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Abstract

In this proof-of-principle study we apply tensor decomposition techniques to the Full Configuration Interac-
tion (FCI) wavefunction in order to reduce the exponential scaling of the number of wavefunction parameters and
overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number
vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then
applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence,
the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but
depends on the rank of the approximation and linearly on the number of particles. The degree of approximation
can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demon-
strate that using this approximation, the FCI Hamiltonian matrix and the wavefunction parameters can be stored
with N5 scaling and the FCI problem can be solved with subexponential effort. The error of the approximation
that is introduced is below Millihartree for a threshold of ε = 10−4 and no convergence problems are observed
solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm
is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient
tensor. At the current state, this crucial steps scales beyond N10.

∗Corresponding author. Email: alexander.auer@cec.mpg.de
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1 Introduction

Since the early days of quantum chemistry it has been known that the full configuration interaction (FCI) method
allows one to calculate the exact solution of the Schrödinger equation in principle. FCI is conceptually simple
and obtaining the energies of the desired system only requires solving an eigenvalue problem. Hence one could
follow Dirac’s famous statement that "the fundamental laws necessary for the mathematical treatment of a large
part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that
application of these laws leads to equations that are too complex to be solved."
Indeed, as in FCI the wavefunction is parametrized using the weights of all possible configuration state functions
(or all possible slater determinants) the number of parameters grows exponentially with the number of particles.
Therefore, FCI is usually only used for benchmark calculations and in spite of the remarkable increase of com-
putational power in recent decades solving the FCI problem for few states using Davidson-type algorithms is still
only feasible for systems with much less than 20 electrons. However, FCI should not be regarded as an approach
with a tiny niche in quantum chemistry - As the central part of a complete active space (CAS) treatment [1] it is
essential for solving the most challenging multi-reference problems in chemistry when other methods fail.
And in spite the paradigm that solving Schrödinger’s equation demands exponential effort, several attempts have
been made to accelerate the method and make it feasible for larger system sizes and larger active spaces. One
important improvement was achieved through the insight that the Hamiltonian matrix is data sparse, and only
a few elements are required for performing FCI, which means that the Hamiltonian matrix does not need to be
constructed explicitly. This, in turn, led to the development of direct CI[2] which can be applied to larger systems
[3, 4, 5], but the factorial scaling behavior itself remains. In recent years, novel approaches have been devel-
oped to solve the Schrödinger equation for larger systems. One method of reducing the computational effort in
FCI is to neglect certain configurations. Several schemes for selecting such configurations have been developed
[6, 7, 8, 9, 10, 11]. Other approaches are not based on solving an eigenvalue problem but instead apply Monte
Carlo simulations, which has resulted in the development of Quantum Monte Carlo (QMC)[12, 13] and Quantum
Monte Carlo Full Configuration Interaction (QMCFCI) [14, 15, 16]. Using these methods, the size of treatable
systems can be extended. In case of QMC the scaling can be reduced to polynomial scaling while in the case of
QMCFCI the scaling is still exponential but with a decreased prefactor. Both methods can treat larger systems
than conventional state of the art FCI algorithms.
A further approach to solve the Schrödinger equation is the density matrix renormalization group (DMRG) method
where the electron density is approximated using a tensor representation [17, 18]. This Ansatz exhibits polyno-
mial scaling, but convergence and accuracy can be difficult to control. energy depend on the ordering of the
sites[19, 20, 21, 22, 23].
So, while recent years have brought about methods that, while not changing the exponential scaling of FCI, are
however extremely efficient and have extended its applicability significantly. On the other hand, methods like
QMC or DMRG suggest that it should even be possible to find ways to solve the FCI problem in subexponential
effort.
The approach the we explore in this publication goes along the lines of the latter attempts - to find a formulation of
the FCI problem that does not exhibit the exponential scaling inherently and for now not to focus in the efficiency
of the final algorithm. For this purpose, we have been investigating tensor decomposition techniques from applied
mathematics. In principle, these techniques are widely known in the field of quantum chemistry from approaches
such as density fitting [24, 25, 26, 27, 28, 29, 30], or Cholesky Decomposition [31, 32, 33] and have also been
applied in various ways to post Hartree-Fock methods. One example is the tensor hypercontraction format [34, 35]
which has has been applied to Møller-Plesset perturbation theory [36] and Coupled Cluster methods [37, 38, 39].
Tensor decompositions may also be used in multiresolution analysis representations for Hartree-Fock and MP2
[40, 41], where both operators and coefficient tensors are decomposed. Furthermore, tensor decomposition tech-
niques have also been applied to reduce the scaling of the FCI method [42].

Driven by the potential of tensor decomposition techniques to break the curse of dimensionality in quantum chem-
istry, our recent work has focused on the canonical product (CP) tensor format, which has been applied to post
Hartree-Fock methods like MP2 and CCD [43, 44, 45], leading to a reduction of the scaling in comparison to
index based algorithms. Furthermore, we have applied the Matrix Product State format to represent two electron
integrals and MP2 amplitudes and compared the advantages and disadvantages to the CP format[46].
In the present work, we present a FCI algorithm based on the canonical product tensor format, which is used to
represent the Fock space. In section 2.1 we introduce the basic ideas of FCI. In sections 2.2 and 2.3 it is shown
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how the representation of the coefficient and Hamiltonian tensors are constructed. The next two sections focus
on how the crucial steps of the denominator update and the tensor contraction of the coefficient tensor with the
Hamiltonian tensor are performed. Section 2.6 gives an overview over the applied rank reduction algorithm and
in Section 2.7 an outline of the current algorithm is given including timings of the crucial steps. To estimate the
reliability of our algorithm, results of benchmark calculations are presented in section 3.1 and the scaling behavior
with increasing system size is discussed in section 3.2.

2 Theory

2.1 Introduction of the FCI Approach

The full CI wave function |Φ(FCI)〉 is expanded as a linear combination of slater determinants.

|Φ(FCI)〉 =
∑
K

CK|K〉. (1)

Each slater determinant |K〉 can be represented by an occupation number vector (ONV) |K〉 containing the occu-
pation numbers kp of spin orbitals χp. For a given basis of n molecular orbitals the ONV has the following form
[47]:

|K〉 = |k1, k2, . . . , kn〉 with kp =

{
1 if χp is occupied
0 if χp is unoccupied (2)

If all |K〉 constitute an orthonormal basis, the application of the variational principle in eq. 1 leads to the following
eigenvalue problem:

HC = EC. (3)

The elements of the Hamiltonian matrix H are given in eq. 4, where Ĥ is expressed in second quantisation:

〈K|Ĥ|K′〉 = 〈K|

∑
pp′

h(p, p′)a†pap′ +
1

2

∑
pqp′q′

〈pq||p′q′〉a†pa†qap′aq′

 |K′〉. (4)

Here h(p, p′) is the one-electron integral

h(p, p′) =

∫
χ∗p(r1)

