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In this paper we apply implicit two-derivative multistage time integrators to viscous conser-
vation laws in one and two dimensions. The one dimensional solver discretizes space with the
classical discontinuous Galerkin (DG) method, and the two dimensional solver uses a hybridized
discontinuous Galerkin (HDG) spatial discretization for efficiency. We propose methods that
permit us to construct implicit solvers using each of these spatial discretizations, wherein a chief
difficulty is how to handle the higher derivatives in time. The end result is that the multideriva-
tive time integrator allows us to obtain high-order accuracy in time while keeping the number
of implicit stages at a minimum. We show numerical results validating and comparing methods.

1 Introduction

In this work, we focus on viscous conservation laws and present an implicit high-order time integration
schemes for the discontinuous Galerkin (DG) method [38, 11, 10, 9, 8, 12]. One of the advantages of using
DG is the easy increase of accuracy by locally increasing the polynomial degree which makes it imperative to
also use high-order time integrators. Explicit Runge-Kutta time integration schemes are often used because
of their low computational costs, low dissipation, favorable stability regions and ease of implementation.
However, time step size is limited by the CFL condition which links both time step size ∆t and mesh size
to the speed of propagation of the physical system. In practical applications, the required time step may be
unacceptably small due to very small local mesh sizes or the stiffness of the discretized problem. Frequently,
a severe CFL restriction can be overcome by using implicit time integrators, allowing larger time steps at the
cost of each time step being more expensive. The latter is due to the fact that each time step requires one or
more systems of (usually nonlinear) equations to be solved. Common examples of implicit time integrators
include multistep methods such as the backward differentiation formulae (BDF) or multistage methods such
as diagonally implicit Runge-Kutta (DIRK) methods [1].

One drawback of the discontinuous Galerkin method within an implicit solver is the large number of
degrees of freedom. The hybridized discontinuous Galerkin (HDG) methods, see, e.g., [7, 32, 39], has
initially been designed to reduce the memory footprint of steady-state computations, but can also be applied
to time-dependent problems [31, 33, 32, 26].

In this paper, we employ two-derivative methods as our time discretization. As the name suggests, these
algorithms make use of more than one time derivative and can be constructed to have a strong stability
preserving (SSP) property [6, 34]. The principle can be best explained by starting with Taylor methods,
which are a subclass of the so-called multistage multiderivative methods [20, 40]. Assuming an unknown
function w(x, t) known at some given time tn. Then, an approximation at some time t > tn could be
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obtained from a Taylor expansion in time

w(x, t) = w(x, tn) + (t− tn)wt(x, t
n) +

(t− tn)2

2
wtt(x, t

n) + . . . . (1)

Obviously, within this approach, it is necessary to approximate additional time derivatives. In the context
of viscous conservation laws (that we define in Eqn. (2)), one can replace temporal derivatives by spatial
derivatives using the Cauchy-Kowalevskaya procedure.

In the context of numerical methods, the idea of using Taylor series to discretize time is also often referred
to as Lax-Wendroff method, because they construct their second-order scheme using this procedure [30].
This approach is used for so-called Taylor-Galerkin methods from the 1980’s [14, 13], and the original ENO
scheme of Harten et al. [22] uses the same procedure. In [15, 16], Dumbser and Munz construct discontinuous
Galerkin schemes with arbitrary order of accuracy in space and time based on ADER schemes. They also
present an approach to evaluate the Cauchy-Kovalevskaya procedure efficiently in [16] based on the work of
Dyson [17] relying on the application of the Leibniz rule. Qiu et al. [36] present an approach to couple Lax-
Wendroff and discontinuous Galerkin methods (LWDG). They obtain a high-order, explicit one step method
for hyperbolic problems that is up to third order accurate in time. They show that for their setting, the
LWDG scheme is more efficient than a Runge-Kutta discontinuous Galerkin (RKDG). In [35] the approach
is extended to 1D convection-diffusion equations based on the local discontinuous Galerkin (LDG) method.
Furthermore, the behavior of the method coupled to different numerical fluxes is studied. Additionally,
Taylor discretizations are investigated for finite difference weighted ENO methods in [37, 29, 41, 5].

Seal et. al. [40] are the first to extend the approach to explicit multiderivative Runge-Kutta methods with
DG and WENO spatial discretizations for hyperbolic conservation laws in a single dimension. They develop
a framework for two-derivative Runge-Kutta methods that can be easily extended to incorporate additional
stages or derivatives. Tsai et. al. [44] apply explicit and implicit two-derivative Runge-Kutta methods to
PDEs with high-order finite-difference methods for spatial discretization.

