
Fast Approximation Methods
for Fitting Surfaces

to Unorganized Point Clouds

Karl-Heinz Brakhage

Institut für Geometrie und Praktische Mathematik
Templergraben 55, 52062 Aachen, Germany

Karl-Heinz Brakhage
Institut für Geometrie und Praktische Mathematik, RWTH Aachen,
Templergraben 55, 52056 Aachen, Germany
brakhage@igpm.rwth-aachen.de

N
 O

 V
 E

 M
 B

 E
 R

 2

 0
 1

 5

P
R

E
P

R
I N

 T

 4
 3

 8

Fast Approximation Methods

for Fitting Surfaces

to Unorganized Point Clouds

Karl-Heinz Brakhage
Institut für Geometrie und Praktische Mathematik, RWTH Aachen,

Templergraben 55, 52056 Aachen, Germany
brakhage@igpm.rwth-aachen.de

Abstract

We present and analyze a novel fast method for scattered data approximation with
curves / surfaces which have a representation as a linear combination of smooth basis
functions associated with the control points. Our technique can be applied to stan-
dard Bézier and B-spline curves / surfaces as well as for subdivision schemes. The
approach can be formulated in such way that for the iteration we have a standard least
squares problem in each step. A regularization term that expresses the fairness of the
intermediate and / or final result can be added. Adaptivity is easily integrated in our
concept. Furthermore our approach is well suited for reparameterization occurring in
grid generation.

Keywords: Splines, Multivariate Approximation, Fairing, Numerical Analysis, Numerical
Linear Algebra

Introduction

The problem of computing a smooth curve or surface representation of a target shape
given by a set of unorganized data points has many applications in engineering and CAD.
For a long period surface fitting methods use the distance between a point on the fitting
surface and the corresponding foot point on the target surface or vice versa for minimizing
the objective function. These methods are called point distance minimization (PDM).
The parameters for the projected points have to be adjusted in an outer loop. Later
Pottmann et al. ([6, 7]) introduced an approach based on the minimization of a quadratic
approximant of the squared distance function. Their aim was to avoid the parameterization
problem and to construct algorithms of second order convergence. Methods based on
this idea are called SDM, standing for squared distance minimization. Unfortunately in
general the second order Taylor approximant does not lead to symmetric positive definite
system matrices and for this reason the existence and uniqueness of the minimum cannot
be guaranteed. Thus the second order Taylor approximation was modified to ensure
positive definiteness. But this modification destroys the second order and thus the claimed
quadratic convergence of those methods. Nevertheless such approaches need less iterations.
On the other side the main drawback is a large computational overhead (see [3]), e.g. due to
principal curvature computations. Furthermore the parameterization is not really totally
avoided.

1

We use a different approach. This sidesteps the curvature computation. Furthermore
our method can still be written in the form of a standard least squares problem which is
not the case for SDM. Thus we can use the normal equation and iterative solvers for them
as well as orthogonal transformations that have a better condition number than the normal
equations. To reduce the number of parameter corrections (the outer loop) we minimize a
combination of the PDM and the distances of the data points to the linear approximation
of the target surface at the projection point. Note that the later one coincides with the
squared distance function for points on the surface. We will demonstrate the idea of our
method for the approximation with Beziers. It turned out that our method has super
linear convergence with only a small computational overhead for surface normals.

The rest of this paper is organized as follows. First we give some basic notations and
properties of Bézier and B-spline surfaces. Next we analyze the behavior of the standard
PDM iteration and that of our new one. Details on the used approximation strategies
and algorithms for splines will be given. Finally a summary and an evaluation regarding
computation time and accuracy of the algorithms usually applied for these purposes will
be given.

