
Numerical Discretization of Coupling 
Conditions by High-Order Schemes

Mapundi K. Banda,  Axel-Stefan Häck  and  Michael Herty

Institut für 
Geometrie und Praktische Mathematik
Templergraben 55, 52062 Aachen, Germany

Date: September 8, 2015.
University of Pretoria, Pretoria, South Africa mapundi.banda@up.ac.za .
RWTH Aachen University, Aachen, Germany; haeck@igpm.rwth-aachen.de.
RWTH Aachen University, Aachen, Germany; herty@igpm.rwth-aachen.de.

S 
E 

P 
T 

E 
M

 B
 E

 R
   

  2
 0

 1
 5

 
P 

R 
E 

P 
R 

I N
 T

   
  4

 3
 1



NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY

HIGH-ORDER SCHEMES

MAPUNDI K. BANDA, AXEL-STEFAN HÄCK, AND MICHAEL HERTY

Abstract. We consider numerical schemes for 2× 2 hyperbolic conservation laws on
networks coupled by possibly nonlinear coupling conditions at nodes of a network. We
develop high-order finite volume discretizations including coupling conditions. The
reconstruction of the fluxes at the node is obtained using derivatives of the parame-
terized algebraic conditions imposed at the nodal points in the network. Numerical
results illustrate the expected theoretical behavior.
35R02, 35Q35, 35F30
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1. Introduction

We are interested in the high order numerical discretization of flow problems on net-
works where the dynamics are governed by 2× 2 systems of nonlinear hyperbolic partial
differential equations. Among the many examples where such systems arise are traffic
flow [22, 23, 27, 29], production networks [19, 21, 28], telecommunication networks [20],
gas flow in pipe networks [2, 9–11, 13, 14] or water flow in canals [3, 4, 26, 33]. Mathe-
matically, flow problems on networks are boundary value problems where the boundary
value is implicitly defined by a coupling condition. This condition is either physically
or mathematically motivated and may consist of algebraic conditions coupling the flow
in different arcs or may consist of ordinary differential equations. We are interested in
finite–volume methods to resolve the hyperbolic dynamics. Most of the available finite
volume methods solve the coupling condition explicitly [1, 6–8]. For the evolving state
at the node, a Godunov–type scheme [1] or kinetic scheme [6] is applied to determine
the fluxes at the cell interface. Those schemes are explicit in time and therefore the
dynamics on different arcs decouple contrary to an implicit discretization (in time) [31].

We develop a second–order finite volume scheme for general 2× 2 hyperbolic systems
on networks. The crucial point is the derivation of a suitable numerical flux at the
nodal point where we apply high order reconstruction using temporal derivatives of the
state at the node. We use a characteristic decomposition of the temporal derivative
of the solution at the nodal point and estimate the outgoing information using spatial
derivatives. This procedure has been applied to (pure) boundary value problems in the
context of finite volumes for example in [37–39] and mimics the Cauchy–Kowalewski
theorem for sufficiently smooth solutions. We show that the derived scheme coincides
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2 MAPUNDI K. BANDA, AXEL-STEFAN HÄCK, AND MICHAEL HERTY

with a second–order discretization in the case of two connected arcs, we validate the
discretization by reformulating a classical boundary value problem using coupling con-
ditions and we present numerical results for gas flow in pipe networks. The only other
approach to high order coupling conditions on networks which we are aware of is [5].
Therein, additional ghost cells for each connected arc are introduced to recover a solu-
tion and the information on the temporal derivatives is obtained without characteristic
decomposition. We discuss the relation between the schemes in Section 3.

2. Motivation and numerical scheme

As in [1,2,13,14] we consider the following model for flows on graphs. This situation
covers examples in gas pipe networks, traffic flow and water flow in open canals. We
consider a single vertex connected to n arcs j = 1, . . . , n. The arcs extend to infinity
hence they are parameterized by the interval [0,∞). The vertex is located at x = 0 for
all arcs.

For simplicity of the presentation, we assume that the flux f is the same on all
connected arcs. Let f ∈ C4(R2;R2) and uj(x, t) : R

+
0 ×R

+
0 → R

2 for j = 1, . . . , n where
uj denotes the conserved variables on arc j. The dynamics of uj are governed by

∂tuj + ∂xf(uj) = 0, t ≥ 0, x ≥ 0,(1)

uj(x, 0) = uj,0(x), x ≥ 0,(2)

Ψ(u1(0+, t), . . . , un(0+, t)) = 0, t ≥ 0(3)

where Ψ : R2n → R
n is the possibly nonlinear coupling condition.

We assume that Ψ fulfills a transversality condition (4) below:

det [D1Ψ(û)r2(û1), . . . , DnΨ(û)r2(ûn)] �= 0.(4)

which ensures well–posedness of problem (1) to (3). Here, DjΨ(û) = ∂
∂uj

Ψ(û) and û ∈
R
2n is a steady state solution to (1) such that Ψ(û) = 0. We refer to [14, Definition 3.1]

and [14, Theorem 3.2] for more details on the definition of the solution and assumption
on the characteristic fields as well as the existence and uniqueness result.

Furthermore, the Jacobian of f , Df(ûj), admits a strictly negative λ1(ûj) and strictly
positive eigenvalue λ2(ûj) with linearly independent (right) eigenvectors r1 and r2, re-
spectively. The associated characteristic fields are assumed to be either genuine nonlinear
or linearly degenerate.

Now we present the finite volume method [32, 34] which is employed to numerically
solve (1)-(3). This is essentially based on the proof of the well–posedness.

Consider a regular (uniform) grid of cell size Δx = xi+1 − xi, where xi, xi+1 are
the cell centers and time step Δt = tm+1 − tm, chosen so that the CFL condition [17]
λmaxΔt ≤ Δx, where λmax is the largest wave speed, is satisfied. We assume the grid-
points are labeled by i,m ∈ N0 such that x0 = Δx

2 and t0 = 0. Hence, the center of
the first cell i = 0 in each arc is located at x0 and the physical node is located at the
boundary x = 0. For some compact domain Ω ⊂ R

2 such that uj,0 ∈ Ω and uj(x, t) ∈ Ω,
we compute the spectral radius ρ of Df as

λmax = max
v∈Ω

|ρ(Df(v))|.(5)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY HIGH-ORDER SCHEMES 3

In addition the cell boundaries (interfaces) are denoted xi−1/2, on the left, and xi+1/2 on
the right such that Δx = xi+1/2 − xi−1/2. Sometimes the notation Ii := [xi−1/2, xi+1/2]
will be used. The discretization is undertaken component-wise for each uj . Hence the
cell average of uj in cell i at time tm is denoted by Um

j,i and defined as

Um
j,i :=

1

Δx

∫ x
i+1

2

x
i− 1

2

uj(x, t
m)dx.

