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Abstract. We analyze the stability of implicit-explicit flux-splitting schemes for stiff systems
of conservation laws. In particular, we study the modified equation of the corresponding linearized
systems. We first prove that symmetric splittings are stable, uniformly in the singular parameter
ε. Then we study non-symmetric splittings. We prove that for the barotropic Euler equations, the
Degond–Tang splitting [Degond & Tang, Comm. Comp. Phys. 10 (2011), pp. 1–31] and the Haack–
Jin–Liu splitting [Haack, Jin & Liu, Comm. Comp. Phys. 12 (2012), pp. 955 - 980], and for the shallow
water equations the recent RS-IMEX splitting are strictly stable in the sense of Majda–Pego. For the
full Euler equations, we find a small instability region for a flux splitting introduced by Klein [Klein,
J. Comp. Phys. 121 (1995), pp. 213–237], if this splitting is combined with an IMEX scheme as in
[Noelle, Bispen, Arun, Lukác̆ová, Munz, SIAM J. Sci. Comp. 36 (2014), pp. B989–B1024].
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1. Introduction The efficient and stable approximation of solutions to stiff dif-
ferential equations is a longstanding challenge in numerical analysis. For systems of
ordinary differential equations (ODEs), stiffness may be defined as the simultaneous oc-
currence of eigenvalues of different orders of magnitude. In the context of conservation
laws, the key example is the low Mach number flow in gas dynamics, where the speed
of acoustic waves is much bigger than the advection speed. In the limit, the equations
change type from hyperbolic to hyperbolic-elliptic, or from compressible to incompress-
ible flow. The numerical challenge is to establish a scheme which is efficient (i.e., it
has a time step independent of the Mach number ε), uniformly consistent and stable
as ε→0. Moreover, the limit scheme should be a consistent and stable approximation
of the incompressible Euler equations. In [20–22], Jin introduced the term asymptotic
preserving (AP) for such schemes.

In the context of ODEs, implicit-explicit (or IMEX) schemes are a method of choice.
They split the system into a fast and a slow part, and treat them implicitly respectively
explicitly (see the classic textbook [17]). For hyperbolic conservation laws, we refer
to [7] for a concise review of classical approaches, such as preconditioning proposed by
Chorin [5] and Turkel [43]. More recently, some pioneering papers such as Klein [25],
Degond and Tang [9], and Haack, Jin and Liu [16] split the flux function f(u) into

fast and slow fluxes, f̃(u) and f̂(u), in such a way that the Jacobians Ã(u) := f̃ ′(u)

and Â(u) := f̂ ′(u) are hyperbolic, and then they apply an IMEX time discretization to
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2 On the stability of IMEX splittings

the split system (see also [2, 3, 7, 33] and the references therein). Note that most of
these works prove the scheme to be uniformly (asymptotically) consistent. However,
there are only few results regarding the uniform (asymptotic) stability - among them [8]
for the Euler–Poisson system and [10, 45] for the barotropic Euler equations. Also
for kinetic and transport equations there exist few papers providing rigorous analysis
for the asymptotic stability, e.g., based on von Neumann analysis or energy methods
(see [13,19,23,27,29]).

Recently, the second author and collaborators analyzed and applied the follow-
ing splittings for singularly-perturbed conservation laws. In [3] they studied a linearly
implicit method (see [36] and [17, Chap IV.7]) proposed by Giraldo and Restelli [12]
for the shallow water equations. They proved asymptotic consistency, and numerical
experiments demonstrated ε-uniform stability. In [33], they used a variant of Klein’s
auxiliary splitting [25] for the full Euler equations. Unexpectedly, the latter required
an ε-dependent time step for stability. Motivated by this, Schütz and Noelle [38] began
a stability study of the modified equation of the linearized system in Fourier variables.
Computations showed the instability of some Fourier modes for Klein’s auxiliary split-
ting, when used within the context of flux-splitting IMEX schemes (note that this is not
the context of Klein’s original algorithm, cf. Remark 5.3). In [38, Remark 9] the authors
conjectured that the culprit is a resonance between the implicit and explicit parts of the
algorithm, as expressed by the commutator ÂÃ−ÃÂ, which in general is O(ε−1). They
proved the stability of characteristic splittings in terms of the modified equations, for
which the commutator vanishes. To go beyond characteristic splittings, the authors and
collaborators developed a generalized version of linearly implicit methods, called Refer-
ence Solution IMEX (RS-IMEX) which de-singularizes the commutator; see [24,34] for
the derivation, [24,44] for the AP analysis for barotropic flows, and [37] and [24] for the
application of Van der Pol and two-dimensional barotropic Euler systems, respectively.

