
A new stable splitting for the 
isentropic Euler equations

 Klaus Kaiser,  Jochen Schütz,  Ruth Schöbel 
and  Sebastian Noelle

 

Institut für Geometrie und Praktische Mathematik 
Templergraben 55, 52062 Aachen, Germany

updated version of July 21, 2016

J A
 N

 U
 A

 R
 Y

   
 2

 0
 1

 6
 

P 
R 

E 
P 

R 
I N

 T
   

  4
 4

 2



A new stable splitting for the isentropic Euler
equations
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In this work, we propose a new way of splitting the flux function of the isentropic compressible
Euler equations at low Mach number into stiff and non-stiff parts. Following the IMEX methodol-
ogy, the latter ones are treated explicitly, while the first ones are treated implicitly. The splitting
is based on the incompressible limit solution, which we call reference solution (RS). An analysis
concerning the asymptotic consistency and numerical results demonstrate the advantages of this
splitting.

1 Introduction

In this paper, we propose a particularly stable and accurate flux-splitting IMEX scheme for stiff systems
of hyperbolic conservation laws. We derive, analyze and evaluate the scheme for low Mach number flows
governed by the isentropic compressible Euler equations in two spatial dimensions (see, e.g., [1, 44]).

The isentropic compressible Euler equations, written in dimensionless variables, are given by

ρt +∇ · (ρu) = 0 (1)

(ρu)t +∇ · (ρu⊗ u) +
1

ε2
∇p = 0, (2)

where u = (u, v)T denotes velocity, ρ density and p ≡ p(ρ) = ργ is the isentropic pressure. The constant
γ ≥ 1 is the ratio of specific heats. We call

ε :=
uref√

p(ρref)/ρref

the reference Mach number, with fixed dimensional reference speed uref and density ρref. The system is
hyperbolic with wave speeds

λ0 = u · n, λ± = u · n± 1

ε

√
γp

ρ
(3)

in direction n. We are interested in weakly compressible flows, for which ε � 1. It is well-known that the
equations change type as ε → 0. Physically, the flow changes from compressible to incompressible. It is
instructive to consider the Hilbert expansion (often also named after Poincaré) of w = (ρ, ρu)T , i.e.,

w = w(0) + εw(1) + ε2w(2) + . . . . (4)
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Taking the formal limit ε→ 0 of the isentropic compressible Euler equation, one derives the incompressible
equations as

ρ(0) ≡ const, ∇ · u(0) = 0 (5)

(u(0))t + (u(0) · ∇)u(0) +
1

ρ(0)
∇p(2) = 0. (6)

Note that one can only obtain the limit if one uses well-prepared initial data w(t = 0), i.e., initial data that
fulfill

ρ(t = 0) = const +O(ε2), ∇ · u(t = 0) = O(ε). (7)

Mathematically, the system changes from hyperbolic to hyperbolic-elliptic (see, e.g., [31, 40, 46]). Therefore,
(1)–(2) constitute a singularly perturbed problem. For a mathematical analysis of this problem we refer to
[31, 40, 46] and the references therein. For conciseness, we write equations (1)–(2) as a general hyperbolic
system of conservation laws

wt +∇ · F(w) = 0 (8)

with ε-dependent flux F(w) and a maximum wave speed which is singular in the limit.
Explicit time discretizations have to obey the CFL condition

∆t . ε∆x. (9)

For the Euler equations, the fastest waves are the sound waves, travelling with speed λ±. Hence we call con-
dition (9) the acoustic CFL condition. Consequently, explicit finite volume discretizations are prohibitively
expensive for small Mach numbers. Moreover, they would add an unwanted amount of numerical diffusion
to the advective waves, which travel with speed λ0 and hence need O(ε−1) steps to travel across one cell
- and after each step the finite volume average damps the numerical solution. It is well-known that most
implicit schemes are unconditionally stable, i.e., they are stable under any time step size. However, they also
tend to add excessive diffusion to the advective field [33] within each single time step. A possible remedy
is a mixture of both implicit and explicit (IMEX) schemes [3, 18, 26]. More precisely, those schemes are
supposed to be stable under a convective CFL condition

∆t .
∆x

‖u‖ , (10)

and the goal is to resolve the convective wave (the one that belongs to λ0) explicitly with good accuracy,
while adding enough diffusion through the implicitness to compute solutions to the acoustic waves in a stable
way. For this, it is necessary that the scheme preserves the asymptotic limit.

IMEX schemes depend on a splitting of the flux F(w) into ‘fast’ and ‘slow’ components F̃(w) and F̂(w),
respectively. Flux splittings have been applied successfully to compressible fluid flows (see, e.g., [8, 17,
20, 23, 24, 32, 35, 36, 38, 45]). The fast flux component is discretized implicitly in time, while the slow
component is treated explicitly, both with an ε-uniform time step. So ideally, F̃ approximates the acoustic
and F̂ the convective waves.