The evolution of the cell average over a single time-step, Δt, is

(6) Um+1
j,i = Um

j,i −
1

Δx

(
(Fj)

m
i+ 1

2

− (Fj)
m
i− 1

2

)
where the numerical flux across the cell interface in arc j is given by

(Fj)
m
i+ 1

2

=

∫ tm+1

tm
f(uj(xi+ 1

2
, s))ds.(7)

Remark 2.1. The equivalent formulation of equation (6) is:

Um+1
j,i = Um

j,i −
Δt

Δx

(
(Fj)

m
i+ 1

2

− (Fj)
m
i− 1

2

)
where

(Fj)i+ 1
2
=

1

Δt

∫ tm+1

tm
f(uj(xi+ 1

2
, s))ds.

which is referred to as the temporal integral average of f(u(x, t)) at xi+1/2 [40].

In Godunov’s method [25] (Fj)
m
i+ 1

2

= Fj(U
m
j,i, U

m
j,i+1) in which the exact solution to a

Riemann problem posed at the cell boundary i+ 1
2 is used to define the numerical flux

(Fj)
m
i+ 1

2

. Thus in the original Godunov’s method a piecewise constant reconstruction

(8) uj(x, t
m) =

∑
i

Um
j,i χ[x

i− 1
2
,x

i+1
2
](x),

where the characteristic function χ(x) is defined in the usual way as

χ[x
i− 1

2
,x

i+1
2
](x) =

{
1, if x ∈ [xi− 1

2
, xi+ 1

2
]

0, otherwise,

was applied as a numerical approximation for uj(x, t) at time tm.
To generalize Godunov’s method, the piecewise constant approximation (8) of the

solution can be replaced by a more accurate representation. In this paper, we consider
a piecewise linear approximation. Thus the reconstruction in (8) takes the form

(9) uj(x, t
m) =

∑
i

Pi(x, t
m;Um

j,·) χ[x
i− 1

2
,x

i+1
2
](x),

where Pi(x, t
m;Um

j,·) is a linear reconstruction in cell Ii using data {Um
j,·} in arc j such

that
Pi(x, t

m;Um
j,·) = Um

j,i + σm
j,i(x− xi)

for x ∈ Ii. The slope σm
j,i in cell Ii is also based on the data {Um

j,·}. Note that σm
j,i = 0

recovers the first-order Godunov method.
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4 MAPUNDI K. BANDA, AXEL-STEFAN HÄCK, AND MICHAEL HERTY

To reduce oscillations, a slope limiter is applied to σm
j,i [36]. A simple choice of slopes

is the so called minmod slope:

σm
j,i =

1

Δx
minmod(Um

j,i+1 − Um
j,i, U

m
j,i − Um

j,i−1)

where the minmod function is defined as:

minmod(a, b) =

⎧⎪⎨
⎪⎩
a, if |a| < |b| and ab > 0;

b, if |b| < |a| and ab > 0;

0, if ab ≤ 0;

=
1

2
(sgn(a) + sgn(b))min(|a|, |b|).

It can be noted that, just as in first-order Godunov method, a Riemann problem needs
to be solved at the cell boundaries xi+1/2 since the reconstruction provides two values
at the cell interfaces xi+1/2 which we denote by

uj(x
−
i+ 1

2

, tm) = Um
j,i−; uj(x

+
i+ 1

2

, tm) = Um
j,i+

which are values based on the polynomial Pi(x)|x=x
i+1

2

on the left of the interface and

Pi+1(x)|x=x
i+1

2

on the right of the interface, respectively.

The coupling condition (3) at the vertex induces a boundary condition for equation
(1) at x = 0. At time tm the cell averages in the first cell i = 0 of the connected arcs
j are given by Um

j,0 for all arcs j = 1, . . . , n. Assume that they are sufficiently close to

ûj such that condition (4) holds. Denote the κ−th Lax curve through the state u0 for
κ = 1, 2. by s → Lκ(uo, s). Then solve for (s∗1, . . . , s∗n) using, for example, Newton’s
method the nonlinear system

(10) Ψ
(L2(U

m
1,0, s1), . . . ,L2(U

m
n,0, sn)

)
= 0.

A unique solution exists due to (4). The boundary value Um+1
j,0 at time tm+1 is then

given by equation (6) for i = 0 and with

(11) Um
j,−1 := L2(U

m
j,0, s

∗
j ), j ∈ {1, . . . , n}.

This construction yields a first–order approximation to the coupling condition and the
solution uj .

In order to obtain at least a first–order convergent scheme, we consider a reconstruct,
evolve and average algorithm [34]. The finite–volume formulation of equation (1) is given
by equation (6) and equation (7). We proceed as follows:

STEP1 Given the cell averages Um
j,i, we reconstruct a piecewise linear function uj(x, t

m)

on each cell [xi− 1
2
, xi+ 1

2
]. This is a standard procedure and more details can be

found, for example, in [30, 41]. We apply a reconstruction with slopes obtained
by the minmod limiter for the cells i = 1, . . . , as discussed for equation (9) above.

In the first cell i = 0, we modify the reconstruction of the slope due to the
absence of cell averages beyond the vertex since

σm
j,0 =

1

Δx
minmod(Um

j,1 − Um
j,0, U

m
j,0 − Um

j,−1).
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NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY HIGH-ORDER SCHEMES 5

Instead, for Um
j,−1 the procedure applied for the first-order case can be applied

here, see equation (11).
Denote the vector of the recovered slopes for both components by σj,i =

(σ1
j,i, σ

2
j,i) for i > 0. Using the above construction, we obtain the reconstruc-

tion

uj(x, t
m) = σj,i(x− xi) + Um

j,i, xi− 1
2
≤ x ≤ xi+ 1

2
, i = 1, . . . ,(12)

The previous reconstruction provides two values at the cell interfaces xi+ 1
2

denoted in the following by xi+ 1
2
∓ for the reconstruction at xI+ 1

2
from cell i and

i+ 1, respectively.