In the present paper, we analyze the stability of the modified equation for a general
class of splittings. We first point out a stability result for symmetric splittings and relate
this stability result to the linear stability in the sense of Majda–Pego [30]. Then, given
a general background state, we study Fourier symbols for linearized modified equations
for non-symmetric flux-splittings and apply this to several well-known IMEX schemes.
Note that our analysis applies to a general background state and any frequency variable
for which the modified equation is valid, while the previous work [38] evaluated the
Fourier symbols numerically using fixed background states and frequencies.

The paper is organized as follows: in Section 2 we review the algorithm, modified
equation and Fourier analysis for linear systems, all as in [38]. In Sections 3 and 4,
we assemble a number of stability results for symmetric and general non-symmetric
splittings, respectively. Using the results of Section 4, we prove in Section 5 that the
modified equations resulting from the splittings in [9, 16], as well as the RS-IMEX
splitting [24, 34, 44] are stable in the sense of Majda–Pego. We also study Klein’s
auxiliary splitting [25], and discover a small instability region for the example of two
colliding pulses [25, 33], for a moderate CFL number. This seems to give a hint at the
numerical difficulties observed in [33].

Acknowledgments. The authors would like to thank Rupert Klein for stimulating
discussions on low Mach number flows. H.Z. thanks Jochen Schütz for a helpful discus-
sion on [38]. Also he gratefully acknowledges an illuminating discussion with Charlotte
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Perrin about the construction of symmetric splittings. S.N. would like to thank Arun
K.R., Georgij Bispen, Mária Lukác̆ová-Medvid̆ová, Claus-Dieter Munz, and Jochen
Schütz for the collaborations leading to [3,33,38], which provided first insights into the
stability of flux splittings.

2. Flux-splittings, IMEX schemes and the modified equation

Let us first review the linear framework introduced in [38]. We consider the linear
system of hyperbolic conservation laws

ut+Aux= 0, u(0,·) =u0(x), (2.1)

where u : Ω×R+→Rm are conservative variables and A∈Rm×m is a constant matrix
(depending only on the parameter ε) which is real diagonalizable with eigenvalues of
λ1≥ .. .≥λm. We assume well-prepared initial data so that the time derivatives of the
solution, ∂kt u, are bounded uniformly in ε for k∈N (see [14,26,31]).

Definition 2.1 (Admissible splitting [38]). The splitting A= Ã+Â is admissible
provided that

(i) both Ã and Â induce a hyperbolic system, i.e., they have real eigenvalues and a
complete set of eigenvectors;

(ii) the eigenvalues of Â are bounded independently of ε, e.g., O(1), and at least one

of the eigenvalues of Ã is O( 1
ε ).

As in [38], we choose a Rusanov-type scheme for both implicit and explicit parts

on the domain Ω, and with the time step ∆t and the spatial step ∆x := |Ω|N , where N is
the number of computational cells. Such a scheme can be written as

un+1
j =unj −

∆t

∆x

(
F̃n+1
j+1/2−F̃

n+1
j−1/2 + F̂nj+1/2−F̂

n
j−1/2

)
,

where the numerical fluxes are defined as

F̃n+1
j+1/2 :=

1

2
Ã
(
un+1
j+1 +un+1

j

)
− α̃

2

(
un+1
j+1 −u

n+1
j

)
,

F̂nj+1/2 :=
1

2
Â
(
unj+1 +unj

)
− α̂

2

(
unj+1−unj

)
,

with numerical diffusion coefficients α̃ and α̂ for stiff and non-stiff parts, respectively.
Then, the modified equation (see [38, eq. (10)]) reads

ut+Aux=
∆t

2

(α∆x

∆t
Im−Â2 +Ã2 +[Ã,Â]

)
uxx, (2.2)

where α := α̃+ α̂ and [Ã,Â] := ÃÂ−ÂÃ is the commutator of the stiff and non-stiff
Jacobians.