Instead of replacing time derivatives with spatial derivatives, it is also possible to go the opposite way.
This is done in the so-called inverse Lax-Wendroff (ILW) methods [24, 23, 42, 43, 3]

In this paper, we develop a strategy to apply implicit multistep two-derivative methods to convection-
diffusion type equations in 1D using DG. That approach is then extended to first-order PDEs in 2D where
we employ HDG for increased efficiency. The approach shows some similarities to the one in [44], but we
use DG instead of finite differences for our spatial discretization. As the time derivatives that arise from
two-derivative time integrators are replaced by spatial derivatives, an accurate way to represent them is
needed. This could be done by differentiating the polynomial representation of the solution in the DG
setting, having been justified in [40] by the fact that the derivatives are multiplied by additional ∆t that
scales as ∆t = O(∆x). In general, the time step restriction for implicit time integration is less severe.
Therefore, we employ the LDG approach to accurately represent the additional derivatives, which has the
additional benefit of potentially recovering superconvergence properties [18]. We refer the interested reader
to [45] where the application of LDG to PDEs of higher order is discussed extensively. In this work, we
also show how to extend our approach efficiently to solve for two dimensional convection problems with the
hybridized DG method.

The paper is structured as follows. In Section 2, we introduce a 1D nonlinear viscous conservation law
that serves as a model equation. Then, in Section 3, we briefly describe the two-derivative multistage time
integrators that are used in this work. This also explains the appearance of higher order spatial derivatives
that are not directly present in the underlying PDE. Afterwards, we discretize the model equation in time
and space using the LDG approach (c.f. Section 4) and verify the method using linear and nonlinear PDEs
in Section 5. The two-derivative time integration is then extended to first order PDEs in two dimensions in
Section 6. The resulting equation is discretized using an HDG method that significantly reduces the size of
the globally coupled system. Finally, we verify the approach using the linear advection and nonlinear Euler
equations in Section 7.
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2 Underlying equation

In this work, we begin with the scalar nonlinear viscous conservation law

wt + f(w)x = εwxx ∀(x, t) ∈ Ω× R+ (2)

w(x, 0) = w0(x) ∀x ∈ Ω

with ε ≥ 0 given on a domain Ω ⊂ R equipped with periodic boundary conditions. The method to be
developed relies - similar to a Lax-Wendroff procedure [30] - on the use of the second temporal derivative
wtt, expressed in terms of spatial derivatives. For the underlying problem, we state the following lemma:

Lemma 1. Let w ∈ C4(Ω× R+). Then, the second temporal derivative can be expressed as

wtt =
(
f ′(w)f(w)x − εf ′(w)wxx

)
x

+ ε (−f(w)x + εwxx)xx =: R2(w). (3)

Proof. Obviously, there holds

wt = −f(w)x + εwxx =: R(w)

and consequently,

wtt = (−f(w)x + εwxx)t = (−f(w)t)x + ε(wt)xx = (−f ′(w)wt)x + ε(wt)xx

=
(
f ′(w)f(w)x − εf ′(w)wxx

)
x

+ ε (−f(w)x + εwxx)xx =: R2(w).

Remark 1 (Limiting cases). The term for wtt simplifies significantly in some limiting cases:

1. If f is linear, i.e., f(w) = cw, then

wtt = c2wxx − 2εcwxxx + ε2wxxxx.

2. This also means that for f ≡ 0, wtt = ε2wxxxx.

3. If ε ≡ 0, there wtt = (f ′(w)f(w)x)x.

Note that the viscous and convective terms influence each other mutually, i.e., one obtains cross-terms that
need to be dealt with.

3 Time integration

In this section, we shortly review multiderivative time integrators as far as it is of importance for this work.
Assume that the ordinary differential equation

y′(t) = g(y(t))

is given for a smooth function g. Classical approaches (e.g. multistage Runge-Kutta, or linear multistep
methods) to the numerical approximation of these equations [19, 21] only use g itself. A multiderivative
method, on the other hand, takes knowledge of higher derivatives of y into consideration. As an example,
the second derivative y′′ is given by

y′′(t) = ġ(y) := g′(y)g(y),
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which can be readily computed for an ODE using symbolic differentiation software. In this publication, we
assume that 0 ≤ t ≤ T , and that this temporal interval is uniformly subdivided into 0 = t0 < t1 < . . . <
tN = T with spacing ∆t. We note that none of the algorithms presented depends on a uniform time step
size, and this choice is just for the ease of presentation. As is customary, yn denotes an approximation to y
at time t = tn.

In this work, we consider implicit two-point collocation methods with multiple derivatives of the form

m∑
j=0

∆tj(Djy)(yn+1)P (m−j)(0) =
m∑
j=0

∆tj(Djy)(yn)P (m−j)(1) (4)

where P (t) = tk(t−1)l

(k+l)! . Each of these methods are of order m = l + k (c.f. II.13 in [19]). Because of the

growing complexity of higher order derivatives (see also Eqn. (3)), we rely on schemes involving only two
derivatives of the unkown.

