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Abstract

A key difficulty in the analysis and numerical approximation of the shallow water
equations is the non-conservative product of measures due to the gravitational force
acting on a sloped bottom. Solutions may be non-unique, and numerical schemes are
not only consistent discretizations of the shallow water equations, but they also make
a decision how to model the physics. Our derivation is based on infinitesimal singular
layers at the cell boundaries, as inspired by [Noelle, Xing, Shu, JCP 2007]. One key
step is to separate the singular measures. Another aspect is the reconstruction of the
solution variables in the singular layers. We study three reconstructions. The first
leads to the well-known scheme of [Audusse, Bristeau, Bouchut, Klein, Perthame,
SISC 2004], which introduces the hydrostatic reconstruction. The second is a mod-
ification proposed in [Morales, Castro, Pares, AMC 2013], which analyzes if a wave
has enough energy to overcome a step. The third is our new scheme, and borrows
its structure from the wet-dry front. For a number of cases discussed in recent years,
where water runs down a hill, Audusse’ scheme converges slowly or fails. Morales’
scheme gives a visible improvement. Both schemes are clearly outperformed by our
new scheme.

Keywords: Shallow water equations, water at rest, well balanced property, wet-
dry front, nonconservative products of measures.

AMS subject classifications. 76M12, 35L65,

1 Introduction

In this paper, we consider a class of finite volume schemes for the shallow water equations
with variable bottom topography. These equations are a prototype of hyperbolic balance
laws.

Balance laws often consist of the conservation laws for the vector U(x,t) of mass
and momentum, accelerated by conservative advection and pressure forces (denoted by
−∂F (U)/∂x in (1.1) below), and by additional non-conservative forces S(U,x), also called
source terms. Hence the equations of motion may be written as

∂U

∂t
+
∂F (U)

∂x
=S(U,x). (1.1)
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In this paper, there is no source term in the equation of mass, so we can write S= (0,s)T .

A particular challenge is the analytical and numerical understanding of near-equilibrium
flows, for which the residuum

R(x,t) :=−∂F (U)

∂x
+S(U,x) (1.2)

nearly vanishes.

A semi-discrete, first order accurate finite volume scheme may be written as a method of
lines,

d

dt
Ui(t) =Ri(t) (1.3)

where Ui(t) approximates the cell average over cell Ci = [xi− 1
2
,xi+ 1

2
] at time t, and Ri(t)

is the cell average of the residuum, given by

Ri(t) :=− 1

∆x

(
Fi+ 1

2
−Fi− 1

2

)
+Si. (1.4)

Here ∆x=xi+ 1
2
−xi− 1

2
is the spatial grid size, Fi±1/2 is a conservative numerical flux

function, and Si approximates the cell average of the source term. Lax and Wendroff
proved in 1960 that limits of conservative numerical schemes are weak solutions of the
corresponding systems of hyperbolic conservation laws [Lax and Wendroff, 1960]. There
are many well-established conservative numerical fluxes (usually called approximate Rie-
mann solvers), see e.g. [Roe, 1981,Harten et al., 1983,Godlewski and Raviart, 1996,Toro,
1999, Bouchut, 2004] and the references therein. On the other hand, there is no general
procedure to discretize the source term.

Indeed, it is a challenge for each balance law, each equilibrium state, and each numerical
flux function to find a discretization of the source which preserves desirable stability
properties. There is, however, one common feature to most balance laws: since the
force in Newton’s law equals mass times acceleration, the source term S(U,x) is often a
product term. Each of the factors may become a singular measure at the cell boundaries,
and sometimes their product cannot be evaluated. In [Dal Maso et al., 1995], DalMaso,
LeFloch and Murat present a theory of nonconservative products of measures. This was
systematically extended to a numerical framework of path-conservative schemes by Pares,
Castro et al. (see [Parés, 2006,Castro et al., 2006]). However, the limits of these schemes
are not unique, and any choice of path implies a - perhaps tacit - modelling assumption
(see the discussion in [Castro et al., 2008,Abgrall and Karni, 2010,Muñoz-Ruiz and Parés,
2011]).

In this work, we focus on the one-dimensional shallow water equations, given by

U =

(
h
hu

)
, F (U) =

(
hu

hu2+ 1
2gh

2

)
and S(U,x) =−

(
0

ghzx

)
. (1.5)

Here z(x) is the bottom topography, h(x,t) the water depth, u(x,t) the water velocity,
and g= 9.8m/s2 the gravitational acceleration. Thus the source term models the force of
gravity tangential to a sloped bottom. It is instructive to rewrite the residuum as

R=

(
hu
hu2

)
x

+gh

(
0
w

)
x

, (1.6)
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where w=z+h is the water level. Two important equilibria are

(i) still water, where
u= 0 and wx = 0

(ii) the lake at rest, which is still water together with dry boundaries:

u= 0 and hwx = 0.

Hence the lake at rest residuum combines the dry shore (h= 0) with the flat water level
(wx = 0) in a single product. We will use this elegant expression subsequently to split the
non-conservative product of measures. This will yield the new hydrostatic reconstruction
scheme.

The paper is organized as follows: In Section 2, we summarize two known, i.e. the
original one introduced in [Audusse et al., 2004] and its modification by [Morales de Luna
et al., 2013], and a new hydrostatic reconstruction (HR) scheme. In Section 3 we re-
derive the three HR methods by an infinitesimal limit process. The advantage of this
process will be that it gives an explicit treatment of the non-conservative product. It
consist of four steps: (1) splitting the cells into subcells; (2) reconstruction of the bottom;
(3) infinitesimal hydrostatic reconstruction; (4) fluxes and source terms based on subcell
reconstructions. In Section 4, we establish the stability of the new HR scheme: positivity
of the water height; well-balanced property for the lake at rest; and a semi-discrete entropy
inequality. Finally in Section 5, several numerical experiments allow to compare the three
HR schemes.

2 Definition of the hydrostatic reconstruction schemes

In this section, we summarize two known and a new hydrostatic reconstruction scheme.
Each of them introduces reconstructed values Ui+ 1

2
± of the unknowns to the left and right

of interface xi+ 1
2
, and defines the numerical flux via a Riemann solver F ,

Fi+ 1
2

=F(Ui+ 1
2
−,Ui+ 1

2
+).

Then the schemes split the singular source term at the interface into a left and a right
part, Si+ 1

2
− and Si+ 1

2
+ and compute the source term in (1.4) as

Si =Si− 1
2
++Si+ 1

2
−=

(
0,si− 1

2
+

)T
+
(
0,si+ 1

2
−
)T
. (2.1)

A key ingredient of this splitting is the definition of an intermediate bottom level zi+ 1
2

at

the interface.

There will be two main types of interface, depending on how the water covers the bottom
to the left and right side of the interface (see Figure 1. First, there is the fully wet
interface, where the water level on each side is higher than the higher side of the bottom
topograpy,

min(wi,wi+1)>max(zi,zi+1). (2.2)

Second, there is the partially wet interface, where the water level on one side is equal or
below the topography on the other side,

min(wi,wi+1)≤max(zi,zi+1). (2.3)

3



The partially wet case includes subcases where one or both of the cells adjacent to the
interface contain no water. In this case we call the interface partially dry, or dry.

fully wet  

 

 

 

  

 

 

 

 

 

 

 
 

 

partially wet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Examples of interfaces: fully wet (top), and partially wet (bottom).

In the following, we distinguish the three HR schemes by superscripts such as hAUD
i+ 1

2
±,

hMOR
i+ 1

2
±, and hCN

i+ 1
2
± for the schemes of Audusse’ et al., the modification due to Morales et

al., and the present scheme, respectively. After the water heights hi− 1
2
+ and hi+ 1

2
− are

reconstructed, we define the conservative variables as

Ui+ 1
2
−=hi+ 1

2
−ui, Ui− 1

2
+ =hi− 1

2
+ui. (2.4)

Before we give a derivation of the method in terms of singular layers (see Section 3), we
first introduce the three HR schemes.

2.1 The original HR method

Audusse et al. [Audusse et al., 2004] introduced their first order hydrostatic reconstruction
scheme by choosing the intermediate bottom as

zAUD
i+ 1

2

:= max(zi,zi+1), (2.5)

the interface water heights as

hAUD
i− 1

2
+

:= max(wi−zAUD
i− 1

2

,0), hAUD
i+ 1

2
− := max(wi−zAUD

i+ 1
2

,0) (2.6)

Then they discretize the source term as

sAUD
i− 1

2
+

:=
g

2∆x

(
(hi)

2−(hAUD
i− 1

2
+

)2
)
, (2.7)

sAUD
i+ 1

2
− :=

g

2∆x

(
(hAUD

i+ 1
2
−)2−(hi)

2
)
. (2.8)
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2.2 The HR method of Morales et. al.