STEP2 Reconstruct for each arc j a piecewise linear function vj(t) for tm ≤ t ≤ tm+1

such that
Ψ(v1(t

m), . . . , vn(t
m)) = 0.

and
d

dt
Ψ(v1(t), . . . , vn(t))|t=tm = 0.

STEP3 Evaluate equation (7) using a predictor–corrector step [35] for all cells except
for i = 0. This approach is also attributed to Hancock in [40, 41]. We split the
flux as in a Lax–Friedrichs scheme

f(u) = f+(u) + f−(u) :=
1

2
(f(u) + au) +

1

2
(f(u)− au)

where a = λmax. Due to splitting the wave speeds of the fluxes f(u)± au do not

change sign across xi+ 1
2
. Using this fact and the midpoint rule at time tm+ 1

2 =

tm + Δt
2 , the evolution of the flux (7) is given by

(Fj)i+ 1
2
= Δt

(
f+(uj(xi+ 1

2
−, tm+ 1

2 ) + f−(uj(xi+ 1
2
+, tm+ 1

2 )
)
+O((Δt)3).

Using Taylor expansion and the linear reconstruction (12), we obtain up to second
order in space and time

Um
j,i− := Um

j,i + σj,i
Δx

2
, Um

j,i+ := Um
j,i+1 − σj,i+1

Δx

2
,

1

Δx
(Fj)i+ 1

2
≈ Δt

Δx

(
f+

(
Um
j,i− − Δt

2
Df(Um

j,i−)σj,i
)
+

f−
(
Um
j,i+ − Δt

2
Df(Um

j,i+)σj,i+1

))
.

STEP4 Evaluate the fluxes in cell i = 0. The only flux which needs to be evaluated
is (Fj)− 1

2
. Due to the construction of the boundary conditions in STEP2 the

characteristic speed of information is non–negative. Therefore,

(Fj)− 1
2
=

∫ tm+1

tm
f(uj(x− 1

2
, s))ds ≈

∫ tm+1

tm
f(vj(s))ds = Δtf(vj(t

m+ 1
2 )) +O((Δt)3).
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6 MAPUNDI K. BANDA, AXEL-STEFAN HÄCK, AND MICHAEL HERTY

Similarly, to STEP3 we evaluate

1

Δx
(Fj)− 1

2
≈ Δt

Δx
f

(
vj(t

m) +
Δt

2

d

dt
vj(t)|t=tm

)
.(13)

STEP5 Evolve the dynamics according to equation (6) for i = 1, . . . , to obtain the new
cell averages at time tm+1 and proceed with STEP1.

To approximate the slopes σj,0 we first calculate the p.w. constant information Uj,−1

as given by (11). This data can now be used to gain the σj,0 in the usual manner
(see STEP1). This approach preserves the Total variation diminishing-property of the
scheme.

The difference to a standard first–order method is STEP2 and STEP3. In order to
determine the values vj(t

m), we proceed similarly to the discussion in equation (10).
However, since we reconstruct the function uj(x, t

m) on arc j by a piecewise linear
function, the value of uj(x, t

m) closest to the vertex at time tm is given by

uj(x− 1
2
, tm) = Um

j,0 −
Δx

2
σj,0.

Hence, we determine the vector s = (s1, . . . , sn) ∈ R
n by solving the possibly nonlinear

equation (14).

Ψ

(
L2(U

m
1,0 −

Δx

2
σ1,0, s1), . . . ,L2(U

m
n,0 −

Δx

2
σn,0, sn)

)
= 0.(14)

For Um
j,0 sufficiently close to û and due to condition (4), the previous equation has a

unique solution s. Hence we define

vj(t
m) := L2(U

m
j,0 −

Δx

2
σj,0, sj).(15)

For the reconstruction in equation (13), we additionally need at least to recover also
the slope d

dtvj(t) at time t = tm. Condition (3) is supposed to hold true also for t ≥ tm.
Hence, we obtain for sufficiently smooth solutions

0 =
d

dt
Ψ(u1(0+, t), . . . , un(0+, t)) =

n∑
k=1

Duk
Ψ(u1(0+, t), . . . , un(0+, t)) ∂tuk(0+, t).

(16)

In a neighborhood of û the eigenvalues have a sign and, therefore, only a part of the in-
formation of ∂tuk(0+, t) is available at the vertex. Further, due to (15) we will have waves
emerging from the vertex in short time. Therefore, in of Duk

Ψ(u1(0+, t), . . . , un(0+, t))
we have uk(0+, t) = vk(t) for t > tm. We now approximate ∂tuk(0+, t) for t > tm using
a Roe–type scheme and compute the derivative Aj of f at the new position vj(t

m). Let
the constant matrix Aj be defined by

Aj := Df(vj(t
m)), j = 1, . . . , n.

Since f is strictly hyperbolic and for vj(t
m) in the neighborhood of û, each Aj is diago-

nalizable with eigenvalues λ1
j < 0 and λ2

j > 0 and corresponding linearly independent set

of eigenvectors rj,1 = r1(vj(t
m)) and rj,2 = r2(vj(t

m)), respectively. Let Rj := (rj,1, rj,2).
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NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY HIGH-ORDER SCHEMES 7

For small values of t − tm ≥ 0, we approximate uj(0+, t) by a decomposition in eigen-
vectors

uj(t, 0+) ≈ v1
j (t) rj,1 + v2

j (t) rj,2 =: Rj

(
v1
j (t)

v2
j (t)

)
,(17)

Further, we approximate the dynamics of ∂tvj,1(t) for small t− tm by

∂tv
1
j (t

m) = −λ1
j∂x

(
R−1

j uj(t
m, 0+)

)1
= −λ1

j

(
R−1

j

(
σ1
j,0

σ2
j,0

))1

.(18)

where we used the linear reconstruction of uj(x, t) on arc j and the super–index denotes
the component ∈ {1, 2} of the vector. Then, we obtain from equation (16) at time tm

an equation in the unknowns v2
j

0 =
n∑

k=1

DkΨ(v1(t
m), . . . , vn(t

m))Rj

(
v1
j (t)

v2
j (t)

)

or equivalently
n∑

k=1

DkΨ(v1(t
m), . . . , vn(t

m))r1(vk(t
m)λ1

k

(
R−1

k

(
σ1
k,0

σ2
k,0

))1

=(19)

n∑
k=1

DkΨ(v1(t
m), . . . , vn(t

m)r2(vk(t
m)∂tv

2
k(t

m)(20)

Again, due to condition (4) the previous equation (19) has a unique solution for the n
values ∂tv

2
j (t

m), j = 1, . . . , n. Then, we set

d

dt
vj(t

m) :=

2∑
�=1

∂tv
�
j(t

m)r�(vj(t
m)).(21)

A piecewise linear reconstruction of vj yields at time t = tm

Ψ

(
v1(t

m) +
d

dt
v1(t

m)(t− tm), . . . , vn(t
m) +

d

dt
vn(t

m)(t− tm)

)
= O((t− tm)2).

