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Abstract

We consider feedback boundary control of hyperbolic systems with stiff source terms. By
combining weighted Lyapunov functions, the structure is used to derive novel stabilization
results. The result is illustrated with the numerical analysis on the decay rate of the Lya-
punov function in terms of the stiff parameter and an application to boundary stabilization
of gas dynamics in pipes.
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1 Introduction

We are interested in boundary stabilization problems for linear hyperbolic partial differential
equations (PDEs) with source terms. Our focus is on stiff source terms and the influence of the
stiffness on the design of dissipative feedback laws.

Due to the possible applications in engineering, the control of hyperbolic PDEs has gained
interest in the mathematical community. The design of suitable boundary feedback controls has
been investigated in great detail in the case of St. Venant equations [10, 21, 9, 2, 11, 3, 23, 19, 6],
gas dynamics [15], traffic flows [1] and supply chains [7]. We are interested in problems with
linear dynamics and involving source terms similar to e.g. [17, 18]. A general stabilization result
is given in [5, Theorem 13.12] or [22] using a smallness assumption on the source terms.

We are concerned with a class of linear hyperbolic PDEs appearing as mathematical models
between Boltzmann equation and hyperbolic conservation laws and having a particular relax-
ation structure [28, 25, 26, 27]. The present structure has been used to prove exponential stability
in [17] using Lyapunov functions similar to [5, 4]. As extension to the previous analysis on those
models presented in [17] we consider now the case of stiff source terms and their asymptotic
expansion. Further, numerical results are presented here. This problem has recently gained
interest due to design question of numerical schemes resolving the stiff limit accurately. Among
the many publications on this topic we refer to [20, 12, 13, 8] for details and examples. To the
best of our knowledge the question of feedback boundary for stiff source terms has not yet been
studied.
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We consider the spatially one–dimensional linear system with a stiff source term motivated
by [17, 27, 10] {

ut + aux + bqx = 0, (1.1a)

qt + cux + dqx = −e
ε
q (1.1b)

for x ∈ [0, 1], and t ≥ 0. Here u ∈ R and q ∈ R are functions of (t, x), and ε is a small
positive parameter. In the following we denote by sgn(a) the sign function of a. Introducing the

coefficient matrix A =

(
a b
c d

)
, U =

(
u
q

)
and Q(U) =

(
0
−eq

)
, the system in the matrix

form is

Ut +AUx =
Q(U)

ε
. (1.2)

Note that contrary to [10] the system is not in characteristic form. As investigated in [27] the
following assumptions are fulfilled by many models from mathematical physics; see also [25] for
a detailed discussion on the stability under such conditions. As in [17] we assume that

(A1) There exists a symmetric positive definite matrix A0 ∈ R2×2 such that A0A is symmetric

and A0 =

(
X1 0
0 X2

)
, where X1, X2 ≥ 0;

(A2) e > 0.

Assumption (A1) implies the hyperbolicity of the system. It follows that there exists a
transformation matrix T = (tij) ∈ R2×2 such that

T−1AT = Λ =

(
Λ+ 0
0 Λ−

)
,

where Λ± are diagonal matrices and contain the m positive and 2−m negative eigenvalues of A
respectively. Note that we assume there is no vanishing eigenvalues. One can show that T TA0T
is diagonal and positive definite. We consider the boundary stabilization of the system using the

Lyapunov function, starting with the definition of a symmetric matrix µ(x) =

(
µ11 µ12

µ12 µ22

)
∈

R2×2:
µ(x) := T−T exp(−Λx)T−1

for x ∈ [0, 1]. Then, following [17], the function Lε(t) is a Lyapunov function of system (1.1) for
α > 0:

Lε(t) :=

∫ 1

0
UT
(
αA0 + µ(x)

)
Udx = α‖(u, q)‖2A0

+ ‖(u, q)‖2µ. (1.3)

Boundary conditions have been proposed in [17, Theorem 3.1] to ensure the exponential decay
of Lε(t) in time. Here, we are interested in the asymptotic behavior of the Lyapunov function
as ε tends to zero. We decompose the solutions (u, q) as

u = u0 + εu1, q = q0 + εq1, (1.4)

where (u1, q1) are the first order perturbation with respect to ε. Plugging the expansion in the
original system and using q0 = 0 and q1 = −e−1cu0

x we formally obtain up to the zeroth and
first order, respectively: {

u0
t + au0

x = 0, (1.5a)

q0 = 0, (1.5b)
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and {
u1
t + au1

x − bce−1u0
xx = 0, (1.6a)

q1
t + cu1

x + dq1
x = 0. (1.6b)

The problem (1.6) is well-posed if bce−1 > 0.
For u0(t, x) solving equation (1.5) we have Lemma (1.1) following directly by [5, Theorem

13.12]. This ensures the exponential stabilization of the limiting equation.