Remark 2 (Employed methods). • In this work, we discuss the third-order method with k = 1, l = 2,
given by

yn+1 = yn +
∆t

3

(
g(yn) + 2g(yn+1)

)
− ∆t2

6
ġ(yn+1), (5)

and the fourth-order scheme with k = l = 2 given by

yn+1 = yn +
∆t

2

(
g(yn) + g(yn+1)

)
+

∆t2

12

(
ġ(yn)− ġ(yn+1)

)
. (6)

These are the same methods that are used to discretize the non-linear terms in [4].

• More generally, the methods can be written in form

yn+1 = yn + ∆t
(
α1g(yn) + α2g(yn+1)

)
+ ∆t2

(
β1ġ(yn) + β2ġ(yn+1)

)
,

(7)

where the coefficients αi, βi, i = 1, 2 are chosen to maximize the order of accuracy (e.g. Eqn. (6)), or
to modify the region of absolute stability (e.g. Eqn. (5) is an L-stable method).

Lemma 2 (Stability). The integrators (5) and (6) are third- and fourth-order accurate, respectively, and
A-stable. The third-order method (5) is L-stable.

Applying (7) to equation (2) on a semi-discrete level yields the expression

wn+1 −∆tα2w
n+1
t − β2∆t2wn+1

tt = wn + ∆tα1w
n
t + β1∆t2wntt,

where wtt has to be replaced by the expression in (3). The term wtt contains spatial derivatives up to fourth
order, so we have to discuss how to discretize them in a DG framework efficiently. In [45, 18], the authors
show how to use the local discontinuous Galerkin (LDG) method to discretize the higher spatial derivatives
in an explicit DG solver. Their work will be the basis for the algorithm to be presented in the sequel.

4 1D: Spatial and temporal discretization

It is the aim of this publication to couple temporal discretization in (7) to the discontinuous Galerkin
method. A semi-discretization of (2) is given by

wn+1 = wn + ∆t
(
α1R(wn) + α2R(wn+1)

)
+ ∆t2

(
β1R2(wn) + β2R2(wn+1)

)
,

(8)
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where R(w) and R2(w) denote the expressions for wt and wtt, respectively (c.f. Eqn. (3)), and wn denotes
an approximation to w at time tn.

Before introducing the full spatial and temporal discretization, we start with some preliminaries. To
introduce a finite element method, we begin by defining a triangulation of Ω into cells Ωk such that they
define a partition

Ω =

Ne⋃
k=1

Ωk

with a total of Ne elements. For a given polynomial order p, we define the ansatz space Vh to consist of
cell-wise polynomials of order p with no continuity restriction along the cell boundaries

Vh := {q ∈ L2(Ω) | q ∈ Πp(Ωk) ∀k = 1, . . . , Ne}.

Again, it is possible to choose an adaptive p that differs from cell to cell. We neglect this, for ease of
exposition.

The method to be presented relies on the quantities

σ := ux, τ := σx = uxx, ψ := τx = uxxx.

In the most straightforward way, these variables are discretized as

(ψh, ϕh)Ωk
+ (τh, (ϕh)x)Ωk

− 〈τ̂ , ϕhn〉∂Ωk
= 0 ∀ϕh ∈ Vh,

(τh, ϕh)Ωk
+ (σh, (ϕh)x)Ωk

− 〈σ̂, ϕhn〉∂Ωk
= 0 ∀ϕh ∈ Vh,

(σh, ϕh)Ωk
+ (wh, (ϕh)x)Ωk

− 〈ŵ, ϕhn〉∂Ωk
= 0 ∀ϕh ∈ Vh.

As is customary, we have defined the abbreviations

(f, g)Ωk
:=
∑
Ωk

∫
Ωk

fgdx, 〈f, g〉∂Ωk
:=
∑
Ωk

∫
∂Ωk

fgdσ(x).

In one dimension, the last term can be simplified into function evaluations at two points. However, we
prefer keeping the integral on the boundary to indicate the algorithm extends to multiple dimensions. The
numerical fluxes τ̂ , σ̂ and ŵ have to be identified appropriately. One way to achieve a stable scheme is to
choose ‘upwinding’ in an alternating fashion [45]. The corresponding fluxes read

ŵ = w+
h , σ̂ = σ−h , τ̂ = τ+

h , ψ̂ = ψ−h , (9)

where we stick to the convention that w−h refers to the left value of wh at the interface, and w+
h refers to the

right value.
We summarize these quantities in an auxiliary variable xh ∈ V 4

h =: Xh, given by

xh := (wh, σh, τh, ϕh). (10)

This simplifies the defining equations for σh, τh and ϕh as

Naux(xh,ϕh) = 0 ∀ϕh ∈ V 3
h .