Recently, the authors and collaborators have conducted a number of numerical experiments with well-
known splittings, as well as some AP analysis, reported in [8, 36]. While the Giraldo-Restelli splitting
[22] used in [8] was uniformly CFL stable in our computations, Klein’s auxiliary splitting [32] occasionally
requires to reduce the time step as ∆t = ε∆x (see [36]). With a note of caution, however, we would like to
point out that the implementations and the asymptotic settings in [32] and [36] differ considerably, so our
observation applies only to the straightforward IMEX implementation, and not to Klein’s original algorithm.
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In [43], we started a linear stability analysis based on the modified equation. It turns out that for any
system of hyperbolic conservation laws, and any flux splitting, the numerical diffusion matrix of the modified
equation is of the form

∆t

2

(
(α̃+ α̂) ∆x

∆t
I − Â2 + [Ã, Â] + Ã2

)
, (11)

where α̃ and α̂ are numerical diffusions coefficients of the Rusanov flux, and A = Ã + Â are the Jacobian
matrices of the full, fast and slow fluxes, respectively. [Ã, Â] := ÃÂ − ÃÂ is the commutator of the fast
and slow Jacobians. We now assume that the spectral radius of the fast Jacobian is O(ε−1), and that of
the slow Jacobian is O(1). Then the spectral radius of Â2 is O(1) as well, and thus the explicit part of
the algorithm can be balanced by an ε-uniform advective CFL condition. The fast term is O(ε−2), which
is singular, but positive (semi-)definite. Thus, the implicit part of the algorithm is unconditionally stable.
The remaining suspect of causing a non-uniform CFL condition is the commutator. It may lead to a subtle
resonance between the implicit and explicit parts of the algorithm. In general, it is of O(ε−1). Hence it
may be singular, and it has no sign which would rescue stability. In [43], we removed the commutator via
a characteristic splitting and therefore obtained ε-uniform stability. This approach cannot be carried over
directly to nonlinear, and to multidimensional, systems.

To overcome this difficulty, we propose a general splitting, which is linear in the implicit part, based on
a reference solution and call this splitting RS-IMEX [41]. In the present paper, we choose the zeroth-order
asymptotic component w(0) as reference solution. Due to this choice, the eigenvectors of the one-dimensional
stiff and non-stiff Jacobians are asymptotically close to each other (see Remark 3 below). Therefore, the com-
mutator of stiff and non-stiff Jacobians disappears in the limit, which serves as a motivation for considering
the proposed splitting.

The RS-IMEX approach was first analyzed in [41] for a singularly perturbed system of ODEs, and gave
superior results for high order IMEX Runge-Kutta and BDF time discretizations. Furthermore, in [47]
Zakerzadeh et al. proved stability of the modified equation for the one-dimensional shallow water equations
with flat bottom. In [21], a similar splitting idea is used in the context of kinetic equations and in [23] for
the pressure gradient in the shallow water equations.

The present paper develops the RS-IMEX approach for the two dimensional isentropic Euler equations,
by coupling it with a first order time and space discretization. We prove the asymptotic preserving property
(AP-property) [19, 27, 28], which is fundamental in the low Mach regime, see exemplarily [8, 20, 24, 36]
and the references therein. Roughly speaking, the AP property guarantees that the limiting numerical
method (limit w.r.t. ε→ 0) is a consistent discretization of the limiting equation for fixed values of ∆t and
∆x. This concept is not restricted to low Mach flows, but it can also be applied to other discretizations
of singular problems. Examples are the discretization of kinetic equations, see, e.g., [11, 29, 34, 37] and
the references therein, or the discretization of singularly perturbed ODEs, see, e.g., [9, 10, 25, 41] and the
references therein. This list is by no means exhaustive, we refer to [28] for a more detailed overview.

We compare our scheme to a first order IMEX scheme with a well-established flux splitting due to Haack,
Jin and Liu [24]. Our numerical tests show a considerable advantage of the RS-IMEX scheme for small
Mach numbers, both in terms of error and computing time.

The paper is organized as follows: The splitting is defined in more detail in the second section; in the third
section, we discuss the asymptotic preserving property. In the fourth section, numerical results underline
our analysis and show that the splitting performs well, also in comparison to more established splittings
[24]. The paper concludes with an outlook in the last section.
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2 The RS-IMEX Splitting

As mentioned before we define the splitting into stiff and non-stiff parts by linearization around the reference
solution w(0). The splitting idea has been analyzed in the context of ODEs in [41], a first extension to
isentropic Euler equations was given in [42]. Similar ideas have been used before in [22].