Applying the Fourier transform to (2.2) leads to

ût+

(
−iξA− ξ

2∆t

2

(α∆x

∆t
Im−Â2 +Ã2 +[Ã,Â]

))
û= 0, (2.3)
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which gives the following convenient stability result:

Lemma and Definition 2.2 (Corollary 1, [38]). The modified equation (2.2) is
L2-stable if the frequency matrix

P(ξ) :=−iAξ−ξ2D, D :=
∆t

2

(α∆x

∆t
Im−Â2 +Ã2 +[Ã,Â]

)
(2.4)

only has eigenvalues with negative real parts. In this case we call P(ξ) a stable ma-
trix, and say that the IMEX splitting satisfies condition (A). Note that ξ denotes the
frequency variable.

Remark 2.3. (i) From now on, whenever we talk about stability, it means stability in
the sense of condition (A), unless explicitly stated otherwise.

(ii) The modified equation (2.4) is derived formally by truncating Taylor expansions
in space and time. We conjecture that a rigorous justification will have to rely on a
low-frequency assumption such as

‖ξk+1Ak+1‖=O(1) for k= 2,3.. .,

together with a suitable CFL condition.

(iii) Recalling a famous result of Gel’fand [11], if one considers a convection-
diffusion system of equations like (2.4), the well-posedness requires the viscosity matrix
(in this case D) to be parabolic, i.e., its eigenvalues should have positive real parts. So
for the general case, parabolicity is a necessary condition for stability. Nonetheless in the
context of this paper, since the frequencies are small due to a low-frequency assumption,
the argument in [11] does not hold and parabolicity is not a necessary condition.

Unfortunately, without any additional structural assumption, obtaining a general
stability condition for P is very delicate. For example, in [38] the authors introduce
a characteristic splitting, for which the Jacobians are simultaneously diagonalizable
and hence the commutator [Ã,Â] vanishes. This immediately provides stability of the
modified equation; see also Remark 4.4(i) below for `2-stability. In Section 3, we study
the eigenvalues of P assuming symmetry of the system and its splitting. This seems to be
a promising framework for stability. In Section 4, we study the general, non-symmetric
case and review the stability conditions of Majda and Pego [30]. In Section 5, we
verify these conditions to obtain linearized stability or instability for a number of recent
splittings.

3. Stability of P for symmetric splittings In this section, we assume that
A, Â and Ã are symmetric, and point out the stability of such a splitting in Corollary
3.4. Then, introducing the notion of strict stability in the sense of Majda–Pego [30]
we generalize condition (A) to linearized systems. For symmetric splittings, this notion
gives a more general stability result (see Theorem 3.7). Non-symmetric splittings are
treated in Section 4.

Note that for any symmetric matrix A, a symmetric splitting is always possible,
e.g., if one chooses Â= diag(A|ε=1). For any symmetric splitting, the commutator is a
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skew-Hermitian matrix, therefore

P(ξ) =−

[
iAξ+ξ2 ∆t

2
[Ã,Â]︸ ︷︷ ︸

=:A

+ξ2 ∆t

2

(α∆x

∆t
Im−Â2 +Ã2

)
︸ ︷︷ ︸

=:H

]
, (3.1)

where A and H are skew-Hermitian and Hermitian respectively. One may conjec-
ture that the eigenvalues of H would be positive. The following lemma verifies this
conjecture.

Lemma 3.1. The Hermitian matrix H is positive-definite under a non-restrictive CFL
condition, independently of ε.

Proof. We start with the eigenvalue stability inequality (see [40, eq. 1.64]), which is
a result of Courant–Fischer–Weyl min-max principle. It states that for two Hermitian
matrices L,M ∈Hm, the following holds

|λk(L+M)−λk(L)|≤ ‖M‖op, k= 1,2,. ..,m, (3.2)

where the operator norm ‖·‖op is defined as

‖M‖op := max
(
|λ1(M)|,|λm(M)|

)
, λ1≥λ2≥···≥λm.

So if one puts L= Ã2 and M =−Â2 in (3.2), it yields

−λ<λk(Ã2)−‖Â‖2op≤λk(−Â2 +Ã2)≤λk(Ã2)+‖Â‖2op, (3.3)

with λ≥0. Due to the order of magnitude of eigenvalues, λ can be chosen to be positive
and O(1), namely λ>‖Â‖2op which implies the time step restriction ∆t< α∆x

‖Â‖2op
. This

CFL condition shifts the eigenvalues to the right (by α∆x
∆t Im), so that the eigenvalues

of H are positive.