Lemma 1.1. There exist positive constants (β0, β1) such that the Lyapunov functions L̃(t)
defined as

L̃(t) = β1

∫ 1

0
e−sgn(a)β0x(u0)2 dx (1.7)

decays with exponential rate |a|β0 provided that

BC5 = −aβ1e
−sgn(a)β0x

(
u0
)2∣∣1

0
≤ 0. (1.8)

We denote by ξ
∣∣1
0

= ξ(t, 1)− ξ(t, 0) for brevity.

As to the Lyapunov function (1.3), we decompose the Lyapunov function in terms of ε:

Lε(t) =

∫ 1

0
(αX1 + µ11)

(
u0
)2
dx+ 2ε

[∫ 1

0
(αX1 + µ11)u0u1 dx− c

e

∫ 1

0
µ12u

0u0
x dx

]
: = L0(t) + εL1(t).

Theorem 1.2. The time derivative of Lε(t) satisfies the inequality:

d

dt
(L0(t) + ε(L1(t) + L̃(t))) ≤ −λ1(L0 + ε(L1(t) + L̃(t))) +BC1 + ε(BC2 +BC3 +BC4 +BC5),

(1.9)

where

λ1 := − max
x∈[0,1]

a∂xµ11

αX1 + µ11
> 0. (1.10)

The terms BCi for i = 1, . . . , 5 are boundary terms defined by equations (1.11), (1.12), (1.13)
and (1.8).

Proof. Compute the time derivative of the Lyapunov function:

d

dt
Lε(t) =

d

dt
L0(t) + ε

d

dt
L1(t).

The zeroth order Lyapunov function L0(t) gives

d

dt
L0(t) = BC1 +

∫ 1

0
a∂xµ11

(
u0
)2
dx,

where
BC1 = −a(αX1 + µ11)

(
u0
)2∣∣1

0
. (1.11)
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By definition we have that µ(x) is componentwise differentiable and denote the derivative
by µx(x). Since A is hyperbolic, we have

µx(x)A = T−TDT−1

where D is a diagonal matrix with entries Dii = −Λ2
ii exp(−Λiix) < 0. Therefore, µx(x)A is

negative definite. Hence, (1, 0)µx(x)A(1, 0)T = a∂xµ11 < 0.
The first order Lyapunov function L1(t) yields

d

dt
L1(t) =BC2 +BC3 −

2bc

e

∫ 1

0
(αX1 + µ11)

(
u0
x

)2
dx

+ 2a

∫ 1

0
∂xµ11u

0u1 dx− 2c

e

∫ 1

0
(a∂xµ12 + b∂xµ11)u0u0

x dx,

where

BC2 = −2a(αX1 + µ11)u0u1
∣∣1
0
, BC3 =

2c

e

[
aµ12 + b(αX1 + µ11)

]
u0u0

x

∣∣1
0
. (1.12)

Note that αX1 +µ11 > 0. Therefore, a∂xµ11
αX1+µ11

is well-defined as well as λ1 in equation (1.10).
It follows that

d

dt
Lε(t) ≤− λ1L

ε(t) +BC1 + ε(BC2 +BC3)

− ε
[

2c

e

∫ 1

0
(a∂xµ12 + b∂xµ11 + λ1µ12)u0u0

x dx+
2bc

e

∫ 1

0
(αX1 + µ11)

(
u0
x

)2
dx

]
.