(
−1

2
∇2

1 −
∑
A

ZA
rA1

)
χp′(r1)dr1 (5)

and 〈pq||p′q′〉 = 〈pq|p′q′〉 − 〈pq|q′p′〉 corresponds to the antisymmetrised two electron integral with

〈pq|p′q′〉 =

∫
χ∗p(r1)χ∗q(r2)

1

r12
χp′(r1)χq′(r2)dr1dr2. (6)

The creation and annihilation operators a†p and ap in second quantisation are defined as follows [47]:

a†p|k1, k2, . . . , 0p, . . . , kn〉θ = Γg
p |k1, k2, . . . , 1p, . . . , kn〉

a†p|k1, k2, . . . , 1p, . . . , kn〉 = 0

ap|k1, k2, . . . , 1p, . . . , kn〉 = Γg
p |k1, k2, . . . , 0p, . . . , kn〉

ap|k1, k2, . . . , 0p, . . . , kn〉 = 0. (7)

with Γg
p =

p−1∏
q=1

(−1)kq .

To obtain the proper coefficients in the wave function expansion (eq. 1) and the corresponding energies, the
eigenvalue problem of eq. 3 needs to be solved. In most cases only the lowest eigenvalue E, which corresponds
to the ground state energy, is of interest, so that only one coefficient vector C needs to be obtained.
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2.2 Canonical Tensor Representation of the Fock Space

While many approaches can be formulated to apply tensor decomposition techniques to FCI, the aim of breaking
the curse of dimensionality for a many-particle approach for fermions leads to difficulties in many cases. Indeed,
we have tested two further approaches. In the first one, the wave function is expanded hierarchically. Starting
from a reference determinant, additional determinants are incorporated into the wave function expansion, where
orbitals that are occupied in a reference determinant are replaced by virtual orbitals. In this way, the coefficients
belonging to determinants where one, two, . . . orbitals have been replaced, are stored in tensors according to the
number of replacements. However, this results in the problem that for higher substitutions the tensor contractions
get more and more complicated. Therefore, we have tested a further approach that generalises the previous one
by storing all coefficients in one representation. In this case there are still problems due to unphysical elements in
the Hamiltonian tensor representation, that were supposed to be zero when antisymmetry is correctly treated. In
reference [48] we further discuss these two approaches.

In this section, we follow the ansatz by Legeza et al. and Szalay et al. [49, 50] that will be discussed in this work
as it does not lead to aforementioned difficulties.

As shown in eq. 2, the ONV possesses n entries kp, which can each take one of two values. In order to address the
proper coefficients, the corresponding coefficient tensor can be arranged in a way that follows a similar logic as is
used for the ONVs. As a consequence, the coefficients are elements of an n dimensional tensor C. Each dimension
µ of this tensor can be assigned to one orbital |χµ〉 and there exist two entries in each dimension corresponding to
an occupied (kµ = 1) or an unoccupied orbital (kµ = 0).

The coefficient tensor can be represented in the canonical product tensor format as shown in eqs. 8 and 9 where
for each of the J ranks there exist n representing vectors c(µ)

j and each representing vector holds two elements

c
(µ)
j (0) and c(µ)

j (1).

C =

J∑
j=1

c
(1)
j ⊗ c

(2)
j ⊗ . . .⊗ c

(n)
j (8)

=

J∑
j=1

n⊗
µ=1

c
(µ)
j . (9)

Below, we illustrate the ansatz using a four-orbital (n = 4), two-electron (N = 2) example like H2, which is also
used later in this article. In order to use a transparent nomenclature, the coefficients cki,ka,kī,kā are named in the
same way as the ONVs, where ki, ka, kī and kā are the corresponding occupation numbers of orbitals χi, χa,
χī and χā. As shown in eq. 1, each determinant can be assigned one coefficient leading in the present example
to a total number of

(
n
N

)
= 4·3

2·1 = 6 coefficients, which are stored in a vector ~c in conventional FCI as shown
below:

~c =


c0,1,0,1
c1,0,0,1
c0,1,1,0
c1,1,0,0
c0,0,1,1
c1,0,1,0

 (10)

The same configuration space can be spanned in a CP format representation of an n dimensional tensor as fol-
lows:

C =

J∑
j=1

c
(i)
j ⊗ c

(a)
j ⊗ c

(̄i)
j ⊗ c

(ā)
j (11)

where each coefficient c(ki, kī, ka, kā) can be obtained from

c(ki, ka, kī, kā) =

J∑
j=1

c
(i)
j (ki) · c(a)

j (ka) · c(̄i)j (kī) · c
(ā)
j (kā). (12)
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Suppose that only one coefficient c(1, 0, 1, 0) that belongs to the Hartree-Fock determinant is equal to one while
all the other coefficients are zero as, for example, in the initial guess of an FCI procedure. In this case the vector ~c
contains six elements

~c =


0
0
0
0
0
1

 (13)

while in the representation of the coefficient tensor it takes the form of a rank one expansion:

C =

(
0
1

)
⊗
(

1
0

)
⊗
(

0
1

)
⊗
(

1
0

)
. (14)

Note that such a tensor representation covers the whole Fock space instead of an N particle subspace of the
Fock space. For example, elements belonging to the vacuum state |0, 0, 0, 0〉 are accessible in the representation
as:

c(0, 0, 0, 0) =

J∑
j=1

c
(i)
j (0) · c(a)

j (0) · c(̄i)j (0) · c(ā)
j (0). (15)

There are many instances of coefficient tensors that can occur for a four-orbital, two-electron system. Some
examples of representations of the coefficient tensors are given in Fig. 1.

The wave function is obtained by inserting the coefficient tensor representation 8 into eq. 1:

|Φ(FCI)〉 =
∑
k

C(k1, k2, . . . , kn)|k1, k2, . . . , kn〉 (16)

=
∑
k

J∑
j=1

c
(1)
j (k1) · c(2)

j (k2) · . . . · c(n)
j (kn)|k1, k2, . . . , kn〉. (17)

Using the tensor representation of the coefficient tensor for the aforementioned four-orbital, two-electron example
would yield the explicit form of the wave function

|Φ(FCI)〉 =
∑
k

J∑
j=1

c
(1)
j (k1) · c(2)

j (k2) · c(3)
j (k3) · c(4)

j (k4)|k1, k2, k3, k4〉. (18)

2.3 Decomposed Representation of the Hamiltonian Matrix Using Canonical Products

As introduced in section 2.1, to obtain the appropriate coefficients, an eigenvalue problem of a matrix H needs to
be solved. To find a tensor representation of the Hamiltonian matrix, the representation needs to be constructed in
an analogous way as the matrix elements in eq. 4. In a first step tensor representations are set up that are analogues
of the annihilation and creation operators a†p and ap. Therefore, matrices AT , A, 1 and G are introduced [49,
50]:

AT =

(
0 0
1 0

)
(19)