Basics on Splines and Subdivision

Bézier curves of order n are given by n + 1 control or Bézier points pi ∈ Rm, i = 0 . . . n
(here m = 2, 3), that build the so-called control polygon, for u ∈ [0, 1] by

x(u) =

n∑
i=0

Bn
i (u)pi =

n∑
i=0

(
n
i

)
ui(1− u)n−i pi . (1)

The Bn
i (u) are called Bernstein polynomials. Derivatives of Bézier curves of order n are

Bézier curves of order n− 1.
To keep the technical descriptions as simple as possible, we will not touch the additional

constraints coming from continuity conditions. Let us only state here that for B-splines
of order four or higher the first and second derivative are continuous. With the exception
of extraordinary vertices the same is true for Catmull Clark and Loop subdivision.

One main advantage for interpolation and approximation with curves like (1) is the
linearity in the control points pi. B-spline curves have these property, too. They are given
by

x(u) =
n∑

i=0

Ni,p,U (u)pi (2)

where Ni,p,U (u) is the i-th normalized B-spline function of order p (degree p − 1) corre-
sponding to the generally non-uniform knot vector U = (u0, u1, . . . , un+p). We usually
assume that U is clamped and the internal knots are single knots, i.e., u0 = . . . = up−1 <
up < . . . < un < un+1 = . . . = un+p. For the sake of simplicity we write ni,p instead of
ni,p,U . Furthermore, without loss of generality in this paper we assume U to be scaled in
such a way that u0 = 0 and un+p = 1. Surfaces are represented by tensor products of the
form

x(u, v) =
n∑

i=0

m∑
j=0

Ni,p(u)Nj,q(v)pij or x(u, v) =

n∑
i=0

m∑
j=0

Bn
i (u)Bm

j (v)pij (3)

2

for B-spline and Bézier surfaces, respectively. Again these representations are linear in
the control points. The same applies for stationary subdivision curves and surfaces. The
algorithms presented below can be used for all these curve and surface classes. We rewrite
all the above representations in the form

x(u, v) =
N∑
j=1

Bj(u, v)pj (4)

with general basis functions Bj(u, v). In [10] and [11] it was shown that for Loop and
Catmull Clark subdivision the corresponding Bj(u, v) can be evaluated at arbitrary points.

Further information on Bézier- and B-splines can be found in standard literature on
CAGD (Computer Aided Geometric Design), e.g. [4]. For more details on subdivision
surfaces see [5].

Approximation of Curves and Surfaces

To be more precise with our least squares formulation we have to introduce some technical
notations. For an optimal approximation of a given surface y(s, t), (s, t) ∈ [smin, smax]×
[tmin, tmax] =: D ⊂ R2 by a parametric surface we have to determine the control points
pj associated to (4) in such a way that

max
(s,t)∈D

min
(u,v)∈[0,1]2

‖y(s, t)− x(u, v)‖2 (5)

is minimized. Since in practice these problems are too complex to solve we switch to
discrete approximation problems. For Béziers the whole domain D is normally a-priori
splitted into a couple of subdomains. In each (sub-)domain a set of approximation points
yi = y(si, ti) is chosen. In this paper we assume that an initial simple mesh corresponding
to the correct topology of the target surface and allowing the computation of the (ui, vi)
is already given. We further use the error estimator

δ = max
i
‖yi − x (ui, vi))‖2 . (6)

If the error is too large, we (recursively) subdivide the parameter domain. For subdivision
surfaces this is a normal subdivision step. For B-splines we use knot insertion and for
Béziers we split each subdomain into four equal parts. The corresponding parameter
values (ui, vi) are recomputed for the new domains. This step is not necessary for B-
splines.

The basic approximation principle, explained for surfaces, is as follows. Let yi, i ∈
{1, . . . , M} =: I be given data points or samples on a given target surface. We want
to compute a good approximating parametric fitting surface with a representation of the
form (4). For the B-spline case we further assume that the knot vectors U and V are
already determined with the constraints of the previous section. In a first step we have to
find (at least approximately) the nearest points xi = x(ui, vi) ≈ yi on the fitting surface.
A good estimation of the parameter values (ui, vi) might be a difficult task. Furthermore
it is well known that the parameterization problem is a fundamental one for the whole
approximation process and the final result. Therefore, parameter correction procedures

3

have to be used to improve the quality of the final approximation. Unfortunately the
decoupling of the overall fitting procedure into the two independent steps parameter cor-
rection and solving a linear least squares problem with fixed parameters converges very
slowly. On the other hand the overhead due to the curvature computation and the set
up of a more complex SDM error function leads to computational inefficiency of SDM.
A comparison in [3] shows that the time to attain comparable results used by SDM on
iterative optimization is about 30% to 50% more than PDM. The goal of our development
is the avoidance of the curvature computation in unity with the construction of a cheap
error function that accelerates the parameter correction.