Remark 3.2. Another way to prove Lemma 3.1 is to use the numerical range or
equivalently the Rayleigh quotient, since we are working with symmetric matrices. Using
sub-additivity property of the numerical range, it is enough to show that the numerical
range of Ã2 is positive, and to put the numerical range of α∆x

∆t Im−Â2 in the right
half-plane under some CFL condition.

Given these properties of A and H , there is a sum of a Hermitian and a skew-
Hermitian matrix in (3.1), and one can use the Bendixon’s theorem in [18] (see [1] for
the original work which is limited to real matrices), which shows that given a Hermitian
matrix with stable eigenvalues in the left half-plane and a skew-Hermitian matrix, the
sum will have stable eigenvalues, i.e., the eigenvalues have negative real parts. To recall,
we restate the theorem from [18]; see also [4] for a nice review.

Theorem 3.3 (Theorem II, [18]). Consider the matrix M ∈Km×m with K=C or
R, when λHk :=λk

(
H(M)

)
=pk ∈R for k= 1,. ..,m, where H stands for the Hermitian

part. Then the following holds

min
k
pk≤ <

[
λk(M)

]
≤ max

k
pk. (3.4)

Hence from Lemma 3.1 and Theorem 3.3, one can conclude immediately the following
corollary.
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Corollary 3.4. Under a non-restrictive CFL condition, an admissible symmetric
splittings is stable, i.e., it satisfies condition (A).

Remark 3.5. One could also use an energy estimate to show that for the hyperbolic-
parabolic system (2.2) with symmetric A, the positive-definiteness of the viscosity matrix
D is necessary and sufficient for L2-stability.

We would like to conclude this section with the notion of strict stability in the sense
of Majda–Pego [30] as defined below.

Definition 3.6 ( [30]). For the non-linear system ut+f(u)x= (Dux)x, the vis-
cosity matrix D is strictly stable at u0 if and only if there exists a δ>0 such that the
eigenvalues λk(ξ) of the matrix P(ξ) :=−f ′(u0)iξ−ξ2D(u0) satisfy the following alge-
braic condition

<
[
λk(ξ)

]
≤−δ|ξ|2, for all ξ∈R. (3.5)

This definition is in fact the generalization of Lemma 2.2 for systems linearized around
an arbitrary state u0. Using this framework, one can also find the generalization of the
stability of symmetric splittings at u0, as in [30,32].

Theorem 3.7. Consider (2.4) and let M(u0) be a real symmetric positive-definite ma-
trix, symmetrizing A(u0) from the left, i.e., (MA) |u0 is symmetric. Then if (MD) |u0

is positive-definite, the modified equation in Fourier space (2.4) is strictly stable at u0,
i.e., there exists a δ>0 such that <

[
λk(P(ξ))

]
≤−δ|ξ|2.

It is clear that for symmetric splittings, the identity matrix can play the role ofM
and Theorem 3.7 is reduced to the arguments we have presented above.

4. Stability of P for non-symmetric splittings In this section, we study the
stability of P without symmetry assumption, so that the commutator contributes to the
real parts of the eigenvalues of P and hence to the stability. Note that Majda–Pego’s
notion of strict stability refers to a given state u0, around which the system is linearized.
To keep the notation simpler, in the following we suppress the dependence of A, Ã, and
Â on u0. Thus, from now on, the state u0 is arbitrary, but fixed.

Let us denote the spectrum of P as σ(P). Then, by the theorem of spectral inclusion
[15, Theorem 1.2-1], this spectrum (and in particular its convex hull) is contained in
the closure of the numerical range of P. In other words, Conv(σ(P))⊆w(P), where the
numerical range w(P) is defined as w(P) :={〈v,Pv〉,v∈Cm,‖v‖`2 = 1}. In fact, the real
part of the numerical range of P is bounded by the spectrum of its Hermitian part, i.e.

< [w(P)] =−Conv
(
σ
(
(iA)Hξ+ξ2DH

))
.

Due to the eigenvalue stability inequality, one can find the upper-bound of the numerical
range as

<[w(P)]≤−
(
ξ2λm(DH)−ξ‖(iA)H‖op

)
, (4.1)

where λm(DH) denotes the smallest eigenvalue. So, for the stability of P, it is sufficient
to set the numerical range to be in the left half-plane. Thus, the following proposition
can be concluded immediately from (4.1).
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Proposition 4.1. For symmetric systems of size m, the positive-definiteness of D
implies strict stability with δ=λm(DH), the smallest eigenvalues of DH.