A =

(
0 1
0 0

)
(20)

G =

(
1 0
0 −1

)
(21)

1 =

(
1 0
0 1

)
. (22)
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HF-Solution of H2

|Ψ〉 = 1 · |1, 0, 1, 0〉

C =

(
0
1

)
⊗
(

1
0

)
⊗
(

0
1

)
⊗
(

1
0

)
 0

 0.2

 0.4

 0.6

 0.8

 1

|1
, 1

, 1
, 1

>

|1
, 1

, 1
, 0

>

|1
, 1

, 0
, 1

>

|1
, 1

, 0
, 0

>

|1
, 0

, 1
, 1

>

|1
, 0

, 1
, 0

>

|1
, 0

, 0
, 1

>

|1
, 0

, 0
, 0

>

|0
, 1

, 1
, 1

>

|0
, 1

, 1
, 0

>

|0
, 1

, 0
, 1

>

|0
, 1

, 0
, 0

>

|0
, 0

, 1
, 1

>

|0
, 0

, 1
, 0

>

|0
, 0

, 0
, 1

>

|0
, 0

, 0
, 0

>

FCI-Solution of H2

|Ψ〉 = 0.99 · |1, 0, 1, 0〉 − 0.11 · |0, 1, 0, 1〉

C =

(
0

0.99

)
⊗
(

1
0

)
⊗
(

0
1

)
⊗
(

1
0

)
+

(
−0.11

0

)
⊗
(

0
1

)
⊗
(

1
0

)
⊗
(

0
1

)
 0

 0.2

 0.4

 0.6

 0.8

 1

|1
, 1

, 1
, 1

>

|1
, 1

, 1
, 0

>

|1
, 1

, 0
, 1

>

|1
, 1

, 0
, 0

>

|1
, 0

, 1
, 1

>

|1
, 0

, 1
, 0

>

|1
, 0

, 0
, 1

>

|1
, 0

, 0
, 0

>

|0
, 1

, 1
, 1

>

|0
, 1

, 1
, 0

>

|0
, 1

, 0
, 1

>

|0
, 1

, 0
, 0

>

|0
, 0

, 1
, 1

>

|0
, 0

, 1
, 0

>

|0
, 0

, 0
, 1

>

|0
, 0

, 0
, 0

>

Equal Coefficients for all Determinants in the Fock-Space

|Ψ〉 =
∑
ki

∑
ka

∑
kī

∑
kā

1 · |ki, ka, kī, kā〉

C =

(
1
1

)
⊗
(

1
1

)
⊗
(

1
1

)
⊗
(

1
1

)
 0

 0.2

 0.4

 0.6

 0.8

 1

|1
, 1

, 1
, 1

>

|1
, 1

, 1
, 0

>

|1
, 1

, 0
, 1

>

|1
, 1

, 0
, 0

>

|1
, 0

, 1
, 1

>

|1
, 0

, 1
, 0

>

|1
, 0

, 0
, 1

>

|1
, 0

, 0
, 0

>

|0
, 1

, 1
, 1

>

|0
, 1

, 1
, 0

>

|0
, 1

, 0
, 1

>

|0
, 1

, 0
, 0

>

|0
, 0

, 1
, 1

>

|0
, 0

, 1
, 0

>

|0
, 0

, 0
, 1

>

|0
, 0

, 0
, 0

>

Equal Coefficients for all two-electron Determinants

|Ψ〉 = 1 · |1, 0, 1, 0〉+ 1 · |0, 1, 0, 1〉+ 1 · |0, 1, 1, 0〉
= 1 · |1, 0, 0, 1〉+ 1 · |1, 1, 0, 0〉+ 1 · |0, 0, 1, 1〉

C =

(
0.58
1.22

)
⊗
(

0.58
1.22

)
⊗
(

0.58
1.22

)
⊗
(

0.58
1.22

)
+

(
0.58
−1.22

)
⊗
(
−0.58

1.22

)
⊗
(

0.58
−1.22

)
⊗
(
−0.58

1.22

)
+

(
0

1.45

)
⊗
(

0
−1.45

)
⊗
(

0
−1.45

)
⊗
(

0
−1.45

)
+

(
0.69

0

)
⊗
(
−0.69

0

)
⊗
(
−0.69

0

)
⊗
(
−0.69
−0

)  0

 0.2

 0.4

 0.6

 0.8

 1

|1
, 1

, 1
, 1

>

|1
, 1

, 1
, 0

>

|1
, 1

, 0
, 1

>

|1
, 1

, 0
, 0

>

|1
, 0

, 1
, 1

>

|1
, 0

, 1
, 0

>

|1
, 0

, 0
, 1

>

|1
, 0

, 0
, 0

>

|0
, 1

, 1
, 1

>

|0
, 1

, 1
, 0

>

|0
, 1

, 0
, 1

>

|0
, 1

, 0
, 0

>

|0
, 0

, 1
, 1

>

|0
, 0

, 1
, 0

>

|0
, 0

, 0
, 1

>

|0
, 0

, 0
, 0

>

Figure 1: Examples of coefficient tensor representations of the four-orbital, two-electron example. Shown are an
explicit form of the wave function using ONVs, the representation of the coefficient tensor, and a bar plot of the
absolute values of the coefficients.
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Using these matrices, tensors A†p and Ap representing the creation and annihilation operators can be constructed
as follows:

A†p = G(1) ⊗G(2) ⊗ . . .⊗G(p−1) ⊗A(p)T ⊗ 1(p+1) ⊗ . . .⊗ 1(n) (23)

Ap = G(1) ⊗G(2) ⊗ . . .⊗G(p−1) ⊗A(p) ⊗ 1(p+1) ⊗ . . .⊗ 1(n). (24)

In analogy to eqs. 7, these tensors can be contracted with tensor representations of the occupation number vec-
tors. Again, consider the four-orbital, two-electron example. Application of a creation operator a†a on the ONV
|1, 0, 1, 0〉 gives:

a†a|1, 0, 1, 0〉 = −1|1, 1, 1, 0〉 (25)

If a tensor representation E of this occupation number vector

E =

(
0
1

)
⊗
(

1
0

)
⊗
(

0
1

)
⊗
(

1
0

)
(26)

is used, the elements of the well known form of the ONV are obtained by setting the occupation numbers kp equal
to the elements e(p)(1) of the representing vectors. In analogy to the operation shown in eq. 25 a corresponding
tensor contraction A†aE is done as follows:

A†aE =

(
1 0
0 −1

)(
0
1

)
⊗
(

0 0
1 0

)(
1
0

)
⊗
(

1 0
0 1

)(
0
1

)
⊗
(

1 0
0 1

)(
1
0

)
(27)

=

(
0
−1

)
⊗
(

0
1

)
⊗
(

0
1

)
⊗
(

1
0

)
(28)