Remark 3 (Lifting operators). It is pointed out in [45] that it is possible to express the variable σ in terms
of w via lifting operators, and subsequently τ and ψ as terms of w as well. This comes at the expense of
computing lifting operators (c.f. [2]).
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With these preliminaries, we now consider the semi-discretization (8) once again. It is well-known how to
spatially discretize R(w) using the DG method

(R(wh), ϕh)Ωk
≈ nr(xh, ϕh)

:= (f(wh)− εσh, (ϕh)x)Ωk
−
〈
f̂(w+

h , w
−
h )− εσ̂h, ϕhn

〉
∂Ωk

with the discretization of σ and σ̂ as before. The numerical flux f̂ denotes a standard consistent and
conservative Riemann solver. Details on the chosen flux are given in the numerical results section.

The discretization of R2(w) is less straightforward. In particular, both the occurring higher derivatives
and the nonlinearity of f pose severe problems. Based on the definition of ψh, τh and σh earlier, we propose
the following discretization:(

R2(wh), ϕh
)

Ωk
≈ nrt(xh, ϕh) :=

−
(
f ′(wh)2σh − εf ′(wh)τh, (ϕh)x

)
Ωk

+
〈
f ′(ŵh)2σ̂h − εf ′(ŵh)τ̂h, ϕhn

〉
∂Ωk

+
(
εD2

hf, (ϕh)x
)

Ωk
−
〈
ε̂D2

hf, (ϕh)x

〉
∂Ωk

−
(
ε2ψh, ϕh

)
Ωk

+
〈
ε2ψ̂h, ϕhn

〉
∂Ωk

.

Again, the fluxes ŵ, σ̂, τ̂ and ψ̂ are the LDG fluxes with alternating evaluation, see (9). D2
hf denotes an

approximation to f(w)xx, see Remark 4.

Remark 4 (Discretization of D2
hf). The suitable discretization of D2

hf ≈ f(w)xx depends on the choice of
the convective flux f . We show two prototypical examples:

1. Linear equation, i.e., f(w) = cw. In this case, f(w)xx = cwxx, and a suitable choice is

D2
hf := cτ, D̂2

hf := cτ̂ .

2. Burgers equation, i.e., f(w) = 1
2w

2. In this case, f(w)xx = w2
x + wwxx. As all occurring derivatives

are known explicitly in the algorithm, a suitable approximation is

D2
hf := σ2 + wτ, D̂2

hf := σ̂2 + ŵτ̂ .

3. A similar procedure as with Burgers equation is possible with any flux function - also for Euler equation.
However, the result might become increasingly complex.

Ultimately, this leads to the formulation of the full algorithm, summarized in the following definition:

Definition 1 (Numerical method). Let ϕh = (ϕ
(1)
h , ϕ

(2)
h ) ∈ Xh with ϕ

(1)
h ∈ V 3

h . Furthermore, let the
semi-linear form N be given by

N (xh,ϕh) :=

(
Naux(xh,ϕ

(1)
h )

Neq(xh, ϕ
(2)
h )

)

where Neq(xh, ϕ
(2)
h ) is given by

Neq(xh, ϕ
(2)
h ) := α1NR(xnh, ϕ

(2)
h ) + α2NR(xn+1

h , ϕ
(2)
h )

+ ∆t
(
β1NR2(xnh, ϕ

(2)
h ) + β2NR2(xn+1

h , ϕ
(2)
h )
)
.

The approximate solution xn+1
h = (wn+1

h , σn+1
h , τn+1

h , ψn+1
h ) ∈ Xh is given as the solution to the problem(

0
1

∆t

(
wn+1
h − wnh , ϕ

(2)
h

)
Ωk

)
= N (xh,ϕh) ∀ϕh ∈ Xh.
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The following lemma is a straightforward consequence of both the order of accuracy of the ODE integrator
and the consistency of the underlying DG schemes:

Lemma 3 (Consistency in time). The algorithm is consistent with the order of the temporal integration
scheme chosen in (8), i.e., there holds:(

0
1

∆t

(
w(·, tn+1)− w(·, tn), ϕh

)
Ωk

)
−N (x,ϕh) = O(∆tq)

where q = 3 for integrator (5) and q = 4 for integrator (6).

Lemma 4 (Conservation). The algorithm is both locally and globally conservative if D̂2
hf is conservative.

Proof. Testing with a piecewise constant test function yields that the integral of wn+1
h only depends on

the fluxes over the boundaries. This yields local conservation. Noting that the fluxes are conservative and
testing against a constant function yields that the algorithm is globally conservative.

5 1D: Numerical results

In this section, we present numerical results for the newly developed scheme. In each case, we demonstrate
the optimal order of convergence through.

In all our computations, we use periodic boundary conditions on the unit interval Ω := [0, 1], and compute
until a final time of T = 0.5. For the cases involving linear convection, we choose the upwind numerical flux

f̂(w+, w−) := cw−, c > 0,

whereas for Burgers equation, we use a local Lax-Friedrichs flux. The domain Ω is subdivided into equally
spaced intervals with spacing h. As an error measure, we compute the L2-error at time T , that is, we define
the error as

eh := ‖w(·, T )− wh(·, T )‖L2(Ω),

where w is the exact and wh the approximate solution to the underlying problem.