Figure 1: Recursive approximation with quadratic Bézier curves. Upper plot: Initial
approximation and parameter correction. Lower plot: First subdivision step.

4

To get a better understanding of the key ingredients of our methods that lead to con-
vergence acceleration, we first analyze the behavior with planar curves. Figure 1 shows
the approximation of one quarter of an ellipse with quadratic Béziers. We force interpo-
lation at the beginning and the end of the interval. Thus p0 = y(tmin), p2 = y(tmax)
and the only free control point is p1. Only one level of subdivision is shown (lower plot).
This simple example already shows the power of spline approximation and the influence
of parameter corrections. For quadratic splines we expect the convergence rate O(h3).
Of course this can only be achieved if the underlying curve is in C3[tmin, tmax]. Thus for
every recursion the error will be (asymptotically) reduced by a factor of 8.

We chose ∆t = (tmax−tmin)/8 and started with yi = y(tmin+i∆t) for i ∈ {1, 2, . . . , 7}.
As initial guess for the ui we used ui = i/8. In the upper row we see the initial approxi-
mation with different (scaled) error vectors. Those without parameter correction are not
orthogonal to the target curve. Even more, without parameter correction the error vec-
tors become more and more tangential to the curves in higher recursion levels. For a
measurement of the real curve to curve distance at these points the error vectors should
be orthogonal to them. This can be achieved with parameter corrections. The error vec-
tors after parameter correction are shown too. Finally the result after some iterations is
shown. To make the changes of the parameter values visible we projected onto the target
curve. All error vectors are scaled with a factor of ten. In the lower part the result after
one subdivision is shown. Here the error vectors are scaled with 80 to make the effect of
error reduction visible. Since the error vectors scaled in such a way are shorter for the
subdivided curve the errors have reduced by factors larger than 8.

Figure 2: Approximation with cubic Bézier curves – PDM 100 iterations and our method
3 iterations. The error vectors are scaled with a factor of 100.

Next we want to study the influence of good parameter corrections. Again we start
with an illustrative example. In Figure 2 we have used a cubic Bézier with interpolation
at the boundaries for the approximation of a trochoid. Only one approximation interval
is shown with error estimates. Again as reference an approximation with desired relative
error of 10−6 is shown. Very few control points lead to a good approximation of the
trochoid curve. For cubic splines we expect the convergence rate O(h4). Here the curve
for approximation has to be in C4[tmin, tmax]. Furthermore we see that we need much less
iterations with an optimized parameter correction strategy.

For a better understanding of fruitful concepts for parameter correction we take a
look on the related analysis. Pottmann et al. ([6, 7]) introduced a concept of using

5

local quadratic approximants of the squared distance function to a surface for approxima-
tion strategies. At each regular point y(s, t) of a smooth target surface we have a local
right-handed Cartesian system whose first two vectors tk(s, t), k = 1, 2 are the principal
curvature directions belonging to the signed principal curvature κk(s, t). The third one
n(s, t) is orthogonal to them. Furthermore these vectors are normed. The thereby defined
frame Σ is called principle frame. If we define ρk(s, t) = 1/κk(s, t) we can write the second
order taylor approximation for a point xi with coordinates (0, 0, d) in Σ (i.e. y is the
closest point to xi on the target surface) as

Fd(x) =
d

d− ρ1
(
tT1 (x− y)

)2
+

d

d− ρ2
(
tT2 (x− y)

)2
+
(
nT (x− y)

)2
. (7)

Unfortunately there are points xi for which Fd is not a positive definite quadratic form.
This leads to a system matrix that is not symmetric positive definite such that we can not
guarantee the existence and uniqueness of the minimum. For this reason (7) is modified
to