Note that the resulting representation of an ONV is exactly the same as the well known form of the ONV, where the
prefactor is multiplied with the representing vector of the first dimension. In order to set up the Hamiltonian tensor,
the contributions of all one- and two-electron integrals from all ONVs 〈K| and |K′〉 need to be included. For
simplicity, just consider the one-electron part

∑
pp′ h(p, p′)a†pap′ of eq. 4. In analogy to the term, h(p, p′)a†pap′ ,

a rank one tensor representation Hpp
′

can be set up that contains only elements 〈K|h(p, p′)a†pap′ |K′〉 as in eq.
29. The contraction is done as shown in eq. 30 where the representations of A†p and Ap′ from eqs. 23 and 24 are
applied, and the representing matrices are multiplied with each other in each dimension:

Hpp
′

= h(p, p′)A†pAp′ (29)

= h(p, p′) ·G(1)G(1) ⊗ . . .⊗G(p′−1)G(p′−1) ⊗G(p′)A(p′) ⊗
G(p′+1)1(p′+1) ⊗ . . .⊗G(p−1)1(p−1) ⊗A(p)T1(p) ⊗ 1(p+1)1(p+1) ⊗
. . .⊗ 1(n)1(n). (30)

The contributions of the two electron integrals to all elements of the Hamiltonian tensor can be obtained in the
same way as for the one-electron integrals. Therefore, for each one- and two-electron integral, a rank one tensor
can be constructed in the same manner.

The four-orbital, two-electron example introduced above yields tensor representations with four representing
matrices for each one- and two-electron integral. Two examples Hia and Hīiīi of such tensor representations
are given below. These representations Hia and Hīiīi constitute tensors that possess only elements equal to
〈K|h(i, a)a†iaa|K′〉 or 〈K|〈īi||īi〉a†ia

†
ī
aīai|K′〉, respectively, where 〈K| and |K′〉 denote arbitrary ONVs:

Hia = h(i, a) ·A(i)TG(i)︸ ︷︷ ︸
h

(i)
ia

⊗1(a)A(a)︸ ︷︷ ︸
h

(a)
ia

⊗1(̄i)1(̄i)︸ ︷︷ ︸
h

(ī)
ia

⊗1(ā)1(ā)︸ ︷︷ ︸
h

(ā)
ia

(31)

=

(
0 0

h(i, a) 0

)
⊗
(

0 1
0 0

)
⊗
(

1 0
0 1

)
⊗
(

1 0
0 1

)
(32)

Hīiīi = 〈īi||īi〉 ·A(i)TG(i)G(i)A(i)︸ ︷︷ ︸
h

(i)

iīiī

⊗1(a)G(a)G(a)1︸ ︷︷ ︸
h

(a)

iīiī

⊗1(̄i)A(̄i)TA(̄i)1(̄i)︸ ︷︷ ︸
h

(ī)

iīiī

⊗1(ā)1(ā)1(ā)1(ā)︸ ︷︷ ︸
h

(ā)

iīiī

(33)

=

(
0 0
0 〈īi||īi〉

)
⊗
(

1 0
0 1

)
⊗
(

0 0
0 1

)
⊗
(

1 0
0 1

)
. (34)
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As mentioned above, the contraction of the representing matrices in each dimension leads to new matrices that are
named h

(i)
ia ,h(a)

ia , h(̄i)
ia and h

(ā)
ia for the representation of the one-electron integral h(i, a). The same is done for

the two-electron integral contribution.

Now it becomes clear that for all integrals h(p, p′) and 〈pq||p′q′〉 that occur in an N -electron, n-orbital system, a
rank one tensor is set up with n representing matrices. By summing up all rank one representing tensors of the one-
and two- electron contributions, a tensor representation H is built. This representation becomes the Hamiltonian
tensor given in eqs. 35 to 38 and corresponds to a 2n dimensional tensor representation of the Hamiltonian matrix.
This representation of matrices by decomposed tensors is similar to the decomposition shown by Beylkin [51].
Note again the similarity between eq. 4 and 35.

H =

n∑
p=1

n∑
p′=1

Hpp
′
+

n∑
p=1

n∑
p′=1

p∑
q=1

p′∑
q′=1

Hpqp
′q′ (35)

=

n∑
p=1

n∑
p′=1

h
(1)
pp′ ⊗ h

(2)
pp′ ⊗ . . .⊗ h

(n)
pp′ +

n∑
p=1

n∑
p′=1

p∑
q=1

p′∑
q′=1

h
(1)
pqp′q′ ⊗ h

(2)
pqp′q′ ⊗ . . .⊗ h

(n)
pqp′q′ (36)

=

K∑
k=1

h
(1)
k ⊗ h

(2)
k ⊗ . . .⊗ h

(n)
k (37)

=

K∑
k=1

n⊗
µ=1

h
(µ)
k . (38)

Because all one- and two-electron integral contributions are taken into account, this representation is exact. The
rank K of this representation is dominated by the two electron contributions, as their number rises with n4 (if
no sparsity in the integrals is assumed). Because of the n4 dependence of the rank and the n 2 × 2 representing
matrices, the overall scaling of this representation with the system size is ∼ O(N5) under the assumption that the
the number of molecular orbitals n is proportional to the number of electrons N . This is a significant reduction
from a factorial scaling of a

(
n
N

)
×
(
n
N

)
matrix to a ∼ O(N5) scaling of an n dimensional tensor.

For the four-orbital, two-electron example each element 〈ki, ka, kī, kā|Ĥ|k′i, k′a, k′ī, k
′
ā〉 of the Hamiltonian matrix

can be obtained via the corresponding ONVs:

〈ki, ka, kī, kā|Ĥ|k′i, k′a, k′ī, k
′
ā〉 =

K∑
k=1

h
(i)
k (ki, k

′
i) · h

(a)
k (ka, k

′
a) · h(̄i)

k (kī, k
′
ī) · k

(ā)
k (kā, k

′
ā). (39)

Again, it is important to mention, that the present representation covers the whole Fock space of a given basis
and not just an N electron subspace. Thus, for the aforementioned example also elements that even belong to the
vacuum state |0, 0, 0, 0〉 (N = 0) are accessible and are not necessarily equal to zero as shown below.

〈0, 0, 0, 0|Ĥ|0, 0, 0, 0〉 =

K∑
k=1

h
(i)
k (0, 0) · h(a)

k (0, 0) · h(̄i)
k (0, 0) · h(ā)

k (0, 0) (40)

2.4 Tensor Contraction

As known from conventional algorithms, one of the crucial steps in FCI algorithms is the contraction σ = HC
[47]. This means that every element σK is obtained by contracting the Hamiltonian matrix with the coefficient
vector.