5.1 Heat equation

The first equation to be considered is the pure heat equation

wt = εwxx ∀(x, t) ∈ Ω× (0, T )

with initial conditions w0(x) = sin(2πx), and ε = 0.1.

Numerical results for different values of the polynomial order p of the ansatz space are shown in Fig. 1
for the third-order integrator (5) (left) and the fourth-order integrator (6) (right). The expected order of
accuracy of max{p + 1, 3} and max{p + 1, 4}, respectively, is achieved. The time step is set to ∆t = ∆x.
Experiments with other ratios of ∆t

∆x introduce no stability problems, which is independent on the choice of
ε. Thus, we conjecture that the algorithm is uniformly stable for this simple 1D test case without transport.
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Figure 1: Numerical results for the heat equation. In both computations, we choose the ratio ∆t
∆x to be

one. Temporal integration is performed via the third-order accurate integrator (5) (left) and the
fourth-order integrator (6) (right).

5.2 Convection equation

Next, we test the algorithm on the pure convection equation

wt + cwx = 0 ∀(x, t) ∈ Ω× (0, T ),

again with initial conditions w0(x) = sin(2πx), and constant c = 1. Numerical results are displayed in Fig.
2, again for the third-order (left) and the fourth-order (right) temporal integrator. The CFL number for
this example is one for the third-order integrator, and only 0.1 for the fourth-order integrator. The reason
for this choice is that we find stability constraints with the fourth-order integrator. Our experience with
other time integrators has lead to this in the past, and we suspect that it is most likely due to the loss
of L−stability in the fourth-order solver. Numerical experiments indicate that the third-order integrator
is uniformly stable. We note that obviously, such a severe CFL restriction is not a desired feature of an
implicit scheme, and a detailed investigation into how to fix the fourth-order scheme is the subject of future
work.
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Figure 2: Numerical results for the convection equation. Temporal integration is done via the third-order
integrator (5) (left) and the fourth-order integrator (6) (right). The ratio ∆t

∆x is set to be 1.0 (left)
and 0.1 (right). The third-order integrator seems to be uniformly stable, yet the fourth-order
integrator is not, which is why we find it necessary to reduce the CFL number.
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5.3 Convection-diffusion equation

The final linear single-dimensional test case is the convection-diffusion equation

wt + cwx = εwxx ∀(x, t) ∈ Ω× (0, T ),

with values c = 1 and ε = 0.1. This exercises the ability of the scheme to correctly account for the additional
coupling terms that arise in the discretization of wtt. We present two examples: a) an example with a smooth
initial profile, and b) a problem with discontinuous initial conditions.

5.3.1 Convection-diffusion: Smooth initial conditions.

We present numerical results for this problem in Fig. 3. The initial conditions for these results are given by
w0(x) = sin(2πx), and the ratio ∆t

∆x is chosen to be be one for all cases. For the third-order integrator, we
do not observe any stability issues, while obviously, from our experiences with the convection equation, the
fourth-order scheme tends to be only conditionally stable. However, this stability condition does not seem
to depend on the magnitude of the viscosity coefficient ε, but rather on the ratio c

ε .
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Figure 3: Numerical results for the convection-diffusion equation. In both computations, we choose the
ratio ∆t

∆x to be one. Temporal integration is done via the third-order integrator (5) (left) and the
fourth-order integrator (6) (right).

5.3.2 Convection-diffusion: Discontinuous initial conditions.

In this section, we consider discontinuous initial data

w0(x) = H(sin(2π(x− 0.3)))esin(2πx),

where H denotes the Heaviside function.

Because the initial conditions are not smooth, there are at least two ways of defining the initial conditions
for the auxiliary variables x0

h in Eqn. (10) that require the spatial derivatives of the initial conditions.
One way is to fill it with the given initial conditions, i.e., set σ0

h = ΠVhw
′
0 ... where ΠVh denotes the

L2−projection onto Vh. We use this choice for the computations in the previous sections, because the initial
datum is smooth. However, for this problem that has non-smooth initial conditions, w′0 does not exist. For
this case, one alternative is to compute σ0

h, τ
0
h and ψ0

h as a solution to Naux(x0
h,ϕh) = 0 for all ϕh ∈ V 3

h for
a given wh = ΠVhw0. This is the ansatz we pursue in this section.

In Fig. 4, we show an approximate solution at time T = 0.5, which uses a spatial width of h = 1
16 ,

quadratic (third-order) polynomials, CFL number of ∆t
∆x = 0.5 and the third-order ODE integrator. We

observe a strong agreement between the exact and approximate solution.
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Figure 4: Approximate versus exact solution at time T = 0.5 (right) to the convection-diffusion equation
with discontinuous initial datum (left). Results are computed with p = 2, h = 1

16 and the third-
order integrator (5).