In [41], we investigated the performance of the RS-IMEX splitting in the setting of singular perturbed
ODEs and were able to obtain improved stability and accuracy results in comparison to standard splittings.
This earlier work serves as a motivation to use the RS-IMEX also for the isentropic Euler equations.

Definition 1. The RS-IMEX splitting for a flux function F(w) is given by

F̃(w) = F(w(0)) + F′(w(0))(w −w(0)), F̂(w) = F(w)− F̃(w), (12)

where w(0) denotes the reference solution.

Remark 1. 1. A closely related IMEX scheme was introduced by Filbet and Jin [21] for the kinetic equations
with low Knudsen number. They split the collision operator into an implicit and an explicit part. As implicit
part, they choose the linearization of the collision operator around the fluid dynamical limit solution, which
is similar in spirit to the RS-IMEX splitting. In comparison, the RS-IMEX scheme splits the nonlinear
flux function and the asymptotic limit PDE is the incompressible Euler equation. This needs to be solved
numerically, while in the kinetic case, the background solution can be evaluated directly by computing the
local Maxwellians.

2. The RS-IMEX splitting generalized work of Bispen et al. [7, 8], who developed a numerical method for
the shallow water equations based on a splitting due to Giraldo, Restelli and collaborators [23, 22]. In that
work, the asymptotic reference state was chosen to be the lake at rest, while the present schemes relies on a
more general incompressible solution.

Remark 2. As a proof of concept we use the isentropic Euler equations in this work, but the RS-IMEX
splitting is directly extendable to different types of equations and settings, e.g., the full Euler or Navier-Stokes
equations.

A splitting into stiff and non-stiff terms has to fulfill some properties, one being that F̂ is in fact non-stiff:

Lemma 1. Let n be a unit normal vector. Then, the eigenvalues of F̂′(w) · n are given as

λ̂0 = 0, λ̂1 = (u− u(0)) · n, λ̂2 = 2(u− u(0)) · n

for any w = (ρ, ρu)T .

In particular, one can see from La. 1 that the eigenvalues do not become singular as ε → 0, i.e. the
Jacobian F̂′(w) · n is indeed non-stiff. In fact, a little more is true:

Corollary 1. Suppose that the asymptotic expansion (4) holds, i.e.

u− u(0) = O(ε). (13)

Then the eigenvalues of the non-stiff Jacobian are in O(ε).

Remark 3. In the one dimensional case the difference of the eigenvectors of the non-stiff and the stiff
matrices are, suitably normed, in O(ε). This is close to the characteristic splitting [43] where the eigenvectors
of the stiff and non-stiff matrices are the same.
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By construction, the stiff flux function F̃ is linear in w. As this part is treated implicitly, this will have a
positive influence on the overall algorithm, as one only needs to solve a linear system of equations for one
time step.

With Def. 1 being made, the first-order semi-discrete IMEX scheme for (8) can be written down as

wn+1
∆t −wn

∆t

∆t
+∇ ·

(
F̂(wn

∆t) + F̃(wn+1
∆t )

)
= 0. (14)

For the analysis to be performed, we need the following lemma, who’s proof relies on the specific form of
w(0), see also (5).

Lemma 2. For F̃ as defined in (12), there holds

∇ · F̃(w) = ∇ · F′(w(0))w. (15)

Proof. The proof is straightforward computation. Using the definition of F̃ in (12), one has to show that

∇ ·
(
F(w(0))− F′(w(0))w(0)

)
= 0.

Since most terms sum up to zero, the equation reduces to

∇
(
p(ρ(0))− p′(ρ(0))ρ(0)

)
= 0. (16)

The fact that ρ(0) is constant, see (5), concludes the proof.

Remark 4. For γ = 1, the well-known relation F(w) = F′(w)w holds, directly proving La. 2. For γ > 1,
the correction term (16) has to be accounted for.

We discretize (14) in space using a finite volume method. Therefore, the spatial domain Ω is subdivided
into uniform cartesian rectangles Ωij , with (uniform, say) cell size ∆x and unit normal vectors nx and ny.
The resulting method reads

wn+1
i,j =wn

i,j −
∆t

∆x

(
F̂∗(wn

∆t,i,j ,w
n
∆t,i,j+1,ny) + F̂∗(wn

∆t,i,j ,w
n
∆t,i,j−1,−ny)

+F̂∗(wn
∆t,i,j ,w

n
∆t,i+1,j ,nx) + F̂∗(wn

∆t,i,j ,w
n
∆t,i−1,j ,−nx)

