξtest.

We finally comment on the computational times. The offline stage for the SCRBE method
requires 3050s, the online solution including the computation of the a posteriori error bound takes
5.5s (assembly≈3s, SCS-solve≈0.07s, and bound computation≈2s)§. In contrast, the assembly
and solution of the finite element approximation requires approximately 14s resulting in an overall
speed-up of ≈ 3. However, this is not surprising given the fairly small dimension of our model
problem. In fact, we expect that the efficiency of the method improves considerably as the ratio
of the “internal”, i.e., statically condensed, degrees of freedom to the port degrees of freedom
increases.

§All computations are performed on an Intel R© i5 with MATLAB R© 7.13
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6 Conclusions

We presented a static condensation reduced basis element method for problems where the domain
decomposition results in several components being connected at a single port, a typical example
being a checkerboard pattern. Although our work was motivated by the Reynolds Lubrication
equation governing the pressure distribution in a plain bearing, the methodology directly extends
to other physical problem requiring a similar domain decomposition.

For this case, we proposed a new eigenfunction expansion to represent the port degrees of
freedom. Here, we had to distinguish between ports represented by lines and corners, and also
guarantee consistent boundary conditions for the harmonic extension of the eigenfunctions into
the component domain. Furthermore, we derived a system level a posteriori error bound, which
takes the number of components connected at each port explicitly into account.

It turns out that the efficiency of the method strongly depends on the ratio between the in-
ternal and port degrees of freedom of the components. In this sense, the checkerboard pattern
considered in this paper admittedly presents a “difficult” problem in terms of computational gain.
However, the extension of the static condensation reduced basis element method to such problems
also allows for a wider applicability in the engineering context.
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