F+
d (x) =

|d|
|d|+ |ρ1|

(
tT1 (x− y)

)2
+

|d|
|d|+ |ρ2|

(
tT2 (x− y)

)2
+
(
nT (x− y)

)2
. (8)

Now we end up with a positive definite system matrix but the second order of our ap-
proximant is destroyed and thus the claimed quadratic convergence of that method. Nev-
ertheless using (8) for minimization needs much less iterations. For this reason we use a
scaled combination of the standard minimization of (x− y)2 and (nT (x− y))2. The later
one coincides with F+

d (x) if d = 0, which is the case if xi lies on the target surface. From
this we conclude that it is a good choice to make the scaling dependent of d.

Fnew
d (x) = (x− y)2 + λ(d)

(
nT (x− y)

)2
. (9)

For using (9) in our minimization concept we only need a normal ni for each sample
point yi. Since the normal of the fitting surface x(u, v) approximates the normal of the
target surface, we can even use the normal of x(u, v). The high cost for the curvature
computation is avoided, too.

For the sample points yi, i = 1, 2, . . .M with associated parameter values (ui, vi) of
the fitting surface we can use the following setup. According to (4) the xi are given as
xi = x(ui, vi). We collect the control points pj in a vector (of 3d vectors) p, the yi in a
vector y and all coefficients aij := Bj(ui, vi) in a matrix A ∈ RM×N . With this notation
PDM is simply

p? = argmin
p
‖Ap− y‖2 . (10)

For the solution of (10) we can use orthogonal transformations or the normal equation

AT Ap? = AT y . (11)

Using xi =
∑

j aij pj we can write the distance to the tangent plane as

‖nT
i (xi − yi)‖2 =

∥∥∥∥∥∥nT
i

∑
j

aijpj − yi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
j

aij n
T
i pj − nT

i yi

∥∥∥∥∥∥
2

. (12)

6

Notice that (12) leads to a minimization over the control points pj . To use matrix notations
we have to separate the x, y and z components. We define Nx = diag{ni,x}, Ny =
diag{ni,y}, Nz = diag{ni,z} and collect the terms nT

i yi in a vector d. Now we can write
this part as

‖NxApx +Ny Apy +Nz Apz − d‖2 → min. (13)

For our final minimization problem according to (9) we use (10) and a scaled portion of
(13). Here we have to split p into its x-components px, y-components py and z-components
pz. The same way we split y into yx, yy and yz. With

Â =

A 0 0
0 A 0
0 0 A

λNxA λNy A λNz A

 , p̂ =

 px

py

pz

 and ŷ =

yx

yy

yz

λd

 (14)

our minimization problem now reads

p̂? = argmin
p̂
‖Â p̂− ŷ‖2. (15)

Thus again we can use orthogonal transformations, the normal equations or iterative
methods. Especially for recursive approximation of surfaces the iterative methods are
much faster. The parameter λ ≥ 0 is chosen depending on the error estimator. For small
errors we use a large λ.

As iterative solver we normally use a modification of the Conjugate Gradient method
for linear Least Squares. CGNR (see [9]) can directly be applied to (15). But we have
developed a more efficient variant for this special case. The only costly part of CG applied
to Ax = b is the matrix-vector product of the system matrix A with an intermediate
direction in each step. The normal equation for (15) is

ÂT Â p̂? = ÂT ŷ. (16)

For the standard CG method applied to (11) we have to compute one product of the form

zk = AT Adk in each step. dk ∈ R3N is a N -vector of 3d-vectors, A ∈ RM×N . Thus
Adk ∈ R3M and zk ∈ R3N . As in CGNR we avoid the computation of ÂT Â. We rewrite
ÂT Â as