We summarize the computations in the following Lemma.

Lemma 2.2. Consider a single node with n connected arcs and let tm be some positive
time. Let Ψ ∈ C2(R2n;Rn) and let ûj := Um

j,0 − Δx
2 be such that equation (4) holds true.

Then, for vj(t) as in the previous construction, the coupling condition is satisfied up to
second order in time, i.e.

Ψ(v1(t), . . . , vn(t)) = O((t− tm)2).

3. Properties of the scheme in the linear case

In order to illustrate the properties of the scheme, we first consider the case of a single
arc extending from −∞ to ∞. We drop for a moment in the index j. Also, assume that
u ∈ R, f : R → R and is given by

f(u) = c u, c > 0.(22)
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8 MAPUNDI K. BANDA, AXEL-STEFAN HÄCK, AND MICHAEL HERTY

Since a = c, we obtain f+(u) = cu, f−(u) = 0 and Df±(u) = 1
2(c ± a). The CFL

condition gives cΔt ≤ Δx. The numerical flux at the cell boundary is then given by

Fi+ 1
2
=

Δt

Δx
c

(
Um
i + σi

Δx

2
− cΔt

2
σi

)
.

The scheme, therefore, takes the form:

Um+1
i = Um

i − Δt

Δx
c

(
Um
i − Um

i−1 +
Δx− cΔt

2
(σi − σi−1)

)
.(23)

One easily verifies that this method is second order accurate in space and time.
Further, we consider the scalar case n = 1 and two connected arcs j = 1, 2 with f1(u) =

−c u, f2(u) = c u and c > 0. Note that this case does not fulfill the general assumption
on the eigenvalues given previously. Therefore, we need to modify the construction
slightly. However, we still want to treat this case to show its relation to a discretization
of a single scalar advection equation. The coupling condition Ψ preserves the total mass
and reads

Ψ(u1(0+, t), u2(0+, t)) = u2(0+, t)− u1(0+, t) = 0.(24)

This situation is then equivalent to a Cauchy problem for y(x, t) with combined domain
x ∈ R and t ≥ 0

∂ty(x, t) + c∂xy(x, t) = 0, y(x, 0) = y0(x) :=

(
u1,0(−x), for x ≤ 0
u2,0(x), for x > 0.

)
.(25)

In the following derivations, we show that the previous construction leads to a scheme
of second order (23) in space and time for equation (25). Clearly, the eigenvalues are
λ = −c and λ = c for arcs j = 1, 2, respectively, and therefore for arc j = 1, the
assumptions are not fulfilled. Therefore, at x = 0, we do not prescribe any boundary
condition. Hence, a single coupling condition is sufficient to have a well–posed problem
(26) and initial data (2).

∂tuj + ∂xfj(uj) = 0, x ≥ 0, t ≥ 0, and u2(0+, t)− u1(0+, t) = 0, t ≥ 0.(26)

In order to use a similar notation as above, we note that the admissible boundary states
for arc j = 2 are given by

L2(û2, s2) = s2 + û2, s2 ∈ R.

In arc j = 1, we have L2(û1, s1) = û1. Hence, for the unknown s2 the condition (14)
becomes:

Um
1,0 −

Δx

2
σ1,0 −

(
Um
2,0 −

Δx

2
σ2,0 + s2

)
= 0.(27)

and equation (15) gives:

v2(t
m) = Um

1,0 −
Δx

2
σ1,0, v1(t

m) = Um
1,0 −

Δx

2
σ1,0.(28)

We can not use condition (19) directly, since the assumptions on the sign of the eigen-
values are not fulfilled in arc j = 1. However, we can repeat the computations (16) to
(21) and obtain, for sufficiently smooth solution u1(0+, t),

0 = ∂tu1(0+, t)− ∂tu2(0+, t) = +c∂xu1(0+, t)−R2 = c σ1,0 −R2.
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NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY HIGH-ORDER SCHEMES 9

Here, we also used the fact that on arc j = 1 and for sufficiently smooth u1, we have
∂tu1(0+, t) − c∂xu1(0+, t) = 0. Therefore, the linear reconstruction of v2(t) for tm+1 >
t ≥ tm reads

v2(t) = Um
1,0 −

Δx

2
σ1,0 + c σ1,0(t− tm).(29)

The numerical flux in cell i = 0 is then given as

(F2)− 1
2
= Δt c

(
Um
1,0 −

Δx

2
σ1,0 +

Δt

2
c σ1,0

)
.

In order to compare the proposed method with a numerical discretization of equation (25)
it suffices to consider the discretization of the first cell i = 0 of arc j = 2. The remaining
cells are independent of the coupling condition and therefore the applied discretization
coincide. In the first cell i = 0 of arc j = 2 we obtain from (29) and (13)

Um+1
2,0 = Um

2,0 −
Δt

Δx
c

(
Um
2,0 − Um

1,0 + (σ2,0 + σ1,0)
Δx− cΔt

2

)
.(30)

Suppose a discretization of equation (25) with i ∈ N and such that at x = 0 we have the
location of the physical node and as before xi =

Δx
2 for i = 0 is the location of the center

of the grid. The discretization (30) has to be compared with a corresponding second
order discretization of equation (25) in cell i = 0, i.e., for x ∈ [−Δx

2 , Δx
2 ]. Using equation

(23) we obtain for the cell averages Y m
i =

1

Δx

∫ x
i+1

2

x
i− 1

2

y(x, tm)dx

Y m+1
0 = Y m

0 − Δt

Δx
c

(
Y m
0 − Y m

−1 + (τ0 − τ−1)
Δx− cΔt

2

)
.(31)

The construction of σ2,0 and τ0 are independent of the coupling condition and therefore
σ2,0 = τ0. In the continuous case we have y(−x, t) = u1(x, t) and therefore Y m

i =
Um
1,−i+1 for i < 0 and the slopes of the linear reconstruction of y and u1 are related

as σ1,−i = −τi+1, i < 0. Hence, provided we use the same derivation of the slopes for
Uj,i and Yi we observe that the proposed discretization of the coupling condition leads
to the same scheme as a discretization for the Cauchy problem (25). In particular, the
coupling condition does not lead to an order reduction. We summarize the findings in
the following Lemma.