However for a non-symmetric A, as shown in [38] by an example, the positive-
definiteness of D does not necessarily imply condition (A). For the other direction,
one can also cook up several examples with positive-definite D which are unstable.
Nonetheless, the stability can be provided by a modified version of Proposition 4.1. As
we will see, this is the same condition as [30, Thm. 2.1]. However, let us restate it
regarding the context of this paper.

Theorem 4.2. For a strictly hyperbolic system with A∈Rm×m, and with eigenvector
matrix V , the positivity of V −1DV is sufficient for the stability in terms of condition
(A).

Proof. By construction, A is hyperbolic and can be diagonalized as A=V ΛV −1,
where V is the matrix of eigenvectors. Substituting this into the definition of P yields

P(ξ) =−iξA−ξ2D=V
(
− iξΛ−ξ2D̃

)
V −1,

where D̃ :=V −1DV . Since similarity transformations do not change the spectrum, we
instead study the eigenvalues of P̃(ξ) defined as

P̃(ξ) :=−iξΛ−ξ2D̃.

One can decompose D̃ as the sum of Hermitian and skew-Hermitian matrices, i.e.,
D̃H+D̃#. From positivity −ξ2D̃H is stable and by Theorem 3.3, the addition of skew-
Hermitian matrices, −ξ2D̃# and −iξΛ cannot destabilize a stable Hermitian matrix.
So P is stable.

The following lemma allows us to study D̃′ :=V −1(Ã−Â)(Ã+Â)V instead of D̃:

Lemma 4.1. Consider the linear system (2.1). Let V to be the eigenvector matrix

of A, and suppose that the splitting A= Â+Ã is admissible in the sense of Definition
2.1. If there exists a lower-bound λH(D̃′)

for the eigenvalues of the Hermitian part of

D̃′ :=V −1(Ã−Â)(Ã+Â)V , such that λH(D̃′)
=O(1), then the splitting is strictly stable

in the sense of Majda–Pego.

Remark 4.3. Compared to the full frequency matrix P(ξ) used in Lemma 2.2, Lemma

4.1 is a convenient simplification since D̃′
H

does not depend on ξ.

One can go one step further and use the structure of the viscosity matrix, which
is known for (2.2) unlike most of the literature in the hyperbolic-parabolic systems,

cf. [6, 11,30]. By the assumption, A and Â are real diagonalizable, i.e.

A=V ΛV −1, Â=U Λ̂U−1,

where V and U are matrices of eigenvectors and U =V J , where J stands for the change
of basis matrix. Substituting these into the definition of P gives P̃ as

P̃(ξ) =−iξΛ−ξ2 ∆t

2

[α∆x

∆t
Im+Λ2−2J−1Λ̂JΛ

]
︸ ︷︷ ︸

=D̃

.
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This form of D̃ reveals more of its structure. As one can see, for the positivity of D̃
the role of J is crucial. For example for an admissible characteristic splitting, J = Im
and the positivity (and stability) is clear since the components of D̃ are diagonal. So,
it is plausible to claim that the splittings whose eigenspaces are close to each other are
more likely to be stable. This indeed matches with results of [28, Sect. D.7], that if
the eigenspaces of the split matrices coincide, the power-boundedness of each step is
enough for the stability of the whole scheme. Although this form seems to be useful,
the analysis of eigenspaces is a very delicate issue and we leave it open for now.

We wish to conclude this section with some remarks.

Remark 4.4. (i) The characteristic splitting decouples the system into m scalar equa-
tions

∂twk+λk∂xwk = 0, k= 1.. .m.

Then, using von Neumann stability analysis, it is not difficult to show that the
explicit step (from time step n to some intermediate step n†) and the implicit step
(from the intermediate step n† to the new time step n+1) are `2-stable, respectively
under an appropriate (and ε-uniform) CFL condition and unconditionally (see [41, Sect
3.3.4]).

(ii) In the light of [16, Lemma 3.1], the stability of each step is clearly enough
for the stability of the whole scheme; however, it is far from being necessary in most
cases, and almost often not practical to be fulfilled. For instance notice that the example
in [38, Sect. 7] does not have stable steps. One could confirm numerically that for
both stable and unstable settings (with ε1 = 10−1 and ε2 = 10−2 respectively) the implicit

operator S̃ is power-bounded while the explicit operator Ŝ is not. Nonetheless, their
multiplication S̃Ŝ makes one case stable and the other unstable. For further details
about the stability of the difference equations, the reader can consult with [28, Appendix
D] and [42, Chap. 4].