5.4 Viscous Burgers equation

Our final single dimensional numerical result is the nonlinear Burgers equation

wt + f(w)x = εwxx

with f(w) = 0.5w2 and ε = 0.1. Equipped with initial conditions w0(x) = sin(2πx), this test case has a
smooth solution w for all times T . As before, we show convergence results in Fig. 5. The exact solution is
computed using the Cole-Hopf transformation [25]. No stability issues are observed in the computations,
and the plots show perfect order of convergence. The results are similar to those of the convection-diffusion
equation, which is mainly because diffusion is dominant in this test case. For implicit methods, this is
probably the most relevant case, as for purely hyperbolic problems, explicit methods are often times the
preferred method of choice given the finite speed of propagation of information. Furthermore, we do not
implement any limiters but a final algorithm should have a suitable way of stabilizing discontinuities in the
case of a convection dominated problem. This is one topic of future research, where one option is to introduce
artificial viscosity into the time stepping, because we already have access to these higher derivatives.
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Figure 5: Numerical results for Burgers equation. In both computations, we choose the ratio ∆t
∆x to be

one. Temporal integration is done via the third-order integrator (5) (left) and the fourth-order
integrator (6) (right).
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6 2D: Extensions to multiple dimensions

In this section, we describe the extension of implicit two-derivative multistage methods to hyperbolic systems
of first-order PDEs

wt +∇ · f(w) = 0 ∀(x, t) ∈ Ω× R+ (11)

w(x, 0) = w0(x) ∀x ∈ Ω

on a domain Ω ⊂ R2 with appropriate boundary conditions. In general, the unknown w is a function of
space and time w := w(x, t), but we may drop x and t for a more compact notation. We allow f(w) to be
a general, possibly nonlinear, flux. Note, that the flux f(w) (as well as w) is a vector in Rm for a system
with a total of m equations. In order to limit the complexity we stay with first-order PDEs for the 2D case.
Due to the additional spatial dimension, the total number of derivatives also doubles which would make
the assembly of the matrices required for second or higher order PDEs tedious, especially in the case of a
system of equations. Nevertheless, the two-derivative methods are still applicable to higher order PDEs in
2D using the techniques from Section 4.

Here, we apply the same third and fourth-order two derivative methods defined in Eqns. (5)-(6), but we
discretize the resulting system using the hybridized discontinuous Galerkin [7, 32, 39] method. For Poisson’s
equation, this discretization is equivalent to the LDG method [7]. A preliminary investigation that couples
two-derivative Runge-Kutta methods with HDG for a linear advection equation can be found in in [27]. The
HDG method usually leads to a much smaller system of globally coupled equations than the LDG approach.
This is especially beneficial in the current case where additional unknowns are introduced by the spatial
derivatives from the two-derivative time discretization. We aim to stress at this point that the additional
unknowns are, for the HDG method, only local unknowns, and the globally coupled degrees of freedom are
not affected.

The representations of R(w) and R2(w) only differ slightly from the one dimensional DG case. Here, we
find that the first and second derivatives are given by

wt = −∇ · f(w) =: R(w)

wtt = ∇ · (f ′(w)∇ · f(w)) =: R2(w)
(12)

which follows directly from Eqn. (3) by setting ε = 0.

We follow the discretization procedure of Section 4. The semi-discrete system again reads

wn+1 = wn + ∆t
(
α1R(wn) + α2R(wn+1)

)
+ ∆t2

(
β1R2(wn) + β2R2(wn+1)

)
with R(w) and R2(w) defined in Eqn. (12). For the spatial discretization we triangulate the domain such
that

Ω =

Ne⋃
k=1

Ωk.

The hybridized DG method requires a description of the edges. We refer to edges of two intersecting elements
and elements intersecting the domain boundary ∂Ω with ek. The set of all edges is Γ and its number of
elements is Nf := |Γ|. This is needed to introduce a new hybrid unknown λ = w|Γ that represents the
solution evaluated on the trace of each element. This allows us to reduce the size of the globally coupled
system by using static condensation [7]. For the approximation of λh ≈ λ we need to introduce the ansatz
space Mh that consists of edge-wise polynomials of degree p defined by

Mh := {q ∈ L2(Γ) | q|ek ∈ Πp(ek)∀k = 1, . . . , Nf , ek ∈ Γ}m.
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For the approximation of second order spatial derivatives introduced by a two-derivative time discretization,
we again define an auxiliary variable through

σ := ∇w.

