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A CERTIFIED TRUST REGION REDUCED BASIS APPROACH TO
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Abstract. Parameter optimization problems constrained by partial differential equations (PDEs)
appear in many science and engineering applications. Solving these optimization problems may re-
quire a prohibitively large number of computationally expensive PDE solves, especially if the dimen-
sion of the design space is large. It is therefore advantageous to replace expensive high-dimensional
PDE solvers (e.g., finite element) with lower-dimension surrogate models. In this paper, the reduced
basis (RB) model reduction method is used in conjunction with a trust region optimization frame-
work to accelerate PDE-constrained parameter optimization. Novel a posteriori error bounds on
the RB cost and cost gradient for quadratic cost functionals (e.g., least squares) are presented, and
used to guarantee convergence to the optimum of the high-fidelity model. The proposed certified RB
trust region approach uses high-fidelity solves to update the RB model only if the approximation
is no longer sufficiently accurate, reducing the number of full-fidelity solves required. We consider
problems governed by elliptic and parabolic PDEs and present numerical results for a thermal fin
model problem in which we are able to reduce the number of full solves necessary for the optimization
by up to 86%.
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reduced basis methods, error bounds, parametrized systems
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1. Introduction. Optimization problems governed by partial differential equa-
tions (PDEs) appear in many settings across engineering and science disciplines, in-
cluding engineering design optimization, optimal control problems, and inverse prob-
lems. Because typical optimization algorithms require numerous PDE evaluations,
using classical discretization techniques (e.g., finite element) to solve these problems
may be time-consuming, and in some cases, prohibitively expensive. One way to
accelerate the solution of these problems is to replace expensive PDE evaluations
with cheaper surrogate models. In this paper, we consider surrogate models based on
projection-based reduced models.

The use of surrogate models in optimization has an extensive literature (see, e.g.,
the review in [11]). Our interest is in formulations that retain convergence guaran-
tees even when approximate information is employed throughout the optimization
solution process. Trust region methods are one class of approaches that have a rich
history of convergence results; see, for example [9] for a detailed discussion of trust
region methods. Traditionally, trust region methods replaced high-fidelity objective
function evaluations with local linear or quadratic Taylor expansions. These local
approximations automatically satisfy first-order consistency conditions (i.e., the ap-
proximate model’s objective and gradient evaluations are locally exact), which in turn
provides guarantees that the resulting optimization solution will satisfy the optimal-
ity conditions of the original high-fidelity system. The influence of inexact gradient
information is considered in [7, 25], and of inexact gradient and function information
in [6, 8, 9]. In [1], the authors consider a trust region framework with more general
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approximation models of varying fidelity and show how adaptive corrections may be
used to achieve the first-order consistency conditions required to achieve a provably
convergent formulation for general approximation models.

In addition to providing a theoretical framework that yields a convergent surrogate-
based optimization formulation, trust region methods also provide an iterative frame-
work for adaptation of the surrogate to the optimization problem of interest. Gener-
ating globally accurate surrogate models is typically prohibitively expensive, particu-
larly when the underlying system is governed by PDEs. Thus, approaches that tailor
the surrogate model, in our case a projection-based reduced model, to the optimiza-
tion problem are of particular interest. While a number of adaptation approaches
have been proposed for projection-based reduced models (see, e.g., [10, 17, 20, 22]),
the challenge in the optimization setting is that regions of interest are not known a
priori. Iterative approaches that adapt the reduced model as the optimization pro-
gresses have been considered in [5, 21]. In this paper we similarly adapt the reduced
model as the optimization progresses, while also constructing our adaptation so as to
rigorously address the convergence of the resulting optimization formulation.

We use the reduced basis (RB) method, a projection based reduced-order mod-
eling method, together with a trust region approach. The use of projection-based
reduced models as surrogates in trust region optimization was first explored using
proper orthogonal decomposition (POD) in [2]. In [2], the authors assume an upper
bound on the inexactness of the function and gradient information resulting from the
POD model and prove convergence of their algorithm using the results from [6, 25].
Unfortunately, verification of this upper bound in practice requires evaluation of the
high-fidelity model. In [30], the authors assume the existence of error bounds for the
surrogate function and gradient evaluations, and use this to prove convergence of the
trust region method to a high-fidelity optimum relying only on surrogate evaluations.
However, due to the absence of a rigorous and efficiently evaluable error bound for
the Krylov-Pade interpolatory reduced model considered in [30], the authors intro-
duce a heuristic bound and thus are able to demonstrate only heuristic convergence.
Heuristic error indicators have also been applied to trust region optimization for POD
models [31], and in a stochastic context, an approximation based on sparse grids [16].

The reduced basis method is a reduced-order modeling technique for parametrized
PDEs which supports rigorous a posteriori error estimation (see [24] for a review).
We propose a reduced basis trust region method for solving optimization problems
constrained by elliptic and parabolic PDEs which avoids the costly offline phase of the
traditional RB method and iteratively builds the reduced model along the optimiza-
tion trajectory as the algorithm progresses. After introducing the problem statement
in section 2, we present the following contributions:

1. In section 3, we present a posteriori error bounds for the optimization cost
functional and its gradient. Our bounds are based on a primal-dual for-
mulation and are rigorous and efficiently computable. The dual formulation
permits us to efficiently evaluate the gradient of the cost functional and at the
same time derive error bounds for the cost functional which are superlinearly
convergent with respect to the primal and dual error bound.

2. The error bounds play a crucial role in the reduced basis trust region method
introduced in section 4—they allow us to show convergence of the proposed
approach to the (unknown) high-fidelity optimum. Furthermore, they allow
us to efficiently control the accuracy of the reduced basis surrogate model dur-
ing the optimization. We avoid the computationally expensive offline phase
and build the reduced model adaptively along the optimization trajectory,
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thus keeping the number of high-fidelity solves to a minimum.
In section 5, we present numerical results for parameter optimization problems

constrained by elliptic and parabolic PDEs. We consider a thermal fin model problem
with up to six variable parameters and compare the performance of our proposed
reduced basis trust region approach to that of a traditional optimization using high-
fidelity PDE evaluations. We also compare to a “classical” RB approach, where
the reduced model is first generated during an offline stage and then used for the
optimization in the online stage.

2. Problem formulation. In this section we introduce the PDE-constrained
parameter optimization problem for both the elliptic and parabolic settings.

2.1. Preliminaries. Let Ω be a physical domain in Rd with Lipschitz con-
tinuous boundary ∂Ω. We define the Hilbert space Xe such that H1(Ω) ⊃ Xe ⊃
H1

0 (Ω) and Y e := L2(Ω), where H1(Ω) =
{
v | v ∈ L2(Ω),∇v ∈

(
L2(Ω)

)d}
, H1

0 (Ω) ={
v | v ∈ H1(Ω), v|∂Ω = 0

}
, and L2(Ω) is the space of square-integrable functions over

Ω. We associate with Xe and Y e the inner products (w, v)Xe and (w, v)Y e as well as

the induced norms ‖·‖Xe =
√

(·, ·)Xe and ‖·‖Y e =
√

(·, ·)Y e , respectively; for exam-
ple, (w, v)Xe :=

∫
Ω
∇w · ∇v +

∫
Ω
wv, ∀w, v ∈ Xe and (w, v)Y e :=

∫
Ω
wv, ∀w, v ∈ Y e.

We denote the corresponding dual spaces by Xe′ and Y e′. The superscript ·e indi-
cates that we are dealing with the “exact” continuous domain. Finally, let D ⊂ RP
be a P -dimensional parameter set in which our P -tuple parameter µ := (µ1, . . . , µP )
resides.