+F̃∗(wn+1
∆t,i,j ,w

n+1
∆t,i,j+1,ny) + F̃∗(wn+1

∆t,i,j ,w
n+1
∆t,i,j−1,−ny) (17)

+F̃∗(wn+1
∆t,i,j ,w

n+1
∆t,i+1,j ,nx) + F̃∗(wn+1

∆t,i,j ,w
n+1
∆t,i−1,j ,−nx)

)
,

with a given numerical flux function F̂∗ for the explicit and F̃∗ for the implicit part. For simplicity, we
choose the Rusanov flux functions

F̂∗(u,v,n) =
F̂(u) + F̂(v)

2
n− 1

2
α̂(v − u),

F̃∗(u,v,n) =
F̃(u) + F̃(v)

2
n− 1

2
α̃(v − u),

with constant stabilization coefficients α̂ for the explicit and α̃ for the implicit part. Both coefficients are
chosen in the order of ε, being motivated by the fact that w −w(0) = O(ε), see also La. 1.
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3 Asymptotic Preserving Property

In this section, we discuss asymptotic properties of (14) and its finite volume discretization (17) coupled
with certain boundary conditions. Analysis is shown in two-dimensional space; note that the results hold
with direct extensions also for three-dimensional equations.

As mentioned before the equations change type for ε → 0. In the setting of Euler equations this means
that the equations transform to their incompressible counterpart. Thus ε is a measure of the compressibility
of the system, and an ideal numerical method should ’transform’ to a discretization of the incompressible
equations.

Definition 2. We call a numerical method asymptotically consistent (AC) if its lowest order multiscale
expansion is a consistent discretization of the incompressible limit.

In Fig. 1 an illustration of the AC property is given. In order to investigate the AC property of a method,
one has to compute the limit method first. Subsequently, this limit method has to be a discretization of the
incompressible equations.

w w(0)

wn+1
∆t

wn+1
∆t,(0)

ε → 0

ε → 0

∆t → 0 ∆t → 0? AC

Figure 1: Illustration of the AC property as given in [28]. If the numerical solution wn+1
∆t,(0) converges toward

w(0) for ∆t → 0, the algorithm is asymptotically consistent (AC). Note that both w and wn+1
∆t

depend implicitly on ε through the equation.

As mentioned in the introduction the use of a convective CFL condition is a desirable property for a nu-
merical method in the low Mach case. In accordance to this, we define this additional quantity, guaranteeing
that the method is stable under an ε-uniform CFL condition:

Definition 3. We call a numerical method asymptotically stable, see, e.g., [19], if there exists a constant
C > 0 independent of ε such that the method is stable for all values of ε ≤ 1 and for all choices of ∆t

∆x ≤ C.

As mentioned in the introduction, Jin introduced the asymptotic preserving property, see, e.g., [28], which
is fulfilled by an asymptotically consistent scheme if the limiting numerical method is stable. In this work
we prove that the method is asymptotically consistent and show that it is asymptotically stable with the
help of numerical experiments. If the method is asymptotically stable, there is practically no doubt that
also the limiting method is stable. Our scheme will therefore turn out to be asymptotic preserving.

3.1 Semi-Discrete Setting: IMEX Euler

Based on the splitting as given in (12), we consider the semi-discrete algorithm as in (14).

Lemma 3. The semi-discrete IMEX scheme (14) is asymptotically consistent if the initial data are well-
prepared in the sense of (7), and mass-conserving boundary conditions are chosen.
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Proof. We plug the asymptotic expansion

w∆t = w∆t,(0) + εw∆t,(1) + ε2w∆t,(2) +O(ε3) (18)

into the semi discretization (14). Because of (12) and La. 2, we obtain

wn+1
∆t = wn

∆t −∆t∇ · (F′(w(0))w
n+1
∆t + F(wn

∆t)− F′(w(0))w
n
∆t). (19)

Showing that this is a consistent discretization of the incompressible Euler equations is done inductively,
where the base case holds because of the well-preparedness of the data. Then, collecting all terms of order
ε−2 in (19), we obtain

0 = γ∇ρn+1
∆t,(0)(ρ(0))

γ−1 +∇(ρn∆t,(0))
γ − γ∇ρn∆t,(0)(ρ(0))

γ−1 (20)

Because ∇ρn∆t,(0) = 0 and the fact that, in particular, ρ(0) is a constant in space, we get:

0 = ∇ρn+1
∆t,(0), (21)

meaning that ρn+1
∆t,(0) is a constant in space. Because of conservation of mass we can conclude that ρn+1

∆t,(0) and

ρn∆t,(0) must be the same constant and so ρn+1
∆t,(0) is also constant in time. With similar arguments starting

with a comparison in order ε−1 we can conclude that ρn+1
∆t,(1) is constant too.