Since

2

∫ 1

0
(a∂xµ12 + b∂xµ11 + λ1µ12)u0u0

x dx

=

∫ 1

0
(a∂xµ12 + b∂xµ11 + λ1µ12)

[
(u0)2

]
x
dx

= (a∂xµ12 + b∂xµ11 + λ1µ12)
(
u0
)2∣∣1

0
−
∫ 1

0
(a∂2

xµ12 + b∂2
xµ11 + λ1∂xµ12)

(
u0
)2
dx,

and bc
e (αX1 + µ11) ≥ 0, we obtain

d

dt
Lε(t) ≤− λ1L

ε(t) +BC1 + ε(BC2 +BC3 +BC4) + ελ2‖u0‖2L2 ,

where
BC4 = −c

e
(a∂xµ12 + b∂xµ11 + λ1µ12)

(
u0
)2∣∣1

0
, (1.13)

and λ2 = maxx∈[0,1]

∣∣ c
e

(
a∂2

xµ12 + b∂2
xµ11 + λ1∂xµ12

)∣∣ . In order to achieve the exponential decay
of Lε(t), the right-hand side of the inequality (1.9) must be bounded by −λ1L

ε(t). Next, we
will discuss sufficient conditions. The L2 norm of u0 can be bounded by introducing

λ3 = β1 min
x∈[0,1]

e−sgn(a)β0x. (1.14)

Using Lemma 1.1, we have

L̃(t) ≥ λ3‖u0‖2L2 .
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Consider the time derivative of Lε + εL̃. Combining the result of (1.9) with the assertion of
Lemma 1.1,

d

dt
(Lε(t) + εL̃(t))

≤− λ1L
ε(t) +BC1 + ε(BC2 +BC3 +BC4 +BC5) + ελ2‖u0‖2L2 − ε|a|β0λ3‖u0‖2L2

≤− λ1(Lε(t) + εL̃(t)) +BC1 + ε(BC2 +BC3 +BC4 +BC5)− ε (γ|a|β0λ3 − λ2) ‖u0‖2L2 .

Here, β0 and β1 are chosen large enough so that

(1− γ)|a|β0 ≥ λ1 and γ|a|β0λ3 − λ2 ≥ 0 ∀γ ∈ (0, 1).

2 The boundary conditions

In order to obtain exponential decay of the Lyapunov function Lε with rate λ1, we need to
ensure that the following condition holds:{

BC1 + ε(BC2 +BC3 +BC4 +BC5) ≤ 0, (2.1a)

BC5 ≤ 0. (2.1b)

Sufficient condition for equation (2.1) are formulated below. As in [17] boundary conditions
(2.2) are prescribed. Let(

u(t, 0)
q(t, 0)

)
= G

(
u(t, 1)
q(t, 1)

)
,

(
ux(t, 0)
qx(t, 0)

)
= G̃

(
ux(t, 1)
qx(t, 1)

)
, (2.2)

where

G =

(
G11 0
0 G22

)
, G̃ =

(
G̃11 0

0 G̃22

)
.

In the limit ε→ 0, consistent boundary conditions are obtained provided that

G22 = G̃11.

The boundary conditions for the asymptotic expansion then read

u0(t, 0) = G11u
0(t, 1), u1(t, 0) = G11u

1(t, 1), q1(t, 0) = G22q
1(t, 1),

u0
x(t, 0) = G22u

0
x(t, 1), u1

x(t, 0) = G22u
1
x(t, 1), q1

x(t, 0) = G̃22q
1
x(t, 1).

For the matrix A the eigenvalues are ordered such that Λ1 > Λ2. Then, a and d always fulfill

Λ1 > a, d > Λ2.

Depending on the sign of a we obtain different sufficient conditions such that (2.1) holds true
provided that non–negative initial data is prescribed.
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2.1 Sufficient boundary conditions for a > 0

Let a > 0. Then, there exists at least one positive eigenvalue Λ1.

Proposition 2.1. Assume a > 0. Then, the boundary terms BCi, i = 1, . . . , 5 fulfill the in-
equalities (2.1) provided that

t211 is sufficiently small enough,

G2
11 = aX1+µ11(1)

aX1+µ11(0) , G22 = aµ12(1)+bαX1+bµ11(1)
aµ12(0)+bαX1+bµ11(0) ,

e−β0 ≥ G2
11,

(2.3)

where t11 is the component of the transformation matrix T .

Proof. Note that

BC1 + εBC2 = −a(αX1 + µ11)
[(
u0
)2

+ 2εu0u1
]∣∣1

0
,

= −a(αX1 + µ11)
[(
u0 + εu1

)2 − (εu1
)2]∣∣1

0
,

= −a(αX1 + µ11(1)− (αX1 + µ11(0))G2
11)
((
u0
)2

+ 2εu0u1
)

(t, 1),

and

BC3 =
2c

e
(aµ12 + bαX1 + bµ11)u0u0

x

∣∣1
0

=
2c

e
[aµ12(1) + bαX1 + bµ11(1)− (µ12(0) + bαX1 + bµ11(0))G11G22]u0(t, 1)u0

x(t, 1).

