
Analytical investigations for the design of
fast approximation methods for fitting
curves and surfaces to scattered data

Karl-Heinz Brakhage

Institut für Geometrie und Praktische Mathematik
Templergraben 55, 52062 Aachen, Germany

Email address: brakhage@igpm.rwth-aachen.de (Karl-Heinz Brakhage)

F
E

B
R

U
 A

 R
 Y

 2

 0
 1

 6

P
R

E
P

R
I N

 T

 4
 4

 6

Analytical investigations for the design of fast approximation methods for
fitting curves and surfaces to scattered data

Karl-Heinz Brakhage

Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany

Abstract

We present an analytical framework for linear and nonlinear least squares methods and adopt it to the
construction of fast iterative methods for this purpose. The results are directly applicable to curves and
surfaces that have a representation as a linear combination of smooth basis functions associated with the
control points. Standard Bézier and B-spline curves / surfaces as well as subdivision schemes have this
property. In the global approximation step for the control points our approach couples the standard linear
approximation part with the reparameterization to heavily reduce the number of overall steps in the iteration
process. This can be formulated in such a way that we have a standard least squares problem in each step.
For the local nonlinear parameter corrections our results allow for an optimal choice of the methods used in
different stages of the process. Furthermore, regularization terms that express the fairness of the intermediate
and / or final result can be added. Adaptivity is easily integrated in our concept. Moreover our approach
is well suited for reparameterization occurring in grid generation.

Keywords: Splines, Multivariate Approximation, Least Squares, Fairing, Numerical Analysis, Numerical
Linear Algebra

1. Introduction

Fitting curves and surfaces to unorganized point clouds or sample points from given curves / surfaces (aka
reparameterization) is an often occurring problem in engineering CAD / CAGD and computer graphics. It
has a big history in literature. For a long period surface fitting methods used the distance between a sample
point and the corresponding foot point on the fitting surface for minimizing the objective function. We call
these methods point distance minimization (PDM). A further, different approach to solve the approximation
problem of curves and surfaces are active contour models. The origin of this technique is a paper by Kass
et al. [8]. They use a variational formulation of parametric curves for detecting contours in images.

It is well known that the parameterization problem is a fundamental one for the whole approximation
process and the final result. Therefore, parameter correction procedures have to be used to improve the
quality of the final approximation. Unfortunately the decoupling of the overall fitting procedure into the two
independent steps parameter correction and solving a linear least squares problem with fixed parameters
leads to very slow convergence. To overcome this Pottmann et al. [11] introduced an approach based on the
minimization of a quadratic approximant of the squared distance function. An additional aim was to avoid
the parameterization problem and to construct algorithms of second order convergence. Methods based on
this idea are called SDM (squared distance minimization). Unfortunately in general the second order Taylor
approximant does not lead to symmetric positive definite system matrices and for this reason the existence
and uniqueness of the minimum cannot be guaranteed. Thus the second order Taylor approximation was
modified to ensure positive definiteness. However this modification destroys the second order and thus the

Email address: brakhage@igpm.rwth-aachen.de (Karl-Heinz Brakhage)

Preprint submitted February 1, 2016

claimed quadratic convergence of those methods. Nevertheless such approaches need less iterations. On
the other hand the main drawback is a large computational overhead. The curvature computation and the
setup of a more complex SDM error function lead to computational inefficiency of SDM. A comparison in
[6] shows that the time to attain comparable results used by SDM on iterative optimization is about 30%
to 50% more than PDM. Furthermore the parameterization is not really totally avoided.

In [5] the goal of a new development is the avoidance of the curvature computation together with the
construction of a cheap error function that accelerates the parameter correction. The algorithm therein
can be used for the construction of smooth surfaces from point clouds as well as for the reparameterization
of given surfaces. The methods are not restricted to be applied to Bézier or B-spline surfaces. They can
be used for subdivision surfaces as well. The focus in that paper is on an analytical understanding of the
coupling of parameter correction with the linear least squares approximation step and the transformation
of the mathematical model to a form that can be used efficiently for fast solvers. In comparison with the
standard PDM approach with decoupling of the linear solver and the parameter correction that method has
a tremendous speed up. It needs much less iterations without the drawback of the computational overhead
of SDM. Furthermore that method can still be written in the form of a standard least squares problem which
is not the case for SDM. Thus the normal equations and iterative solvers for them can be used as well as
orthogonal transformations that have a better condition number than the normal equations. To reduce the
number of parameter corrections (the outer loop) a combination of the PDM and the distances of the data
points to the linear approximation of the target surface at the projection point is used. The latter one coin-
cides with the squared distance function for points on the surface. The method has superlinear convergence
with only a small computational overhead for surface normals. It can be applied to the approximation with
standard Bézier- or B-splines as well as with subdivision surfaces.

In this paper we will focus on the necessary parameter correction steps. We will see that different methods
have to be used in the different stages consisting of: Initial computation of parameter values, parameter
correction during the first steps and parameter correction when the residuals are already small. Furthermore
we will see that curvature plays an important role. To get a deeper understanding for the choice of optimal
methods for parameter correction steps the possible algorithms are analyzed in detail regarding convergence
and error estimation.

The rest of this paper is organized as follows. First we give some basic notations and properties of Bézier,
B-spline and subdivision surfaces and the needed basics on approximation with them. Then we briefly
summarize the above-mentioned algorithm from [5]. Next the main topic is the analytical investigation on
the nonlinear approximation algorithms for parameter correction. It will be shown that the theoretically
derived behavior is directly reflected in our implementation and leads to an enormous speedup. Finally a
summary and an evaluation regarding computation time and accuracy of the algorithms usually applied for
these purposes will be given.