We now define the conforming N -dimensional finite element (FE) approximation
space X ⊂ Xe and define Y := Y e, inheriting inner product and norm definitions from
Xe and Y e, respectively. For the parabolic case, we directly consider a time-discrete
framework associated to the time interval I := ]0, tf ], where Ī := [0, tf ] is divided

into K uniform subintervals of length ∆t =
tf
K . We introduce K := {1, . . . ,K} for

notational convenience, and define tk := k∆t,∀k ∈ K, and finally, I := {t0, . . . , tk}.
We shall assume that N and K are large enough – i.e. X is sufficiently rich and the
time-discretization sufficiently fine – such that the FE approximation guarantees a
desired accuracy over the whole parameter domain D.

We introduce the parameter-dependent bilinear form a(·, ·;µ) : X ×X → R and
its derivative in the ith component of µ, aµi(·, ·;µ) : X × X → R,∀i ∈ {1, . . . , P}.
We also introduce the parameter-independent bilinear forms m(·, ·) : X×X → R and
d(·, ·) : X ×X → R. We assume that all bilinear forms are continuous:

(1) 0 < γa(µ) := sup
w∈X\{0}

sup
v∈X\{0}

a(w, v;µ)

‖w‖X‖v‖X
≤ γa0 <∞, ∀µ ∈ D,

(2)

0 < γaµi (µ) := sup
w∈X\{0}

sup
v∈X\{0}

aµi(w, v;µ)

‖w‖X‖v‖X
≤ γaµi0 <∞, ∀µ ∈ D, i = 1, .., P

(3) 0 < γm := sup
w∈X\{0}

sup
v∈X\{0}

m(w, v)

‖w‖Y ‖v‖Y
<∞,

(4) 0 < γd := sup
w∈X\{0}

sup
v∈X\{0}

d(w, v)

‖w‖X‖v‖X
<∞,
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and symmetric, i.e. ∀w, v ∈ X, ∀µ ∈ D, a(v, w;µ) = a(w, v;µ), aµi(v, w;µ) =
aµi(w, v;µ), m(v, w) = m(w, v), and d(v, w) = d(w, v). Additionally, we assume that
a(·, ·;µ) and m(·, ·) are coercive:

(5) 0 < αa0 ≤ α(µ) := inf
v∈X

a(v, v;µ)

‖v‖2X
, ∀µ ∈ D,

(6) 0 < αm0 := inf
v∈X

m(v, v)

‖v‖2Y
, ∀µ ∈ D.

We next introduce two X-continuous linear functionals, the parameter-dependent
f(·;µ) : X → R and the parameter-independent `(·) : X → R. Finally, we assume that
all parameter-dependent linear and bilinear forms depend affinely on the parameter
µ and can be expressed as

(7) a(w, v;µ) =

Qa∑
q=1

Θq
a(µ)aq(w, v), ∀w, v ∈ X,∀µ ∈ D,

(8) f(v;µ) =

Qf∑
q=1

Θq
f (µ)fq(v), ∀v ∈ X,µ ∈ D,

where Qa and Qf are some (preferably) small integers, the functions Θq
a(µ),Θq

f (µ) :
D → R are continuous and depend on µ, but the continuous bilinear and linear forms
aq(·, ·) : X ×X → R and fq : X → R do not depend on µ. For simplicity, we assume
that the forms m(·, ·), d(·, ·), and `(·) are parameter-independent, although extensions
to affine parameter dependence are readily admitted [24].

For the development of the a posteriori error bounds we also require the following
ingredients. We assume that we are given a positive lower bound αLB(µ) : D → R+

for the coercivity constant α(µ) defined in (5) such that

(9) 0 < αa0 ≤ αLB(µ) ≤ α(µ), ∀µ ∈ D.

Furthermore, we assume that we have an upper bound available for the continuity
constants γaµi (µ) defined in (2) such that

(10) γUBaµi
(µ) ≥ γaµi (µ), ∀µ ∈ D.

Various recipes exist to obtain such bounds [15, 24].

2.2. Elliptic PDE-constrained optimization. We consider the constrained
minimization of the output least-squares cost functional

min
µ∈D

‖L(u(µ))− gref‖2D + λR(µ)(11a)

s.t. u(µ) ∈ X satisfies a(u(µ), v;µ) = f(v;µ), ∀v ∈ X,(11b)

where L : X → R is a linear (output) functional and gref is a reference output,
e.g. obtained from experimental measurements. Furthermore, D is a suitable Hilbert
space of observations with inner product (·, ·)D and induced norm ‖ · ‖D =

√
(·, ·)D,

and R : D → R with λ ∈ R+ together form a scaled regularization term.
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Note that we may expand (11a) with

(L(u)− gref ,L(u)− gref)D = (L(u),L(u))D − 2(L(u), gref)D + (gref , gref)D.

Thus, defining d(w, v) := (L(w),L(v))D,∀w, v ∈ X and `(v) := −2(L(v), gref)D,∀v ∈
X and dropping the constant term (gref , gref)D, we obtain the following equivalent
formulation for the optimization problem:

min
µ∈D

J(µ) where J(µ) := d(u(µ), u(µ)) + `(u(µ)) + λR(µ)(12a)

s.t. u(µ) ∈ X satisfies a(u(µ), v;µ) = f(v;µ), ∀v ∈ X.(12b)

In the sequel, we will use this more general quadratic cost formulation in developing
the theory of the method.

Gradient-based optimization methods require access to the cost derivatives, which
may be efficiently calculated using adjoint methods. We thus introduce the FE adjoint
(dual) problem associated with our primal problem and cost in (12) [26] as follows:
Given µ ∈ D and the associated solution u(µ) to (12b), find p(µ) ∈ X satisfying

(13) a(v, p(µ);µ) = 2d(u(µ), v) + `(v), ∀v ∈ X.

The derivative of the cost function with respect to the ith parameter µi may then be
calculated via

(14)
∂J(µ)

∂µi
= fµi(p(µ);µ)− aµi(u(µ), p(µ);µ) + λ

∂R(µ)

∂µi
.

2.3. Parabolic PDE-constrained optimization. The parabolic optimization
formulation is analogous to the elliptic case. We therefore directly consider the fol-
lowing (time-discrete) constrained minimization problem with quadratic cost:

min
µ∈D

J(µ) where J(µ) := ∆t

K∑
k=1

[
d
(
uk(µ), uk(µ)

)
+ `
(
uk(µ)

)]
+ λR(µ)(15a)

s.t. uk(µ) ∈ X satisfies

m
(
uk(µ)− uk−1(µ), v

)
∆t

+ a
(
uk(µ), v;µ

)
= f(v;µ)y

(
tk
)
, ∀v ∈ X, k ∈ K,(15b)

with initial condition

u0(µ) = 0,(15c)

where y
(
tk
)

is a (known) time-dependent forcing input and we assume zero initial
conditions for simplicity. Note that we consider an Euler-Backward discretization for
the time integration; however, we can also readily treat higher-order schemes such as
Crank-Nicolson. We next introduce the dual problem: Given µ ∈ D and the associated
solution uk(µ), k ∈ K to (15b), the adjoint field variable pk(µ) ∈ X,K ≥ k ≥ 1,
satisfies

(16)
m
(
v, pk(µ)− pk+1(µ)

)
∆t

+a
(
v, pk(µ);µ

)
= 2d

(
uk(µ), v

)
+ `(v), ∀v ∈ X, k ∈ K,

with final condition pK+1(µ) = 0. Note that the adjoint field variable evolves back-
ward in time. The derivative of the cost function with respect to the ith parameter
µi may then be calculated via

(17)
∂J(µ)

∂µi
= ∆t

K∑
k=1

[
fµi
(
pk(µ)

)
− aµi

(
uk(µ), pk(µ);µ

)]
+ λ

∂R(µ)

∂µi
.