The hydrostatic reconstruction scheme of Morales et al. [Morales de Luna et al., 2013] is
identical with that of Audusse’s scheme,

zMOR
i+ 1

2

:=zAUD
i+ 1

2

, hMOR
i+ 1

2
− :=hAUD

i+ 1
2
−, hMOR

i+ 1
2
+

:=hAUD
i+ 1

2
+
, (2.9)

and the source term is defined as

sMOR
i+ 1

2
− :=sAUD

i+ 1
2
−, sMOR

i+ 1
2
+

:=sAUD
i+ 1

2
+
, (2.10)

except for the partially wet interfaces (2.3), where water either flows downhill, or it flows
uphill with enough kinetic energy to climb the jump of the bottom at the interface. This
results in the following two cases:

(i) (ascending bottom) zi<zi+1. If ui<0, or ui>0 and

|ui|2

2
+g(wi−zi+1)≥

3

2

√
g(hi|ui|)3. (2.11)

then the left interface source term is redefined as

sMOR
i+ 1

2
− :=− g

∆x

hi
2

(
zMOR
i+ 1

2

−zi
)
. (2.12)

(ii)(descending bottom) zi>zi+1. If ui+1>0, or ui+1<0 and

|ui+1|2

2
+g(wi+1−zi)≥

3

2

√
g(hi+1|ui+1|)3, (2.13)

then the right interface source term is redefined as

sMOR
i+ 1

2
+

:=− g

∆x

hi+1

2

(
zi+1−zMOR

i+ 1
2

)
. (2.14)

2.3 The present HR method

For the present HR method the intermediate bottom is defined as

zCN
i+ 1

2

:= min
(
max(zi,zi+1),min(wi,wi+1)

)
. (2.15)

The interface water heights are given by

hCN
i+ 1

2
− := min(wi−zCN

i+ 1
2

,hi), hCN
i+ 1

2
+

:= min(wi+1−zCN
i+ 1

2

,hi+1), (2.16)

and the interface source terms are defined as

sCN
i+ 1

2
− :=− g

∆x

hi+hCN
i+ 1

2
−

2

(
zCN
i+ 1

2

−zi
)
. (2.17)

sCN
i+ 1

2
+

:=− g

∆x

hCN
i+ 1

2
+

+hi+1

2

(
zi+1−zCN

i+ 1
2

)
. (2.18)
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3 Interpretation via subcell reconstructions

In (1.3)–(1.4), we introduced the semi-discrete finite volume scheme as

d

dt
Ui(t) =Ri =− 1

∆x

(
Fi+ 1

2
−Fi− 1

2

)
+Si. (3.1)

We reviewed three hydrostatic reconstruction schemes which fit into this framework and
discussed the difficulty of nonconservative products in the singular source terms at the
cell interfaces.

In the present section, we rederive schemes of the form (3.1) by an infinitesimal limit
process. The advantage of this process will be that it gives an explicit treatment of the
non-conservative product.

We begin by replacing the interfaces xi+ 1
2

by singular layers (or internal boundary layers)

Ĉε
i+ 1

2

:= [xi+ 1
2
−ε,xi+ 1

2
+ε].

Over each of these infinitesimal layers the bottom is reconstructed continuously by a
function zε(x). This removes the non-conservative product. The flow variables are re-
constructed by piecewise continuous functions hε(x), wε(x), and uε(x) over the singular
subcells

Ĉε
i+ 1

2
− := [xi+ 1

2
−ε,xi+ 1

2
] and Ĉε

i+ 1
2
+

:= [xi+ 1
2
,xi+ 1

2
+ε].

These reconstructions provide the data of the Riemann problem at the interface, with an
approximate Riemann solver Fε(xi+ 1

2
). The source term is computed over the singular

subcells. Together, this gives the residuum

Rε
i :=− 1

∆x

(
Fε(xi+ 1

2
)−Fε(xi− 1

2
)
)

+
1

∆x

∫
Ci

S(Uε(x),zε(x))dx. (3.2)

In Theorem 3.5 we prove that

lim
ε→0

Rε
i =Ri, (3.3)

where Ri is the original residuum from (3.1).

Remark 3.1. (i) Note that the construction procedure summarized in (3.3) has already
been used in [Noelle et al., 2007, Noelle et al., 2009] to define a high-order well-balanced
scheme for moving water. Here we use it to derive a new hydrostatic reconstruction
scheme, which is tailored to the wet-dry front.
(ii) In Remark 3.6 below, we will use the subcell reconstruction to highlight a key difference
between the three schemes.
(iii) It is an interesting question under which conditions a subcell reconstruction may be
interpreted as a path in the sense of [Dal Maso et al., 1995, Parés, 2006].

The details of the approximation are given in the following subsections.

3.1 Splitting the cells into subcells

Let us denote the interior subcell by Cε
i :=

[
xi− 1

2
+ε, xi+ 1

2
−ε
]
. Then

Ci = Ĉε
i− 1

2
+
∪Cε

i ∪ Ĉε
i+ 1

2
−. (3.4)

The piecewise continuous reconstruction is defined as follows:
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Definition 3.2. (subcell reconstruction) Let ϕε :R→R be Lipschitz-continuous over each
cell Ci with possible discontinuities at the interfaces xi+ 1

2
. Given values

ϕi− 1
2
+, ϕi, ϕi+ 1

2
−, (3.5)

let

ϕε(x) :=


ϕ̂ε
i− 1

2
+

(x) if x∈ Ĉε
i− 1

2
+
,

ϕi if x∈Cε
i ,

ϕ̂ε
i+ 1

2
−(x) if x∈ Ĉε

i+ 1
2
−

(3.6)

where ϕ̂ε
i− 1

2
+

(xi− 1
2
) =ϕi− 1

2
+ and ϕ̂ε

i+ 1
2
−(xi+ 1

2
) =ϕi+ 1

2
−.

Remark 3.3. (i) While Definition 3.2 is formulated over each cell, we are really interested
in the the pair of subcell reconstructions ϕ̂ε

i+ 1
2
− : Ĉε

i+ 1
2
−→R and ϕ̂ε

i+ 1
2
+

: Ĉε
i+ 1

2
+
→R at

an interface xi+ 1
2
.

(ii) If ϕ̂ε
i+ 1

2
− and ϕ̂ε are both linear, we call them the standard subcell reconstruction at

interface xi+ 1
2
.

(iii) The only exception from the standard subcell reconstruction will occur in the definition
of the water level for Audusse’ and Morales’ scheme for partially wet interfaces (see
equations (3.15) – (3.16) and Figure 3 below).

To distinguish the related reconstructions for the three HR schemes of Audusse, Morales,
and the present paper, we will denote them by

ϕAUD
ε ,ϕMOR

ε ,ϕCN
ε . (3.7)

3.2 Reconstruction of the bottom zε(x)

For all three HR schemes, a continuous bottom is defined by the standard subcell recon-
struction (see Definition 3.2) with

zi− 1
2
+ :=zi− 1

2
, zi+ 1

2
− :=zi+ 1

2
, (3.8)

where the values zi± 1
2

are defined in Section 2 for each of the three schemes, respectively.

Note that the reconstructed bottom is globally continuous for fixed ε>0, but will have
steep layers in Ĉε

i+ 1
2
− and Ĉε

i+ 1
2
+

.

3.3 Infinitesimal hydrostatic reconstruction

Next we reconstruct the water level and height. Several modern well-balanced schemes
such as [Zhou et al., 2001, Kurganov and Levy, 2002], as well as the present hydrostatic
reconstruction schemes use the fact that the water level w(x) is constant for still water.
Hence the piecewise constant reconstruction becomes exact for this important equilibrium
state. Given the bottom topography zε(x), these schemes reconstruct the water level wε(x)
and then simply define the reconstructed water height as

hε(x) =wε(x)−zε(x). (3.9)
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The conservative variables are given by

Uε(x) =

(
hε(x)
hε(x)ui

)
∀x∈Ci. (3.10)

3.3.1 The original HR method

We define wε(x) as in Definition 3.2, with

wAUD
i :=zi+hi, wAUD

i+1 :=zi+1+hi+1, (3.11)

wAUD
i+ 1

2
− := max(zAUD

i+ 1
2

,wi), wAUD
i+ 1

2
+

:= max(zAUD
i+ 1

2

,wi+1). (3.12)

In the fully wet case (see Figure 2),

ŵAUD
i+ 1

2
−(x)≡wi, (3.13)

ŵAUD
i+ 1

2
+

(x)≡wi+1, (3.14)

 

 

 

 

 

 

 

 

 

  

  

 

 

Figure 2: Subcell reconstruction of the water level in the fully wet case. left: Jump data;
right: Reconstructed wε(x).

while in the partially wet case (see Figure 3),

ŵAUD
i+ 1

2
−(x) := max(zAUD

ε (x),wi), (3.15)

ŵAUD
i+ 1

2
+

(x) := max(zAUD
ε (x),wi+1). (3.16)

This is the only instance where our subcell reconstruction may differ from the standard
definition. In fact, this will happen if and only if the wet-dry front is contained in one of
the cells Ĉε

i+ 1
2
− or Ĉε

i+ 1
2
+

(compare Figure 3).