The continuity equation to order ε0 is given by

ρn+1
∆t,(0) = ρn∆t,(0) −∆t∇ · (ρn+1

∆t,(0)u
n+1
∆t,(0)) (22)

Because ρn+1
∆t,(0) = ρn∆t,(0) = const there holds:

0 = ∇ · un+1
∆t,(0). (23)

We showed that for well-prepared initial data also wn
∆t is well-prepared for every n. Making a coefficients

comparison in order ε0 we can confirm that also the discretization of the momentum equation is a consistent
approximation of (8), and so for ε→ 0 (14) is a consistent discretization of (5).

3.2 Fully-Discrete Setting: IMEX Euler and Finite Volume

Previously, we have seen that the RS-IMEX splitting combined with an IMEX Euler time discretization is
asymptotically consistent. The canonical next step is to show the same for the fully-discrete setting, viz for
using a first order finite volume spatial discretization (17). Note that due to the structure of the RS-IMEX
splitting we are able to choose both stabilization coefficients in O(ε). Thus taking ε → 0 the numerical
viscosity does not affect the lower order terms, e.g., the terms in order εi with −2 ≤ i ≤ 0.

As in the analysis before, we assume that we can represent the discrete solution by

w∆t = w∆t,(0) + εw∆t,(1) + ε2w∆t,(2) +O(ε3).

Plugging this expansion into the numerical method (17), collecting O(ε−2) terms of the momentum equation
and noting that ρn(0),i,j ≡ ρ(0) is constant in space and time, one obtains

0 = p(ρ(0)) + p′(ρ(0))(ρ
n+1
∆t,(0),i,j+1 − ρ(0))

− p(ρ(0))− p′(ρ(0))(ρ
n+1
∆t,(0),i,j−1 − ρ(0))

+ p(ρn∆t,(0),i,j+1)− p(ρ(0))− p′(ρ(0))(ρ
n
∆t,(0),i,j+1 − ρ(0))

− p(ρn∆t,(0),i,j−1) + p(ρ(0)) + p′(ρ(0))(ρ
n+1
∆t,(0),i,j−1 − ρ(0)).

7



Assuming that the initial values are given in such a way that ρn∆t,(0),i,j is constant in space we obtain

0 = p′(ρ(0))
(
ρn+1

∆t,(0),i,j+1 − ρ
n+1
∆t,(0),i,j−1

)
(24)

and correspondingly

0 = p′(ρ(0))
(
ρn+1

∆t,(0),i+1,j − ρ
n+1
∆t,(0),i−1,j

)
. (25)

Unfortunately, from this, one can not directly conclude that ρn+1
∆t,(0),i,j is a constant in space. In particular,

depending on the boundary conditions, checkerboard modes could occur. (See also Bispen’s dissertation for
a discussion of this phenomenon [7].) We note that checkerboard modes can not be precluded for periodic
boundary conditions. The issue could be solved by implicit diffusion in the mass equation [7]. As we do not
observe any numerical issues, we do not pursue this approach further.

Using the boundary conditions proposed by Haack, Jin and Liu in a similar setting, see [24], one can prove
the AC property. More precisely, said boundary conditions operate on ghost cells and are, on the lower left
boundary for example, given by

ρn∆t,−1,j = ρn∆t,0,j , ρn∆t,i,−1=ρn∆t,i,0, (26)

ρun∆t,−1,j = −ρun∆t,0,j , ρun∆t,i,−1=− ρun∆t,i,0, (27)

These boundary conditions approximate slip boundary conditions with an extra condition on ∇p · n,

∂ρ

∂n
= 0 and u · n = 0 on ∂Ω.

To mimic well-prepared initial data as in (7), we require that the discrete initial conditions are chosen such
that (note that u = (u, v))

ρ0
∆t,i,j = ρ(0) +O(ε2) and (28)

u0
∆t,i,j+1 − u0

∆t,i,j−1 + v0
∆t,i+1,j − v0

∆t,i−1,j = O(ε) +O(∆xq),

holds for a q > 1. Furthermore we assume that the reference solution was computed by a suitable numerical
method. This especially means that the velocity is divergence free in a discrete sense, similar to the well-
prepared initial conditions. Using these assumptions we obtain the main lemma of this section.

Lemma 4. The limiting numerical method is a consistent discretization of the limiting Euler equations, if the
used reference solution is computed by a suitable numerical method, the initial conditions are well-prepared
as in (28) and the boundary conditions are given as in (26).