2. Basics on surfaces and approximation

Bézier curves of order n are given by

x(u) =

n∑
i=0

Bn
i (u) pi =

n∑
i=0

(
n
i

)
ui(1− u)n−i pi (1)

with n + 1 control points pi ∈ Rd, i = 0, . . . , n (here d = 2, 3). The Bn
i (u) are the Bernstein polynomials.

Derivatives of Bézier curves of order n are Bézier curves of order n − 1. They can be computed from the
control points automatically. Another important advantage for interpolation and approximation with curves
like (1) is the linearity in the control points pi. B-spline curves have these properties, too. They are given
by

x(u) =

n∑
i=0

Ni(u) pi (2)

2

where Ni(u) is the i-th normalized B-spline function. Surfaces are represented by tensor products of the
form

x(u, v) =

n∑
i=0

m∑
j=0

Bn
i (u)Bm

j (v) pij or (3)

x(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u)Nj,q(v) pij (4)

with control points pij for Bézier and B-spline surfaces, respectively. Again these representations are linear
in the control points. The same applies for stationary subdivision curves and surfaces. The algorithms
presented below can be used for all these curve and surface classes. We rewrite all the above representations
in the form

x(u, v) =

N∑
j=1

Bj(u, v) pj (5)

with general basis functions Bj(u, v).
More details and a more precise formulation on this topic with respect to approximation can be found

in [5] and the literature referred therein, e.g. [7, 10, 14, 15].
To be more precise with our least squares formulation we have to introduce some technical notations.

For an optimal approximation of a given surface y(s, t), (s, t) ∈ [smin, smax]× [tmin, tmax] =: D ⊂ R2 by a
parametric surface we have to determine the control points pj associated to (5) in such a way that

max
(s,t)∈D

min
(u,v)∈[0,1]2

‖y(s, t)− x(u, v)‖2 (6)

is minimized. Since in practice this problem is too complex to solve we switch to a discrete approximation
problem. In each (sub-)domain a set of approximation points yi = y(si, ti) is chosen. In this paper we
assume that an initial simple mesh corresponding to the correct topology of the target surface and allowing
the computation of the (ui, vi) is already given. We further use the error estimator

δi = ‖yi − x (ui, vi))‖2 and δ = max
i
{δi} . (7)

We want the error to become small measured in the ∞-norm but we are solving the minimization problem
for the 2-norm. Scaling the different equations depending on the δi (for large δi we use large scaling values
and vice versa) leads to an improvement for the optimization (see [3] for instance). In this paper we will
not report on these effects. If the error is too large, we (recursively) subdivide the parameter domain. For
subdivision surfaces this is a normal subdivision step. For B-splines we use knot insertion and for Béziers
we split each subdomain into four equal parts. The corresponding parameter values (ui, vi) are recomputed
for the new domains. This step is not necessary for B-splines. In all cases we have good starting values after
the first overall iteration.

The basic approximation principle, explained for surfaces, is as follows. Let yi, i ∈ {1, . . . , M} =: I
be given data points or samples on a given target surface. We want to compute a good approximating
parametric fitting surface with a representation of the form (5). For the B-spline case we further assume
that the knot vectors U and V are already determined. In a first step we have to find (at least approximately)
the nearest points

yi ≈ xi = x(ui, vi) =

N∑
j=1

Bj(ui, vi) pj =:

N∑
j=1

aij pj (8)

on the fitting surface. A good estimation of the parameter values (ui, vi) might be a difficult task. Further-
more it is well known that the parameterization problem is a fundamental one for the whole approximation
process and the final result. Therefore, parameter correction procedures have to be used to improve the
quality of the final approximation. The decoupling of the overall fitting procedure into the two independent
steps parameter correction and solving a linear least squares problem with fixed parameters leads to very

3

slow convergence. SDM needs much less iterations of the outer loop. The necessary curvature computation
and the setup of a more complex SDM error function leads to computational inefficiency of SDM. The goal
of fast algorithms is the avoidance of the curvature computation together with the construction of a cheap
error function that accelerates the parameter correction.

A modification of the second order approximation of the SDM error function Fd is necessary because
there are points for which Fd is not a positive definite quadratic form. That leads to a system matrix
that is not symmetric positive definite such that we cannot guarantee the existence and uniqueness of the
minimum. At those points the iso value surfaces of the error functions are hyperboloids. The standard
modification from [11] changes the sign for the negative eigenvalues resulting in F+

d . Now we end up with a
positive definite system matrix but the second order of the approximant is destroyed and thus the claimed
quadratic convergence of that method. In [5] a scaled combination of the standard PDM minimization
function (x− y)2 and (nT (x− y))2 is used. The latter one coincides with F+

d if d = 0, which is the case if
xi lies on the target surface. From this we conclude that it is a good choice to make the scaling dependent
of d:

Fnew
d (x) = (x− y)2 + λ(d)

(
nT (x− y)

)2
. (9)

For using (9) in the minimization concept one only needs a normal ni for each sample point yi. Since
the normal of the fitting surface x(u, v) approximates the normal of the target surface, one can even use the
normal of x(u, v). The high cost for the curvature computation is avoided, too.