Next, we consider the average of hAUD
ε (x) over subcells Ĉε

i+ 1
2
− and Ĉε

i+ 1
2
+

. We first

consider Ĉε
i+ 1

2
+

. There are two cases to be discussed:

(i) In the fully wet case (in which all three schemes coincide) the water height ĥAUD
i+ 1

2
+

is

linear, so

h
AUD
i+ 1

2
+ =

hAUD
i+ 1

2
+

+hi+1

2
(3.17)
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Figure 3: Subcell reconstruction of the water level in the partially dry case. top-left:
Jump data; top-right: Audusse, or Morales for slow uphill flow; bottom-left: Morales for
fast uphill flow; bottom-right: CN.

(ii) In the partially wet case, hAUD
i+ 1

2
+

= 0 (see top-right of Figure 3). Assume that the

wet-front is located at x?∈ Ĉε
i+ 1

2
+

. Then the average water height is

h
AUD
i+ 1

2
+ :=

1

ε

∫
Ĉε

i+1
2+

hAUD
ε (x)dx (3.18)

=
xi+ 1

2
+ε−x?
ε

h(x?)+hi+1

2
(3.19)

=
hi+1

zi+ 1
2
−zi+1

hi+1

2
(3.20)

where we have used the intercept theorem in the last equality. Summarizing (3.17) and
(3.20), we obtain

h
AUD
i+ 1

2
+ =


hi+1+hAUD

i+1
2+

2 , hAUD
i+ 1

2
+
>0,

hi+1

2
hi+1

zAUD

i+1
2

−zi+1
, hAUD

i+ 1
2
+

= 0.
(3.21)

Similarly,

h
AUD
i+ 1

2
−=


hi+hAUD

i+1
2−

2 , hAUD
i+ 1

2
−>0,

hi
2

hi

zAUD

i+1
2

−zi
, hAUD

i+ 1
2
−= 0.

(3.22)
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3.3.2 The HR scheme of Morales et. al.

The continuous bottom of Morales’ scheme coincides with that of the original HR scheme,

zMOR
ε (x)≡zAUD

ε (x). (3.23)

The water level coincides with that of the original scheme, except for the partially wet
interfaces (2.3): If the water flows downhill, or uphill with enough kinetic energy to
climb the discrete jump of the bottom, i.e. (2.11) (respectively (2.13)) holds, then over
Ĉi+ 1

2
− (or Ĉi+ 1

2
+) the reconstructed water level wMOR

ε (x) is given by the standard subcell

reconstruction (see Definition 3.2) instead of Audusse’ piecewise linear reconstruction
(3.12) (see Figure 3). Then the local averages of hMOR

ε (x) over subcells Ĉε
i+ 1

2
− respectively

Ĉε
i+ 1

2
+

are simply

h
MOR
i+ 1

2
−=

hi+hMOR
i+ 1

2
−

2
=
hi
2

respectively h
MOR
i+ 1

2
+ =

hi+1+hMOR
i+ 1

2
+

2
=
hi+1

2
, (3.24)

since hMOR
i+ 1

2
−= 0

(
respectively hMOR

i+ 1
2
+

= 0
)
.

3.3.3 The present HR scheme

The continuous bottom of our new scheme, zCN
ε , is defined by the standard subcell recon-

struction with

zCN
i− 1

2
+

:=zCN
i− 1

2

, zCN
i+ 1

2
− :=zCN

i+ 1
2

(3.25)

(see (2.15) for the pointvalues zCN
i+ 1

2

). The reference values for the water surface are given

by

wCN
i− 1

2
+

:= min(wi,z
CN
i− 1

2

+hi), wCN
i+ 1

2
− := min(wi,z

CN
i+ 1

2

+hi), (3.26)

and the reference values for the water depth are given by (2.16). Due to the linearity
of ĥi+ 1

2
− respectively ĥi+ 1

2
+, the average values of hε over the singular subcells Ĉε

i− 1
2
+

respectively Ĉε
i+ 1

2
− are

h̄CN
i− 1

2
+

=
hi+hCN

i− 1
2
+

2
resp. h̄CN

i+ 1
2
−=

hi+hCN
i+ 1

2
−

2
(3.27)

Remark 3.4. From (3.21), (3.22) ,(3.24) and (3.27), the average of hε(x) over subcells
Ĉε
i− 1

2
+

and Ĉε
i+ 1

2
− obtained by the three schemes, h̄i− 1

2
+ and h̄i+ 1

2
− are in fact independent

of ε.

3.4 Fluxes and source terms based on subcell reconstructions

For all three hydrostatic schemes the flux vector is reconstructed by the standard subcell
reconstruction (see Definition 3.2), with reference values

Fi :=F (Ui), Fi+ 1
2
− :=Fi+ 1

2
+ :=Fi+ 1

2
(3.28)
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where

Fi+ 1
2

:=FRIEM

(
Ui+ 1

2
−,Ui+ 1

2
+

)
(3.29)

is an approximate Riemann solver. Note that the reconstructed flux Fε(x) is globally

continuous. The definition of the reconstructed source term Sε(x) :=
(
0,sε(x)

)T
takes the

natural form

sε(x) :=−g hε(x)∂xzε(x) (3.30)

and hence corresponds directly to (1.5).

Given (3.28) – (3.30) we now introduce the reconstructed, cell averaged residuum by

Rε
i :=− 1

∆x

(
Fε(xi+ 1

2
)−Fε(xi− 1

2
)
)

+
1

∆x

∫
Ci

S(Uε(x),zε(x))dx. (3.31)

Depending on the choice of hydrostatic scheme, we denote the residuums by Rε,AUD
i ,

Rε,MOR
i and Rε,CN

i .

The key result of this section is the following theorem:

Theorem 3.5. For each of the three hydrostatic schemes, and for each cell Ci, the re-
constructed residuums are independent of ε, Rε

i =Ri for all ε>0, and coincide with the
original definitions given in Section 2:

R
AUD
i =RAUD

i , (3.32)

R
MOR
i =RMOR

i , (3.33)

R
CN
i =RCN

i . (3.34)

Proof. First that the flux differences in (1.4) and (3.3) coincides. Therefore

lim
ε→0

Rε
i −Ri =

(
lim
ε→0

1

∆x

∫
Ci

S(Uε(x),zε(x))dx
)
−Si (3.35)

=
(
0, lim

ε→0
sεi −si

)T
. (3.36)

where

sεi :=
−g
∆x

∫
Ci

hε(x)∂xzε(x)dx (3.37)

By the linearity of zε(x),

sεi =− g

∆x

∫
Ĉε

i− 1
2+

hε(x)∂xzε(x)dx− g

∆x

∫
Ĉε

i+1
2−

hε(x)∂xzε(x)dx

=− g

∆x

zi−zi− 1
2

ε

∫
Ĉε

i− 1
2+

hε(x)dx− g

∆x

zi+ 1
2
−zi
ε

∫
Ĉε

i+1
2−

hε(x)dx

=− g

∆x
h̄i− 1

2
+(zi−zi− 1

2
)− g

∆x
h̄i+ 1

2
−(zi+ 1

2
−zi), (3.38)
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which is independent of ε from Remark 3.4, so sεi exists limit. It remains to show that
for all three HR schemes,

lim
ε→0

sεi −si = 0. (3.39)

(i) Audusse’ scheme. First we show that the first term on the RHS of (3.38) equals the
left source term in the original HR scheme, as defined in (2.7), i.e we prove that

− g

∆x
h̄AUD
i− 1

2
+

(zi−zAUD
i− 1

2

) =
g

2∆x
((hi)

2−(hAUD
i− 1

2
+

)2) (3.40)

First suppose that zAUD
i− 1

2

=zi. From (2.6)

hAUD
i− 1

2
+

= max(wi−zAUD
i− 1

2

,0) = max(zi+hi−zi,0) =hi.