The ansatz spaces for σh and wh are the common spaces

Hh := {q ∈ L2(Ω) | q|Ωk
∈ Πp(Ωk) ∀k = 1, . . . , Ne}2m,

Vh := {q ∈ L2(Ω) | q|Ωk
∈ Πp(Ωk) ∀k = 1, . . . , Ne}m,

that contain all polynomials of degree at most p. In order to condense notation, we define the vector of
unknowns as

xh := (wh, σh, λh)

that come from the ansatz space Xh := Hh×Vh×Mh, and corresponding test functions ϕh = (ϕ(1), ϕ(2), ϕ(3)) ∈
Xh. Then, σh is approximated through(

σh, ϕ
(1)
h

)
Ωk

+
(
wh,∇ · (ϕ

(1)
h )
)

Ωk

−
〈
λh, ϕ

(1)
h · n

〉
∂Ωk

= 0 ∀ϕ(1)
h ∈ Hh,

that is very similar to the approximation before, but we use the hybrid variable λh as the numerical flux
ŵ := λh. The equation is abbreviated by

Naux(xh, ϕ
(1)
h ) = 0 ∀ϕ(1)

h ∈ Hh.

Finally, the discretization of R and R2 for this first-order PDE is given by(
R(wh), ϕ

(2)
h

)
Ωk

≈ NR(xh, ϕ
(2)
h ) :=

(
f(wh),∇ϕ(2)

h

)
Ωk

−
〈
f̂ , ϕ

(2),−
h n

〉
∂Ωk

and (
R2(wh), ϕ

(2)
h

)
Ωk

≈ NR2(xh, ϕ
(2)
h )

:= −
(
Dhf(wh, σh),∇ϕ(2)

h

)
Ωk

+
〈
D̂hf , ϕ

(2),−
h n

〉
∂Ωk

,

where

f ′(w)∇ · f(w) = f ′(w)f ′i(w)∂xiw ≈ f ′(wh)f ′i(wh)σh,i =: Dhf(wh, σh).

Thus, σh is involved when the flux is evaluated. On each element interface, we insert numerical fluxes

f̂ = f(λh) + η(w−h − λh)n

D̂hf = D̂hf(λh, σ
−
h )− θ(w−h − λh)n,

that are modified Lax-Friedrichs (Rusanov) fluxes with η and θ being stabilization parameters. Whenever
θ is multiplied with a negative coefficient from the time integrator, we invert the sign. Note, that at this
point the equations are only coupled through the hybrid variable λh. An additional equation arises from
the additional unknown λh through〈

−f̂ + D̂hf , ϕ
(3)
h

〉
∂Ωk

= 0 ∀ϕ(3)
h ∈Mh.

With these preliminaries in place, we are now ready to define the full hybridized DG method.
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Definition 2 (HDG method). Let ϕh = Xh. Furthermore, let the semi-linear form N be given by

N (xh, ϕh) :=

Naux(xh, ϕ
(1)
h )

Neq(xh, ϕ
(2)
h )

Nhyb(xh, ϕ
(3)
h )

 ,

where Neq(xh, ϕ
(2)
h ) is given by

Neq(xh, ϕ
(2)
h ) :=α1NR(xnh, ϕ

(2)
h ) + α2NR(xn+1

h , ϕ
(2)
h )

+ ∆t
(
β1NR2(xnh, ϕ

(2)
h ) + β2NR2(xn+1

h , ϕ
(2)
h )
)
,

and the hybrid term is given by

Nhyb(xh, ϕ
(3)
h ) :=

〈
J−α2f̂

n+1 + β2D̂hf
n+1

K, ϕ(3)
h

〉
∂Γ
.

The brackets denote the jump operator

JvK = v−n− v+n

with v(x)± being

v(x)± = lim
ε→0

v(x± εn), x ∈ ∂Ωk (13)

where n is the outward pointing normal. The approximate solution xn+1
h = (σn+1

h ,wn+1
h , λn+1

h ) ∈ Xh is
given as the solution to the problem 0

1
∆t

(
wn+1
h −wn

h , ϕ
(2)
h

)
Ωk

0

 = N (xh, ϕh) ∀ϕh ∈ Xh.

Remark 5 (Number of unknowns). All evaluations on elements only depend on local values of wh and σh,
and therefore the total number of unkowns can be significantly reduced when compared to a classical LDG
method. The coupling between elements is achieved solely by the hybrid variable λh, and therefore, the system
to be solved for globally can be condensed [7]. This means that the resulting system is usually much smaller
than it would be for the standard LDG approach, which typically requires solving simple local problems on
each element in an element-wise fashion.

7 2D: Numerical results

In this section we show two-dimensional numerical results. Here, we solve the (nonlinear) system of equations
using Newton’s method. The resulting linear system is solved using GMRES with block Jacobi precondi-
tioning until the relative residual drops below 10−12. Newton’s method is carried out until the L2-norm of
the residual drops below 10−10.