For the sample points yi, i = 1, 2, . . .M with associated parameter values (ui, vi) of the fitting surface
we use the following setup. According to (8) the xi are given as xi = x(ui, vi). We collect the control
points pj in a vector (of 3d vectors) p, the yi in a vector y and all coefficients aij := Bj(ui, vi) in a matrix
A ∈ RM×N . With this notation PDM is simply

p? = argmin
p
‖Ap− y‖2 . (10)

For the solution of (10) orthogonal transformations or the normal equations can be used:

AT Ap? = AT y . (11)

Using xi =
∑

j aij pj we can write the distance to the tangent plane as

‖nT
i (xi − yi)‖2 =

∥∥∥∥∥∥nT
i

∑
j

aijpj − yi

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
j

aij nT
i pj − nT

i yi

∥∥∥∥∥∥
2

. (12)

Notice that (12) leads to a minimization over the control points pj . To use matrix notations we have to
separate the x, y and z components. We define Nx = diag{ni,x}, Ny = diag{ni,y}, Nz = diag{ni,z} and
collect the terms nT

i yi in a vector d. We also have to split p into its x-components px, y-components py

and z-components pz. Now we can write this part as

‖NxApx +Ny Apy +Nz Apz − d‖2 → min. (13)

For our final minimization problem according to (9) we use (10) and a scaled portion of (13). Analogously
to p we split y into yx, yy and yz. With

Â =

A 0 0
0 A 0
0 0 A

λNxA λNy A λNz A

 , p̂ =

 px

py

pz

 and ŷ =

yx

yy

yz

λd

 (14)

(compare (9)) our minimization problem now reads

p̂? = argmin
p̂
‖Â p̂− ŷ‖2. (15)

4

Thus again we can use orthogonal transformations, the normal equations or iterative methods. Especially
for recursive approximation of surfaces the iterative methods are much faster. The parameter λ ≥ 0 is chosen
depending on the error estimator. For small errors we use a large λ. Details for implementing solvers for this
problem and the reduction of the number of outer loops can be found in [5]. The part on the optimization
of the parameter corrections was left out in that paper. For the initial setup and in each subdivision step
the paramter correction has do be done for each sample point a couple of times. We will now focus on this
topic in the next section.

3. Parameter corrections: accelerating nonlinear least squares

As stated in the previous section we have to repeatedly solve the following problem: Find (at least
approximately) the nearest points xi = x(ui, vi) ≈ yi for the sample points on the fitting surface. Since
the time spent for these approximations is a significant part of the overall run time it is worth thinking
about optimal algorithms for this subtask. We will now focus on an analytical understanding of the arising
nonlinear least squares problems.

This main topic of the paper is organized as follows: We start with the necessary notations for the
nonlinear least squares problem. Next we briefly introduce the relevant algorithms for our problem class.
Then some theorems on convergence behavior will be proven. These results are used for designing our
algorithms and the achievements will be shown.

For a parametrically given surface x : R2 → R3 and a given point p ∈ R3 we (locally) search for the
parameters (u?, v?) in a subset M⊂ R2 such that

‖x(u?, v?)− p‖2 = min
(u,v)∈M

‖x(u, v)− p‖2 . (16)

In general the nonlinear least squares problem can be formally considered as follows. Find x? ∈ M ⊂ Rn,
a local minimizer for ‖F (x)‖2 with a function F : Rn → Rm. We will write this as

x? = argmin
x∈M

‖F (x)‖2 . (17)

Note that x? also (locally) minimizes the function φ(x) given by

φ(x) =
1

2
‖F (x)‖22 =

1

2
F (x)T F (x) . (18)

That is φ(x?) = minx∈M φ(x). Let us denote the l times continuously differentiable functions from M to
N by Cl(M,N). For F ∈ C1(M,Rm) a necessary condition for a local minimizer xs ∈M is

φ′(xs) = ∇φ(xs) = F ′(xs)
T F (xs) = 0 . (19)

A point xs with φ′(xs) = 0 is called stationary point. If in addition

φ′′(x) = F ′(x)T F ′(x) +

m∑
i=1

Fi(x)F ′′i (x) =: F ′(x)T F ′(x) + F (x)T ⊗ F ′′(x) (20)

is a symmetric positive definite matrix (spd) for x = xs then we have a local minimum at x? = xs.
In our case the time consumption is due to the high number of minimization problems we have to solve

but not to the high dimension of the individual problems. When we start our approximation process we
have poor estimations of the parameter values and eventually large residuals. After some iterations and
subdivisions we have good estimations of the parameter values and small residuals. This gives rise to use
different iteration methods during the overall process.

In many cases iterative methods converge towards the solutions x? in at least two clearly different stages.
When x0 is a poor approximation for the solution we are satisfied if the method produces iteration vectors
that move steadily towards x? at all. Later on in the approximation process we want the method to move

5

faster towards the solution. To classify the convergence quality we define the error vector ek for the k-th
vector in our iteration by

ek := xk − x? . (21)

Furthermore we distinguish between linear convergence

∃K0 ∧ α < 1 such that ∀k > K0 : ‖ek+1‖ ≤ α ‖ek‖ with α < 1 , (22)

quadratic convergence

∃K0 ∧ α such that ∀k > K0 : ‖ek+1‖ ≤ α ‖ek‖2 , (23)

and superlinear convergence

lim
k→∞

‖ek+1‖
‖ek‖

= 0 . (24)

Quadratic convergence implies superlinear convergence. Both imply linear convergence. To get a better
understanding for the choice of the best method in the different stages next we study the practicability,
robustness and efficiency of several algorithms for our minimization problems.