Therefore both sides of (3.40) vanish in this case. Next, suppose that zAUD
i− 1

2

=zi−1. Again

from (2.6)

hAUD
i− 1

2
+

= max(wi−zAUD
i− 1

2

,0) = max(zi+hi−zi−1,0)

If hAUD
i− 1

2
+
>0, then

− g

∆x
h̄AUD
i− 1

2
+

(zi−zAUD
i− 1

2

) =− g

2∆x
(hi+hAUD

i− 1
2
+

)(zi−zi−1) (3.41)

=− g

2∆x
(hi+hAUD

i− 1
2
+

)(hAUD
i− 1

2
+
−hi) (3.42)

which is the RHS of (3.40). If hAUD
i− 1

2
+

= 0, then by (3.22)

− g

∆x
h̄AUD
i− 1

2
+

(zi−zAUD
i− 1

2

) =− g

∆x

hi
2

hi
zi−1−zi

(zi−zi−1) =
g(hi)

2

2∆x
, (3.43)

which again coincides with the RHS of (3.40). The second term on the RHS of (3.38) can
be treated analogously. This proves the theorem for Audusse’ scheme.

(ii) The HR scheme of Morales et. al. This scheme differs the original HR scheme only
when the water flows up a partially wet bottom. From (3.24) and (2.12) one can see
immediately that

− g

∆x
h̄MOR
i− 1

2
+

(zi−zMOR
i− 1

2

) =− g

∆x

hi
2

(zi−zMOR
i− 1

2

) =sMOR
i+ 1

2
−. (3.44)

Similarly, one can see from (3.24) and (2.14) that

− g

∆x
h̄MOR
i+ 1

2
−(zMOR

i+ 1
2

−zi) =− g

∆x

hi
2

(zi−zMOR
i− 1

2

) =sMOR
i− 1

2
+
. (3.45)

This finishes the proof of the theorem for Morales’ scheme.

(iii) The present HR scheme. Using (3.27), we have

− g

∆x
h̄CN
i− 1

2
+

(zi−zCN
i− 1

2

) =− g

∆x

hi+hCN
i− 1

2
+

2
(zi−zCN

i− 1
2

) =sCN
i− 1

2
+

− g

∆x
h̄CN
i+ 1

2
−(zCN

i+ 1
2

−zi) =− g

∆x

hi+hCN
i+ 1

2
−

2
(zCN

i+ 1
2

−zi) =sCN
i− 1

2
+
.

This concludes the proof for the present scheme, and hence of Theorem 3.5.
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Remark 3.6. (i) The subcell reconstructions offer a systematic approach to construct
both known and also new HR schemes.

(ii) The main advantage of the present scheme is its accuracy for shallow downhill flows.
This can already be predicted from Figure 3: consider the bottom slope from zi on the left
to the water level wi+1 on the right. Does it contribute to an acceleration of the flow to
the right? For Audusse’ scheme it does not, since the water height hε(x) in the subcell
reconstruction is zero. For the present scheme however, the water height over this piece
of downhill slope is hε(x)≡hi, so

sCN
i+ 1

2
−=− g

∆x
hi(wi−zi).

This will be highlighted in the numerical experiments in Section 5.

4 Stability analysis

The present section establishes the stability of the new HR scheme: in Theorem 4.2,
we prove positivity of the water height. In Theorem 4.5, we show that the scheme is
well-balanced for the lake at rest. In Theorem 4.8, we establish a semi-discrete entropy
inequality. The proofs are closely related to those in [Audusse et al., 2004]. Therefore,
we begin our derivation with a detailed comparison of the three HR schemes.

Proposition 4.1 shows that the current HR scheme only differs from the previous methods
in the partially wet case (2.3). Moreover, it differs only in hi+ 1

2
± and zi+ 1

2
.

Proposition 4.1. For the above three HR schemes, we have that

(i) For all interfaces xi+ 1
2
,

hAUD
i+ 1

2
±=hMOR

i+ 1
2
±=hCN

i+ 1
2
± (4.1)

and

0≤hi+ 1
2
−≤hi, 0≤hi+ 1

2
+≤hi+1 (4.2)

(ii) For fully wet interfaces xi+ 1
2

(see (2.2)),

zAUD
i+ 1

2

=zMOR
i+ 1

2

=zCN
i+ 1

2

and h
AUD
i+ 1

2
±=h

MOR
i+ 1

2
±=h

CN
i+ 1

2
± (4.3)

(iii) For partially wet interfaces xi+ 1
2

(see (2.3)), and if water flows downhill, or it flows

uphill with sufficient kinetic energy to climb the discrete jump of the bottom (i.e.
neither (2.11) nor (2.13) holds), then

zAUD
i+ 1

2

=zMOR
i+ 1

2

and h
AUD
i+ 1

2
±=h

MOR
i+ 1

2
±. (4.4)

Proof. Morales’ et al. [Morales de Luna et al., 2013] only modify the original HR scheme
for downhill flows, or fast uphill flow according to either (2.11) or (2.13). So (iii) is proved
and the relations between the original HR scheme and Morales’ HR scheme in (i) and (ii)
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hold. Thus we only need to compare the original HR and the present HR schemes in (i)
and (ii). There are two cases to be discussed:

(a) In the fully wet case (2.2),

max(zi,zi+1)<min(wi,wi+1), (4.5)

so we have from (2.5) and (2.15),

zCN
i+ 1

2

=zAUD
i+ 1

2

. (4.6)

Using (2.16) and (2.6),

hCN
i+ 1

2
−=wi−zi+ 1

2
=hAUD

i+ 1
2
−≥0 and hCN

i+ 1
2
+

=wi+1−zi+ 1
2

=hAUD
i+ 1

2
+
≥0. (4.7)

Inserting this into (3.17) and (3.27), we obtain

h
CN
i+ 1

2
−=

hi+hi+ 1
2
−

2
=h

AUD
i+ 1

2
− and h

CN
i+ 1

2
+ =

hi+hi+ 1
2
+

2
=h

AUD
i+ 1

2
+, (4.8)

which proves (ii). And (i) holds for this case.

(b) It remains to prove (i) for the partially wet case (2.3). Without loss of generality
suppose that

zi≥wi+1≥zi+1. (4.9)

For the original HR method,

zAUD
i+ 1

2

= max(zi,zi+1) =zi. (4.10)

Therefore,

hAUD
i+ 1

2
−= max(wi−zAUD

i+ 1
2

,0) =hi, hAUD
i+ 1

2
+

= max(wi+1−zAUD
i+ 1

2

,0) = 0, (4.11)

On the other hand, for the present HR method,

zCN
i+ 1

2

= min(min(wi,wi+1),max(zi,zi+1)) = min(wi+1,zi) =wi+1, (4.12)

so from (2.16)

hCN
i+ 1

2
−= min(wi−zCN

i+ 1
2

,hi) =hi, hCN
i+ 1

2
+

= min(wi+1−zAUD
i+ 1

2

,hi+1) = 0. (4.13)

Thus (i) is proved, and therefore the proposition.

In the following, we focus on the present HR scheme, and omit the superscript CN when
there is no confusion. To simplify the proof, we use the well-known convex decomposition
of the semi-discrete finite volume scheme (3.1),

d

dt
Ui(t) =Ri− 1

2
++Ri+ 1

2
−

:=− 1

∆x

(
Fi+ 1

2
−F (Ui)

)
+Si+ 1

2
−

− 1

∆x

(
F (Ui)−Fi− 1

2

)
+Si− 1

2
+. (4.14)

The next theorem states that our scheme preserves the positivity of the water height
under the same condition as Audusse’ scheme:

14



Theorem 4.2. (Positivity) If the new semi-discrete HR scheme guarantees non-negative
water height for the homogeneous shallow water equations, then it also yields non-negative
water height for the shallow water equations with topography.

Proof. As in [Audusse et al., 2004], we need to prove that if hi = 0, then Ri− 1
2
+≥0 and

Ri+ 1
2
−≥0. Note that

Ui− 1
2
+ =

(
hi− 1

2
+

hi− 1
2
+ui− 1

2
+

)
=0 (4.15)

since hi− 1
2
+ = 0 due to (4.2). Let U (1),F (1) etc. be the first component of the vectors U,F

etc.. Then

R
(1)

i− 1
2
+

=− 1

∆x

(
F (Ui)

(1)−F (1)

i− 1
2

)
=− 1

∆x

(
hiui−FRIEM(Ui− 1

2
−,Ui− 1

2
+)(1)

)
=

1

∆x
FRIEM(Ui− 1

2
−,0)(1) (4.16)

This expression is non-negative since the homogeneous finite volume scheme preserves
non-negative water height. The same argument shows that Ri+ 1

2
−≥0. This concludes

the proof.