σK =
∑
K′

〈K|Ĥ|K′〉CK′ (41)
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However, in the present approach this step is considerably simplified because the contraction needs to be done
only for the representing matrices and vectors rather than of the whole tensors. Furthermore, the coefficient tensor
retains the same structure as an ONV in the tensor representation so that each coefficient can be addressed in the
same way. In order to illustrate the contraction, the four-orbital, two-electron example is used again. Here the
ONVs are given explicitly instead of K′ and K. By inserting the explicit elements of the Hamiltonian and the
coefficient tensors (eqs. 39 and 12) into eq. 41 and rearranging the summations, the contraction in the chosen
tensor format is carried out by performing simple matrix-vector multiplications in each dimension.

σki,ka,kī,kā =
∑
k′i

∑
k′a

∑
k′
ī

∑
k′ā

〈ki, ka, kī, kā|Ĥ|k′i, k′a, k′ī, k
′
ā〉Ck′i,k′a,k′ī,k′ā (42)

=
∑
k′i

∑
k′a

∑
k′
ī

∑
k′ā

K∑
k=1

h
(i)
k (ki, k

′
i) · h

(a)
k (ka, k

′
a) · h(̄i)

k (kī, k
′
ī) · h

(ā)
k (kā, k

′
ā)

J∑
j=1

c
(i)
j (k′i) · c

(a)
j (k′a) · c(̄i)j (k′ī) · c

(ā)
j (k′ā) (43)

=

K∑
k=1

J∑
j=1

∑
k′i

h
(i)
k (ki, k

′
i)c

(i)
j (k′i) ·

∑
k′a

h
(a)
k (ka, k

′
a) · c(a)

j (k′a) ·
∑
k′
ī

h
(̄i)
k (kī, k

′
ī)c

(̄i)
j (k′ī)

·
∑
k′ā

h
(ā)
k (kā, k

′
ā)c

(ā)
j (k′ā) (44)

=

M=J·K∑
m=1

s(i)
m (ki) · s(a)

m (ka) · s(̄i)
m (k′ī) · s

(ā)
m (k′ā) (45)

A more general form of the contraction is shown in eq. 46. For each dimension µ, the contraction h
(µ)
k c

(µ)
j must

be carried out for all ranks of the Hamiltonian tensor K and for all ranks of the coefficient tensor J . Hence, the
rank M of the resulting tensor S is increased and needs to be reduced afterwards.

S =

K∑
k=1

J∑
j=1

n⊗
µ=1

(
h

(µ)
k c

(µ)
j

)
(46)

=

M=J·K∑
m=1

n⊗
µ=1

s(µ)
m (47)

The scaling of this contraction will be K · J · n. Note that there is no further logic required for the ordering of
coefficients or Hamiltonian tensor elements.

Beside this contraction in a decomposed format, further mathematical operations in a decomposed format are
required for an eigenvalue solver. For further operations such as analogons to the scalar product or summations,
interested readers are referred to the corresponding literature [52, 53].

2.5 Denominator Update

The Davidson algorithm [54] requires the construction of a matrix (H − λId)−1. To set up a tensor representa-
tion of this matrix, some assumptions are made because there exists no trivial solution. Because a representation
of such a tensor in n dimensions should possess a low rank, the representation is approximated by exponential
sums [55]. Therefore, the diagonal dominance of Hamiltonian matrix is exploited by considering only the ele-
ments 〈ΨK |Ĥ|ΨK〉 in the representation. All other elements are assumed to be zero. For example, one element(
Hi,̄i − λId

)−1
for the four-orbital, two-electron case is given below:
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(
〈1, 0, 1, 0|Ĥ|1, 0, 1, 0〉 − λId

)−1

=
1

εi + 0 + εī + 0− λ
(48)

=

∫ ∞
0

e−(εi+0+εī+0−λ)tdt (49)

≈
∑
s

ωs · e(αsλ) · e(−αs·εi) · e(−αs·0) · e(−αs·εī) · e(−αs·0) (50)

≈
∑
s

ωs · e(αsλ) · e(−αs·εi) · 1 · e(−αs·εī) · 1. (51)

More generally, the tensor approximation for the inverse is:

(H− λId)
−1 ≈

S∑
s=1

n⊗
µ=1

i(µ)
s . (52)

The representing vectors consist of the following elements:

i(x 6=1)
s =

(
e(−αs·εx)

e0

)
and i(1)

s =

(
ωs · e(αs·λ) · e(−αs·ε1)

ωse
(αs·λ)

)
. (53)

The use of exponential sums allows the representation of a sum in the denominator by a sum of products where
each summand carries one index. However, the diagonal elements of the Hamiltonian matrix contain a con-
tribution of the two electron integrals that still depend on two indices 〈pq||pq〉, meaning a connection of two
dimensions. Because of this, the exponential sums currently do not allow the inclusion of the two electron inte-
grals. Therefore, the orbital energies εi are used as a compromise to include the contribution of electron-electron
interactions.

2.6 Rank Reduction - Pivotised Alternating Steepest Descent Procedure

The efficient approximation of quantities by low-rank tensor representations is a crucial step in our approach. Usu-
ally, the numerical solution of these approximation problem needs most of the computational time of the whole
simulation (See Figure 3). While in previous work, we have applied an alternating least square scheme, in the
following we outline a more efficient alternative.

Let S =
∑R
i=1

⊗n
µ=1 s

(µ)
i and r < R be given. We are looking for ξ̂ =

∑r
j=1

⊗d
µ=1 ξ̂

(µ)
j such that

‖S− ξ̂‖ = min
ξ∈Tr
‖S− ξ‖, (54)

under the constraints

‖ξ̂(µ)
j ‖ = ‖ξ̂(µ)

j ‖, for all µ, ν ∈ {1, . . . , d}, j ∈ {1, . . . , r}, (55)

where Tr denotes the set of tensors which can be represented with r bounded terms.[56] In our applications it is a
priori not obvious how to choose the size or the representation rank r. Rather, a desired approximation accuracy ε
is of importance. Hence, the following extended approximation problem is stated. For a given accuracy ε > 0 we
have to find minimal rε ≤ R and ξ̂ε ∈ Trε such that

‖S− ξ̂ε‖ ≤ ε, (56)

‖S− ξ̂ε‖ = min
ξ∈Trε

‖S− ξ‖, (57)

under the constraints from Eq. (55). The solution of the extended approximation problem is closely related to
the choice of the initial guess for an efficient optimisation method. Here, we are following a scheme which was
introduced in [57, 58], where the extended optimisation problem was solved by successive use of a low-rank
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approximation method. With the specific definition of the initial guess described in [57, 58], we ensure that the
approximation error will not increase during the low-rank approximation of S =

∑R
i=1

⊗n
µ=1 s

(µ)
i . For a fixed

target rank r, the approximation problem from Eq. (54) is solved by the pivotised alternating steepest descent
(PASD) method [59]. Since the low-rank approximation in the canonical tensor format is not well defined, we
have to consider the following stabilised target function:

fλ(ξ
(1)
1 , . . . , ξ(d)

r ) =
1

2
‖ξ‖2 − 〈ξ, b〉+

λ

2

r∑
j=1

d∏
µ=1

∥∥∥ξ(µ)
j

∥∥∥2

, (58)

where λ is a positive real number. In Fig. 2 we briefly outline the PASD method, for details and convergence
analysis we refer the the reader to [59].