6 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

3. Reduced basis method. The RB method is a projection-based model re-
duction method for parametrized PDEs [24]. Traditionally, it consists of an expensive,
time-consuming offline phase, in which the reduced basis is built, and an inexpensive
online phase, during which the pre-built RB may be exploited for rapid and certified
simulations of the PDE at any parameter within the admissible parameter domain.
In this section, we present primal-dual RB approximations and associated novel a
posteriori error estimation procedures for the elliptic and parabolic PDE-constrained
parameter optimization problems introduced in the last section. To this end, we em-
ploy the RB approximations as surrogate models in the optimization problems (12)
and (15) and develop new rigorous and efficiently evaluable error bounds for the cost
functional and its gradient. In this work, we leverage these new error bounds to
break from the offline/online paradigm in the optimization, i.e., we build the RB ap-
proximation during the iterative optimization procedure on-the-fly. Our error bounds
guide the RB updates and at the same time allow us to guarantee convergence of
the surrogate optimization to the (unknown) optimal solution of the original (FE)
optimization problem. We note, however, that the results presented here also apply
to the traditional offline/online RB setting.

Subsections 3.1 and 3.2 present the RB approximation and error estimation re-
sults for the elliptic and parabolic case, respectively. Subsection 3.3 discusses the
computational aspects of the RB approximation.

3.1. Elliptic problems. This section introduces the RB approximation and
error estimation results for the elliptic optimization problem (12).

3.1.1. Approximation. Given X-orthogonal sets of primal and dual basis vec-
tors ζn and ψn, n = 1, . . . , N , we denote the N -dimensional primal and dual RB
approximation spaces by Xpr

N and Xdu
N , defined as

Xpr
N := span{ζn, 1 ≤ n ≤ N} = span{u(µpr

n ), 1 ≤ n ≤ N},
Xdu
N := span{ψn, 1 ≤ n ≤ N} = span{p(µdu

n ), 1 ≤ n ≤ N},

respectively. We will comment on how µpr
n and µdu

n are chosen in sections 3.3 and 4.1.
For simplicity, we shall assume in this paper that the dimensions of the primal and
dual RB spaces are equivalent. The following derivation, however, directly extends to
the case with different dimensions.

The RB approximation is then obtained via a Galerkin projection: Given µ ∈ D,
the RB primal approximation uN (µ) ∈ Xpr

N satisfies

(18) a(uN (µ), v;µ) = f(v;µ), ∀v ∈ Xpr
N ,

and the RB dual approximation pN (µ) ∈ Xdu
N is given by

(19) a(v, pN (µ);µ) = 2d(uN (µ), v) + `(v), ∀v ∈ Xdu
N .

The RB cost functional and its derivative with respect to the ith parameter can the
be computed from

(20) JN (µ) = d(uN (µ), uN (µ)) + `(uN (µ)) + λR(µ),

and

(21)
∂JN (µ)

∂µi
= fµi(pN (µ);µ)− aµi(uN (µ), pN (µ);µ) + λ

∂R(µ)

∂µi
.
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3.1.2. A posteriori error estimation. We turn to the a posteriori error
bounds. We first require

Definition 1. The residuals of the primal and dual equations are defined by

rpr(v;µ) := f(v;µ)− a(uN (µ), v;µ), ∀v ∈ X, ∀µ ∈ D,(22)

rdu(v;µ) := 2d(uN (µ), v) + `(v)− a(v, pN (µ);µ), ∀v ∈ X, ∀µ ∈ D.(23)

We also define the primal and dual errors as follows:

epr(µ) := u(µ)− uN (µ) and edu(µ) := p(µ)− pN (µ).(24)

We can now prove

Lemma 2. Let u(µ) and uN (µ) be the solutions to (12b) and (18), respectively.
Furthermore, let p(µ) and pN (µ) be the solutions to the associated dual equation (13)
and (19). The error in the primal variable, epr(µ) = u(µ) − uN (µ), is then bounded
by

(25) ‖epr(µ)‖X ≤ ∆pr
N (µ) :=

‖rpr(·;µ)‖X′

αLB(µ)
, ∀µ ∈ D,

and the error in the dual variable, edu(µ) = p(µ)− pN (µ), by

(26) ‖edu(µ)‖X ≤ ∆du
N (µ) :=

∥∥rdu(·;µ)
∥∥
X′ + 2γd∆

pr
N (µ)

αLB(µ)
, ∀µ ∈ D.

Proof. The bound (25) is standard, see e.g. [24]. We follow an analogous proce-
dure to show (26). We first note from (13) and (23) that the dual error satisfies

(27) a(v, edu(µ);µ) = rdu(v;µ) + 2d(epr(µ), v).

Choosing v = edu(µ) and invoking (5), (9), and (4) we obtain

αLB(µ)‖edu(µ)‖2X ≤
∥∥rdu(·;µ)

∥∥
X′‖edu(µ)‖X + 2γd‖epr(µ)‖X‖edu(µ)‖X .

The result (26) then follows from (25).

We may now consider the error in the cost functional and its gradient.

Theorem 3. The error in the cost functional, eJ(µ) := J(µ)− JN (µ), satisfies

(28) |eJ(µ)| ≤ ∆J
N (µ) :=

∥∥rdu(µ)
∥∥
X′∆

pr
N (µ)+γd ∆pr

N (µ)
2

+ |rpr(pN (µ);µ)|, ∀µ ∈ D,

where ∆pr
N (µ) is the primal bound defined in Lemma 2.

Proof. It follows from (12a) and (20) that

eJ(µ) = d(u(µ), u(µ))− d(uN (µ), uN (µ)) + `(epr(µ)).

Adding and subtracting rpr(pN (µ);µ) on the right-hand side and recalling the primal
error-residual relationship, a(epr(µ), v;µ) = rpr(v;µ), ∀v ∈ X, we obtain

eJ(µ) = d(u(µ), u(µ))− d(uN (µ), uN (µ)) + `(epr(µ))

+ rpr(pN (µ);µ)− a(epr(µ), pN (µ);µ).
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If we also add and subtract the term 2d(uN (µ), epr(µ)) on the right-hand side and
invoke (23), it follows that

eJ(µ) = rdu(epr(µ);µ) + d(u(µ), u(µ))− d(uN (µ), uN (µ))

+ rpr(pN (µ);µ)− 2d(uN (µ), epr(µ)).

Expanding d(uN (µ), epr(µ)) = d(uN (µ), u(µ)− uN (µ)), we obtain

eJ(µ) = rdu(epr(µ);µ) + rpr(pN (µ);µ) + d(u(µ), u(µ))

−2d(uN (µ), u(µ)) + d(uN (µ), uN (µ))

= rdu(epr(µ);µ) + rpr(pN (µ);µ) + d(epr(µ), epr(µ)),

which yields

|eJ(µ)| ≤
∥∥rdu(µ)

∥∥
X′‖epr(µ)‖X + γd‖epr(µ)‖2X + |rpr(pN (µ);µ)|,

where we used the continuity of the bilinear form d. The desired result directly follows
from Lemma 2.

Before presenting the result for the cost gradient we make several remarks. First,
since our goal is to develop effective a posteriori error bounds for the cost functional
as opposed to increasing the accuracy of the RB cost functional1, we incorporate
the residual correction term in the bound (28) instead of correcting the RB cost
functional; see e.g. the discussion in [27]. Second, the dual problem plays two roles in
our setting: it allows us to (i) efficiently compute the cost gradient from (21) without
having to resort to sensitivity derivatives; and (ii) devise an a posteriori error bound
for the cost functional which converges superlinearly with respect to the primal and
dual bounds [23]. Finally, we note that certified reduced basis approximations for
quadratic outputs have been previously considered in [14]. As opposed to the dual
problem defined in (13) in this paper, the authors in [14] introduce a dual problem
which is dependent on the RB solution uN (µ), e.g., for p(µ) ∈ X,

a(v, p(µ);µ) = d(u(µ) + uN (µ), v) + `(v), ∀v ∈ X

Although we would obtain a similar bound to (28) for the cost functional using this
formulation, the dual variable p(µ) thus defined cannot be used to compute the cost
gradient from (14). We now turn to the error bound for the cost gradient.