(iii) It seems plausible to conjecture that if the commutator is O(1), then the vis-
cosity matrix is parabolic under a suitable and non-restrictive choice of CFL condition,
using the continuity of eigenvalues [35, Appendix K]. On the other hand, it is not even
clear if the parabolicity is a relevant condition to be used for low frequency modes, as
we mentioned earlier in Remark 2.3.

5. Applications In this section, we show that Lemma 4.1 provides the linearized
stability at any given state u0 of several splittings used in practice, namely the splitting
of Haack–Jin–Liu [16] (abbreviated as HJL hereinafter), Degond–Tang [9] (DT here-
inafter) and the RS-IMEX splitting. We also discuss the numerical instability which has
been reported in [33] for Klein’s auxiliary splitting of the Euler equations [25]. Recall
that our analysis is based on the modified equation (2.2) and hence on the implicit-
explicit Euler time integration accompanied with Rusanov-type numerical fluxes.
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5.1. Haack–Jin–Liu splitting For the barotropic Euler equations, the HJL
splitting decomposes the Jacobian of the flux function as

A=

[
0 1

−u2 + p′(%)
ε2 2u

]
,

Â=

[
0 β

−u2 + p′(%)−a(t)
ε2 2u

]
, λ̂=u±

√
(1−β)u2 +

β
(
p′(%)−a(t)

)
ε2

,

Ã=

[
0 1−β
a(t)
ε2 0

]
, λ̃=±

√
a(t)(1−β)

ε
,

where %, u, and p(%) =κ%γ are the density, velocity, and pressure. β∈ [0,1] is a parameter
to be chosen (note that it is called α in [16]) and a(t) := minxp

′(ρ(x,t)). With these
settings, the splitting is admissible in the sense of Definition 2.1. For further details
see [16].

Assume that the system has been linearized around an arbitrary state (%,u) =

(%0,u0). Then, in light of Lemma 4.1, we have to study the positivity of D̃′. With

the aid of Maple
TM

, one can get

lim
ε→0

(
ε2λ1,2

H(D̃′)

)
= lim
ε→0

[
ε2(β−2)u2 +

(
a−βp′±

(
(β−1)p′+a

))]
= lim
ε→0

[
ε2(β−2)u2 +

(
a±(−p′+a)+β(−p′±p′)

)]
. (5.1)

Owing to the formal analysis for ε�1, the asymptotic expansion gives p′−a=O(ε2),
so

lim
ε→0

(
ε2λ1,2

H(D̃′)

)
=

{
a

(1−2β)a
. (5.2)

Thus, if we set β≤1/2 and since a>0, both eigenvalues are nonnegative, and λH(D̃′)
=

O(1). So, due to Lemma 4.1, the scheme is strictly stable in the sense of Majda–
Pego under a non-restrictive CFL condition. Note that for the numerical experiments
presented in [16], β is chosen as β≤1/2 and often of O(ε2).

5.2. Degond–Tang splitting In [9] and for the barotropic Euler equations with
the pressure function p(%) =κ%γ (like the case of HJL splitting), the following splitting
has been proposed:

Â=

[
0 0

−u2 +θp′(%) 2u

]
, λ̂= 0, 2u,

Ã=

[
0 1(

1−θε2
) p′(%)

ε2 0

]
, λ̃=±

√
(1−θε2)p′(%)

ε
,

where θ is an ad-hoc parameter to be chosen between 0 and 1/ε2. Note that it is
discussed in [7,9,39] that taking θ=O(1) leads to the AP property; so, we assume θ to
be O(1). Then, one can clearly confirm that this splitting is admissible in the sense of
Definition 2.1.
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As for the HJL splitting, we study the positivity of D̃′. With the aid of Maple
TM

,
one can get

lim
ε→0

(
ε2λ1,2

H(D̃′)

)
= lim
ε→0

[
−ε2

(
β+2u2

)
p′+p′±O(ε2)

]
=p′. (5.3)

Thus, both eigenvalues are positive in the limit, and due to Lemma 4.1, the scheme is
strictly stable in the sense of Majda–Pego under a non-restrictive CFL condition.