Example 4.3. To illustrate the last step in the proof of positivity, let us consider a
Rusanov type flux [Rusanov, 1961] with maximal numerical wave speed ai− 1

2
. Then

FRIEM(Ui− 1
2
−,0) =

1

2

(
hi− 1

2
−ui− 1

2
−+hi− 1

2
+ui− 1

2
+

)
−
ai− 1

2

2
(hi− 1

2
+−hi− 1

2
−) (4.17)

=
1

2

(
hi− 1

2
−ui−1

)
+
ai− 1

2

2
hi− 1

2
− (4.18)

=
1

2
hi− 1

2
−
(
ui−1+ai− 1

2

)
(4.19)

is non-negative under the CFL condition ai− 1
2
≥max(|ui−1|,|ui|).

Before we establish that our scheme is well-balanced, we would like to distinguish the
following two classes of equilibria:

Definition 4.4. (i) Given a constant water level weq, the still water equilibrium is given
by u(x)≡0 and

h(x)+z(x)≡weq (4.20)

The cell averages are consistent with the still water equilibrium, if for all i, ui = 0 and

hi+zi =weq. (4.21)

(ii) The lake-at-rest equilibrium is given by u(x)≡0 and

h(x)∂x(h(x)+z(x))≡0. (4.22)
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for some constant weq≥max
x∈R

z(x). Moreover, near a wet-dry interface, the dry part of z

should not be lower than the adjecent water level.

The cell averages are locally (at interface xi+ 1
2
) consistent with the lake-at-rest, if ui =

ui+1 = 0 and either xi+ 1
2

is an interior interface (the still water case)

hi>0, hi+1>0, and hi+zi =hi+1+zi+1 (4.23)

or a dry-wet front

hi = 0, hi+1>0 and zi≥hi+1+zi+1, (4.24)

or a wet-dry front

hi>0, hi+1 = 0, and zi+1≥hi+zi, (4.25)

or dry

hi =hi+1 = 0. (4.26)

The cell averages are globally consistent with the lake-at-rest, if they are locally consistent
with the lake-at-rest for all interfaces xi+ 1

2
.

(iii) Suppose that the cell averages of the semi-discrete finite volume scheme (3.1) are
consistent with a given equilibrium state. Then we call the scheme well-balanced for this
equilibrium state if Ri = 0 for all i.

Theorem 4.5. (Well-balancing) The present HR scheme is well-balanced for the lake at
rest.

Proof. By inspection, R
(1)

i+ 1
2
−=R

(1)

i− 1
2
+

= 0 for all interfaces. It remains to show that

R
(2)

i+ 1
2
−=R

(2)

i− 1
2
+

= 0, as well.

(i) We begin with the interior interface (4.23). Here the flow is locally in still water
equilibrium, and the interface xi+ 1

2
is fully wet in the sense of (2.2). Therefore, our new

scheme coincides with that of Audusse’ et al., and

R
(2)

i+ 1
2
−=

(
RAUD

i+ 1
2
−
)(2)

= 0. (4.27)

(ii) Next, let us consider a dry-wet front as in (4.24). By (4.2), hi+ 1
2
−= 0. Thus from

(3.27), hi+ 1
2
−= 0. From (2.16), hi+ 1

2
+ = 0 as well. Therefore, Ui+ 1

2
−=Ui+ 1

2
+ =0, and by

consistency of the approximate Riemann solver, Fi+ 1
2

=F (0) =0. Therefore, R
(2)

i+ 1
2
−= 0.

Now we show that R
(2)

i+ 1
2
+

= 0. Note that

F (Ui+1)
(2) =

g

2
h2i+1

and

hi+ 1
2
+ =

hi+ 1
2
++hi+1

2
=
hi+1

2
,
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so

si+ 1
2
+ =− g

∆x

hi+1

2
(zi+1−zi+ 1

2
)

=− g

∆x

hi+1

2
(zi+1−(zi+1+hi+1))

=
g

∆x

h2i+1

2
. (4.28)

Therefore

R
(2)

i+ 1
2
+

=− 1

∆x
F (Ui+1)

(2)+si+ 1
2
+ = 0. (4.29)

(iii) The wet-dry case (4.25) can be treated analogously, and the dry case follows by
inspection.

The remainder of this section is devoted to proving a semi-discrete entropy inequality for
the new HR scheme. It is well-known (see e.g. [Bouchut, 2004]) that the shallow water
equations with bottom source term, (1.1), admit the following entropy inequality, related
to the physical energy:

∂tη̃(U,z)+∂xG̃(U,z)≤0. (4.30)

Here

η̃(U,z) :=η(U,z)+ghz and G̃(U,z) :=G(U,z)+ghuz (4.31)

are the entropy respectively entropy-flux, which in turn are based on the entropy and
entropy-flux for the homogeneous shallow water equations,

η(U) :=
1

2
hu2+

1

2
gh2 and G(U) :=

(1

2
hu2+gh2

)
u. (4.32)

It is useful to write down the Jacobian of η(U) and η̃(U,z) with respect to U ,

η′(U) =

(
gh− u2

2
u

)
, η̃′(U,z) =η′(U)+

(
gz
0

)
(4.33)

Let us recall the classical semi-discrete entropy inequality:

Definition 4.6. A semi-discrete scheme for the homogeneous problem,

∆xi
dUi(t)

dt
+F(Ui,Ui+1)−F(Ui−1,Ui) = 0, (4.34)

with numerical flux F consistent with F (U) satisfies the in-cell entropy inequality, if
there exists a numerical entropy flux G consistent with G(U), such that

∆xi
dη(Ui(t))

dt
+G(Ui,Ui+1)−G(Ui−1,Ui)≤0. (4.35)

Before we prove a semi-discrete entropy inequality for the new HR scheme, we summarize
some important results from [Audusse et al., 2004,Bouchut, 2004]. One can refine (4.35)
by dividing each cell into two subcells. In [Bouchut, 2004, Lemma XY] it is proved that
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(4.35) holds if and only if a corresponding entropy inequality holds to the left and right
of each interface,

G(Ui)+η′(Ui)(F(Ui,Ui+1)−F (Ui)) ≥ G(Ui,Ui+1) (4.36)

≥ G(Ui+1)+η′(Ui+1)(F(Ui,Ui+1)−F (Ui+1)). (4.37)

To treat their HR scheme for the shallow water equations with source term, we use the
shortcuts

Fi+ 1
2

:=F(Ui+ 1
2
−,Ui+ 1

2
+) and Gi+ 1

2
:=G(Ui,Ui+1,zi,zi+1). (4.38)

In [Audusse et al., 2004,Bouchut, 2004], a numerical entropy flux G̃ for the inhomogeneous
shallow water equations is introduced via

G̃i+ 1
2

:=Gi+ 1
2

+gF h
i+ 1

2

zi+ 1
2
. (4.39)

The following lemma is at the heart of the matter:

Lemma 4.7. [Audusse et al., 2004, Bouchut, 2004] The semi-discrete finite volume
scheme (3.1) satisfies the semi-discrete entropy inequality

∆xi
d

dt
η̃(Ui(t),zi)+G̃i+ 1

2
−G̃i− 1

2
≤0. (4.40)

if and only if

G̃(Ui,zi)+ η̃′(Ui,zi)(Fi+ 1
2
−∆xSi+ 1

2
−−F (Ui)) ≥ G̃i+ 1

2
(4.41)

≥ G̃(Ui+1,zi+1)+ η̃′(Ui+1,zi+1)(Fi+ 1
2

+∆xSi+ 1
2
+−F (Ui+1)) (4.42)

Using this lemma, we now prove a semi-discrete entropy inequality for our new HR scheme:

Theorem 4.8. (Entropy condition) Assume that the semi-discrete finite-volume scheme
(4.34) for the homogeneous shallow water equation satisfies the in-cell entropy inequality
(4.35) and that the numerical mass flux at the wet-dry front satisies

Fh(h,hu,0,0)−hu≥0, hu−Fh(0,0,h,hu)≥0. (4.43)

Then the semi-discrete HR scheme (3.1) satisfies the entropy inequality (4.40) for the
inhomogeneous shallow water equation.