Theorem 4. The error in the cost gradient, e∇J(µ) = ∇µJ(µ)−∇µJN (µ), sat-
isfies

(29)
∥∥e∇J(µ)

∥∥ ≤ ∆∇JN (µ) :=
∥∥∥∆
∇µJ
N (µ)

∥∥∥,
where ‖ · ‖ is the Euclidean norm and ∆

∇µJ
N (µ) is a vector whose ith component is

the bound on the error in the ith component of the gradient, given by

∆
∇µiJ
N (µ) = ‖fµi(·;µ)‖X′∆

du
N (µ)

+ γUBaµi
(µ)
(
∆pr
N (µ)∆du

N (µ) + ∆pr
N (µ)‖pN (µ)‖X + ‖uN (µ)‖X∆du

N (µ)
)
,

(30)

where ∆pr
N (µ) and ∆du

N (µ) are the primal and dual error bounds defined in Lemma 2.

1We will observe in section 5 that the RB cost functional as defined in (20) is sufficiently accurate
for our purpose.
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Proof. We consider the error in the derivative of the cost with respect to µi, the
ith element of the parameter vector µ. It follows from (14) and (21) that

(31) e∇µiJ(µ) = fµi(edu(µ);µ)− (aµi(u(µ), p(µ);µ)− aµi(uN (µ), pN (µ);µ)).

We next note that

(32) aµi(u(µ), p(µ);µ)− aµi(uN (µ), pN (µ);µ) =

aµi(epr(µ), edu(µ);µ) + aµi(epr(µ), pN (µ);µ) + aµi(uN (µ), edu(µ);µ).

Plugging (32) into (31) and invoking (2) and (10) we obtain

(33)
e∇µiJ(µ) ≤ ‖fµi(·;µ)‖X′‖edu(µ)‖X + γUBaµi

(µ)‖epr(µ)‖X‖edu(µ)‖X
+ γUBaµi

(µ)‖epr(µ)‖X‖pN (µ)‖X + γUBaµi
(µ)‖uN (µ)‖X‖edu(µ)‖X

The result (30) then follows from Lemma 2 and (29) is obtained by taking the norm
of all components.

We note that, as opposed to the a posteriori error bound for the cost functional,
the bound for the gradient does not exhibit a superlinear convergence with respect
to the primal and dual error. However, it is well-known in the literature [6, 8] that
fairly large relative errors (of 50% or more) in the gradient are permissible in the
trust-region framework without jeopardizing the overall convergence. Even our fairly
crude bound for the cost gradient will thus be sufficient to guarantee convergence
of the RB trust region approach; also see the discussion in subsection 4.1 and the
numerical results in section 5.

3.2. Parabolic problems. This section introduces the RB approximation and
error estimation results for the parabolic case.

3.2.1. Approximation. We first introduce the primal and dual reduced basis
spaces

Xpr
N = span{ζn, 1 ≤ n ≤ N}, Xdu

N = span{ψn, 1 ≤ n ≤ N},

where the ζn (and the ψn), n = 1, . . . , N, are mutually X-orthogonal basis functions.
We comment on their construction in sections 3.3 and 4.1.

The primal and dual RB approximations are obtained from a Galerkin projection:
Given µ ∈ D, the primal approximation ukN (µ) ∈ Xpr

N to uk(µ) ∈ X satisfies

(34)
m
(
ukN (µ)− uk−1

N (µ), v
)

∆t
+ a
(
ukN (µ), v;µ

)
= f(v;µ)y

(
tk
)
, ∀v ∈ Xpr

N ,

and the dual approximation pkN (µ) ∈ Xdu
N to pk(µ) ∈ X is given by

(35)
m
(
v, pkN (µ)− pk+1

N (µ)
)

∆t
+ a
(
v, pkN (µ);µ

)
= 2d

(
ukN (µ), v

)
+ `(v), ∀v ∈ Xdu

N .

We can then calculate the RB cost and its derivative with respect to the ith parameter
via

(36) JN (µ) := ∆t

K∑
k=1

[
d
(
ukN (µ), ukN (µ)

)
+ `
(
ukN (µ)

)]
+ λR(µ),

and

(37)
∂JN (µ)

∂µi
= ∆t

K∑
k=1

[
fµi
(
pkN (µ)

)
− aµi

(
ukN (µ), pkN (µ);µ

)]
+ λ

∂R(µ)

∂µi
.
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3.2.2. A posteriori error estimation. The a posteriori error estimation pro-
cedure for the parabolic problem is analogous to that of the elliptic problem. In this
section, we present the error bounds necessary for the trust region approach proposed
in section 4, deferring proofs to Appendix A. We first introduce the residuals in

Definition 5. The residuals of the primal and dual equations are defined by

rkpr(v;µ) = f(v)y
(
tk
)
− a
(
ukN (µ), v;µ

)
− 1

∆t
m
(
ukN (µ)− uk−1

N (µ), v
)
,(38)

rkdu(v;µ) = 2d
(
ukN (µ), v

)
+ `(v)− a

(
v, pkN (µ);µ

)
− 1

∆t
m
(
v, pkN (µ)− pk+1

N (µ)
)
,(39)

for all v ∈ X and all µ ∈ D.

For the parabolic case, we also require the “spatio-temporal” energy norms for
the primal and dual problem as follows.

Definition 6. The spatio-temporal energy norms for the primal and dual problem
are given by

|||vk(µ)|||pr :=

[
m(vk(µ), vk(µ)) + ∆t

k∑
k′=1

a(vk
′
(µ), vk

′
(µ);µ)

] 1
2

, ∀v ∈ X,(40a)

|||vk(µ)|||du :=

[
m(v1(µ), v1(µ)) + ∆t

K∑
k′=k

a(vk
′
(µ), vk

′
(µ);µ)

] 1
2

, ∀v ∈ X.(40b)

We may now prove the following results for the primal and dual RB errors.

Lemma 7. Let uk(µ) and ukN (µ), k ∈ K, be the solutions to (15b) and (34), re-
spectively. Furthermore, let pk(µ) and pkN (µ), k ∈ K, be the solutions to the associated
dual equation (16) and (35). Then, the following bounds for the error in the primal
variable, ekpr(µ) = uk(µ)−ukN (µ), and the dual variable, ekdu(µ) = pk(µ)−pkN (µ), hold
for all µ ∈ D

(41) |||eKpr(µ)|||pr ≤ ∆pr
N,K(µ) :=

(
∆t

αLB(µ)

K∑
k=1

∥∥rkpr(·;µ)
∥∥2

X′

) 1
2

(42) |||e1
du|||du ≤ ∆du

N,1(µ) :=

8γ2
d

(
∆pr
N,K(µ)

αLB(µ)

)2

+
2∆t

αLB(µ)

K∑
k=1

∥∥rkdu(·;µ)
∥∥2

X′

 1
2

.

With Lemma 7 in hand, we may bound the parabolic cost and cost gradient as we
did in Theorems 3 and 4 for the elliptic case.