One can verify that the choices of G2
11 and G22 lead to

BC1 = 0, BC2 = 0, BC3 = 0.

Recall the term BC5 = −aβ1 exp(−sgn(a)β0x)(u0)2|10. BC5 ≤ 0 yields as sufficient condition

e−β0 −G2
11 ≥ 0.

The last boundary condition is BC4:

BC4 =− c

e
(a∂xµ12 + b∂xµ11 + λ1µ12)

(
u0
)2∣∣∣1

0

=− c

e

[
a∂xµ12(1) + b∂xµ11(1) + λ1µ12(1)

−G2
11

(
a∂xµ12(0) + b∂xµ11(0) + λ1µ12(0)

)](
u0(t, 1)

)2
.

The sufficient conditions for BC4 ≤ 0 are

∂xµ11(1)−G2
11∂xµ11(0) ≥ 0,

c
[
a∂xµ12(1) + λ1µ12(1)−G2

11

(
a∂xµ12(0) + λ1µ12(0)

)]
≥ 0.

Since ∂xµ11(x) < 0 for a > 0, the first inequality above is equivalent to

G2
11 ≥

∂xµ11(1)

∂xµ11(0)
.
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Because

c
[
a∂xµ12(1) + λ1µ12(1)−G2

11

(
a∂xµ12(0) + λ1µ12(0)

)]
=

Λ1 − a
(t11t22 − t12t21)2

[
t222(λ1 − aΛ1)(e−Λ1 −G2

11)− c

b
t211(λ1 − aΛ2)(e−Λ2 −G2

11)
]
,

and λ1− aΛ1 < 0, then G2
11 ≥ e−Λ1 and t211 being small enough will ensure the positivity of this

term. Because
µ11(1)

µ11(0)
= e−Λ1 +

(Λ1 − a)2t211(e−Λ2 − e−Λ1)

b2t222 + (Λ1 − a)2t211

≥ e−Λ1 ,

and

µ11(1)

µ11(0)
− ∂xµ11(1)

∂xµ11(0)
=

(Λ1 − a)2b2t211t
2
22(Λ1 − Λ2)(e−Λ2 − e−Λ1)

(b2t222 + (Λ1 − a)2t211)(b2t222Λ1 + (Λ1 − a)2t211Λ2)
≥ 0

with t211 being small enough, we only need to show that G2
11 ≥

µ11(1)
µ11(0) . Thanks to µ11(0) >

µ11(1) > 0, the calculation below

G2
11 −

µ11(1)

µ11(0)
=
αX1(µ11(0)− µ11(1))

µ11(0)(αX1 + µ11(0))
> 0

completes the proof.

2.2 Sufficient boundary conditions for a < 0

Let a < 0. Then, there exists at least one negative eigenvalue Λ2. We omit the proof and state
the conclusion only due to the close similarity.

Proposition 2.2. Assume a < 0. Then, the boundary terms BCi, i = 1, . . . , 5 fulfill the in-
equalities (2.1) provided that

t222 and X1 are sufficiently small,

G2
11 = aX1+µ11(1)

aX1+µ11(0) , G22 = aµ12(1)+bαX1+bµ11(1)
aµ12(0)+bαX1+bµ11(0) ,

eβ0 ≤ G2
11.

(2.4)

Some remarks are in order.

Remark 2.1. The conditions proposed are independent of the value ε and solutions, and there-
fore we expect uniform exponential decay in the numerical results.

Moreover, the proof of Proposition 2.1 shows the sufficiency of the boundary conditions. The
decay property of the Lyapunov function are observed numerically even in the case when (2.3)
or (2.4) are not fulfilled exactly. This shows that the estimates in the proof for the decay of the
Lyapunov function are rather pessimistic.