Proof. Due to (24)–(25), and the choice of boundary conditions, we can directly conclude that ρn+1
∆t,(0),i,j is

constant in space. It is therefore denoted by ρn+1
∆t,(0). Next we consider the O(1) terms of the conservation

of mass equation. This results in

ρn+1
∆t,(0) = ρ(0)

n − ∆t

∆x

1

2

(
ρn+1

∆t,(0)u
n+1
∆t,(0),i,j+1 − ρ

n+1
∆t,(0)u

n+1
∆t,(0),i,j−1

+ρn+1
∆t,(0)v

n+1
∆t,(0),i+1,j − ρ

n+1
∆t,(0)v

n+1
∆t,(0),i−1,j

)
.

Summing this equation over the whole domain and using the boundary condition directly leads to

ρn+1
∆t,(0) = ρn(0).
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Thus the limiting density is constant in space and time and equals to ρ(0) due to the well-prepared initial
conditions. Note that one can show the same result for ρ(1) by considering the O(ε−1) terms and performing
the same steps as before. Thus due to the initial conditions we can obtain that ρ(1) = 0. The O(1) terms of
the conservation of mass equation reduces to

0 =
1

∆x

(
un+1

∆t,(0),i,j+1 − u
n+1
∆t,(0),i,j−1 + vn+1

∆t,(0),i+1,j − v
n+1
∆t,(0),i−1,j

)
.

This is a consistent discretization of the divergence free constraint of the limiting partial differential equation.
Finally, we have to show that the remaining O(1) terms of the momentum equation are consistent to the
corresponding limiting equation. If one considers these equations and rearranges the terms, one obtains that
the first terms are a discretization of

(u(0))t +∇ · (u(0) ⊗ u(0)) +
1

ρ(0)
∇p(2) = 0,

which is indeed the momentum equation of the incompressible Euler equation, and the remaining terms
are terms in the difference of the computed solution and the reference solution. Therefore, if the reference
solution is computed in a suitable way the limiting numerical method is a consistent discretization of the
limiting equation.

4 Numerical Results

Having analyzed the RS-IMEX splitting, this section presents numerical results for the proposed splitting.
The splitting is compared against a splitting from literature, introduced by Haack, Jin and Liu in [24]. The
splitting is given in the following definition; it is labeled HJL in the following.

Definition 4. Haack, Jin and Liu splitting [24] ( HJL). With this splitting, the convective fluxes are split
into stiff and non-stiff terms, respectively, by

F̃(w) =

(
(1− τ)(ρu)

a(t)
ε2
ρ

)
and F̂(w) =

(
τ(ρu)

ρu⊗ u + p−a(t)ρ
ε2

)
. (29)

The particular choice of τ and a(t) is given by

0 < τ < 1, τ ∈ O(ε2) and a(t) = min
x
p′(ρ(x, t)). (30)

The splitting is hyperbolic and the eigenvalues of F̂ are in magnitude independent of ε. Also F̃ is a linear
function, if a(t) is handled explicitly, i.e., evaluated at time tn. Note that this splitting is well tested. In
[24] Haack, Jin and Liu proved that the splitting is asymptotically consistent and uniformly stable under a
CFL restriction independent of ε. We note that the authors in [24] did not directly apply their splitting in
form (14), but restate the equations in the semi-discrete setting to obtain an additional pressure equation,
which is the only equation that is solved for implicitly in their algorithm.

In the following we consider two different examples and compute the L1-error of the first momentum
component. This is sufficient since both momentum components behave very similar and the density is close
to a constant.

4.1 Periodic Flow

Inspired by Degond and Tang [20] (see also [24]) we compute the so called periodic flow example.
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Figure 2: Initial conditions for the periodic flow example for ε = 1: Left: ρ and right: ρu.

Definition 5. The periodic flow example is given on Ω = [0, 1]× [0, 1] with periodic initial conditions

ρ(x, y, 0) = 1 + ε2sin2(2π(x+ y))

u(x, y, 0) =

(
sin(2π(x− y))
sin(2π(x− y))

)
,

(31)

periodic boundary conditions and γ = 2. The initial conditions are illustrated in Fig. 2.

The error is computed with the aid of a highly resolved solution, being computed on a finer grid with
HJL splitting and a higher-order method.

Both numerical methods are computed with the same solver and for both, moderate stabilization coeffi-
cients are used, namely α̂ = 2ε and α̃ = ε for the RS-IMEX and α̂ = 2 and α̃ = 1 for the HJL splitting. The
reference solution is computed with a corresponding semi-implicit finite volume method where the convective
term is treated explicitly and the divergence free constraint is stabilized with pressure. We use stabilization
coefficients α̂ = α̃ = 2. Finally we choose τ = ε2 for ε < 1 and τ = 0.5 for ε = 1.