Theorem 8. The error in the cost functional, eJ(µ) := J(µ) − JN (µ), may be
bounded by

(43) eJ(µ) ≤ ∆J
N (µ) :=

(
∆t

K∑
k=1

∥∥rkdu(·;µ)
∥∥2

X′)

) 1
2 ∆pr

N,K(µ)√
αLB(µ)

+
γd

αLB(µ)
(∆pr

N,K(µ))2 + ∆t

∣∣∣∣∣
K∑
k=1

rkpr
(
pkN (µ);µ

)∣∣∣∣∣, ∀µ ∈ D,
where ∆pr

N,K(µ) is defined in Lemma 7.
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Theorem 9. The error in the cost gradient, e∇J(µ) = ∇µJ(µ)−∇µJN (µ), sat-
isfies

(44)
∥∥e∇J(µ)

∥∥ ≤ ∆∇JN (µ) :=
∥∥∥∆
∇µJ
N (µ)

∥∥∥, ∀µ ∈ D,

where ∆
∇µJ
N (µ) is a vector whose ith component is the bound on the error of the ith

component of the gradient, given by

(45) ∆
∇µiJ
N (µ) :=

(
∆t

K∑
k=1

‖fµi(·;µ)‖2X′

) 1
2

∆du
N,1(µ)√
αLB(µ)

+
γUBaµi

(µ)

αLB(µ)
∆pr
N,K(µ)∆du

N,1(µ) +
γUBaµi

(µ)√
αLB(µ)

∆pr
N,K(µ)

(
∆t

K∑
k=1

∥∥pkN (µ)
∥∥2

X

) 1
2

+
γUBaµi

(µ)√
αLB(µ)

∆du
N,1(µ)

(
∆t

K∑
k=1

∥∥ukN (µ)
∥∥2

X

) 1
2

.

and ∆pr
N,K(µ) and ∆du

N,1(µ) are defined in Lemma 7.

3.3. Computational procedure. Like other model reduction methods, the RB
method is traditionally divided into a computationally expensive offline phase and a
computationally efficient online phase. A detailed discussion of the necessary compu-
tations and computational cost can be found e.g. in [24], we thus only present a short
summary and focus on the main ingredients and costs.

During the offline phase, the reduced basis for elliptic problems (resp. parabolic
problems) is usually built incrementally using a greedy (resp. POD-greedy) algo-
rithm [28]. The greedy algorithm chooses the parameters µpr

n and µdu
n at which snap-

shots are taken by searching for the largest a posteriori error bound over a training
parameter set. In the elliptic case, the snapshots u(µpr

n ) and p(µdu
n ) are computed,

orthonormalized, and added directly to the basis. In the parabolic case, the X-
orthogonal projection of uk(µpr

n ) and pk(µdu
n ), k ∈ K, onto the current basis is com-

puted, and the largest POD mode of the time history of the projection error is added
to the basis. The costs of calculating the FE snapshots during the offline phase are
thus 2N N -dimensional A(µ)-solves (one primal and one dual solve for each N) for
the elliptic case, and 2NK N -dimensional A(µ)-solves in the parabolic case (the cost
of time integration without LU-factorization for both the dual and the primal for each
N). Here, A(µ) is the FE matrix corresponding to the bilinear form a.

Additionally, in order to facilitate efficient online error estimation, the offline
phase requires (Qa+Qf )N -dimensional solves of theX-inner product matrix (denoted
X) per vector added to the basis. Since the matrix X is parameter-independent, we
may precompute its (sparse) LU-factorization once at the start of the optimization,
allowing the necessary X-solves to be efficiently executed offline.

As mentioned above, we also assume that we have access to αLB(µ), a lower bound
on α(µ), and to γUBaµ (µ), an upper bound on γaµ(µ). These can be calculated via either
the “min-theta” approach [24], or more generally, via the successive constraint method
[15]. We also assume access to the continuity constant γd, which may be obtained via
a generalized eigenvalue problem.
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4. Trust region framework. The canonical trust region optimization frame-
work solves a set of successive optimization subproblems, defined as

min
s
Mk

(
µk + s

)
s.t.‖s‖ ≤ δk,

where µk is the current optimization iterate, Mk(µ) is the model function used to
approximate the true objective function J(µ), δk is the trust region radius, and we
solve for s, the optimal step within the defined trust region; we refer to the book [9] for
an extensive resource on trust region methods. The model function Mk(µ) changes
at each trust region iteration and is often a local quadratic Taylor expansion. Other
surrogates, however, have also been considered in the literature [1, 2, 16, 18, 30].

To determine if the step s should be accepted, the ratio ρk =
M(µk)−M(µk+1)
J(µk)−J(µk+1)

,

a measure of how well the model predicts decrease in the true cost, is computed.
The value of ρk is used to determine not only whether or not the optimization step
is accepted, but also whether and how to change trust region radius for the next
optimization subproblem. One criticism of this approach in the POD or general
surrogate model context is that the computation of ρk requires evaluating the true
objective function J(µ), which may be computationally expensive [2, 30].

In this work, the reduced basis cost JkN (µ) serves as the model function Mk(µ).
We note that the letter k is used to indicate the kth trust region iterate as well as
the kth timestep in the parabolic time integration; however, the meaning should be
clear from context. The a posteriori error bounds developed in section 3 are used
(i) to minimize the number of true objective evaluations required, and (ii) together
with a recent result from Yue and Meerbergen [30], to guarantee convergence of the
approach to the optimum of the high-fidelity model.

We again stress that we do not follow the traditional RB offline/online strategy
here, i.e. generate the RB approximation in the offline stage and only revert to the
online evaluation during the optimization. Instead, we generate the RB approximation
on the fly during the optimization: we use the online evaluation to efficiently solve
the trust region subproblems and update the reduced basis along the optimization
trajectory only if the a posteriori error bounds indicate a need to do so. The offline and
online stages thus intertwine and each reduced basis update requires an FE snapshot
computation and update of the error bound computation as discussed in the last
section.

4.1. Convergence. Standard trust region convergence theory requires (i) that
the model function mk satisfy the first-order condition, i.e. the model function must
match the true objective and gradient at the current iterate exactly, and (ii) that each
iterate of the optimization meet a sufficient decrease condition. It has been shown,
however, that trust region optimizations converge even if inexact model and gradient
information is used [7, 13, 25]. In [30], Yue and Meerbergen relax the stringent first-
order accuracy requirements to consider the general setting of an unconstrained trust
region optimization algorithm which makes use of surrogate models with the following
properties:

1. a bound on the error in the model function exists over the entire parameter
space,

2. at any point within the parameter domain, we may reduce the approximation
error to within any given tolerance ε > 0, and

3. the model function must be smooth with finite gradient everywhere.
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Given the above conditions, [30] replaces the first-order condition with the following
relaxed first-order condition (adapted to our notation from sections 2 and 3:∣∣JkN(µk)− J(µk)∣∣ ≤ ∆J,k

N

(
µk
)

and
∥∥∇µJkN(µk)−∇µJ(µk)∥∥ ≤ ∆∇J,kN

(
µk
)

(46a)

∆J,k
N

(
µk
)

JkN (µk)
≤ τJ and

∆∇J,kN

(
µk
)∥∥∇µJkN (µk)
∥∥ ≤ τ∇J(46b)

for any given τJ > 0 and τ∇J > 0. There are two parts to this condition: (46a) requires
that error bounds exist for both the cost function and its gradient, while (46b) requires
that the reduced basis model be able to meet arbitrarily small tolerances τJ and τ∇J .
The sufficient decrease condition is similarly replaced, with an “error-aware sufficient
decrease condition” (EASDC):

(47) Jk+1
N

(
µk+1

)
≤ JkN

(
µkAGC

)
where µAGC is known as the “approximate generalized Cauchy point”, a point that
achieves sufficient decrease in the reduced basis model in a descent direction.

To ensure that all optimization iterates satisfy the EASDC, Yue and Meerbergen
present a procedure designed to reject steps which violate this condition [30]. We
summarize the procedure in [30] using our notation here and begin by noting that a
sufficient condition for (47) is

JkN
(
µk+1

)
+ ∆J,k

N

(
µk+1

)
+ ∆J,k+1

N

(
µk+1

)
≤ JkN

(
µkAGC

)
.