Proof: According to Lemma 4.7, we need to prove the two inequalities (4.41) - (4.42) for
the new HR scheme. Due to symmetry, we focus on (4.41). Substracting the two sides,
we introduce the entropy production term

Ẽi+ 1
2
− := η̃′(Ui,zi)(−Fi+ 1

2
+F (Ui)+∆xSi+ 1

2
−)+G̃i+ 1

2
−G̃(Ui,zi). (4.44)

Our goal is to show that Ẽi+ 1
2
−≤0. Using (4.33) and

∆xSi+ 1
2
−=

(
0,−gh̄i+ 1

2
−(zi+ 1

2
−zi)

)T
(4.45)
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we compute

Ẽi+ 1
2
−= η̃′(Ui,zi)(−Fi+ 1

2
+F (Ui))−uigh̄i+ 1

2
−(zi+ 1

2
−zi)

+Gi+ 1
2

+gF h
i+ 1

2
−zi+ 1

2
−G(Ui)−ghiuizi

=η′(Ui)(−Fi+ 1
2

+F (Ui))+Gi+ 1
2
−G(Ui)

+gzi(−F h
i+ 1

2

+hiui)

+g
(
F h
i+ 1

2
−− h̄i+ 1

2
−ui
)
zi+ 1

2
−g
(
hiui− h̄i+ 1

2
−ui
)
zi

=η′(Ui)(−Fi+ 1
2

+F (Ui))+Gi+ 1
2
−G(Ui)

+g
(
F h
i+ 1

2
−− h̄i+ 1

2
−ui
)
(zi+ 1

2
−zi). (4.46)

Now we evaluate (4.36) at (Ui+ 1
2
−,Ui+ 1

2
+) instead of (Ui,Ui+1),

Gi+ 1
2
≤η′(Ui+ 1

2
−)
(
Fi+ 1

2
−F (Ui+ 1

2
−)
)

+G(Ui+ 1
2
−) (4.47)

and insert this into (4.46) to obtain

Ẽi+ 1
2
−≤η

′(Ui)(−Fi+ 1
2

+F (Ui))−G(Ui)

+g
(
F h
i+ 1

2
−− h̄i+ 1

2
−ui
)
(zi+ 1

2
−zi)

+
(
η′(Ui+ 1

2
−)
(
Fi+ 1

2
−F (Ui+ 1

2
−)
)

+G(Ui+ 1
2
−)
)

=: ẼA
i+ 1

2
−. (4.48)

Using the identities

G(U)−η′(U)F (U) = (
1

2
hu2+gh2)u−

(
(gh− u

2

2
)hu+u(hu2+

1

2
gh2)

)
=−1

2
gh2u

and

η′(Ui)−η′(Ui+ 1
2
−) =

(
ghi− (ui)

2

2
ui

)
−

(
ghi+ 1

2
−−

(ui)
2

2

ui

)
=

(
g(hi−hi+ 1

2
−)

0

)

we calculate

ẼA
i+ 1

2
−=

1

2
g((hi)

2−(hi+ 1
2
−)2)ui−g(hi−hi+ 1

2
−)F h

i+ 1
2

+g(F h
i+ 1

2

−uihi+ 1
2
−)(zi+ 1

2
−zi)

=g
(
F h
i+ 1

2

−
hi+ 1

2
−+hi

2
ui

)
(hi+ 1

2
−−hi)+g(F h

i+ 1
2

−hi+ 1
2
−ui)(zi+ 1

2
−zi) (4.49)

For the present scheme, according to (3.17), (3.25) and (3.27), we have

hi+ 1
2
−=

hi+hi+ 1
2
−

2
(4.50)

then EA
i+ 1

2
− becomes

ẼA
i+ 1

2
−=g

(
F h
i+ 1

2

−hi+ 1
2
−ui
)(

(hi+ 1
2
−+zi+ 1

2
)−(hi+zi)

)
(4.51)
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Our goal is to show that ẼA
i+ 1

2
−≤0. There are two cases to be discussed:

(i) In the fully wet case (see (2.2)), min(wi,wi+1)>max(zi,zi+1). According to (2.15) and
(3.27), we have

zi+ 1
2

+hi+ 1
2
−=hi+zi (4.52)

then

ẼA
i+ 1

2
−= 0. (4.53)

(ii) In the partially wet case (see (2.3)), min(wi,wi+1)≤max(zi,zi+1). There are two sub-
cases depending on whether left bottom is higher than the right bottom. We first consider
zi>zi+1. According to (3.9), (3.25), (3.26) and (3.27),

zi+ 1
2

=wi+1, hi+ 1
2
−=hi, hi+ 1

2
+ = 0 and hi+ 1

2
−=hi. (4.54)

Therefore,

ẼA
i+ 1

2
−=g(F(hi,hiui,0,0)−hiui)(wi+1−zi) (4.55)

By (2.3), wi+1−zi<0, and due to (4.43), F(hi,hiui,0,0)−hiui)≥0. This implies that
Ẽi+ 1

2
−≤0.

Next we consider the case zi<zi+1. Analogously to (4.54),

zi+ 1
2

=wi, hi+ 1
2
−= 0, hi+ 1

2
+ =hi+1, and hi+ 1

2
−=

1

2
hi. (4.56)

Therefore,

zi+ 1
2

+hi+ 1
2
−=hi+zi (4.57)

then

ẼA
i+ 1

2
−= 0. (4.58)

Let us discuss condition (4.43)

Remark 4.9. For a finite volume, some diffusion terms are always added to the numerical
flux. To preserve the positivity, The diffusion must be large enough such that

Fh(0,0,h,hu))≤0, Fh(h,hu,0,0))≥0 (4.59)

and always (but not necessary) (4.43) holds, which will be proved for Harten van-Leer Lax
(HLL) flux,

F(U−,U+) =
s+F (U−)−s−F (U+)+s+s−(U+−U−)

s+−s−

=
−s−F (U+)+s−s+U+

s+−s−
+
s+F (U−)−s+s−U−

s+−s−
(4.60)
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where the smallest and largest wave speeds s− and s+ are chosen as

s−= min(u−−a−,u+−a−,0), s+ = max(u−+a−,u++a+,0). (4.61)

with the sound speed a=
√
gh. Then we have

Fh(h,hu,0,0)−hu=
s+hu−s+s−h

s+−s−
−hu=

−s−h(s+−u)

s+−s−
≥0,

hu−Fh(0,0,h,hu) =hu−−s
−hu+s+s−h

s+−s−
=
s+h(u−s−)

s+−s−
≥0.

Then (4.43) holds, so the entropy theorem 4.8 holds.

5 Numerical experiments

In this section, we present several numerical experiments to test the new HR scheme.
After verifying that all three schemes preserve the lake-at-rest (Section 5.1), we study
three cases of downhill flow which clearly show the advantages of the new HR scheme.
The first case (Section 5.2) is a thin layer of water running down a linear slope. We give
an analysis of a prototype situation which clearly explains the differences of the three
schemes. The second case (Section 5.3) is flow over a step. The third case is a vacuum
Riemann problem over constant bottom, followed by a downward step (Section 5.4).

The next group of tests shows upward flow (Section 5.5) and twodimensional flow (Sec-
tion 5.6). Here our scheme performs comparably to the other HR schemes.

We discretize the semi-discrete finite volume scheme (1.3) in time using the forward Euler
method. This yields

Un+1
i =Un

i +∆tRn
i . (5.1)

The time step is restricted by the CFL condition

∆t

∆x
max

i
(|ui|+ai)<

1

2
. (5.2)

5.1 Still water flow over a complex bottom

First we validate numerically that the new scheme preserves the lake at rest (including
dry areas according to Definition 4.4). The bottom topography is given by

z(x) =

{
sin(4πx), x≤0.5,

sin(4πx)−2.0, x≥0.5.

and the initial data are

h(x,t= 0) =

{
max(0,−0.5−z(x)), x≤0.5

max(0,−1.5−z(x)), x≥0.5.
, u(x,t= 0) = 0.

The numerical solutions computed by the three HR schemes with 50 cells and final time
t= 0.5 are shown in Figure 4. All schemes are well-balanced up to machine accuracy.
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Figure 4: Still water flow over a complex bottom. Left: the surface w; Right: the error
of the water hight h. The domain is divided into 50 uniform cells.

5.2 Downhill flow over a sloped bottom

This test problem was introduced by Delestre et al. [Delestre et al., 2012] to demonstrate
a subtle difficulty of Audusse’ original HR scheme. It was subsequently used by Morales et
al. [Morales de Luna et al., 2013] to demonstrate the advantage of a modified HR scheme.