ÂT Â =

AT A+AT λ2 N2
x A AT λ2 NxNy A AT λ2 NxNz A

AT λ2 NxNy A AT A+AT λ2 N2
y A AT λ2 NyNz A

AT λ2 NxNz A AT λ2 NyNz A AT A+AT λ2 N2
z A

=: AT ⊗

I + λ2 N2
x λ2 NxNy λ2NxNz

λ2 NxNy I + λ2 N2
y λ2NyNz

λ2 NxNz λ2 NyNz I + λ2N2
z

⊗A =: AT ⊗ B ⊗A

(17)

B is a 3×3 block matrix. Each of the 9 blocks is a diagonal matrix. The multiplication ⊗
is implicitly defined in (17) as follows. AT ⊗ B means that each block of B is multiplied
with AT from the left. B ⊗ A means that each block of B is multiplied with A from
the right. Let dk ∈ R3N . The first product is the same as above: ẑk = Adk. Next we
apply B: zk = B ⊗̂ ẑk. ⊗̂ describes an update of the elements in ẑk. Note that due to

7

the structure of B only three reals are added to each component in ẑk. The last step is a
normal multiplication: zk = AT zk ∈ R3N . Let us summarize these steps:

ẑk = Adk , zk = B ⊗̂ ẑk , zk = AT zk (18)

For the right hand side we use

ÂT ŷ =

AT yx +AT λ2Nx d
AT yy +AT λ2Ny d
AT yz +AT λ2Nz d

 = AT ⊗

yx + λ2Nx d
yy + λ2Ny d
yz + λ2Nz d

 =: AT ⊗ b̂ . (19)

Similar to zk = B ⊗̂ ẑk above b̂ is an update of y. Here only one real is added to each
component. We rewrite this as

b = AT

y ⊕

Nx

Ny

Nz

 ⊗ λ2 d

 . (20)

With (20) (has to be computed only once) and (18) we have described an efficient form
for the costly parts of the CG method. The rest of the computations in CG are only two
inner products and three vector additions in each step. Note that we can make use of the
sparsity of the matrix A in (18).

Figure 3: Convergence studies: 30 iterations with PDM (left) versus 3 iterations of our
new method (right).

To analyze the coupling effect of the parameter correction with the solution of the
linear system of equations we again use a simple curve approximation. Figure 3 shows the
approximation of one quarter of an ellipse with cubic Béziers. We have chosen a = 25 and
b = 17 for the principal axis of the ellipse. Again we force interpolation at the beginning
and the end of the interval – here including the tangent – and the same initial distribution
of the sample points as in Figure 3. The left plot shows the result after 30 iterations with
PDM. The error vectors are scaled with a factor of 1000. This is compared with the result
of our method after only three iterations. The main reason for the improvement in our
method can not be seen from these plots. In Figure 4 we have plotted the signed distance
of the parameter values in k-th iteration to those of the best approximation. Due to the
coupling in our method we reach the optimal parameter values very quickly. We show

8

0,01

PDM�:�u�differences�from�final��value�during�iteration��

0,008

0,004

0,006

u=0.125

0,002

�d
iff

u=0.250

u=0.375

u=0.500

�0,002

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

u� u=0.625

u=0.750

u=0.875

�0,004

�0,008

�0,006

0,01

new�meth.:�u�differences�from�final��value�during�iteration�

0,008

0,004

0,006

u=0.125

0,002

�d
iff

u=0.250

u=0.375

u=0.500

�0,002

0
1 2 3 4 5 6 7 8 9

u� u=0.625

u=0.750

u=0.875

�0,004

�0,008

�0,006

Figure 4: Differences of the parameter values from their optimal place: Upper plot PDM,
lower plot our method.

9

the initial values and 8 iterations for our method and about fifty iterations of PDM. Here
PDM needs more than a million iterations to get the optimal parameter values with a
precision that leads to a solution that coincides with the optimal solution up to 10 digits.

The table below shows the error estimator according to (6) for the iteration. The errors
are shown as multiple of 10−3. Our method shows a quadratic convergence. The number
of significant digits is doubled in each step. Due to influence of the machine precision this
stops at iteration 5. With iteration 6 we have reached the minimum up to 10 significant
digits. PDM has 9 significant digits after one million iterations.