However, we do not have access to ∆J,k+1
N

(
µk+1

)
. Instead, it is sufficient to check

(48) JkN
(
µk+1

)
+ ∆J,k

N

(
µk+1

)
< JkN

(
µkAGC

)
,

because we may update the RB model with basis functions taken at µk+1 before the
next subproblem solve to ensure that ∆J,k+1

N

(
µk+1

)
= 0, thus satisfying the sufficient

condition. We can check this cheaply, and if it holds we may accept the iterate µk+1,
updating the reduced basis model at µk+1 as necessary.

Otherwise, we note that a necessary condition for (47) is

(49) JkN
(
µk+1

)
−∆J,k

N

(
µk+1

)
−∆J,k+1

N

(
µk+1

)
≤ JkN

(
µkAGC

)
,

so we check

(50) JkN
(
µk+1

)
−∆J,k

N

(
µk+1

)
≤ JkN

(
µkAGC

)
.

If this condition fails, satisfying (49) may require a large error bound in the next
model, leading to inaccurate approximations, so we reject the iterate µk+1, shrink
the trust region (set εL = κtrεL for some κtr ∈ (0, 1)), and re-solve the optimization
sub-problem. Otherwise, if (50) holds, we update the model at µk+1 and check (47).
If it holds, then we accept µk+1. Otherwise, we reject µk+1, shrink the trust region,
and re-solve the optimization subproblem.

If the relaxed first-order condition is satisfied, and all iterates satisfy the EASDC,
Yue and Meerbergen show convergence of the trust region algorithm to the optimum of
the high-fidelity model under mild assumptions [30] which are satisfied in our setting.
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4.2. Trust region reduced basis algorithm. The optimization subproblem
for the trust region reduced basis algorithm is defined as follows:

min
µk+1

JkN
(
µk+1

)
s.t.

∣∣∣∣∣∆
J,k
N

(
µk+1

)
JkN (µk+1)

∣∣∣∣∣ ≤ εL(51)

where εL is the maximum allowable relative error in the cost. We note that the error
bound on the cost functional, ∆J,k

N (µ), is used to implicitly define the trust region; if
the subproblem solver steps outside of this region, we use backtracking to return to a
region where ∆J,k

N (µ) is sufficiently low.
For each subproblem solve, we have two possible termination criteria: either (a)

the line search method locates a stationary point within the trust region, or (b) the
line search gets close to the boundary of the current trust region, i.e.,

(52) (a)
∥∥∇JkN (µ)

∥∥ ≤ τsub or (b) βεL ≤
∆J,k
N (µ)

JkN (µ)
≤ εL

for some small τsub ≥ 0 and for some β ∈ (0, 1), generally close to 1. The latter
criterion prevents the algorithm from expending too much effort optimizing close to
the trust region boundary where the model becomes inaccurate. Overall convergence
is reached when the norm of the true gradient is less than a tolerance τ ≥ τsub, i.e.∥∥∇J(µk)∥∥ ≤ ∥∥∇JkN(µk)∥∥+ ∆

∇µJ,k
N

(
µk
)
≤ τ.

The reduced model employed is an iteratively-built reduced basis model that
is updated only when the subproblem optimization terminates on condition (52b),
indicating that our RB model is not sufficiently accurate. In the elliptic case, updating
the RB model entails adding u

(
µk
)

and ψ
(
µk
)

to the primal and dual bases. In doing
so, we automatically satisfy (46b), since the reduced basis is able to exactly represent
the FE solution µk. In the parabolic case, we may add singular modes from the primal
and dual solutions at the current iterate until (46b) is satisfied.

The algorithm steps are summarized in Algorithm 1.

5. Numerical tests. In this section, we introduce a thermal fin model opti-
mization problem. The optimization is then solved using three different approaches:

1. an FE-only approach, consisting of an interior point optimizer [3, 4, 29] as
implemented in MATLAB’s fmincon routine, using only the high-dimensional
FE model for its function and gradient evaluations,

2. a traditional RB approach, consisting of an offline phase, in which a global
reduced basis is built, and an online phase, in which MATLAB’s fmincon

interior point implementation is used to solve the optimization using reduced
basis function and gradient evaluations, and

3. the trust region reduced basis algorithm presented in subsection 4.2, employ-
ing the BFGS quasi-Newton method to solve each trust region subproblem
using only reduced evaluations, and solving the full model as needed to pro-
gressively build the reduced basis along the optimization trajectory.

In subsection 5.2 we present results regarding the quality of the reduced basis approx-
imation employed in the traditional RB approach. Subsection 5.3 compares perfor-
mance of the three optimization approaches for a two-parameter and a six-parameter
optimization. The algorithm parameters used for the optimization tests and con-
struction of the reduced bases for the traditional offline/online approach are shown in
Table 1.
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Algorithm 1 Trust region reduced basis optimization

1: Initialize. Let k = 0, and choose τ ≥ τsub ≥ 0, τ∇J ∈ (0, 1), and β ∈ (0, 1).
Additionally, choose µ0, εL, and κtr < 1, a trust region decrease factor. Initialize
the initial reduced basis model at µ0.

2: Solve the optimization subproblem (51) with termination criteria (52).
3: if the sufficient condition (48) holds then
4: Accept and update the reduced model at µk+1 and go to Algorithm 1.
5: else if the necessary condition (50) fails then
6: Reject µk+1, set εL = κtrεL and return to Algorithm 1.
7: else
8: Update the model at µk+1.
9: if the EASDC (47) holds then

10: Accept µk+1 and go to Algorithm 1.
11: else
12: Reject µk+1, set εL = κtrεL and return to Algorithm 1.
13: end if
14: end if
15: If

∥∥∇Jk+1
N

(
µk+1

)∥∥ + ∆
∇µJ,k+1
N

(
µk+1

)
≤ τ , return µk+1 and stop. Otherwise, go

to Algorithm 1.

Parameter Symbol Value for numerical tests
“close” to TR boundary threshold β 0.95

trust region boundary εL 0.1
RB gradient error tolerance τ∇J 0.1

subproblem convergence tolerance τsub 1e-8
overall convergence tolerance τ 5e-4

Table 1: Trust region reduced basis algorithm parameters used in numerical tests

5.1. Thermal fin model problem. We consider a two-dimensional thermal
fin with a fixed geometry (Fig. 1) consisting of a central post and four horizontal
subfins, with interior Ω and boundary Γ [19]. The fin conducts heat away from a
uniform heat flux source at the root of the fin, Γroot, through the post and subfins to
the surrounding air. The fin is characterized by a six-dimensional parameter vector
µ = (k0, k1, k2, k3, k4,Bi)

T
containing the heat conductivities, ki ∈ [0.1, 10], of the

subfins and the central post and the Biot number, Bi ∈ [0.01, 1], a nondimensional heat
transfer coefficient relating the convective heat transfer coefficient to the conductivity
of the fin. We will consider a two-parameter and a six-parameter optimization. In
the two-parameter optimization, we fix k0 = 1 and constrain the subfin conductivities
to vary together (i.e., k1 = k2 = k3 = k4). In the six-parameter optimization, all six
components of µ may vary independently.

5.1.1. Elliptic model problem. The temperature distribution within the fin,
u(µ), is governed by the steady heat equation with a unit Neumann flux boundary
condition at the root of the fin to model a heat source. We enforce a Robin boundary
condition on all other external boundaries to model convective heat losses, and we
enforce continuity of both u and its gradient at interfaces between the fin post and
subfins. The output of interest is the average temperature of the fin root, Troot(µ) =
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Fig. 1: Thermal fin geometry

L(u(µ)) =
∫

Γroot
u(µ). For the high-fidelity discretization we consider a piecewise

linear FE approximation space X on a quasi-uniform unstructured mesh of dimension
dim(X) = N = 17899.