The bottom is defined by

z(x) =− α

100
x

in the interval [0,3] for different values of slope α ranging from 16 to 21. The initial
condition is

h(x,t= 0) = 0.02, u(x,t= 0) = 0.5.

The left inflow boundary is given by setting h(x= 0,t) = 0.02 and u(x= 0,t) = 0.5, and an
outflow flow boundary condition is imposed at the right boundary x= 3. The simulations
are performed until a steady state is reached at time t= 10.

As observed in [Delestre et al., 2012], the water height of the HR scheme remains inde-
pendent of the slope (see upper-left plot in Figure 5). This is contrary to the physical
solution, for which the water level decreases with increasing downhill slope. The results
for the modified HR scheme (upper-right plot) and the present scheme (lower left plot)
depend on the slope, but in slightly different ways. In the lower-right plot, we compare
the three schemes with a resolved reference solution for α= 21. The advantages of the
modified and especially the new HR schemes are clearly visible.

The following argument, along the lines of Remark 3.6, illuminates the situation. Let

Si+ 1
2

:=Si+ 1
2
−+Si+ 1

2
+ (5.3)

be the total source term at interface xi+ 1
2
. Suppose that the slope is downward, zx<0,

and the water heigth h is constant. The exact source term is given by

Sex
i+ 1

2

=− g

∆x

xi+1∫
xi

hzxdx=−ghzx. (5.4)
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Figure 5: Water flow with hl = 0.02 and ul = 0.5 over sloped bottom. Top left: HR; top-
right: modified HR; lower-left: new HR (all using 50 cells and α= 16.. .21). Lower-right:
comparison with the reference solution for α= 21.

In the fully wet case (labeled “fw” below), where all schemes coincide, (2.7) – (2.8) give

Sfw
i+ 1

2

=
g

2∆x

(
(hAUD

i+ 1
2
−)2−(hi)

2+(hi+1)
2−(hAUD

i+ 1
2
+

)2
)

=− g

∆x
hi+1(zi+1−zi)−

g

2∆x
(zi+1−zi)2

=Sex
i+ 1

2

−∆xg

2
z2x (5.5)

In the partially wet case (h<∆x|zx|), using (2.7) – (2.8) for Audusse’ scheme, (2.14) for
Morales’ modification, and (2.17) – (2.18) for the present scheme, we obtain

SAUD
i+ 1

2

=
g

2∆x
(hi+1)

2 =
g

2∆x
h2,

SMOR
i+ 1

2

=− g

2∆x
hi+1

(
zi+1−zMOR

i+ 1
2

)
=−g

2
hzx,

SCN
i+ 1

2

=− g

2∆x

(
(hi+hCN

i+ 1
2
−)
(
zCN
i+ 1

2

−zi
)

+(hCN
i+ 1

2
+

+hi+1)
(
zi+1−zCN

i+ 1
2

))
=− g

2∆x

(
2hi
(
zi+1+hi+1−zi

)
+hi+1

(
−hi+1

))
=Sex

i+ 1
2

− g

2∆x
h2. (5.6)

It is instructive to introduce the ratio of the water height over the height increment,

β :=h/(∆x|zx|).

Then in the fully wet case,

Sfw
i+ 1

2

/Sex
i+ 1

2

= 1− 1

2β
, (5.7)
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which tends to the optimal value of unity for deep water, while in the partially wet cases,

SAUD
i+ 1

2

/Sex
i+ 1

2

=
β

2
,

SMOR
i+ 1

2

/Sex
i+ 1

2

=
1

2
,

SCN
i+ 1

2

/Sex
i+ 1

2

= 1− β
2
. (5.8)

Only for the present HR scheme this fraction tends to the correct value of unity as the
water height ends to zero. The values S/Sex are displayed versus β in Figure 6.
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Figure 6: S/Sex for the exact source term (’-’), the original HR (’o’), modified HR (’+’),
and new HR (’*’). Only the latter is consistent as β→0.

In the present experiment, β is not constant, but its value is approximately

β≈ 0.01
3
50

20
100

=
5

6
.

To highlight the difference of the three schemes even further, we repeat the experiment
with a value β≈ 1

6 , by setting the initial water height to h= 0.004. The results are
displayed in Figure 7. As can be seen from the lower right part of the figure, the new
HR scheme produces almost the exact solution on a grid of 50 cells, while the other two
schemes do not.

5.3 Flow over a step

This test was introduced in [Castro et al., 2008,Morales de Luna et al., 2013]. In the pre-
vious example, the bottom was continuous, and the fault of the hydrostatic reconstruction
scheme could be corrected by using a very fine mesh or higher order schemes.

In this example, we consider the domain [0,1] with a discontinuous bottom given by

b(x) =

{
−0.1 for x<0.5

br otherwise
.

The constant topography br to the right of the step takes decreasing values from −0.2 to
−0.45, respectively. The initial data are set to

h(x,t= 0) = 0.1, u(x,t= 0) = 1.5.
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Figure 7: Water flow with hl = 0.004 and ul = 0.5 over sloped bottom. Top left: HR; top-
right: modified HR; lower-left: new HR (all using 50 cells and α= 16.. .21). Lower-right:
comparison with the reference solution for α= 21.

uniformly over the whole domain. The final time is t= 3.0.

It is easy to check that the interface at the discontinuity is partially dry, so Audusse’
source term depends only on the waterlevel to the right of the step, and not on the step
size br−bl. This is confirmed by the numerical results displayed in the top-left plot in
Figure 8, which do not differ as the step size varies. Clearly, this does not reflect the
increasing gravitational acceleration correctly.

The next two sub-figures show that the error produced by the original HR method is
corrected by both the modified HR method and the new HR method. As shown in the
two sub-figures, the lower the right bottom br is, the lower the water depth in the right
region is. On the other hand, we can also see the these two sub figures, the numerical
results done by the two schemes are different, it is clear the right water depth by the new
HR method is lower than that done by modified HR method.

Remark 5.1. To compare the two result, we need a reference solution. Ideally this ref-
erence solution should not be affected by the non-uniquness due to the non-conservative
product (1.5). An important result in this direction is due to Audusse et al. [Audusse
et al., 2004], who derive a semi-discrete entropy condition for the HR method if the bot-
tom jump is of the order of the mesh size ∆x. It is to be expected that this solution is
unique. Motivated by this, we replace the jump by a continuous transition of width ε and
then resolve the transition layer with a sufficiently fine grid (usually 100 cells). For the
present flow over a step, we choose

bε(x) =


−0.1 for x<0.5,

−0.1+ x−0.5
ε (br +0.1) for 0.5≤x≤0.5+ε,

br otherwise ,
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with layer width ε= 10−2 and 104 cells. Therefore, there are 100 cells in the layer.
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Figure 8: Downhill flow over a step. Water depths computed with HR (top-left), modified
HR (top-right) and new HR (lower-left) schemes with several different bottom steps and
100 cells; bottom-right: water levels of the three schemes compared with the reference
solution.

The results of the three schemes for right bottom br =−0.45 are shown in the lower-right
sub-figure. We can see that all the three results are higher than the reference solution.
Compared with the size of the jump, the error of the three HR schemes are 9.1%, 3.4%
and 0.6%, respectively.

5.4 Dam break over a dry step

Here we consider a dam-break over a dry bottom, combined with a bottom step to the
right of the dam break. Compared with the previous problem, the additional difficulty is
the wet-dry front propagating to the right. This problem has been considered in [Castro
et al., 2008,Bollermann et al., 2013]. The domain is [0,1], and the bottom is defined by

b(x) =

{
−0.1 for x<0.1

−0.45 otherwise

The initial data are

u(x) = 0, h(x) =

{
0.5 for x<0.05,

0 otherwise.
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The final time is t= 0.18. As motivated in Remark 5.1, the reference solution is computed
over the steep continuous topography

bε(x) =


−0.1 for x<0.1,

−0.1−0.35 x−0.1
ε for 0.1≤x≤0.1+ε,

−0.45 otherwise

with ε= 10−3 and 105 cells.

In Figure 9, we display the front position, velocity history as well as the solutions at the
final time using 400 cells. While the fronts computed by all three schemes lag behind
the reference solution, the new HR scheme clearly is superior to the previous ones at and
away from the front.
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Figure 9: Dam-break problem over dry bottom with an abrupt valley. The front position
and velocity histories; The water height h and velocity u.