Using a grid cell size ranging from ∆x = 2−2 to ∆x = 2−7 we chose for all values of ε, viz ε = 10−i with
i = 0 . . . 4, the same relation between the cell size and the temporal step size, namely

∆t

∆x
= 0.25. (32)

Based on the initial conditions, this corresponds to a global convective CFL number of also 0.25.
Starting with large values for ε demonstrates the performance of the methods in the fully compressible

regime. In Fig. 3 one can clearly see that both our newly developed method and the classical HJL method
perform equally well for ε = 1. This is not surprising, as for ε = 1, the solutions are not yet in the asymptotic
regime.

In Fig. 4, numerical results are shown for ε = 10−1 to 10−4. Beginning from ε = 10−1, one obtains
improved accuracy for the RS-IMEX splitting. Both splittings converge with the desired order. In all
settings it can be clearly seen that both splittings have the same initial error on the coarse grid, but RS-
IMEX gives a better convergence than the HJL splitting. Ultimately, there is a factor of about 10 between
both errors. In order to achieve the same error, the algorithm involving the RS-IMEX splitting needs to
solve for both compressible and incompressible solution, but on a significantly coarser grid. Overall, this
yields substantial savings.

From the convergence figures one can also see that both methods are AC: The smaller ε1 and ε2, the more
similar the corresponding error plots are.

4.2 Traveling Vortex

As a second example, we consider the traveling vortex example used by Bispen et al. in [8].
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Figure 3: Periodic flow: Comparison of the RS-IMEX with the HJL splitting for large Mach number ε = 100.
The plot shows the L1-error in the first momentum component of the computed solution with a
highly resolved numerical solution. HJL and RS lie on top of each other. Black line indicates first
order convergence.

Definition 6. The traveling vortex example is given on Ω = [0, 1]× [0, 1] with periodic initial conditions

ρ(x, y, 0) = 110 + ε2

(
1.5

4π

)2

δ(rc)(k(rc)− k(π)),

u(x, y, 0) =

(
0.6
0

)
+ 1.5(1 + cos(rc))δ(rc)

(
(0.5− y)
(x− 0.5)

)
.

where

k(r) := 2cos(r) + 2rsin(r) +
1

8
cos(2r) +

1

4
rsin(2r) +

3

4
r2,

rc := 4π
√

(x− 0.5)2 + (y − 0.5)2,

δ(r) :=

{
1 r < π

0 otherwise
.

Boundary conditions are chosen to be periodic (unlike in [8]), and p(ρ) = 1
2ρ

2. The initial conditions are
illustrated in Fig. 5.

Note that for this example an exact solution is available:

ρ(x, y, t) = ρ(x− 0.6t, y, 0), u(x, y, t) = u(x− 0.6t, y, 0).

We compute the results in a similar setting as before. This means we compute on the same grids and the
same values of ε. Again we use for both methods the same relation between the temporal step size and the
cell size, namely

∆t

∆x
= 0.05.

Based on the initial conditions, this corresponds to a global convective CFL number of approximately 0.04.
The setting is the same as before, with the exception that the stabilization coefficients for the computation
of the incompressible solutions are chosen to be α̂ = 0 and α̃ = 2.
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Figure 4: Periodic flow: Comparison of the RS-IMEX with the HJL splitting for Mach numbers ε = 10−1

to 10−4. The plots show the L1-error in the first momentum component of the computed solution
with a highly resolved numerical solution. Black line indicates first order convergence.

Results in this example are given in Figs. 6–7, they are similar to those of the previous example. Again,
for ε = 1, both methods compute similarly accurate results, but the RS-IMEX splittings takes twice the
work. For ε � 1 the RS-IMEX method performs much better. While the HJL splitting needs some steps
to hit the right convergence order, the RS-IMEX splitting starts with the correct order after a few steps,
leading to a more accurate solution. This then also justifies the higher effort due to the computation of the
incompressible solution. There seems to be a slight superconvergence of the RS splitting, however, we think
this is only an artefact that diminishes under grid refinement.

Note, in addition, that due to the stiffness of the resulting linear system, the linear solver needs much
more time to solve the compressible part than the incompressible one. Thus, for small values of ε, solv-
ing the incompressible part is negligible in terms of computational costs. To verify this we compare the
computational costs for the implemented solver in the next subsection.
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Figure 5: Initial conditions for the traveling vortex example for ε = 1: Left: ρ and right: ρu.
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Figure 6: Traveling vortex: Comparison of the RS-IMEX with the HJL splitting for large Mach number
ε = 100. The plot shows the L1-error in the first momentum component of the computed solution
with a highly resolved numerical solution. HJL and RS lie on top of each other. Black line indicates
first order convergence.