3 Numerical results

For the numerical simulations, we examine the behavior of the system as the positive pertur-
bation parameter ε approaches to zero and the mesh for the spatial discretization is refined
respectively. We employ the IMEX-SSP2(3,2,2) stiffly accurate scheme proposed in [24] for the
system (1.1) and an Upwind scheme for zeroth-order system (1.5). An IMEX method is used in
order to avoid stiff integrations due to the smallness of ε.
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3.1 Exponential stability and asymptotic expansion

Let the matrix A =

(
1 −1
−1 0.75

)
and e = 1. It follows that the eigenvalues are Λ1 = 1.88,Λ2 =

−0.133. Let X1 = |c| = 1, X2 = |b| = 1, t11 = 1, t22 = −1, α = 1, β0 = 0.1 and β1 = 1. The

boundary conditions are G =

(
0.5 0
0 0

)
, G̃ =

(
0 0
0 0

)
.

We compute the numerical solutions (u, q) and the Lyapunov functions at different time
steps. By varying the values of ε, we expect that the Lyapunov functions will approach to the
one of the zeroth-order system (1.5). The initial condition is taken as the Gaussian type function
with a trigonometric perturbation:

u0(x) = 100 exp

[
−(x− 0.5)2

0.002

] [
1 + ε sin(8πx+ π)

]
, q0(x) = ε sin(8πx+ π). (3.1)

Let N denote the number of meshes for the spatial discretization and ∆t the time step. Figure
1 shows the Lyapunov function Lε(t) in the log scale using the blue solid line with a truncation
at the machine precision 10−15. The red line with circles is the fitting to a straight line using
linear regression. The numerical decay rate given by this example is around 1.4, significantly
larger than the analytical prediction λ1 = 0.04. The inserts at the bottom left corner are the
results generated with a cubic polynomial initial data. One observes that different initial data
show the similar decay rate.
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(b) ε = 0.0001.

Figure 1: The Lyapunov function Lε(t) in the log scale. The final time is t = 30. N = 1000
and ∆t = 10−4. The blue solid line shows the function ln(Lε(t)) The red line with circles is the
fitting to a straight line using linear regression. (a) and (b): The initial data is given by (3.1).
The inserts at the bottom left corner are the results generated with a cubic polynomial initial
data.

In Figure 2 we analyse the dependence of the decay rate on ε. Due to the asymptotic expan-
sion of Lε in terms of L0, we expect that the decay rate tends towards the decay rate of L0 for
ε → 0. The rate of this convergence will be analysed in the next section. Here, we only show
the different decay rates for different values of ε. As expected for small values for ε there is no
difference in the rates between Lε and L0.

In Figure 3 we show the mesh independence of the derived results. We compute the discrete
Lyapunov function in logarithmic scale for different spatial meshes and two choices for ε. Since
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Figure 2: The Lyapunov function Lε(t) in the log scale with various perturbation parameter ε.
The final time is t = 30. The time step ∆t = 10−4 and N = 1000.

the analytical result is independent of numerical mesh we do not expect different decay properties
for different meshes, as confirmed in Figure 3.
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Figure 3: The Lyapunov function Lε(t) in the log scale with different spatial discretization.
The final time is t = 30. The time step ∆t = 10−3 for N ≤ 400 and ∆t = 10−4 for N = 800.
The overlapping of the profiles shows that the Lyapunov function is independent of the mesh
discretization.
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3.2 Numerical analysis of the convergence rate of the Lyapunov functions as
ε→ 0.

We study the convergence rate of the Lyapunov functions Lε(t) as ε → 0. We measure the
distance between Lε(t) and L0(t) using the L1 norm over the time interval [0, t]. More precisely,
we compute

Dist(t; ε) =

∫ t

0
|Lε(s)− L0(s)| ds.

A linear decay of Dist(t; ε) with respect to ε is predicted by the decomposition of the Lyapunov
functions. Therefore, we plot this distance in the log scale.
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(a) The polynomial-type initial data.
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(b) The Gaussian initial data.

Figure 4: The final time is t = 5. The time step ∆t = 10−4 and N = 1000. The blue curve with
circles is the profile of log10 Dist(t; ε) as a function of log10 ε. The circles correspond to the ten
numerical tests with ε = 0.001, 0.002, 0.003, . . . , 0.008, 0.009, 0.01 respectively. The red solid line
is the parameter fitting result using linear regression. Note that the slope is around 0.7, smaller
than 1, the theoretical prediction. This results from the errors of the numerical schemes since
the spatial discretization with meshsize ∆x = 0.001 is relatively coarse compared to the values
of ε.