5.5 Flow against a step

Here we consider flow towards, and sometimes over, a rising step [Morales de Luna et al.,
2013]. From our derivation, there is no particular reason that the new HR scheme should
be superior to the previous ones, and indeed our experiments only confirm that the per-
formance is comparable.

We consider the domain [−5,5] and a series of test cases with steps of various decreasing
heights,

b(x) =

{
−0.8 for x<0.5

br otherwise
,
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where br =−0.4,−0.5,−0.65,−0.75 respectively. The initial height and velocity are con-
stant

h(x,t= 0) = 0.1, u(x,t= 0) = 1.5 for all x∈ [−5,5].

The final time is t= 4.5, 3.5, 2.0, 5.0 respectively. As discussed in Remark 5.1, the reference
solution is computed over the steep continuous topography

bε(x) =


−0.8 for x<0.5,

−0.8+ x−0.5
ε (br +0.8) for 0.5≤x≤0.5+ε,

br otherwise ,

with 105 cells and ε= 10−2.
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Figure 10: Flow against a step: Water levels corresponding to br =−0.4, −0.5, −0.65,
and −0.75.

The numerical results for the three HR schemes with 100 cells are shown in Figure 10.
The four sub-figures are corresponding to the four different bottoms. Indeed, from (2.11),

|ui|2

2
+g(wi−b∗r) =

3

2

√
g(hi|ui|)3. (5.9)

or

|ui|2

2
+gwi =

3

2

√
g(hi|ui|)3+gb∗r . (5.10)

or

gb∗r =
|ui|2

2
+gwi−

3

2

√
g(hi|ui|)3 (5.11)

=
1.52

2
+g(−0.8+0.1)− 3

2

√
g(0.1 ·1.5)3 (5.12)
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For all cases, the HR method and new HR method give a similar results, which are very
close to the reference solution. Away from the discontinuous step, all three methods give
almost same results, the reflected shock wave are all captured. While at the adjacent
of discontinuity, the result made by modified HR is different from the others, the under
estimation is clear to see at the left cell of the discontinuity compared with the reference
solution. The jump of the bottom become smaller, the under estimation become weaker.
And when the jump become small enough, the under estimation will disappear. So the
result made HR and new HR method are more believable for this case.

5.6 Malpasset dam-break event

As a real-life application, we apply the proposed scheme to the Malpasset dam-break,
which is one of the benchmark cases recommended by the EU CADAM project [Morris,
2000]. The Malpasset dam was located in the Reyran River valley in France, about 12
km upstream of Frejus in southern France. After the dam broke, the maximum water
depths of the flood wave were identified at 17 points along the banks of the valley based
on the trace marks left by flood inundation, and the arrival times were also determined
at 3 electronic transformers [A, B, C]. Additionally, the maximum water depths were
measured at 9 gauge points in a physical model of 1:400 scale built by Électricité de
France in 1964.

The elevation of the model domain ranges from 20 to 100m above sea level. The initial
water levels in the Mediterranean Sea, the reservoir and its dam are 0m, 100m and
56.8m, respectively. The channel bottom downstream from the dam is assumed to be
initially dry. The solid wall condition is imposed along boundaries everywhere [Zhou
et al., 2013]. As advised by the previous studies [Brufau et al., 2004,Audusse and Bristeau,

2005,Zhou et al., 2013] a uniform Manning coefficient of 0.033 s/m1/3 was specified across
the simulation domain.

A: Mesh

6 12 18 24 30 36 42 48 54

B: Water depth at time =0

6 12 18 24 30 36 42 48 54

C: Water depth at time =1000

6 12 18 24 30 36 42 48 54

D: Water depth at time =2000

Figure 11: Malpasset dambreak problem using the new HR scheme: Simulation mesh
with 2600 elements and 13541 points; Water depth at times 0s, 1000s and 2000s.

The physical domain and the mesh, including 2600 elements and 13541 points are shown
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in subfigure A of Figure 11. We used the three HR schemes proposed in the paper for the
simulation. Since the differences between these schemes are very small and invisible in the
plots, we only show the water depth computed by the new HR scheme. In sub-figures B,
C, and D of Figure 11, we display the solution at times 0s, 1000s and 2000s. All result are
acceptable and agree with those in [Brufau et al., 2004,Audusse and Bristeau, 2005,Zhou
et al., 2013]. To gain further insight, we also show maximum water levels at 17 police
survey points (see Table 1) and 9 gauge points (see Table 2). While the root mean square
difference (RMSD) between any of the schemes and the 17 measurements is between 3.0
and 3.1, the analogous differences between the three schemes are 0.139 (HR-MOR), 0.060
(HR-CN), and 0.117 (MOR-CN). Similarly, at the 9 gauge points the differences between
the measurements and the HR schemes are almost 4, and the difference between the
schemes are only 0.046 (HR-MOR), 0.038 (HR-CN), and 0.040 (MOR-CN). The arrival
times at the three electric transformers are shown in table 3, all result are acceptable
and comparable because there is not big abrupt discontinuity of the bottom. Actually
all of these numerical arrival times are delayed similar with that shown in example 5.4,
and the modified and new HR methods can still give a little bit higher resolution. These
results suggest that the modelling errors between the three HR schemes are far below the
modelling error between the shallow water equations and the real event.

Table 1: Maximum water levels at 17 police survey points and root mean square error
between measurements and the three HR schemes.

Points x y Measure-
ments

HR Modified
HR

New HR

1 4913.11 4244.01 79.15 76.93 76.97 76.95
2 5159.75 4369.62 87.20 88.18 88.21 88.16
3 5790.63 4177.76 54.90 55.40 55.31 55.33
4 5886.54 4503.97 64.70 58.75 58.48 58.56
5 6763.05 3429.60 51.10 46.59 46.10 46.57
6 6929.97 3591.87 43.75 44.06 44.05 44.03
7 7326.02 2948.78 44.35 41.22 41.22 41.22
8 7441.01 3232.12 38.60 33.77 33.71 33.64
9 8735.94 3264.61 31.90 33.20 33.24 33.20
10 8628.60 3604.63 40.75 38.73 38.74 38.71
11 9761.13 3480.36 24.15 24.65 24.66 24.65
12 9800.00 2414.79 24.90 25.91 25.92 25.91
13 10957.00 2651.94 17.25 23.70 23.70 23.70
14 11156.99 3800.72 20.70 20.69 20.69 20.69
15 11689.05 2592.36 18.60 19.10 19.12 19.10
16 11626.05 3406.80 17.25 19.82 19.82 19.82
17 12333.72 2269.74 14.00 15.62 15.62 15.62
RMSD - - - 3.00 3.08 3.04

6 Conclusions

We have introduced a new hydrostatic reconstruction scheme for the shallow water equa-
tions. In singular layers, where both the conservative variables and the bottom topography
are discontinuous, the non-conservative product of measures is separated according to a
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Table 2: Maximum water level at 9 gauge points and root mean square error between
measurements and the three HR schemes.

points x y Measure-
ments

HR Modified
HR

New HR

6 4947.46 4289.71 84.20 81.36 81.39 81.30
7 5717.30 4407.61 49.10 56.36 56.24 56.27
8 6775.14 3869.23 54.00 53.81 53.83 53.80
9 7128.20 3162.00 40.20 48.49 48.51 48.48
10 8585.30 3443.08 34.90 37.29 37.31 37.26
11 9674.97 3085.89 27.40 25.79 25.80 25.79
12 10939.15 3044.78 21.50 19.47 19.48 19.47
13 11724.37 2810.41 16.10 17.81 17.84 17.81
14 12723.70 2485.08 12.90 12.95 12.96 12.95
RMSD - - - 4.01 3.99 3.99

Table 3: Flood arrival times at three electric transformers.

trans-
formers

x y Measure-
ments

HR Modified
HR

New HR

A 5550 4400 100 124 128 125
B 11900 3250 1240 1317 1310 1313
C 13000 2700 1420 1431 1423 1425

natural definition of the bottom topography in the presence of an embedded wet-dry front.
An intermediate water height is defined to the left and the right of the front, and the
source term can then be evaluated. This construction only affects a few lines of code of
the original hydrostatic reconstruction scheme [Audusse et al., 2004]. The construction
via singular layers simplifies and clarifies the derivation of the classical HR schemes, and
it can be used to design future schemes.

We have proved positivity of the water height, well-balancing of the lake at rest, and a
semi-discrete entropy inequality for our scheme. For a number of challenging downhill
flows studied recently in the literature, the new scheme yields superior results.
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ematics. Birkhäuser Verlag, Basel.
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