The Nelder-Mead optimization algorithm [9] is a Downhill-Simplex method for finding a local minimum
of a function of several variables. The term simplex is used as generalized triangle in n dimensions. In the
literature it is sometimes nicknamed ”Amoeba”. It is simple to implement. In addition, it is very robust
and does not need any derivatives. Thus it can easily be adapted to arbitrary surfaces. Especially for
highly curved surfaces this is the method of choice at least for the initial steps. For further information
on implementation issues in the context of surface reparameterization see [13]. For the case of equally
sided simplices the algorithm can be described as follows: In the first stage move downhill by reflecting the
worst point (largest φ-value) or the second worst point at the hyperplane given by the remaining points.
If neither of the just mentioned steps leads to a smaller φ-value shrink the current simplex towards the
best point with a factor of 1/2. The shrinking steps belong to the second stage of the iteration. Thus the
best convergence we can expect from this method is linear convergence with α = 1/2. There exist several
attempts to optimize the downhill step and the shrinkage. All modifications result in methods with linear
convergence and α ≈ 1/2. We only use the Nelder-Mead algorithm with a minor number of sample points
for determining the parameter values for the first time if we do not have good initial guesses. Thus it does
not devour a relevant part of time.

In the literature the mostly used method for parameter corrections is the repeated projection onto the
tangent plane

t(u, v) = x(u, v) + ∆uxu(u, v) + ∆v xv(u, v) (25)

and computing (∆u,∆v) as an update for the (u, v) values. This is equivalent to the well-known Gauß-
Newton method that can be formulated as follows. For a given starting point x0 we iterate due to

sk = argmin
s∈Rn

‖F ′(xk) s + F (xk)‖2

xk+1 = xk + sk
. (26)

Assuming that F ′ has full rank for the iteration and using the normal equations for solving (26) we can
explicitly give the fix point function Φ(x) for further investigations. To clarify the difference to the Newton
method for the computation of stationary points (compare (19)), we give the iteration function ΦN (x) for
this method, too.

Φ(x) = x−
(
F ′(x)T F ′(x)

)−1
F ′(x)T F (x)

ΦN (x) = x−
(
F ′(x)T F ′(x) + F (x)T ⊗ F ′′(x)

)−1
F ′(x)T F (x)

(27)

In general Gauß-Newton is not a method of second order convergence. For that reason we can not force
convergence with starting values close enough to the fix point. From the convergence theorem of Ostrowski

6

we know, that beside the technical condition Φ ∈ C1(M,M) for an open set M ⊂ Rn a sufficient one for
local convergence towards the fix point x? ∈M is

ρmax (Φ′(x?)) < 1 , (28)

where ρmax(B) is according to absolute value the largest eigenvalue of B – the spectral radius. From the
Contraction Mapping Theorem we have the a-priori error estimate

‖x? − xk‖ ≤ qk

1− q
‖x1 − x0‖ (29)

and the a-posteriori error estimate

‖x? − xk‖ ≤ q

1− q
‖xk − xk−1‖ , (30)

where q is the Lipschitz contraction number regarding Φ. Close to the fixed point x? we expect the contrac-
tion number q ≈ ρmax (Φ′(x?)). Thus the error is reduced by a factor of ≈ ρmax (Φ′(x?)) in each step.

For F ∈ C2(M,M) using (27) and the abbreviation A(x) :=
(
F ′(x)T F ′(x)

)−1
we get

Φ′(x) = I −A′(x)φ′(x)−A(x)

F (x)T ⊗ F ′′(x) + F ′(x)T F ′(x)︸ ︷︷ ︸
A−1(x)

 . (31)

Simplifying the last equation and using φ′(x?) = 0 yields

Φ′(x?) = −
(
F ′(x?)T F ′(x?)

)−1 (
F (x?)T ⊗ F ′′(x?)

)
. (32)

From this we can see that large residuals and high curvature are counterproductive for (good) convergence.
On the other hand it is clear that for moderate curvature and small residuals the convergence is good. In
our special case for surfaces we have

Φ′(u, v) = −
(

x2
u(u, v) xT

u (u, v)xv(u, v)
xT
u (u, v)xv(u, v) x2

v(u, v)

)−1
(x(u, v)− p)T ⊗

(
xuu(u, v) xuv(u, v)
xuv(u, v) xvv(u, v)

)
. (33)

For the reparameterization process with subdivision the residuals ‖yi−x(ui, vi)‖2 tend to zero. Thus in the
final stages the Gauß-Newton iteration behaves like a superlinearly convergent method.

To compare the complexity with the Newton method we give ΦN from (27) for the case of surfaces

ΦN (u, v) =

(
u
v

)
−
((

x2
u xT

uxv

xT
uxv x2

u

)
+ (x− p)T ⊗

(
xuu xuv

xuv xvv

))−1(
xT
u

xT
v

)
(x− p) . (34)

Here we have omitted the arguments (u, v) for the function x and its derivatives. The (main) overhead to
the Gauß-Newton method is the computation of three partial derivatives and four scalar products.

Next we want to proof a convergence theorem for the Gauß-Newton method. For this purpose we need
some more notations and some Lemmata to split the proof. We start with two important theorems which
we state in the context of full rank Jacobians. For a matrix A ∈ Rm×n with m ≥ n and full rank n we
define the pseudoinverse A+ of A as

A+ :=
(
AT A

)−1
AT . (35)

For full rank matrices this definition matches the more general definition using the singular value decomposi-
tion. The following perturbation theorem including proof can for instance be found in [1] as Theorem 2.2.4.