For our optimization, we generate artificial experimental measurements T̂root by
considering a thermal fin whose parameters are fixed but unknown. We then aim to
infer the unknown parameters by minimizing the output least-squares formulation

(53) s(µ) =
1

2
(Troot(µ)− T̂root)

2 =
1

2

∥∥∥L(u(µ))− T̂root

∥∥∥2

R
.

To obtain a cost function of the form presented in subsection 2.2, we define d(u, v) ≡
1
2 (Lu,Lv)R and `(v) ≡ −

(
Lv, T̂root

)
R

, drop the constant term 1
2 (T̂root, T̂root)R, and

introduce the regularization R(µ) = ‖µ−µ̂µ̂ ‖
2
R, where µ̂ ∈ D.

5.1.2. Parabolic model problem. We now consider the time-varying tem-
perature distribution within the fin in the time interval I = ]0, 10] governed by the
time-dependent heat equation with a sinusoidal control input y(t) = cos(t) at the root
of the fin. As in the elliptic problem, we enforce Robin boundary conditions at all
other external boundaries and continuity of temperature and heat flux at all internal
interfaces. In the parabolic problem, our output of interest is the average temperature
of the entire fin at the current timestep, T kavg(µ) = L(uk(µ)) =

∫
Ω
uk(µ). Again, we

generate artifical output data T̂ kavg for all k ∈ K by considering a fin whose parameters
are fixed but unknown. Thus, our output least-squares formulation is given by

(54) s(µ) = ∆t

K∑
k=1

1

2
(T kavg(µ)− T̂ kavg)2 = ∆t

K∑
k=1

1

2

∥∥∥L(uk(µ)
)
− T̂ kavg

∥∥∥2

R
.

Analogous to the elliptic case, we may obtain a least-squares cost functional of
the form presented in subsection 2.3 by defining d(u, v) ≡ 1

2 (Lu,Lv)R and `(v) ≡
−
(
Lv, T̂avg

)
R

, dropping the constant term 1
2 (T̂ kavg, T̂avg)R, and introducing the regu-

larization R(µ) = ‖µ−µ̂µ̂ ‖
2
R, where µ̂ ∈ D.

5.1.3. Problem data. In subsection 5.3, we compare the performance of our
trust region algorithm to that of the FE-only and RB-only fmincon interior point
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approaches for the 2D and 6D elliptic and parabolic optimizations. Optimization trials
in each case are run on ten different least-squares cost functionals, corresponding to
ten randomly selected values for µ∗ within the parameter domain. For each randomly
selected µ∗-value, we obtain T̂root or T̂ kavg from the high-fidelity FE model. The value
µ∗ is then used as the regularization function parameter µ̂. Table 2 specifies the data
used to generate numerical results in subsequent sections.

Parameter Symbol Elliptic Parabolic
FE dimension N 17899

d-continuity constant γd 0.7999 9.6970
Number of time steps K – 100

Regularization scaling factor λ 1 0.01

Table 2: Problem data used for generation of numerical results. The X-inner product
was defined as (·, ·)X = a(·, ·; µ̄), for µ̄ = (1, 1, 1, 1, 1, 0.1)T .

5.2. Global reduced-basis approximation quality. In order to compare the
performance of the proposed trust region reduced basis approach to the performance
of a traditional RB approach, we must first generate a reduced basis offline. To this
end, we introduce a training set Dtrain ⊂ D of size ntrain, pick an initial parameter
µ(1) and the desired error tolerances τ and τ∇J . We then employ a slight variation
of the greedy algorithm, which chooses a single parameter at which to add both the
primal and dual solutions to their respective bases based on the a posteriori error
bounds in the cost and cost gradient. The exact procedure employed is given in
Algorithm 2. We note that the tolerance values τ and τ∇J are the same values
used for the optimization trials (Table 1). This ensures that error everywhere on the
training grid is low enough to meet the convergence tolerances. However, we note
that this is insufficient to guarantee low error over the entire parameter domain.

Algorithm 2 Generate global reduced-basis

1: Choose Dtrain ⊂ D, τ > 0, and τ∇J > 0
2: Initialize primal and dual reduced bases at µ(1) ∈ Dtrain

3: while maxµ∈Dtrain

∆J
N (µ)

JN (µ) > τ or maxµ∈Dtrain

∆
∇µJ
N (µ)

‖∇µJN (µ)‖ > τ∇J do

4: if maxµ∈Dtrain

∆J
N (µ)

JN (µ) > τ then

5: µ∗ ← arg maxµ∈Dtrain

∆J
N (µ)

JN (µ)

6: else

7: µ∗ ← arg maxµ∈Dtrain

∆
∇µJ
N (µ)

‖∇µJN (µ)‖
8: end if
9: Update the reduced-basis at µ∗

10: end while

We now present the standard convergence results for both the two- and the six-
parameter case. Specifically, Tables 3-6 present, as a function of N , the maximum

relative error bounds ∆pr
rel,max, ∆du

rel,max, ∆J
rel,max, ∆

∇µJ
rel,max, as well as the average

effectivities η̄pr, η̄du η̄J , and η̄∇J , over a randomly generated test set Ξ ⊂ D of size
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ntrain = 100, i.e., for the elliptic case we have

∆pr
rel,max = max

µ∈Ξ

∆pr
N (µ)

‖u(µ)‖X
, ∆du

rel,max = max
µ∈Ξ

∆du
N (µ)

‖p(µ)‖X
,

∆J
rel,max = max

µ∈Ξ

∆J
N (µ)

J(µ)
, ∆

∇µJ
rel,max = max

µ∈Ξ

∆
∇µJ
N (µ)

∇µJ(µ)
,

and

ηpr(µ) =
∆pr
N (µ)

‖epr(µ)‖X
, ηdu(µ) =

∆du
N (µ)

‖edu(µ)‖X
,

ηJ(µ) =
∆J
N (µ)

|eJ(µ)|
, η∇µJ(µ) =

∆
∇µJ
N (µ)

‖e∇µJ(µ)‖
.

We omit the definition of the corresponding quantities for the parabolic case since
they are defined similarly.

We first observe that all of the bounds are generally sharper for the 2 parameter
case than for the 6 parameter case. We also observe that the effectivities of the primal
bounds are close to 1 for all cases considered thus indicating very sharp bounds. The
dual effectivities are considerably larger, which is due to the primal error propagating
to the dual problem and entering into the dual error bound formulation. We next
note that the error bounds for the cost functional converge very fast and that we
can thus achieve the required error tolerance for the trust region approach. Except
for small N , the effectivities are approximately O(10 − 100) for the elliptic case and
approximately O(100−1000) for the parabolic case, which still seems acceptable given
the fast convergence of the reduced-basis approximation. Finally — and as anticipated
— the bounds for the cost gradients perform worst of all. We do, however, achieve the
required accuracy despite the large effectivities. We also recall our discussion at the
end of subsection 3.1.2 that fairly large relative errors in the gradient are permissible in
the trust region approach, and the result thus poses no impediment for our approach.