Lemma 3.1. Let n = 2 and consider for (x, t) ∈ R
+
0 × R

+ the problem

∂tu1 + c∂xu1 = 0, ∂tu2 − c∂xu2 = 0,

with initial data given by (2) and coupling condition (24). On an equidistant spatial grid
(xi), i ∈ N consider a piecewise linear reconstruction uj(x, t

m) for j = 1, 2. Consider
furthermore the second–order MUSCL discretization (31) of equation (25) with initial
data at time t = tm given by y(x, tm) = uj(−x, tm)H(−x) + uj(x, t

m)H(x).

Then, for c = a and j ≥ 0, the cell averages Um+1
1,j and Um+1

2,j obtained from the

proposed algorithm coincide with the cell averages Y m+1
−j−1 and Y m+1

j , respectively.

Next, we consider the case of a linear system f(u) = Au with A ∈ R
2 strictly hy-

perbolic with λ1 < 0 and λ2 > 0. We denote by R = (r1, r2) the matrix of the (right)
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10 MAPUNDI K. BANDA, AXEL-STEFAN HÄCK, AND MICHAEL HERTY

eigenvectors to A. Further, consider the case of a single arc n = 1. Then, problem (1) –
(3) is a boundary value problem for u1(x, t) with x ≥ 0 and boundary conditions induced
by equation (3). We prescribe as boundary condition t → b(t), b ∈ C1, in the second
characteristic variable. In terms of Ψ, we obtain

Ψ(u1(0+, t)) = (R−1u1(0+, t))2 − b(t).(32)

On the time interval (tm, tm+1) we expect the linear construction in the second compo-
nent v1(t) ∈ R

2 to be

v(t) = R
((

R−1 (u1(0+, tm) + ∂tu1(0+, tm))
)1

, b(tm) + b′(tm)(t− tm)
)T

+O((t− tm)2).

We compare the presented approach to the approach presented in [5]. Due to the linearity
of A, we have for any û ∈ R

2

L2(û, s) = û+ s r2.(33)

At first we discuss the reconstruction of STEP2. Due to the linear reconstruction in
each cell, we have Um

1,0 − Δx
2 σ1,0 = u1(0+, tm) + O(Δx)2. Equation (14), (15) and (32)

yield

0 = Ψ(L2(U
m
1,0 −

Δx

2
σ1,0, s1)) =

(
R−1

(
Um
1,0 −

Δx

2
σ1,0 + s1r2

))2

− b(tm)

=

(
R−1(Um

1,0 −
Δx

2
σ1,0)

)2

+ s1 − b(t)

v1(t
m) = Um

1,0 −
Δx

2
σ1,0 + s1 r2

= R

(
R−1(Um

1,0 −
Δx

2
σ1,0)

)
+ b(tm)r2 −

(
R−1(Um

1,0 −
Δx

2
σ1,0)

)2

R

(
0
1

)

= R

(
R−1(Um

1,0 −
Δx

2
σ1,0)−

(
R−1(Um

1,0 −
Δx

2
σ1,0)

)2 (
0
1

))
+R

(
0

b(tm)

)

= R

(
(R−1u1(0+, tm))1 +O(Δx)2

b(tm)

)
.

The slope d
dtv1(t

m) is computed using equation (16) to (21). Equation (16) reads

(34) 0 = (R−1∂tu1(0+, t))2 − b′(t),

and we approximate ∂tu1(0+, t) by decomposition in characteristic variables to obtain

∂tv
1
1(t

m) = −λ1
(
R−1σ1,0

)1
=

(
R−1∂tu1(0+, tm)

)1
+O(Δx)2.

and according to (19) at time tm

0 =
(
R−1

((
R−1∂tu1(0+, tm)

)1
r1 + ∂tv

2
1(t

m)r2

))2 − b′(tm)

= ∂tv
2
1(t

m)− b′(tm).
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NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY HIGH-ORDER SCHEMES 11

Due to (21), we obtain for t− tm = O(Δx) the reconstruction

v1(t) = R

(
(R−1u1(0+, tm))1

b(tm)

)
+ (t− tm)

(
b′(tm)r2 +

(
R−1∂tu1(0+, tm)

)1
r1

)

= R

((
R−1

(
u1(0+, tm))1 + (t− tm)∂tu1(0+, tm)

))1
+O(Δx)2

b(tm) + (t− tm)b′(tm)

)
.(35)

In [5] the following approach has been proposed to obtain a high order reconstruction
of v1(t). We apply this procedure to a first–order scheme studied herein. The derivation
of v1(t

m) is as above. However, there is a difference in the approximation of the deriv-
ative ∂tv1(t

m). Instead of a characteristic decomposition, the value of the derivative is
approximated using the Lax–curve to the linearized system, i.e.,

L2(∂tu1(0+, t), s′1(t)) = ∂tu1(0+, t) + s′1(t)r2,

and the (real valued) unknown s′1(t) at time t = tm is obtained as solution to equa-
tion (34). In order to evaluate ∂tu1(0+, t) the linearized equation, i.e., ∂tu1(0+, tm) =

−
(
λ1 0
0 λ2

)
σ1,0 is used leading to an error of order O(Δx)2 due to the spatial recon-

struction of u1(x, t). Hence,

0 =
(
R−1∂tu1(0+, t)

)2 − b′(tm) + s′1(t
m)

(
R−1r2

)2
+O(Δx)2

Finally, the reconstruction of v1(t) up to second order in time is given by

v1(t) = R

(
(R−1u1(0+, tm))1

b(tm)

)
+ (t− tm)L2(∂tu1(0+, t), s′1(t))

= R

((
R−1(u1(0+, tm) + (t− tm)∂tu1(0+, tm))

)1
+O(Δx)2

b(tm) + b′(tm)(t− tm) +O(Δx)2

)
(36)

In characteristic variables Rv1(t), the difference of (35) and (36) is of order O(Δx)2 in
the recovered boundary condition. This is an error of the order of the scheme. How-
ever, in the presented approach no information on (R∂tu1(0+, t))2 (being the outgoing

characteristic) is needed and for small Δt the resolution of b(t) is of order Δt2

2 instead

of order (Δx)2 = λ2
max(Δt)2.