5.3. RS-IMEX splitting We apply the RS-IMEX splitting to the shallow water
equations with flat bottom and the lake at rest reference solution as in [34, 44] (see
also [3]), which gives the splitting

Â=

[
0 0

zε2− m2ε2

(zε2−b)2
2m
zε2−b

]
, λ̂= 0,

2m

zε2−b
,

Ã=

[
0 1

ε2

−b 0

]
, λ̃=±

√
−b
ε2

,

where z denotes a scaled perturbation of the height from a constant reference, h+b=ε2z,
m is the momentum and b is the bottom function which is negative and constant. So,
it can be concluded that this splitting is admissible in the sense of Definition 2.1. We
refer the reader to [24,34,44] for details of this splitting.

As for the HJL splitting, one can obtain that

lim
ε→0

(
ε2λ1,2

H(D̃′)

)
= lim
ε→0

−b5±ε|b|
∣∣b2z−m2

∣∣
(zε2−b)4

=−b>0, (5.4)

since b<0. Hence, using Lemma 4.1 and similarly as the case of HJL splitting, the
splitting is strictly stable in the sense of Majda–Pego under a non-restrictive CFL con-
dition. Note that the leading orders ε2λ1,2

H(D̃′)
have been the same for the HJL (with

β=O(ε2)), DT and RS-IMEX splittings.

Remark 5.1. It would be interesting to extend the stability result to equations with
variable bottom. Nonetheless it is not clear how to linearize the Jacobian matrices Ã
and Â (by freezing b), and also simultaneously the source term (by freezing bx). Thus,
it is more difficult to understand the linearization error, and hence the validity of the
stability analysis.

Example 5.2. In addition to the previous analysis of the modified equation in the low
Mach/Froude number limit (ε�1), we now study λ1,2

H(D̃′)
for all ε∈ (0,1]. For this we

consider the pressure law p(%) = %2

2 and choose (%0,u0) = (1,1) for HJL and DT splittings,
and equivalently (z0,b,u0) = (0,−1,1) for the RS-IMEX splitting. We also set the ad-hoc
parameters of HJL and DT splittings as β=ε2 and θ= 1. Figure 5.1 shows that λ1,2

H(D̃′)

are bounded from below. Indeed, λ1
H(D̃′)

is always positive, while λ2
H(D̃′)

is positive to the

left of the kink around ε∈ (0.4,0.6), and negative to the right, but uniformly bounded.
Thus, owing to Lemma 4.1, all these splittings are asymptotically stable. Note that the
plots of RS-IMEX, HJL and DT splittings are hardly distinguishable for small ε.
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Fig. 5.1.
∣∣λ1
H(D̃′)

∣∣ (left) and
∣∣λ2
H(D̃′)

∣∣ (right) for RS-IMEX, HJL and DT splittings w.r.t. ε.

5.4. Klein’s auxiliary splitting In his influential paper [25], Klein introduced
two flux-splittings for the full Euler equations. The main splitting introduces two sub-
systems, called system (I) and (II), given by [25, eqs. (3.1)-(3.2)]. In the second splitting,
system (I) is replaced by the so-called auxiliary system (I∗), which is given by [25, eq.
(3.8)].

In this section, we analyze the stability of a flux-splitting IMEX scheme, which uses
Klein’s auxiliary splitting as a building block (cf. [33]).

Here, the background state for the linearization is (%,%u,%E) = (%0,%0u0,%0E0),
where the total energy %E satisfies the dimensionless equation of state %E= p

γ−1 +
ε2

2 %|u|
2. Following the derivation in [33], the auxiliary splitting is given by

Â=

 0 1 0(
(γ−1)ε2

2 −1
)
u2
(
2−(γ−1)ε2

)
u γ−1

Â31 Â32 Â33

,
Â31 :=−u

[(
1+ε2(γ−1)

)
E−(γ−1)ε42u2 +(1−ε2)

pinf

%

]
+

(γ−1)ε4

2
u3,

Â32 :=E+ε2(γ−1)

(
E− ε

2

2
u2

)
+(1−ε2)

pinf

%
−(γ−1)ε4u2,

Â33 :=
(
1+ε2(γ−1)

)
u,

Ã= (1−ε2)

 0 0 0
1
2 (γ−1)u2 −(γ−1)u γ−1

ε2

−up−pinf

% + γ−1
2 ε2u3 p−pinf

% −ε2(γ−1)u2 (γ−1)u

,
with 1<γ≤ 5

3 . The choice of the parameter pinf := minxp(x,t) guarantees the hyperbol-
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icity of split systems, whose eigenvalues read

λ̂=u,u±c∗, c∗ :=

√
p+(γ−1)Π

%
, Π := (1−ε2)pinf +ε2p,

λ̃= 0,± (1−ε2)

ε

√
(γ−1)(p−pinf)

%
.