Theorem 1. (Perturbation Theorem) Let A, Ã ∈ Rm×n with rank(A) = rank(Ã) = n. Furthermore let
η := ‖A+‖2 ‖A− Ã‖2 < 1. Then

‖Ã+‖2 ≤
1

1− η
‖A+‖2 . (36)

7

Theorem 2. (Mean Value Theorem) Let M ⊂ Rn be convex and closed and F ∈ C1(M,Rn). Then
∀x, y ∈M

F (y)− F (x) =

∫ 1

0

F ′(x + s (y − x)) (y − x)) ds . (37)

For the following results we need some technical presuppositions. We will refer to these assumptions
with (GNA).

(1) M⊂ Rn is a convex and closed set,

(2) F ∈ C1(M,Rm) with m > n,

(3) F ′ is Lipschitz-continuous: ∀x, y ∈M : ‖F ′(x)− F ′(y)‖2 ≤ L ‖x− y‖2,

(4) x? ∈M\∂M is a stationary point of φ,

(5) F ′(x?) has full rank.

Lemma 3. Under the above assumptions (GNA) we define T (x) := F (x?)− F (x) + F ′(x) (x− x?). Then

‖T (x)‖2 ≤
L

2
‖x− x?‖22 . (38)

Proof. Due to Theorem 2 we have

T (x) =
∫ 1

0
F ′(x + s (x? − x)) (x? − x) ds+ F ′(x) (x− x?)

=
∫ 1

0
F ′(x + s (x? − x)) (x? − x)− F ′(x) (x? − x) ds

=
∫ 1

0
(F ′(x + s (x? − x))− F ′(x)) (x? − x) ds

Taking norms and using assumption (GNA)(3) we get

‖T (x)‖2 ≤
∫ 1

0

L ‖s (x? − x)‖2 ‖x? − x‖2 ds = L ‖x? − x‖22
∫ 1

0

s ds =
L

2
‖x− x?‖22 .

Lemma 4. Let the assumptions (GNA) be fulfilled and r :=
1

L
min

{
1

3
,

1

2

1
1
3 + 2 ‖F ′(x?)‖2

}
and Ur(x?) :={

x ∈ Rn
∣∣ ‖x− x?‖2 ≤ r

}
⊂M. Then

‖F ′(x)T F ′(x)− F ′(x?)T F ′(x?)‖2 ≤
1

2
(39)

and
‖(F ′(x)T F ′(x))−1‖2 ≤ 2 ‖(F ′(x?)T F ′(x?))−1‖2 . (40)

Proof. Using the Lipschitz continuity (GNA)(3) and the restrictions on r we get

‖F ′(x)T F ′(x)− F ′(x?)T F ′(x?)‖2
= ‖F ′(x)T F ′(x)− F ′(x)T F ′(x?) + F ′(x)T F ′(x?)− F ′(x?)T F ′(x?)‖2
= ‖F ′(x)T (F ′(x)− F ′(x?)) +

(
F ′(x)T − F ′(x?)T

)
F ′(x?)‖2

≤ ‖F ′(x)‖2 L ‖x− x?‖2 + L ‖x− x?‖2 ‖F ′(x?)‖2
= L ‖x− x?‖2 (‖F ′(x)− F ′(x?) + F ′(x?)‖2 + ‖F ′(x?)‖2)
≤ L ‖x− x?‖2 (L ‖x− x?‖2 + 2 ‖F ′(x?)‖2)
≤ L ‖x− x?‖2

(
1
3 + 2 ‖F ′(x?)‖2

)
≤ 1

2

Finally (40) follows from Theorem 1.

8

Theorem 5. Under the assumptions (GNA) there exist constants r > 0 and

L̃ = L̃
(
L,
∥∥∥(F ′(x?)T F ′(x?)

)−1∥∥∥
2

)
such that for ‖x? − xk‖2 ≤ r

‖x? − xk+1‖2 ≤ L̃
(
‖F ′(x?)‖2 ‖x? − xk‖22 + ‖F (x?)‖2 ‖x? − xk‖2

)
. (41)

Proof. We use the pseudoinverse property A+A = I and the necessary condition (19) for x?:

x? − xk+1 = x? − xk + F ′(xk)+ F (xk)
= F ′(xk)+

(
F ′(xk) (x? − xk) + F (xk)

)
= F ′(xk)+(F ′(xk) (x? − xk) + F (xk)− F (x?)︸ ︷︷ ︸

−T (xk)

+F (x?))

(19)
= −F ′(xk)+T (xk) + (F ′(xk)T F ′(xk))−1(F ′(xk)T − F ′(x?)T)F (x?)

Using the abbreviation L?
A := ‖(F ′(x?)T F ′(x?))−1‖2 and the restrictions on r from Lemma 4 and Lemma 3

for the first term of the right hand side we get the estimation

‖F ′(xk)+ T (xk)‖2 ≤ 2 ‖(F ′(x?)T F ′(x?))−1‖2 2 ‖F ′(x?)‖2 L
2 ‖x

k − x?‖22
= 2L?