The previous relation also holds true in a more general setting: Consider n connected
arcs and denote the state at x = 0+ on arc k by ûk = Um

k,0 − Δx
2 σk,0. Denote by Ak =

Df(ûk) and by Rk = (rk,1, rk,2) the matrix of (right) eigenvectors of Ak. The superscript

in u� denotes the component 	 of the respective vector u. Let ûk,t be ûk,t := −Aσk,0 =
∂tûk(0+, tm) + O(Δx)2 and let Ψ : R2n → R

n be a C1 function with partial derivatives
Ψuk

:= Duk
Ψ(û). Then, [5] requires to solve the following system for ξ = (ξk)k ∈ R

n and
reconstruct v(t) ∈ R

n by

0 =
n∑

k=1

Ψuk
(ûk,t + ξkrk,2) ,

d

dt
vk(t

m) := ûk,t + ξkrk,2.
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12 MAPUNDI K. BANDA, AXEL-STEFAN HÄCK, AND MICHAEL HERTY

Due to condition (4) the matrix A ∈ R
n×n defined by

A = (Ψu1r1,2, . . . ,Ψunrn,2)

is invertible and we obtain for the second component of d
dtvj(t

m) and

ξj =

(
n∑

k=1

A−1Ψuk
ûk,t

)j

the following equivalence

(
R−1

j

d

dt
vj(t

m)

)2

=
(
R−1

j ûj,t

)2 − ξj

(
R−1

j rj,2

)2

=
(
R−1

j ûj,t

)2 −
(

n∑
k=1

A−1Ψuk
RkR

−1
k ûk,t

)j

=

=
(
R−1

j ûj,t

)2

−
(
A−1

(
n∑

k=1

Ψuk
rk,1(R

−1
k ûk,t)

1 +

n∑
k=1

Ψuk
rk,2(R

−1
k ûk,t)

2

))j

=
(
R−1

j ûj,t

)2 −
(
A−1

n∑
k=1

Ψuk
rk,1(R

−1
k ûk,t)

1

)j

−

⎛
⎜⎝A−1A

⎛
⎜⎝
(R−1

1 û1,t)
2

...
(R−1

n ûn,t)
2

⎞
⎟⎠
⎞
⎟⎠

j

Summarizing, we observe that the previous computation of the second component of
d
dtvj(t

m) up to O(Δx)2 with equation (19) and (21). Hence, the proposed method
slightly improves the construction presented in [5]. Compared with [5] it also does not
require during the construction information on (R−1

j ûj,t)
2 being the information on the

outgoing characteristic on arc j.

4. Application to gas dynamics

We discuss the application of the method to gas dynamics in connected pipe systems.
Those problems have been studied intensively in the past years and we refer e.g. to
[1, 2, 11, 13–16] for analytical and computational results. Here, we study a single node
with n connected arcs and on each arc the dynamics are governed by the isentropic Euler
equations (37) (or the p-system). We assume a subsonic state û = (ûj)

n
j=1 is given such

that condition (4) is fulfilled. The wave curves and properties of the isentropic Euler
equations are well known [18] and they are given on arc j by

0 = ∂tρj + ∂xqj and 0 = ∂tqj + ∂x

(
p(ρj) +

q2j
ρj

)
.(37)

Here, p(·) ∈ C2 is the pressure law which is supposed to be non–negative, strictly
monotone increasing and convex, with e.g. p(ρ) = a2ρ being a model for isothermal

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY HIGH-ORDER SCHEMES 13

gas. The subsonic region is the set Ω := {(ρ, q) : ρ > 0, λ1(ρ, q) < 0 < λ2(ρ, q)} where

λ1,2 = q
ρ ∓√

p′(ρ). The corresponding (right) eigenvectors are

r1(ρ, q) =

( −1
−λ1(ρ, q)

)
and r2(ρ, q) =

(
1

λ2(ρ, q)

)
.

The reversed 2–Lax curve exiting at (ρ̂, q̂) is given by

L2(û, σ) =

⎛
⎝σ q̂

ρ̂ +
√

σ
ρ̂ (σ − ρ̂)(p(σ)− p(ρ̂)), σ > ρ̂

σ q̂
ρ̂ − σ

∫ ρ̂
σ

√
p′(s)
s ds, σ ≤ ρ̂

⎞
⎠ .(38)

Different coupling conditions have been proposed in the literature [1]. Common to all is
the conservation of mass flux across the node. Hence, the first component of Ψ reads

Ψ1(û(t, 0+)) =

n∑
j=1

q̂j(t, 0+).(39)

The remaining n − 1 conditions can be prescribed for example by the equality of the
pressure

Ψj(û(0+, t)) = p(ρ̂j(0+, t))− p(ρ̂j−1(0+, t)), j = 2, . . . , n.(40)

Remark 4.1. Let n = 2. Consider coupling condition (39) and the equality of momen-
tum

Ψ2(û(0+, t)) = p(ρ̂2(0+, t)) +
q̂22(0+, t)

ρ̂2(0+, t)
− p(ρ̂1(0+, t))− q̂21(0+, t)

ρ̂1(0+, t)
.

We recover a solution (ρ̄, q̄)(x, t) to the Cauchy problem

0 = ∂tρ̄+ ∂xq̄, 0 = ∂tq̄ + ∂x

(
p(ρ̄) +

q̄2

ρ̄

)
, x ∈ R, t ≥ 0,

by q̄(x, t) = −q1(−x, t) and by q̄(x, t) = q2(x, t) for x ∈ R
+
0 . For details we refer to [12].

For the reconstruction of vj(t) in STEP2, we collect the following elementary com-
putations. Equation (14) is solved for s ∈ R

n using Newton’s method with L2(û, s)
given by equation (38) and Ψ given by (39) and (40), respectively. This enables us to
determine vj(t

m) according to (15). In order to obtain ∂tvj(t
m), we solve equation (18)

with Rj = (r1(vj(t
m)), r2(vj(t

m))) . For the second component we note that

(Du1Ψ(û)r2(û1), . . . , DunΨ(û)r2(ûn))

=

⎛
⎜⎜⎜⎜⎜⎝

λ2(ρ̂1, q̂1) λ2(ρ̂2, q̂2) . . . λ2(ρ̂n, q̂n)
−p′(ρ̂1) p′(ρ̂2)

−p′(ρ̂2) p′(ρ̂3)
. . .