So, the splitting is admissible in the sense of Definition 2.1 (see [33]).

Our attempts to compute the eigenvalues of D̃′
H

for this full Euler case with
Maple

TM

failed. Thus we study the full frequency matrix P for the example of two
colliding pulses [25], where we had previously found an ε-dependent timestep [33]. The
domain is [−L,L] with L := 2/ε, for γ= 1.4. The initial data are

%(x,0) =%(0) +
ε

2
%(1)

(
1−cos

(
2πx

L

))
, %(0) = 0.955, %(1) = 2, (5.5)

p(x,0) =p(0) +
ε

2
p(1)

(
1−cos

(
2πx

L

))
, p(0) = 1, p(1) = 2γ, (5.6)

u(x,0) =
1

2
u(0)sign(x)

(
1−cos

(
2πx

L

))
, u(0) = 2

√
γ. (5.7)

In order to apply the Majda-Pego stability framework, we linearize around

%0 =%(0) +
ε

2
%(1) = 0.955+ε,

p0 =p(0) +
ε

2
p(1) = 1+εγ

u0 =
√
γ

and pinf = 1. Note that we have replaced 1−cos
(

2πx
L

)
by its mean value 1. The numer-

ical diffusion and the grid parameters are chosen as in [33],

α=

√
γp0

%0
+max

x
(u(x,0)) , ∆x= 0.05, ∆t=

CFL

max
x

(u(x,0))
∆x.

We compute the real parts of the eigenvalues of the frequency matrix P of the modified
equation numerically. Figure 5.2 displays <(λ1

P) for different CFL numbers and fre-
quency variable ξ=επ. The three subfigures are zooms in ε. The figures reveal a small
instability region near ε∈ (0.02,0.06) and for CFL = 0.45. This seems to correspond
closely to some of the numerical experiments in [33], where the CFL number needed to
be reduced when changing ε from 0.1 to 0.05.

Note, however, that the lack of uniform stability in [33] is much stronger than the
one seen in Figure 5.2, since in [33] the CFL-number needed to decrease linearly with
the Mach number, while in Figure 5.2, <(λ1

P)≤0 uniformly in ε, for fixed CFL = 0.02.
This discrepancy may possibly be due to a fundamental difference between the Fourier
analysis in the present paper and the real computation in [33]: based on Lemma 2.2,
Figure 5.2 studies a single Fourier mode. On the other hand, due to the sign(x) function
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in (5.7), the initial data for the velocity contain a superposition of all Fourier modes,
which may trigger instabilities not explained by the present analysis.

Remark 5.3. It is important to point out some differences between the algorithms
in [33] and [25]. Klein develops his approach using the more complex setting of multiple
space variables and multiple pressures. Algorithmically, he “combines explicit predictor
steps for long wave linear acoustics or global compression with a single implicit scalar
Poisson-type corrector scheme” [25, p.3]. Thus, our stability analysis has no direct
implication for the scheme proposed in [25]. Rather, it should be seen as a comment
to [33].

Fig. 5.2. <(λ1P ) for Klein’s auxiliary splitting w.r.t. ε, in different regions of ε and for ξ= επ.

6. Concluding remarks

We have studied the stability of several flux-splitting IMEX schemes for stiff sys-
tems of hyperbolic conservation laws by modified equation analysis. First we reviewed
and slightly expanded the stability framework of Majda and Pego. We showed that for
symmetric splittings the viscosity matrix is positive, which gives strict stability. Fur-
thermore, we discussed a general class of splittings, and showed that positivity of the
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viscosity matrix, after being transformed by the matrix of eigenvectors of A, is sufficient
for strict stability (this matches the results of [30]). This criterium has been used to
show the stability of the Haack–Jin–Liu splitting [16] and the Degond–Tang splitting [9]
for the isentropic Euler equations, and the recent RS-IMEX splitting for the shallow
water equations (with flat bottom). For the full Euler equation, we discovered a small
region of instability for Klein’s so-called auxiliary splitting [25] for the two colliding
pulses example. This seems to confirm computational results in [33].
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