A L ‖F ′(x?)‖2 ‖xk − x?‖22 .
(42)

And for the second term we get

‖(F ′(xk)T F ′(xk))−1(F ′(xk)T − F ′(x?)T)F (x?)‖2 ≤ 2L?
A L ‖xk − x?‖2 ‖F (x?)‖2 .

Thus we can estimate ‖ek+1‖2 as

‖x? − xk+1‖2 ≤ 2L?
A L

(
‖F ′(x?)‖2 ‖xk − x?‖22 + ‖F (x?)‖2 ‖xk − x?‖2

)
.

Corollary 6. Under the assumptions (GNA) there exist constants r > 0 and L?
A such that for ‖x?−xk‖2 ≤ r

‖x? − xk+1‖2 ≤ L ‖F ′(x?)+‖2 ‖x? − xk‖22 + 2LL?
A‖F (x?)‖2 ‖x? − xk‖2 . (43)

Proof. The proof is very similar to that of Theorem 5. We use the same abbreviation L?
A and directly apply

Theorem 1 to replace (42) with

‖F ′(xk)+ T (xk)‖2 ≤ 2 ‖(F ′(x?)+‖2
L

2
‖xk − x?‖22 = L ‖F ′(x?)+‖2 ‖xk − x?‖22 . (44)

Figure 1: Recursive approximation with Catmull Clark Subdivision: Starting polyhedron (initial guess) and according limit
surface.

9

As an example for the typical convergence behavior we use the approximation of an ellipsoid by a
Catmull Clark Subdivision surface. Let us briefly describe the approach before we go into details. For the
reparameterization of surfaces we project the limit points (surface points) at preselected parameter positions
onto the target surface. This has the big advantage that we can pre-compute the Bj(ui, vi) (see (5)). These
coefficients are called masks. Then it is very easy to set up the system matrix for the overall linear problem.
For more details on this topic see [2, 4, 13]. Figure 1 shows on the left hand side the initial 26 control points
and 48 edges of the Catmull Clark Subdivision surface building the control polyhedron consisting of 24
faces. On the right we see the limit surface belonging to these control points. We use 98 sample points – 26
corresponding to the vertices, 24 to the face centers and 48 to the edge midpoints – for this approximation.
Only six different masks are necessary for this strategy. For this poor approximation on the initial level
there are several sample points for which the standard Gauß-Newton iteration does not converge – even for
good starting values.

Figure 2: Recursive approximation with Catmull Clark Subdivision: The plots show the vertices and edges of the control
polyhedron for the initial level and after two subdivision steps.

We used the Newton method to overcome this in the initial step. Already after the first re-computation
of the control points due to the parameter corrections it converges for this example. On the first level of
subdivision the convergence of the Gauß-Newton method is good. From the next level on it behaves like
a quadratically convergent method. Only one step suffices for parameter correction. In Figure 2 we have
plotted the control polyhedron for the initial level (after the approximation process on that level) and that
after two subdivision steps. Finally in Figure 3 we see the surface for these control points.

Figure 3: Recursive approximation with Catmull Clark Subdivision: Limit surface after two subdivision steps.

Let us be more precise on this example. The ellipsoid is given by

x : (u, v) 7→

a cos(u) cos(v)
b sin(u) cos(v)

c sin(v)

 with

ab
c

 =

5
2
1

 . (45)

The starting polyhedron in Figure 1 is the cuboid [−5, 5]× [−2, 2]× [−1, 1]. With this choice the six points
on the three principle axes are interpolated for the limit surface. Determining the parameter values for the
above-mentioned 98 sample points there are a lot of residuals larger than 0.1, some are even larger than 0.5.

Already on the first level the maximum relative error according to (7) (this is δ divided by the bounding
box diagonal of the object: here δ/10.95) is reduced by four iterations with the algorithm presented in

10

Figure 4: Recursive approximation with Catmull Clark Subdivision: Cut with z = 0 on the first level. Sample points for
approximation and additional points for error estimation are shown.

[5] to 4e − 4 and the mean relative error (
∑M

i=1 δi/M) to 1.6e − 4. This effect is visualized by a cut in
Figure 4. To manage the control of the needed subdivision level we use a modified error function. We
use the above mentioned points for minimization. Then we additionally use the approximation points from
the next subdivision level and compute the δi for the extra points, too. All these points are shown in
Figure 4. Normally the errors at the extra points are a little bit larger than at the positions we used for
approximation. We stop the subdivision if all errors have fallen below the requested tolerance. Notice that
in case of further subdivision with the supplementary points we already have all approximation points for
the next level. For most applications coming from computer graphics we are allowed to use local refinements
to reduce the number of control points in the final representation. Because the local strategy implicates
(further) extraordinary vertices this is not allowed in the case of block structured grid generation. Further
information on this topic can be found in [13, 12].

Exemplified we study the convergence behavior for a parameter correction near(
u?

v?