−p′(ρ̂n−1) p′(ρ̂n)

⎞
⎟⎟⎟⎟⎟⎠ .
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14 MAPUNDI K. BANDA, AXEL-STEFAN HÄCK, AND MICHAEL HERTY

Further, for û := (vj(t
m))nj=1 we compute the vector

n∑
k=1

DkΨ(û)r1(ûk)λ
1(ûk)

(
R−1

k σk,0
)1

=

⎛
⎜⎜⎜⎜⎜⎝

−λ1(ρ̂1, q̂1) −λ1(ρ̂2, q̂2) . . . −λ1(ρ̂n, q̂n)
p′(ρ̂1) −p′(ρ̂2)

p′(ρ̂2) −p′(ρ̂3)
. . .

p′(ρ̂n−1) −p′(ρ̂n)

⎞
⎟⎟⎟⎟⎟⎠×

⎛
⎜⎝
λ1(û1)

(
R−1

1 σ1,0
)1

...

λ1(ûn)
(
R−1

n σn,0
)1
⎞
⎟⎠ .

The previous computations enable us to solve equation (19) for ∂tv
2
k(t

m) and hence to

determine d
dtvj(t

m) by equation (21).

5. Computational results

5.1. Linear and node vs linear on a single arc.

Here we will show numerical results on a linear transport equation as (1) for a single arc
(therefore, we drop the index j).
The setup is a periodic domain x ∈ [0, 2π] (i.e. for the state u we have u(0, t) =
u(2π, t), ∀t ≥ 0), as flux we set f ≡ 1, and the initial condition (2) is picked as
uo(x) = sin(x).
For the nodal solution on the domain [0, 2π] we coupled the arc with itself and we used
φ as in (24), i.e. Ψ(u(t, 0+), u(t, 2π−)) = u(t, 0+)− u(t, 2π−) = 0 ∀t ≥ 0.
Furthermore, the Courant number is set to 0.9 and the following examples are grounded
on a final time T = 10. For both scenarios we implementet a first order accurate Upwind
scheme as well as a MUSCL scheme [41], where we used the modified MUSCL scheme
as in (30) in the coupled case.
The following will illustrate both scheme in the spacial cyclic and in the nodal coupled
case. The power k of Nk = 2k (the number of degrees of freedom of the spacial discretiza-

tion) we plotted against
log(eNk

)

log(2) , where eNk
is the L1 error to the analytical solution for

a given Nk.
bla
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NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY HIGH-ORDER SCHEMES 15

Figure 1. L1 error of both, periodic boundary and nodal coupled
method numerical approximation to analytical solution.

Here, table 5.1 contains the L1 errors and convergence rate of the upper plots. Nk and

rk =
log(eNk

)

log(2) as above. The “Rate” columns are therefore rk − rk+1 of each error.

Nk Upwind rk Rate MUSCL periodic rk Rate MUSCL nodal rk Rate
25 −0.7428 / −3.0768 / −3.1472 /
26 −1.5442 0.8014 −4.6573 1.5805 −4.7055 1.5583
27 −2.4380 0.8938 −6.4464 1.7891 −6.4689 1.7635
28 −3.3842 0.9462 −8.3080 1.8616 −8.3198 1.8509
29 −4.3577 0.9735 −10.1955 1.8876 −10.2018 1.8820
210 −5.3440 0.9863 −12.1139 1.9184 −12.1171 1.9153
211 −6.3372 0.9932 −14.0533 1.9394 −14.0549 1.9378
212 −7.3339 0.9967 −16.0073 1.9540 −16.0081 1.9532
213 −8.3322 0.9983 −17.9715 1.9642 −17.9719 1.9638
214 −9.3313 0.9991 −19.9429 1.9714 −19.9431 1.9712

Table 1. Comparison of convergence of the periodic boundary to the
nodal coupled method

5.2. Gas dynamics. We compute the conservation law given by equation (37). As
above, we have a spatial domain x ∈ [0, 2π] with u(0, t) = u(2π, t) ∀ t ≥ 0 and we are
going to couple this arc with itself. We compare the results with a second order MUSCL
scheme on a periodic domain. As first component of the coupling Ψ the conservation of
mass (39) is used. For the second component we employ the conservation of momentum
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as suggested in Remark 4.1. The second condition leads to a true nonlinear coupling
compared with the approach by [5]. There, a linear coupling is used.

Further note that we are connecting the states of the arc at spatial coordinates x = 0
and x = 2π. Therefore we have to alter the notion on the Lax-curves. At x = 0 we use
the second Lax-curve at stated in (10). In contrast to this at x = 1 we have to employ
the first Lax-curve. A parametrization of this can be found in [1].

The initial data we set are

U(x, 0) =

(
ρ(x, 0)
q(x, 0)

)
=

(
0.1 cos(x) + 1
0.05 cos(x) + 2

)
.(41)

The final time is T = 0.4 (to prevent shocks from happening to recover the second order
accuracy of the scheme). The chosen pressure law is

p(ρ) = a2ρ and a = 5.

Again a MUSCL scheme is used as in Section 2 suggested. We can compare the
periodic standard second order solution Ucyc = (ρcyc, qcyc)

� to the coupled solution

Ucc = (ρcc, qcc)
�.

Figure 2. Periodic versus nodal coupled solution

The Table 5.2 contains the L1 errors and convergence rate of the coupled solution com-
pared to the periodic case. Nk = 2k is the number of degrees of freedom due to the
spatial discretization. The column ”L1 ρ” gives rρk = log(‖ρcyc − ρcc‖L1)/ log(2) and
”L1 q” rqk = log(‖qcyc − qcc‖L1)/ log(2) analogously. The “Rate” columns are therefore
rk − rk+1 of each error of both quantities ρ and q.
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Nk L1 ρ L1 q Rate ρ Rate q
25 −8.8259 −7.1826 / /
26 −10.4556 −8.6067 1.6297 1.4242
27 −12.1436 −10.3566 1.6880 1.7499
28 −13.8907 −12.1301 1.7471 1.7735
29 −15.6996 −13.9506 1.8089 1.8205
210 −17.5927 −15.8745 1.8931 1.9239
211 −19.5538 −17.8503 1.9611 1.9758
212 −21.5445 −19.8373 1.9907 1.9870

Table 2. L1 convergence of the periodic boundary to the nodal coupled method

The Table 5.2 contains the L∞ errors and convergence rate of the coupled solution.
The scenario is the same as in Table 5.2 but all data are presented under the L∞ norm.
We observe here, that the scheme is first order only. This is due to the local first order
accuracy of the TVD method at a local extremum (as reasoned in chapter 4 of [24]).