Figure 2: Pivotised Alternating Steepest Descent Algorithm (PASD) method
1: Choose the initial guess as described in [57, 58] and define k := 1.
2: while Stop Condition do
3: µ := argmax1≤ν≤d

∥∥∥∂fλ∂ξν
(ξk,ν)

∥∥∥
∞

4:

ξk,µ := (ξk+1
1 , . . . , ξk+1

µ−1, ξ
k
µ+1, . . . , ξ

k
d )

dkµ :=
∂fλ
∂ξν

(ξk,ν)

λkµ :=

〈
dkµ, d

k
µ

〉〈
Gk,µdkµ, d

k
µ

〉
ξk+1
µ := ξkµ − λkµdkµ

ξk,µ+1 := (ξk+1
1 , . . . , ξk+1

µ , ξkµ+1, . . . , ξ
k
d )

5: balance the representation system ξk,µ+1 such that Eq. (55) is satisfied
6: k 7→ k + 1.
7: end while

2.7 Application of the Davidson Algorithm

The Davidson algorithm is used to solve the eigenvalue problem posed in FCI. This algorithm constitutes a very
efficient algorithm, since it was developed for sparse and diagonal dominant matrices. The eigenvector is expanded
as a linear combination in an orthonormal basis. In each iteration the basis is extended by adding an additional
vector, which is derived from the residual vector of the eigenvalue problem. An overview over the algorithm is
given in Fig. 3. For further details, see reference [54].

In the present implementation the algorithm proceeds as follows: in a first step a guess tensor C1 is set up which
contains only one coefficient equal to one. This coefficient is assigned to the Hartree-Fock-Slater determinant.
All other coefficients are equal to zero (an example for such a tensor is given in eq. 14 and in Fig. 1). Next, the
coefficient tensor is contracted with the Hamiltonian tensor as discussed in section 2.4. Subsequently, the rank of
the resulting tensor σ̃1 is reduced to σ1. Note that this rank reduction is the most time consuming step in all iter-
ations. The scalar product 〈σ1, C1〉 provides the first approximation λ1 to the eigenvalue and using this value the
residual r1 will be calculated. If the norm of the residual is larger than the threshold εres, a tensor δ is constructed.
This tensor is orthogonalised to all coefficient tensors of the previous iterations. After normalisation the tensor is
added to the basis in which the coefficient tensor is expanded. Now, the contraction with the Hamiltonian tensor
and the rank reduction is done in the same way as shown for the first iteration. A matrix A is constructed whose
elements are obtained by the scalar products of all coefficient tensors with all σ-tensors. The eigenvalue λK+1

constitutes the next approximation of the desired eigenvalue while the elements of the eigenvectors are used as the
expansion coefficients for the desired coefficient tensors in a tensor representation. Using these coefficients, a new
residual is constructed. In case that the residual resK doesn’t fulfill the convergence criterion ‖resK‖ > εres, a
new iteration is initiated.
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Create C1 with ‖C1‖ = 1, K = 1 rank time in s[60]
σ̃1 = HC1, σ1 = Approx(σ̃1) rank(H) = 918
λ1 = 〈σ1, C1〉, r1 = (σ1 − λ1Ci)

while (‖resK‖ > εres)
δ = −

(
H − λKId

)−1
resK 0.30

C̃K+1 =
∏K
i=1(1− CiCTi )δ rank(C̃K+1) = 594

CK+1 = Approx(C̃K+1) rank(CK+1) = 44 2.62
CK+1/ = ‖CK+1‖
σ̃K+1 = HCK+1 rank(σ̃K+1) = 5120 0.99
σK+1 = Approx(σ̃K+1) rank(σK+1) = 109 219.00
λK+1 = 〈σK+1, CK+1〉, rK+1 = (σK+1 − λK+1CK+1)
K+ = 1

for ī=1 . . . K
for j̄=1 . . . K
Ai,j = 〈σj , Ci〉, 0.01

Diagonalise A, store the lowest eigenvalue λK
and the corresponding eigenvector α
resK =

∑K
i=1(αiσi − αiλKCi)

Figure 3: Workflow of the Davidson algorithm currently used as FCI eigenvalue solver (left) with the ranks
(middle) and the timings in seconds (right) of the corresponding steps for the example of (H2)3 given for iteration
2.

3 Results and Discussion

3.1 Benchmarks

Below we present benchmark calculations of a pilot implementation and investigate the accuracy, the convergence
behavior and the scaling of the tensor decomposed FCI algorithm.

The goal of the present algorithm is to achieve high accuracy in the calculation of the energy of the systems –
the so called "chemical accuracy". This means that the deviations from the exact energies should lie in the range
of 10−3 Eh. In order to set the convergence criterion εres (see Fig. 3) appropriately, the correlation between the
accuracy of the energy and ‖resK‖ needs to be investigated.

Using a test set of molecules it is confirmed that ‖resK‖ is about hundred times larger than the deviation of
the energy from the exact value (in Eh) (see Table 1). Therefore, to obtain results in the range of the "chemical
accuracy", the iterations should continue until ‖resK‖ is smaller than 10−1.

As the parameter ε is the only parameter that controls the accuracy in the energy, the influence of this parameter
needs to be investigated. For different accuracies in the rank reduction algorithm of ε = 10−3 (left) and ε =
10−4 (right), the convergence of the energy using the Davidson algorithm is shown in Fig. 4. Note that for
this estimation the algorithm was not stopped when the convergence criterion was fulfilled because the maximal
achievable accuracy for a given ε was to be reached. In both plots of Fig. 4 a rapid convergence towards the lowest
eigenvalue in a decomposed tensor format is obtained for all examples that are shown. This is in agreement to
the conventional Davidson algorithm. However, in the present algorithm the eigenvalues are obtained only to a
certain accuracy. Additional iterations do not improve the accuracy any further. For the examples shown here, the
maximal accuracy in the energy is better than the desired "chemical accuracy" of 10−3 Eh. This holds for both
criteria ε = 10−3 and ε = 10−4. A closer look shows that for these examples the largest deviation (in Eh) lies
in the range of ε, which is applied for the rank reduction. This means that the expected error in the energy for
ε = 10−3 can lie in the range of 10−3 Eh and for ε = 10−4 in the range of 10−4 Eh. As shown above, the deviation
in the energy is about two orders of magnitude larger than the criterion ‖resK‖. According to this and the data
shown above, a convergence criterion of ‖resK‖ ≤ 10−1 can be expected to be fulfilled in case of ε = 10−3 and
‖resK‖ ≤ 10−2 will be fulfilled for ε = 10−4.
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example ∆E in Eh ∆E in Eh
at ‖resK‖ ≤ 10−1 at ‖resK‖ ≤ 10−2

H2 0.000001 0.000001
He 0.000584 0.000019
(H2)2 0.000532 0.000004
He2 0.000165 0.000007
(H2)3 0.001535 0.000010
He3 0.000440 0.000018
LiH 0.001574 0.000010
Be 0.000667 0.000014
H2O 0.000304 0.000012
H4 0.000288 0.000004
BeH2 0.001331 0.000044
HF 0.000532 0.000420

Table 1: Deviation of the energy from the exact eigenvalues ∆E for various convergence thresholds εres for
various examples[61] that were calculated without any tensor approximation using the STO-3G basis set [62].