)
=

(
0.1
0.1

)
implying x? = x(u?, v?) =

 4.950
0.1987
0.09983

 and n? = n(u?, v?) =

0.8713
0.2186
0.4393

 , (46)

where n denotes the normal of the surface. We use p = x? + δi n? with different δi’s as sample point. Due
to x? − p = δi n? the residual for this point is δi. For δi = 0.25 we get(

x?
u
2 x?

u
Tx?

v

x?
u
Tx?

v x?
v
2

)
=

(
4.167 0.2072
0.2072 1.237

)
(47)

(x? − p)T ⊗
(

x?
uu x?

uv

x?
uv x?

vv

)
=

(
1.089 0

0 1.100

)
(48)

Thus for this residual δi we compute ρmax (Φ′(u?, v?)) = 0.8998 =: q̃ and the Gauß-Newton method slowly
converges. From the error estimations (29) and (30) of the Contraction Mapping Theorem we conclude
with good starting values for (u?, v?) the need of roughly 87 iterations to gain 3 more significant digits.
Using Catmull Clark or cubic B-spline surfaces for approximation the residual δi at the current subdivision
level is expected to be reduced by a factor of 16 in each next subdivision step. This is due to the fact
that these surfaces have approximation order 4. Since the residual directly scales down the spectral radius
this has significant influence on the convergence speed of the Gauß-Newton method. After one subdivision
step we have ρmax (Φ′(u?, v?)) = 0.05624 and we need only 5 iterations to get 6 more significant digits for
(u?, v?). One more subdivision later 3 iterations are sufficient for 7 more significant digits. In this example
δi = 0.2778 is the largest residual for which the Gauß-Newton method converges. These theoretical results
are reflected in practice as shown in Table 1.

In all cases we use (u0, v0) = (0, 0) as starting value and choose the sample point p according to (46) and
the description thereafter. Thus δi is the residual for the minimizer (u?, v?) = (0.1, 0.1). The tables show the

11

δi = 0.25, (u0, v0) = (0, 0)

Gauß-Newton Newton

k rk q̃k rk

0 1 1
1 0.7980 0.798 1.040e-01
2 0.3168 0.397 2.592e-03
3 0.3343 1.06 1.532e-06
4 0.2306 0.690 5.284e-13
5 0.2349 1.025 7.211e-17
6 0.1771 0.753
7 0.1762 0.995
10 0.1112 0.817
40 4.651e-03 0.897
80 6.836e-05 0.8998
200 2.160e-10 0.8998

δi = 0.25/256, (u0, v0) = (0, 0)

Gauß-Newton Newton

k rk q̃k rk

0 1 1
1 0.00436 0.00436 2.356e-01
2 6.814e-06 0.00156 2.323e-02
3 1.799e-08 0.00264 2.224e-04
4 6.116e-11 0.00340 2.026e-08
5 2.143e-13 0.00350 8.246e-17
6 9.195e-16 0.00429

δi = 0.25/16, (u0, v0) = (0, 0)

Gauß-Newton Newton

k rk q̃k rk

0 1 1
1 4.793e-02 0.0479 2.181e-01
2 2.257e-03 0.0471 1.918e-02
3 1.277e-04 0.0566 1.447e-04
4 7.178e-06 0.0562 8.174e-09
5 4.037e-07 0.0562 1.044e-16
6 2.270e-08 0.0562
7 1.277e-09 0.0562
8 7.181e-11 0.0562
9 4.038e-12 0.0562
10 2.270e-13 0.0562
20 2.550e-17

δi = 1, (u0, v0) = (0, 0)

Gauß-Newton Newton

k rk q̃k rk

0 1 1
1 3.199 3.20 4.443e-02
2 0.8136 0.254 1.958e-04
3 3.46 4.26 3.786e-09
4 0.9301 0.269 1.000e-16

100 0.7648 1.10
200 1.768 1.42

Table 1: Convergence of the Gauß-Newton and the Newton method for different residuals.

relative error rk = ‖(uk, vk)−(u?, v?)‖2/‖(u?, v?)‖2 for the iterations with the Newton and the Gauß-Newton
method. Furthermore for the Gauß-Newton method we show the local contraction q̃k = ‖ek‖2/‖ek−1‖2. Our
choice of the starting value causes the relative error to be 1 for it. Hence we can easily read the number of
attained significant digits from the relative error rk.

We start with a residual δi = 0.25 (upper left sub-table of Table 1). Our theoretical considerations
above let us expect slow convergence of the Gauß-Newton method for this case. This is clearly affirmed. As
expected q̃k coincides with q̃ = ρmax (Φ′(u?, v?)) in the final state of the iteration.

If we assume the previous δi is the residual after parameter corrections and recomputations of the control
points, we expect the residual δi = 0.25/24 on the next subdivision level. These results are shown in the
next sub-table. At this level the Gauß-Newton method already gains more than one significant digit in
each step. In practice only for the initial guess the starting values for the (ui, vi) values are poor. Already
on the initial level the changes due to the recalculation of the control points are moderate. Those on
the next level (due to subdivision) are small in low levels and tiny in high levels. Thus we start with
approximations that qualitatively match the first iterate of the Gauß-Newton method from the sub-tables
for δi ∈ {0.25/16, 0.25/256}.

During the iterations with methods of quadratic or superlinear convergence we can use the error estimate
‖x? − xk‖ ≈ ‖xk+1 − xk‖ in the final state for xk. This for instance is implied by (23) for quadratic
convergence. When α ‖ek‖2 < 10−2 the next iteration vector has at least two more significant digits. Thus
‖xk+1 − xk‖ matches ‖ek‖ with two significant digits. That is more than enough for an error estimator.
In Table 1 the behavior is reflected not only for the Newton Method but additionally for the Gauß-Newton
method if the contraction number is small. In fact, if on the actual subdivision level the Gauß-Newton

12

method converges at a point with parameters (u?, v?) then the contraction number q must be less than 1. On
the next subdivision level we expect a contraction number less than 1/16 for surface classes with convergence
order 4. (This is only true if the surface we approximate is in C4 in that area.) Thus we gain at least one
more significant digit with each iteration. If we tag the points where the Gauß-Newton method converges
on the current level we can use the just mentioned error estimates on the next level for these points with
the Gauß-Newton method, too.