PDM method our method

#itera max error [10−3] max error [10−3]

1 51.0291992263 1.2156378925
2 45.5340955079 1.1050648499
3 40.8463545168 1.0932771389
4 36.6556730174 1.0932474969
5 32.8881440210 1.0932475456
6 29.4980591588 1.0932475452
30 2.95707434807 1.0932475454
104 1.1713527195 1.0932475453
105 1.0932479122 1.0932475453
106 1.0932475458 1.0932475453

Conclusion and Future Research

We have presented and analyzed a novel and fast approximation approach for curves and
surfaces. It can be used for the construction of smooth surfaces from point clouds as
well as for the reparameterization of given surfaces. The methods are not restricted to be
applied to Bézier or B-spline surfaces. They can be used for subdivision surfaces as well. In
particular, the focus has been on an analytical understanding of the coupling of parameter
correction with the linear Least squares approximation step and the transformation of the
mathematical model to a form that can be used efficiently for fast solvers. In comparison
to the standard PDM approach with decoupling of the linear solver and the parameter
correction our method has a tremendous speed up. We need much fewer iterations without
the drawback of the computational overhead of SDM.

Encapsulated Postscript (EPS), PDF and Scalable Vector Graphics (SVG) files have
the entities quadratic an cubic Bézier curves. EPS and PDF files are for use in printed
publications. SVGs can be used for websites. The major advantage of all three formats
is the very small size of the files and the possibility to zoom without grid pattern effects.
All the curves shown in this paper are piecewise quadratic or cubic Béziers. The reference
curves are approximated with our approach by cubic Béziers to a final relative error of
10−6.

There is still a large amount of work left for future research. We want to improve
the stop criteria for the overall iteration and implement more flexible subdivision of the
parameter domain. Up to know we only use uniform fragmentation for the surface case. For
very large problems we want to use preconditioning of the CG method. Furthermore, we
will test our algorithms with other surface classes. The integration of this methodology into

10

our algorithms on grid generation and reparameterization, for instance given in [1, 2, 8],
will lead to a significant reduction of computation in those packages, too.

References

[1] K.-H. Brakhage & Ph. Lamby, Application of B-spline Techniques to the Modeling
of Airplane Wings and Numerical Grid Generation, CAGD (Elsevier), Volume 25(9),
738-750 (2008)

[2] K.-H. Brakhage, Grid generation and grid conversion by subdivision schemes. in
11th International Conference on Numerical Grid Generation in Computational Field
Simulations, B. Soni et al., editor, Montral, Canada, May 24-28 2009.

[3] K. Cheng, W. Wang, H. Qin, K.-Y. Wong, H. Yang & Y. Liu, Fitting subdivision
surfaces to unorganized point data using SDM, in Pacific Conference on Computer
Graphics and Applications, 2004, 16-24.

[4] G. Farin. Curves and Surfaces for CAGD. A Practical Guide, The Morgan Kaufmann
Series in Computer Graphics and Geometric Modeling, fifth edition, 2002.

[5] J. Peters & U. Reif, Subdivision Surfaces, Series: Geometry and Computing, Vol. 3,
Springer, 2008.

[6] H. Pottmann & M. Hofer, Geometry of the squared distance function to curves and
surfaces, In VISUALIZATION AND MATHEMATICS III, 223-244, 2003.

[7] H. Pottmann & S. Leopoldseder, A concept for parametric surface fitting which avoids
the parametrization problem, Computer Aided Geometric Design (20), 343-362, 2003.

[8] M. Rom, & K.-H. Brakhage, Reparametrization and Volume Mesh Generation for
Computational Fluid Dynamics Using Modified Catmull-Clark Methods, in Mathe-
matical Methods for Curves and Surfaces, Volume 8177 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2014, pages 425-441.

[9] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, second edition, 2003.

[10] J. Stam, Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Pa-
rameter Values, in Proc. SIGGRAPH 98, 395-404.

[11] J. Stam, Exact Evaluation of Loop Subdivision Surfaces, in SIGGRAPH CDROM
Proceedings 98.

11

	IGPM438-Deckblatt .pdf
	IGPM438-Original