Because the deviation in the energy is mostly influenced by the threshold ε in the rank reductions, the errors that
can be expected for various values of ε are estimated by calculating the energies for a set of molecules. Both,
the energies and the deviations to the desired eigenvalues for the test set are given in table 2[11]. All molecules
were calculated using the STO-3G basis set[62], and the iterations were stopped when ‖resK‖ was smaller than
the corresponding threshold estimated above. For ε = 10−3, the mean absolute deviation is 1.95 · 10−3 Eh, and
the mean square deviation is 2.95 · 10−3 Eh. For ε = 10−4, the mean absolute error amounts to 1.73 · 10−4 Eh,
and the mean square error amounts to 3.98 · 10−4 Eh. In order to obtain reasonable results, the accuracy in the
rank reductions should be set to ε = 10−3. However, for smaller deviations, especially smaller than the chemical
accuracy, a threshold of ε = 10−4 is recommended.

3.2 Scaling Behavior

A decisive variable for the scaling of the algorithm is the rank of the coefficient tensors. Because for each iteration
a new coefficient tensor is constructed, each of them possesses its own rank. These ranks are shown in Fig. 5 for
the example of a H2 trimer. Starting from an initial guess of rank one, the ranks of the coefficient tensors seem
to increase linearly over the iterations.The ranks become larger as the accuracy of the rank reductions ε increases.

To estimate the scaling with the system size of the whole algorithm, the most time consuming step has to be
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Figure 4: Deviation in the energy from the exact values for various molecules. The accuracy in the rank reduction
algorithm is ε = 10−3 (left) and ε = 10−4 (right).
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molecule ε = 10−3, ‖resK‖ ≤ 10−1 ε = 10−4, ‖resK‖ ≤ 10−2

E Ecalc |∆E| Ecalc |∆E|
LiH -8.87561 -8.87465 9.58·10−4 -8.87533 2.80·10−4

BeH -16.51306 -16.51093 2.13·10−3 -16.51297 8.74·10−5

BH -26.94869 -26.94624 2.45·10−3 -26.94836 6.62·10−5

CH -40.62149 -40.61768 3.81·10−3 -40.62147 2.18·10−5

NH -57.83139 -57.82793 3.47·10−3 -57.83097 4.29·10−4

OH -78.69955 -78.69414 5.41·10−3 -78.69915 3.96·10−4

FH -103.72787 -103.72024 7.63·10−3 -103.72647 1.39·10−3

H2 -1.84993 -1.84993 9.87·10−7 -1.84993 9.87·10−7

(H2)2 -4.27697 -4.27644 5.32·10−4 -4.27697 4.04·10−6

He2 -6.44588 -6.44571 1.65·10−4 -6.44587 6.64·10−6

(H2)3 -6.98821 -6.98667 1.53·10−3 -6.98820 1.02·10−5

He3 -10.37441 -10.37397 4.40·10−4 -10.37440 1.84·10−5

Be -14.40366 -14.40299 6.67·10−4 -14.40367 1.42·10−5

H2O -84.20745 -84.20714 3.04·10−4 -84.20746 1.24·10−5

H4 -4.64653 -4.64624 2.88·10−4 -4.64652 4.11·10−6

BeH2 -19.08012 -19.07879 1.33·10−3 -19.08008 4.38·10−5

Table 2: Energies Ecalc and deviations |∆E| to the desired energies E for various molecules [63] calculated using
the STO-3G basis set [62].

considered. This step is the rank reduction of σ̃ after the contraction σ̃ = Hc (eqs. 46 and 47, Fig. 3). As
mentioned in section 2.6, the rank reduction algorithm scales with ∼ O(rin · r2

out · n). The initial rank rin results
from the contraction σ̃ = HCK and scales as rin = K · J . K is the rank of the Hamiltonian tensor which scales
with ∼ O(N4), as can be seen in eq. 35, and N is the number of electrons, which is assumed to be proportional
to the number of basis functions n.

As the rank J of the coefficient tensor is not known in advance, calculations of a chain of H2 molecules with a
bond distance of 0.7425 Å that are separated by a distance of 3 Å are performed, for an optimistic estimate. The
threshold for the rank reduction was set to ε = 10−3 and the convergence criterion was set to εres = 10−1 to reach
the chemical accuracy. The length of the chain increases up to 4 molecules. Because there are several tensors
used to represent the coefficient tensors that each possess a different rank, the overall rank needs to be determined
for each system. This is done by setting up the linear expansion of the coefficient tensor C̃ that is obtained
from the Davidson algorithm and performing a successive rank reduction to obtain C, which corresponds to the
decomposed expression of the FCI solution (eqs. 3 and 9). The rank ofC is used to investigate the scaling behavior
with the system size.

The ranks of the tensors C with increasing chain length are shown in Fig. 6. The data points are fitted by a curve
of the function f(x) = axb leading to the values a = 0.055± 0.007 and b = 3.75± 0.06. Here, f(x) corresponds
to rank(C) and x corresponds toN . This leads to a scaling of the rank of theC tensor of∼ O(N4). Therefore, the
FCI wave function can be represented using N5 parameters. Hence, the initial rank of the most time consuming
rank reduction step scales ∼ O(N4 ·N4) = O(N8), which corresponds to the scaling of the rank of the σ̃ tensor.
Furthermore, the rank of the σ tensor, which corresponds to rout, has the same order of magnitude as the ranks of
the C tensor. This leads to an overall scaling of the FCI algorithm of ∼ O(N8 · (N4)2 ·N) ≈ O(N17).