We have designed our algorithms for parameter corrections applying the knowledge from the above
analysis. In all test examples we made the following observations with adaptive subdivision. During the
initial state almost always the Newton method (with optional damping) works fine. Only for very complex
problems with high curvature we had to switch to the Nelder-Mead algorithm. After the first subdivision
step only for very few sample points the Gauß-Newton method does not converge. Due to the very good
starting values from the previous level (we use interpolation for the points in between) and the smaller
residuals on the following subdivision levels one Gauß-Newton step is enough to get a sufficient accuracy for
the parameters.

Let us conclude this section with some remarks on the assumptions for our analysis in the special context
of parameter corrections. For regular parameterizations (here x = (u, v)) F ′(x) has full rank everywhere.
Furthermore for orthogonal parameterization F ′(x)T F ′(x) is a diagonal matrix. In the proofs we chose
the constants for the sake of simplicity. They can be relaxed in some cases. The main observation for
the convergence behavior of the Gauß-Newton method is the proportionality to curvature and the norm of
the current residual. The latter one is reduced on each next subdivision level. The first one keeps nearly
constant locally.

4. Conclusion and future research

We have presented and analyzed a novel and fast adaptive approximation approach for curves and
surfaces. It can be used for the construction of smooth surfaces from point clouds as well as for the
reparameterization of given surfaces. The methods are not restricted to be applied to Bézier or B-spline
surfaces. They can be used for subdivision surfaces as well. In this paper the focus has been set on an
analytical understanding of the nonlinear least squares methods for parameter correction. It turned out
that in relation to efficiency different methods have to be used in different stages. The choice has to be
dependent on the local curvature and the current residual thereabouts. Thus even on each subdivision level
we might use different methods in different areas.

There is still a large amount of work left for future research. Line search methods have the potential
to force convergence for the Gauß-Newton method and can assist the choice for it in an earlier state. We
want to further improve the overall iteration by a better adaptation of the error functional to the respective
residuals. Furthermore, we will test our algorithms with other surface classes.

References

[1] Å. Björck, Numerical Methods in Matrix Computations, ISBN 978-3-319-05089-8, Springer, 2015.
[2] K.-H. Brakhage, Modified Catmull-Clark methods for modelling, reparameterization and grid generation, in: S. Harms,

N. Wolpert (Eds), Proceedings of the 2. Internationales Symposium Geometrisches Modellieren Visualisieren und Bildver-
arbeitung, 2007, ISBN 3-9808066-9-3, pp109-114.

[3] K.-H. Brakhage, Ph. Lamby, Application of B-spline techniques to the modeling of airplane wings and numerical grid
generation, CAGD 25(9) (2008) 738-750.

[4] K.-H. Brakhage, Grid generation and grid conversion by subdivision schemes in: B. K. Soni, F. Guibalt, R. Cameraro (Eds),
Proceedings of the 11th International Conference on Numerical Grid Generation in Computational Field Simulations, 2009,
May 24-28, 2009, Montreal, Canada.

[5] K.-H. Brakhage, Fast approximation methods for fitting surfaces to unorganized point clouds, IGPM Preprint (2015),
https://www.igpm.rwth-aachen.de/forschung/preprints/438, accepted for publication in: MASCOT15 Proceedings - IMACS
Series in Computational and Applied Mathematics.

[6] K. Cheng, W. Wang, H. Qin, K.-Y. Wong, H. Yang, Y. Liu, Fitting subdivision surfaces to unorganized point data using
SDM, in: 12th Pacific Conference on Computer Graphics and Applications, 2004, IEEE, pp16-24.

[7] G. Farin, Curves and Surfaces for CAGD, A Practical Guide, The Morgan Kaufmann Series in Computer Graphics and
Geometric Modeling, 5th Edition, 2002.

13

[8] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, Int. J. Comput. Vis. 1(4) (1988) 321-332.
[9] J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308-313.
[10] J. Peters, U. Reif, Subdivision Surfaces, Series: Geometry and Computing, Vol. 3, Springer, 2008.
[11] H. Pottmann, M. Hofer, Geometry of the squared distance function to curves and surfaces, in: H.C. Hege, K. Polthier

(Eds), Visualization and Mathematics III, 2003, pp223-244.
[12] M. Rom, K.-H. Brakhage, Reparametrization and volume mesh generation for Computational Fluid Dynamics using

modified Catmull-Clark methods, in: M. Floater, T. Lyche, M.-L. Mazure, K. Mørken, L.L. Schumaker (Eds), Mathematical
Methods for Curves and Surfaces, Lecture Notes in Computer Science 8177, Springer 2014, pp425-441.

[13] M. Rom, B-Spline Volume Meshing for CFD Simulations Using Modified Catmull-Clark Methods (Ph.D. Thesis), RWTH
Aachen, ISBN 978-3-8440-3421-9, Shaker Verlag Aachen, 2015.

[14] J. Stam, Exact evaluation of Catmull-Clark Subdivision surfaces at arbitrary parameter values, in: Proc. SIGGRAPH
98, pp395-404.

[15] J. Stam, Exact evaluation of Loop Subdivision surfaces, in: SIGGRAPH CDROM Proceedings 98.

14

	IGPM446-Deckblatt.pdf
	IGPM446-Original.pdf