Nk L∞ ρ L∞ ρ Rate ρ Rate q
25 −8.1963 −5.1755 / /
26 −9.2077 −6.1543 1.0114 0.9788
27 −10.1478 −7.1371 0.9402 0.9828
28 −10.9934 −8.0115 0.8456 0.8745
29 −11.9733 −9.0249 0.9799 1.0134
210 −13.0005 −10.0815 1.0272 1.0566
211 −13.9772 −11.0764 0.9767 0.9948
212 −14.9497 −12.0575 0.9725 0.9811

Table 3. L∞ convergence of the periodic boundary to the nodal coupled method

5.3. Gas dynamics – Y-junction. Here we have a look at the setup as suggested in
Section 2 for n = 3 (number of arcs attatched to the node at x = 0). Obviously, in the
numerics we cannot extend the arcs to infinity. Therefore we consider a finite spatial
domain, which will be x ∈ [0, 2] for all arcs. For the boundary which is not adjacent to
the coupled knot we implemented Neumann boundary conditions. The chosen coupling
conditions are the conservation of mass (39) and conservation of momentum 4.1.

The initial data are as follows:
For the first arc j = 1 we set

U1(x, 0) =

(
ρ1(x, 0)
q1(x, 0)

)

with

ρ1(x, 0) =

{
−x3 + 3

2x
2 + 1 x ∈ [0, 1)

3
2 x ∈ [1, 2]
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and

q1(x, 0) =

{
−x3 + 3

2(x− 1)2 x ∈ [0, 1)
1
2 x ∈ [1, 2]

.

For j = 2, 3 we have

Uj(x, 0) =

(
ρj(x, 0)
qj(x, 0)

)
with

qj(x, 0) ≡ 0

and
ρj(x, 0) ≡ 1.

Those initial data are smooth and give us a feasible initial state with respect to the
coupling condition. Hence, Ψ(U1(x, 0), U2(x, 0), U3(x, 0)) = (0, 0, 0)�.

The chosen pressure law is again

p(ρ) = a2ρ and a = 5

and the final time is set to T = 0.3. The remaining numerics is the same as in 5.2.

Figure 3. Evolution of Density ρ. Arcs: � j = 1, ◦ j = 2, × j = 3.

The Table 5.3 contains the L1 errors and convergence rate of the coupled solution com-
pared to a numerical solution of higher discretization at each arc (j = 1, 2, 3). The errors
and order are computed analogously to table 5.2. Since the initial data in arc j = 2 and
j = 3 are identical and the coupling handles all arcs the same way we get coniciding
data for those both arcs. hence, we compress both data sets to one in the convergence
tabel.
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Figure 4. Evolution of Flow q. Arcs: � j = 1, ◦ j = 2, × j = 3.

j = 1 : Nk L1 ρ L1 q Rate ρ Rate q
25 −7.6683 −5.6102 / /
26 −9.2223 −7.1885 1.5541 1.5783
27 −10.7893 −8.7746 1.5669 1.5861
28 −12.3244 −10.3241 1.5351 1.5494
29 −13.7622 −11.7769 1.4378 1.4529
210 −15.1328 −13.1563 1.3706 1.3794
211 −16.5236 −14.5467 1.3908 1.3904
212 −18.1942 −16.2137 1.6706 1.6671

j = 2, 3 : Nk L1 ρ L1 q Rate ρ Rate q
25 −8.8909 −6.5146 / /
26 −10.5499 −8.1738 1.6591 1.6593
27 −12.4446 −10.0709 1.8947 1.8970
28 −14.3670 −11.9932 1.9223 1.9223
29 −16.3003 −13.9261 1.9333 1.9329
210 −18.2503 −15.8749 1.9500 1.9488
211 −20.2580 −17.8813 2.0077 2.0064
212 −22.4155 −20.0355 2.1575 2.1542

Table 4. L1 convergence on a network with 3 arcs
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[19] C. D’Apice, S. Göttlich, M. Herty, and B. Piccoli, Modeling, simulation, and optimization
of supply chains, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
A continuous approach.

[20] C. D’Apice, R. Manzo, and B. Piccoli, A fluid dynamic model for telecommunication networks
with sources and destinations, SIAM J. Appl. Math., 68 (2008), pp. 981–1003.

[21] C. D’Apice, R. Manzo, and B. Piccoli, Existence of solutions to Cauchy problems for a mixed
continuum-discrete model for supply chains and networks, J. Math. Anal. Appl., 362 (2010), pp. 374–
386.

[22] M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm.
Partial Differential Equations, 31 (2006), pp. 243–275.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



NUMERICAL DISCRETIZATION OF COUPLING CONDITIONS BY HIGH-ORDER SCHEMES 21

[23] , Traffic flow on networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute
of Mathematical Sciences (AIMS), Springfield, MO, 2006. Conservation laws models.

[24] E. Godlewski and P.-A. Raviart, Hyperbolic Systems of Conservation Laws, Mathematiques
and Applications, Ellipses, first ed., 1991.

[25] S. K. Godunov, A difference scheme for the numerical computation of a discontinuous solution of
the hydrodynamic equation, Math. Sbornik, 47 (1959), pp. 271–306.

[26] M. Gugat, Optimal nodal control of networked hyperbolic systems: evaluation of derivatives, Adv.
Model. Optim., 7 (2005), pp. 9–37 (electronic).

[27] B. Haut and G. Bastin, A second order model of road junctions in fluid models of traffic networks.,
Netw. Heterog. Media, 2 (2007), pp. 227–253.

[28] M. Herty, C. Jörres, and B. Piccoli, Existence of solution to supply chain models based on
partial differential equation with discontinuous flux function, J. Math. Anal. Appl., 401 (2013),
pp. 510–517.

[29] M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow,
SIAM J. Math. Anal., 38 (2006), pp. 595–616.

[30] S. Jin and Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space
dimensions, Comm. Pure Appl. Math., 48 (1995), pp. 235–276.

[31] O. Kolb, J. Lang, and P. Bales, An implicit box scheme for subsonic compressible flow with
dissipative source term, Numer. Algorithms, 53 (2010), pp. 293–307.
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