3.3 The application to gas flow governed by the isentropic Euler equations

We consider the gas flow in pipes described by the isentropic Euler equations (written in (ρ, u)
variables): 

∂tρ+ ∂x(ρu) = 0, (3.2a)

∂tu+
p′(ρ)

ρ
∂xρ+ u∂xu = −

cf
ε
u2, (3.2b)

where ρ(t, x) and u(t, x) are the density and the velocity of the gas flow respectively. p(ρ) is

the pressure function and we consider the case where p(ρ) = ρ2. Note that p′(ρ)
ρ = 2. cf is the

friction coefficient.
The steady states of the problem (3.2) are denoted by (ρs(x), us(x)) and satisfy the following
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system: 
d

dx
(ρsus) = 0, (3.3a)

p′(ρs)

ρs

d

dx
ρs + us

d

dx
us = −

cf
ε
u2
s. (3.3b)

Note that ρsus ≡ c for some positive constant c. The equation (3.3b) gives

d

dx
ρs =

cfc
2ρs

ε
(
c2 − ρ2

sp
′(ρs)

) . (3.4)

Given some boundary condition ρs(0), the ordinary differential equation (3.4) is solved using
a second order Runge-Kutta scheme. We refer to e.g. [14] for more details on the stationary
states.

Next, we decompose solutions (ρ, u) as

ρ = ρs + σρ̃, u = us + σũ,

and linearize (3.2) around the steady states:

∂t

(
ρ̃
ũ

)
+

(
us ρs
2 us

)
∂x

(
ρ̃
ũ

)
+

(
ũ ρ̃
0 ũ

)
∂x

(
ρs
us

)
=

(
0

−2cfus
ε ũ

)
. (3.5)

Remark 3.1. The ratio of the friction coefficient cf and the relaxation parameter ε is small
enough so that the steady states (ρs, us) remain almost constant in a finite domain, i.e. ∂xρs =
∂xus = 0. Therefore, ρs and us are taken as constants and we drop the third term on the
left-hand side of equation (3.5).

With ρs and us being constant, we apply the boundary stabilization to the system below,

∂t

(
ρ̃
ũ

)
+

(
us ρs
2 us

)
∂x

(
ρ̃
ũ

)
=

(
0

−2cfus
ε ũ

)
. (3.6)

Similarly, we decompose the solutions (ρ̃, ũ) as

ρ̃ = ρ0 + ερ1, ũ = u0 + εu1.

The choices of parameters are given by

cf = 0.0001, ε = 0.01, c = 0.6, (ρs, us) = (0.5, 1.2), (3.7)

which is supersonic. The prediction of the decay rate is λ1 = 0.0947. The initial data is given by
a cubic polynomial perturbed by a trigonometric function. Figure 5 shows that the Lyapunov
function of the system (3.6) with ε = 0.01 is decreasing in an exponential rate 0.44358 that is
larger than the theoretical prediction.

Note that ∂2
xµ11 > 0 holds true unconditionally. Hence ∂xµ11 becomes positive for x suffi-

ciently large. This has also been observed in a theoretical study for stabilization in [16] and is
related to the shape of the stationary states in the case of isentropic Euler equations.

Numerically, we may consider a case where the prerequisite a∂xµ11 < 0 is violated. Consider
a subsonic case with (ρs, us) = (1.2, 0.5) that violates this assumption on the domain {x : x ∈
[0, 1]}. Then, the Lyapunov function of the system (3.6) with nonnegative ε is increasing with
time, as shown in Figure 6.
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Figure 5: The supersonic case. The blue solid line shows the function ln(Lε(t)) with ε = 0.01.
The red line with circles is the fitting to a straight line using linear regression. The parameters
are given in equation (3.7). The final time is t = 30. The time step ∆t = 10−4 and N = 1000.
The decay rate is given by the absolute value of the slope 0.44358.
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Figure 6: The subsonic case. The blue solid line is the function ln(L0(t)) and the red line with
diamonds is the function ln(Lε(t)) with ε = 0.01. The parameters are given in equation (3.7)
with (ρs, us) = (1.2, 0.5). The final time is t = 30. The time step ∆t = 10−4 and N = 1000.
The Lyapunov functions with ε = 0 and 0.01 do not decay in time.

4 Conclusion

We presented an expansion of a Lyapunov function in terms of the stiff parameter in the source
term. The additional conditions on the boundary terms for exponential stability are stated and
numerical results are presented. The obtained conditions are independent of ε, but dependent
on the solution. In forthcoming discussions we plan to extend this result to linear systems of
higher dimension as well as to other boundary conditions.
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