4.3 Computational cost

In the previous two subsections we observed that the RS-IMEX splitting delivers a better error for the same
mesh size and small values of ε compared to the HJL splitting. This happens with the additional effort
in solving the incompressible limit equation. To make a fair comparison, one has therefore to also report
computational times. We implemented a solver with the help of Netgen [39] and PETSc [4, 5, 6] to solve
both the RS-IMEX and the HJL splitting. The basic solver was written for the HJL splitting and then
extended by an incompressible solver. We only use basic techniques to solve the implicit system, therefore
the solver is not optimized in any sense. Note that the system of equations gets harder to solve if one
reduces the mesh size ∆x or ε. This plays an important role in choosing the right residual threshold value
to stop the solver. We believe that one can, especially for the low Mach case, reduce the computational
costs significantly by optimization. The basic solver was designed as a proof of concept.

In Tables 1 and 2 we see the computational costs of both methods to compute a similar error for different
values of ε. For large values of ε we can see that the HJL splitting performs much better, since the RS-IMEX
splitting needs to solve more equations. Therefore for large values of ε this additional effort is not justified.
For small values of ε the RS-IMEX splitting reduces the computational costs significantly since one uses a
coarser grid to get the same error. For the traveling vortex example difference is much larger due to the
superconvergence we obtained in the beginning.

5 Conclusion and Outlook

We have presented a new IMEX flux splitting for two-dimensional, low Mach number, isentropic compressible
Euler equations, as a prototype for stiff hyperbolic systems of conservation laws. The stiff part is the
linearization of the flux around the asymptotic reference solution (in this case the incompressible solution).

We have proven that the new scheme is asymptotically consistent, and our numerical experiments indicate
that it is stable under a convective CFL condition, and for all values of ε. Hence the scheme may be called
asymptotic preserving.

For two well-known test cases, the new splitting gives smaller errors than Haack, Jin and Liu’s recent
splitting on the same mesh (when compared within the same IMEX code). For small ε, similar errors are
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ε method ∆x ne L1-error time in s

100 HJL 7.8125 · 10−3 (27)2 0.1778 7.40 · 101

RS-IMEX 7.8125 · 10−3 (27)2 0.1778 4.52 · 102

10−1 HJL 7.8125 · 10−3 (27)2 0.0732 1.95 · 102

RS-IMEX 3.125 · 10−2 (25)2 0.0579 5.02 · 100

10−2 HJL 7.8125 · 10−3 (27)2 0.0704 1.45 · 103

RS-IMEX 3.125 · 10−2 (25)2 0.0418 1.54 · 101

10−3 HJL 7.8125 · 10−3 (27)2 0.0686 2.04 · 103

RS-IMEX 3.125 · 10−2 (25)2 0.0409 3.86 · 101

10−4 HJL 7.8125 · 10−3 (25)2 0.0686 4.20 · 103

RS-IMEX 3.125 · 10−2 (25)2 0.0409 4.13 · 101

Table 1: Periodic flow example: Comparison of computational time to obtain a similar L1-error of the first
momentum component for the HJL splitting and RS-IMEX splitting.

ε method ∆x ne L1-error time in s

100 HJL 7.8125 · 10−3 (27)2 0.5401 3.24 · 102

RS-IMEX 7.8125 · 10−3 (27)2 0.5415 1.08 · 104

10−1 HJL 7.8125 · 10−3 (27)2 0.5398 2.02 · 103

RS-IMEX 6.25 · 10−2 (24)2 0.4530 5.02 · 100

10−2 HJL 7.8125 · 10−3 (27)2 0.5398 1.53 · 104

RS-IMEX 6.25 · 10−2 (24)2 0.2249 8.81 · 100

10−3 HJL 7.8125 · 10−3 (27)2 0.5398 2.07 · 104

RS-IMEX 6.25 · 10−2 (24)2 0.2227 3.15 · 101

10−4 HJL 7.8125 · 10−3 (27)2 0.5397 9.77 · 104

RS-IMEX 6.25 · 10−2 (24)2 0.2236 7.89 · 101

Table 2: Traveling vortex example: Comparison of computational time to obtain a similar L1-error of the
first momentum component for the HJL splitting and RS-IMEX splitting.
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Figure 7: Traveling vortex: Comparison of the RS-IMEX with the HJL splitting for Mach numbers ε = 10−1

to 10−4. The plots show the L1-error in the first momentum component of the computed solution
with a highly resolved numerical solution. Black line indicates first order convergence.

obtained within less computational time.
Several extensions of the new method are important: high-order discontinuous Galerkin methods [12, 13,

14, 15, 16] and IMEX Runge-Kutta integrators [2, 30] to increase the efficiency and accuracy, development
and implementation for more complex equations, as well as analytical proofs of asymptotic stability.
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