Although the required storage shows a scaling of only ∼ O(N5) for both the coefficient and Hamiltonian tensors,
the overall scaling of the algorithm is much steeper but still subexponential. As an example, the largest system
calculated with the present algorithm is (H2)4, where rank(C1)=134 and rank(H)=2912. While in conventional
FCI-Algorithms the coefficient vector consists of 12,870 elements, there are only 4288 elements to be stored in
the CP format. Nevertheless, much larger ranks occur during the iterations, which need to be reduced further,
e.g. rank(σ̃1)=42,552 (Note that without a prescreening the rank would be 390,208.). At the current state of
the development of the reduction algorithm, the rank reduction of tensors with such large ranks is very time
consuming. Therefore, this approach is only feasible for small systems and further improvements of the rank
reduction algorithm are required to reduce the total scaling. In comparison to conventional algorithms, the effort
of the contraction σ = HC is shifted to the rank reduction of the σ tensor in the present algorithm.
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4 Conclusions

In the present proof of principle study, a tensor representation of the Fock space is used to approximate the FCI
problem in subexponential effort. The coefficient tensor and the Hamiltonian tensor are represented in a canonical
product based on an occupation number vector formulation. A modified Davidson algorithm is used to solve the
FCI problem in the decomposed format. Both, the scaling behavior and the robustness of the algorithm are tested
in a series of benchmark calculations. The number of elements in the representation of the Hamiltonian tensor
and the coefficient tensor scale subexponentially (∼ O(N5)). Note that in the present work, the representation
of the Hamiltonian tensor is exact. Benchmark calculations show that the error in the energy in Eh lies in the
range of ε and hence, the desired "chemical accuracy" can be achieved by choosing an value of ε ' 10−4. The
algorithm converges rapidly and in most of our test cases in less than five iterations. Because of these properties,
the algorithm is a robust approximation, and its accuracy is controllable via the single parameter ε.

Although the memory required for the Hamiltonian and coefficient tensors scales with∼ O(N5), the overall scal-
ing of the algorithm is much steeper. This is because the rank increases after certain operations, especially after
the contraction HC and the increased rank needs to be reduced afterwards. As the rank reduction algorithm scales
with the rank to be reduced and the rank after reduction, the actual scaling of the whole algorithm is much steeper
(∼ O(N17)) than the scaling of the Hamiltonian / coefficient tensor representations. As a consequence, still only
small systems can be computed using the present algorithm.

In ongoing work in our group, we intend to make the present algorithm applicable to lager systems by investigating
two possible approaches: Either the efficiency of the rank reduction algorithm is improved upon, or the rank
reduction is avoided whenever possible. The second approach could include using an initial guess to define an
initial tensor space so that fewer iterations are required, or it would optimise the parameters within the tensor
representation rather than the wave function parameters. This way, the HC contraction and the subsequent rank
reduction can be avoided, but an accurate guess for C would be required. For such an algorithm, the results
of computationally less demanding methods like CCSD, CISD, CIPSI [64, 65] or ICE-CI [11] could provide an
initial guess for the coefficient tensors. This way, a hybrid method could be constructed in analogy to SQMC that
is a hybrid for QMCFCI[66].
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HF-Solution of H2
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FCI-Solution of H2

|Ψ〉 = 0.99 · |1, 0, 1, 0〉 − 0.11 · |0, 1, 0, 1〉

C =

(
0

0.99

)
⊗
(

1
0

)
⊗
(

0
1

)
⊗
(

1
0

)
+

(
−0.11

0

)
⊗
(

0
1

)
⊗
(

1
0

)
⊗
(

0
1

)
 0

 0.2

 0.4

 0.6

 0.8

 1

|1
, 1

, 1
, 1

>

|1
, 1

, 1
, 0

>

|1
, 1

, 0
, 1

>

|1
, 1

, 0
, 0

>

|1
, 0

, 1
, 1

>

|1
, 0

, 1
, 0

>

|1
, 0

, 0
, 1

>

|1
, 0

, 0
, 0

>

|0
, 1

, 1
, 1

>

|0
, 1

, 1
, 0

>

|0
, 1

, 0
, 1

>

|0
, 1

, 0
, 0

>

|0
, 0

, 1
, 1

>

|0
, 0

, 1
, 0

>

|0
, 0

, 0
, 1

>

|0
, 0

, 0
, 0

>

Equal Coefficients for all Determinants in the Fock-Space
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Equal Coefficients for all two-electron Determinants

|Ψ〉 = 1 · |1, 0, 1, 0〉+ 1 · |0, 1, 0, 1〉+ 1 · |0, 1, 1, 0〉
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Figure 1: Examples of coefficient tensor representations of the four orbital, two electron example. Shown are an
explicit form of the wave function using ONVs, the representation of the coefficient tensor, and a bar plot of the
absolute values of the coefficients.
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1: Choose the initial guess as described in [57, 58] and define k := 1.
2: while Stop Condition do
3: µ := argmax1≤ν≤d

∥∥∥∂fλ∂ξν
(ξk,ν)

∥∥∥
∞

4:

ξk,µ := (ξk+1
1 , . . . , ξk+1

µ−1, ξ
k
µ+1, . . . , ξ

k
d )

dkµ :=
∂fλ
∂ξν

(ξk,ν)

λkµ :=

〈
dkµ, d

k
µ

〉〈
Gk,µdkµ, d

k
µ

〉
ξk+1
µ := ξkµ − λkµdkµ

ξk,µ+1 := (ξk+1
1 , . . . , ξk+1

µ , ξkµ+1, . . . , ξ
k
d )

5: balance the representation system ξk,µ+1 such that Eq. (55) is satisfied
6: k 7→ k + 1.
7: end while

Figure 2: Pivotised Alternating Steepest Descent Algorithm (PASD) method.
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Create C1 with ‖C1‖ = 1, K = 1 rank time in s[60]
σ̃1 = HC1, σ1 = Approx(σ̃1) rank(H) = 918
λ1 = 〈σ1, C1〉, r1 = (σ1 − λ1Ci)

while (‖resK‖ > εres)
δ = −

(
H − λKId

)−1
resK 0.30

C̃K+1 =
∏K
i=1(1− CiCTi )δ rank(C̃K+1) = 594

CK+1 = Approx(C̃K+1) rank(CK+1) = 44 2.62
CK+1/ = ‖CK+1‖
σ̃K+1 = HCK+1 rank(σ̃K+1) = 5120 0.99
σK+1 = Approx(σ̃K+1) rank(σK+1) = 109 219.00
λK+1 = 〈σK+1, CK+1〉 rK+1 = (σK+1 − λK+1CK+1)
K+ = 1

for ī=1 . . . K
for j̄=1 . . . K
Ai,j = 〈σj , Ci〉, 0.01

Diagonalise A, store the lowest eigenvalue λK
and the corresponding eigenvector α
resK =

∑K
i=1(αiσi − αiλKCi)

Figure 3: Workflow of the Davidson algorithm currently used as FCI eigenvalue solver (left) with the ranks
(middle) and the timings in seconds (right) of the corresponding steps for the example of (H2)3 given for iteration
2.
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Figure 4: Deviation in the energy from the exact values for various molecules. The accuracy in the rank reduction
algorithm is ε = 10−3 (left) and ε = 10−4 (right).
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Figure 5: Ranks of the coefficient tensors for the example of a H2 trimer that was calculated using the STO-3G
basis set [62].
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Figure 6: Ranks of the coefficient tensors of chains of n = 1, 2, 3, 4 H2 molecules calculated using the STO-3G
basis set and ε = 10−3.
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