7.1 Linear advection equation

We first examine a system of linear advection equations. It can be written as in Eqn. (11). We compute a
solution on Ω = [0, 2]2 at final time T = 0.1. The flux is chosen to be f(w) = (f1, f2) with

f1(w) = A1w, f2(w) = A2w, (14)
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The vector of unknowns is w = (w1, w2)T . The matrices for this linear system are given by

A1 =

(
1
3

8
3

16
3 −7

3

)
, A2 =

(
−7

3 −5
3

−10
3 −2

3

)
. (15)

These matrices have the same eigenvector basis, which means we can express these as A1 = SDA1S
−1 and

A2 = SDA2S
−1 with

DA1 =

(
−5 0

0 3

)
,DA2 =

(
1 0

0 −4

)
,S =

(
−1

2 1

1 1

)
,S−1 =

(
−2

3
2
3

2
3

1
3

)
. (16)

After choosing the initial conditions to be

w0(x) =

(
sin(π(x+ y))
sin(π(x+ y))

)
, (17)

and taking into account periodic boundary conditions, we write the exact solution as

w(x, t) =

(
sin(π(x+ y + t))
sin(π(x+ y + t))

)
. (18)

We compute solutions on meshes that are presented in Fig. 6. Results are presented in Fig. 7 for the

Figure 6: Left : Initial mesh. Right: Mesh after a total of three refinements.

ratio ∆t
∆x = 0.025. The errors for w1 and w2 are perfectly identical. The third order integrator reaches the

expected order of convergence in all cases. For p = 3, the method is still third-order accurate, but it has a
lower error than in the case with p = 2. The fourth-order integrator, however, does not achieve fourth-order
in time. In the case p < 3, the method gets close to the expected order of p + 1 while for p = 3 the order
deteriorates during the refinements. After the sixth refinement it seems not to converge any further. Most
likely, this is behavior is observed due to stability issues of the fourth-order integrator.

7.1.1 Euler equations

As second test case in two space dimensions, we solve the Euler equations with periodic boundary conditions.
The flux f(w) = (f1, f2) is nonlinear and is given by

f1(w) =
(
ρu, P + ρu2, ρuv, u(E + P )

)T
,

f2(w) =
(
ρu, ρuv, P + ρv2, v(E + P )

)T
,

(19)
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Figure 7: Numerical results for the linear coupled advection equation. Temporal integration is performed
with the third-order integrator (5) (left) and the fourth-order (6) integrator (right). We show the
results for components w1 (top) and w2 (bottom). In all computations we choose the ratio ∆t

∆x to
be 0.025 to ensure stability of the numerical method.

and the vector of unknowns is w = (ρ, ρu, ρv, E), which define the density ρ, momentum ρu and ρv in the
x- and y-direction, and energy E. The pressure P is given by the equation of state

P = (γ − 1)

(
E − 1

2
ρ(u2 + v2)

)
,

and the ratio of specific heats is γ = 1.4 for the test cases considered in this work. To analyze the accuracy
of the method, we make use of a test case similar to the one presented in [28] that has a smooth analytical
solution. The domain Ω = [0, 2]2 is equipped with periodic boundary conditions, and the initial conditions
are

ρ(x, y) = 1.0 + 0.2 sin(π(x+ y)), u = 0.7, v = 0.3, P = 1. (20)

A convergence study is presented in Fig. 8, where we compute the solution to a final time of T = 0.5.

Both integrators produce very similar errors, but the third-order integrator has slightly lower errors. The
conclusion is that the higher-order integrator does not exhibit any serious advantage over the lower-order
integrator for this test case. For this problem, we find that increasing the polynomial order always increases
the rate of convergence, which is in contrast to the previous cases. For example, in the linear test case, going
from p = 2 to p = 3 decreased the error level, whereas the slope of the error graph stayed almost constant
(c.f. Fig. 7). For this problem, this actually increases the slope. Nevertheless, both integrators have a slight
loss of convergence rate during refinements.

8 Conclusions and outlook

In this work, we present a novel application of high-order, implicit multiderivative time integrators to
the discontinuous Galerkin framework. Two dimensional results are realized by employing the hybridized
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Figure 8: Numerical results for the Euler equations. Temporal integration is done via the third-order inte-
grator (5) (left) and the fourth-order (6) integrator (right). We show the error in the density ρ.
In all computations we choose the ratio ∆t

∆x to be 0.05 to ensure stability of the methods.

discontinuous Galerkin method in order to reduce the total number of unknowns that would otherwise be
required to discretize the system. Results for a third- and fourth-order time integrator are presented, where
we observe the expected order of convergence in time for all of our 1D test cases. However, we numerically
observe that the time integrators are not uniformly stable for convection dominated problems, which is not
a desirable property for an implicit scheme. This behavior can also be observed in a more strict sense in
the 2D case, where we additionally observe a loss of accuracy for the fourth-order integrator. One possible
explanation for this drawback is that higher derivatives carry negative coefficients, and effectively introduce
anti-diffusion into the method. Future work must deal with improving stability properties of these methods.
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