N ∆pr
rel,max η̄pr ∆du

rel,max η̄du ∆J
rel,max η̄J ∆

∇µJ
rel,max η̄∇µJ

2 2.97 2.29 310 49.4 3.67 62.8 205 1162
4 2.36 2.22 80.5 47.1 0.55 54.9 37.1 439
6 1.91 2.76 62.2 44.9 3.1e-2 53.2 3.38 605
8 0.64 2.52 43.4 44.2 1.2e-2 39.9 1.76 1047
10 0.41 3.24 34.1 48.4 7.5e-3 40.3 1.66 1882

Table 3: Two-parameter elliptic thermal fin problem: convergence rate and effectivi-
ties of global reduced basis built using greedy algorithm (Algorithm 2)
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N ∆pr
rel,max η̄pr ∆du

rel,max η̄du ∆J
rel,max η̄J ∆

∇µJ
rel,max η̄∇µJ

4 7.70 5.47 1.7e3 81.0 1.70 1542 422 2.4e3
8 5.83 5.39 8.1e2 85.8 0.84 250 323 2.4e3
16 1.70 6.25 1.2e2 144 2.0e-2 174 45.4 4.2e3
32 0.66 6.23 9.85 190 4.0e-4 97.9 0.68 6.6e4
48 0.16 6.88 2.00 190 1.8e-5 129 9.7e-2 4.9e5

Table 4: Six-parameter elliptic thermal fin problem: convergence rate and effectivities
of global reduced basis built by greedy algorithm (Algorithm 2)

N ∆pr
rel,max η̄pr ∆du

rel,max η̄du ∆J
rel,max η̄J ∆

∇µJ
rel,max η̄∇µJ

5 0.54 2.47 420 1.2e2 43.0 3.4e2 2.3e4 8.9e3
15 0.27 2.16 83.1 2.6e2 0.34 1.5e3 4.1e2 6.0e3
30 2.8e-2 2.00 9.29 1.2e3 5.2e-3 6.4e2 11.5 1.6e4
45 4.8e-3 2.06 1.70 1.6e3 2.2e-4 1.4e2 2.96 1.1e4
60 1.7e-3 2.03 0.25 2.4e3 2.1e-5 2.4e2 1.14 4.0e4

Table 5: Two-parameter parabolic thermal fin problem: convergence rate and effec-
tivities of global reduced basis built by greedy algorithm (Algorithm 2).

N ∆pr
rel,max η̄pr ∆du

rel,max η̄du ∆J
rel,max η̄J ∆

∇µJ
rel,max η̄∇µJ

20 0.55 2.8 1.3e3 1.2e3 5.0 8.8e3 4.3e3 4.7e4
60 4.3e-2 3.0 29 1.6e3 3.1e-2 3.1e3 47 6.0e4
100 6.0e-3 3.0 6.4 2.4e3 8.6e-4 1.1e3 4.8 9.1e4
140 1.1e-3 3.0 1.1 3.3e3 2.1e-5 7.6e2 0.98 4.9e5
180 2.5e-4 3.2 0.17 2.1e3 7.8e-7 1.3e2 0.15 9.9e5

Table 6: Six-parameter parabolic thermal fin problem: convergence rate and effectiv-
ities of global reduced-basis built by greedy algorithm (Algorithm 2).

5.3. Algorithm performance. The optimization problem is solved using the
FE-only interior point, traditional RB interior point, and trust region RB approaches.
We consider ten random least-squares cost functions (as discussed in subsection 5.1.3)
and solve the optimization for each cost function using the same set of ten random
initial conditions, resulting in a total of 100 optimization trials. Algorithm parameters
and problem data used are tabulated in Table 1 and Table 2. Performance results
measured in terms of optimization run time and required number of FE evalutions
for the elliptic case are presented in Figures 2 and 3, and in Figures 4 and 5 for the
parabolic case. Note that in the parabolic case the number of FE evaluations stated
in the figures corresponds to the number of full forward integrations in time.

Overall, the combined trust region reduced basis optimization approach consis-
tently reduces the number of full FE evaluations required to locate an optimum rel-
ative to the two other optimization approaches tested. On average, compared to the
FE-interior point method, the trust region RB approach requires 39% (30%) as many
full solves in the 2D (6D) elliptic case. In the parabolic case, the trust region RB
approach requires 30% as many full solves in the 2D case, and only 14% of the full
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solves required in the 6D case. We note that in our numerical trials, Line 12 of Al-
gorithm 1 is never reached — i.e., we never update the model (Line 8) at a potential
iterate only to reject it, thus never ‘wasting’ a full solve. These results will vary for
more general problems, but by defining the trust region systematically via the error
estimates, we can influence how often this would occur.

By building the RB adaptively along the optimization trajectory, the trust region
reduced basis method also reduces the number of full evaluations needed relative to
the number of full solves needed in the offline phase of the traditional RB approach:
on average, the trust region RB requires 37% and 12% of the full solves needed for the
2D and 6D elliptic cases, and 25% and 3% of the full solves required in the 2D and 6D
parabolic cases. Finally, the trust region RB approach is able to reduce the number
of evaluations of the reduced system relative to the offline phase of the traditional RB
approach, by a mean factor of 3 (3000) in the 2D (6D) elliptic case, and by a mean
factor of 6 (8600) in the 2D (6D) parabolic case.

We note that especially high-dimensional parameter optimization problems pose
a considerable challenge for the traditional offline/online RB approach. Guaranteeing
a certain desired accuracy over the whole parameter space requires a sufficiently fine
test sample and thus results in a very expensive offline phase. Moreoever, most of this
effort may be wasted since the (online) optimization requires a sufficient accuracy only
along the optimization path. The trust region reduced basis optimization approach
aims exactly at providing the required accuracy only along the optimization path,
thus reducing the overall number (offline+online) of FE solves.
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Fig. 2: Runtime comparison for optimizations constrained by elliptic PDEs. In con-
trast, the traditional offline-online reduced-basis approach for a 2D (6D) optimization
runs in 0.04 (0.10) seconds online, but requires 1.6 (4800) seconds offline (on average).

Whether or not the achieved reduction in number of full FE solves translates into
a run time speedup depends on the size and complexity of the problem. The trust
region RB run time averages 83% of the FE-interior point run time in the elliptic
2D case, 82% in the elliptic 6D case, 72% in the parabolic 2D case, and 44% in the
parabolic 6D case. In the elliptic case, these gains are small because the full elliptic
problem can be solved relatively inexpensively. In the parabolic 2D case, the overhead
involved in building the reduced-basis fills most of the time saved by the three-fold
reduction in full solves. In contrast, in the parabolic 6D optimization, the seven-fold
reduction in full solves makes the RB overhead a much smaller portion of the overall
optimization time. The significant offline computational investment in the traditional
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Fig. 3: Comparison of number of full model evaluations required for optimizations
constrained by elliptic PDEs. The traditional offline-online reduced-basis approach
requires 0 full evaluations online, and an average of 9 (48) full evaluations in the 2D
(6D) case offline.

RB approach makes it slower than both our proposed approach and the FE-only
approach for all cases tested.
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Fig. 4: Runtime comparison for optimizations constrained by parabolic PDEs. In
contrast, the traditional offline-online reduced-basis approach for a 2D (6D) opti-
mization runs in 0.23 (2.7) seconds online, but requires 125 seconds (60 hours) offline
(on average).

We summarize the achieved gains in Table 7. Our results suggest that there
may be potential for greater savings in optimizations of higher parameter dimension.
Additionally, we note that the size of our FE discretization is fairly small, especially
relative to the size of FE discretizations that might be encountered in real-world
problems. Because the trust region approach is able to significantly reduce the number
of FE solves relative to the FE-only approach, there is also potential for greater gains
in problems with higher-dimensional discretizations.
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Fig. 5: Comparison of number of full model evaluations required for optimizations
constrained by parabolic PDEs. The traditional offline-online reduced-basis approach
requires 0 full evaluations online, and an average of 15 (151) full evaluations in the
2D (6D) case offline.

Trust region RB run time
FE-fmincon run time

Trust region RB # FE solves
FE-fmincon # FE solves

min mean max min mean max
2D Elliptic 0.20 0.83 1.48 0.09 0.39 0.75
6D Elliptic 0.31 0.82 2.32 0.13 0.30 0.70

2D Parabolic 0.38 0.72 1.32 0.20 0.30 0.44
6D Parabolic 0.21 0.44 0.80 0.10 0.14 0.24

Table 7: Summary of gains made by proposed trust region reduced basis optimization
approach relative to MATLAB fmincon. Time gains are seen in the majority of test
cases, and a reduction in the number of required FE function evaluations is seen in
all cases tested, with the largest reduction in the 6D parabolic optimization.

6. Conclusions. We have introduced a combined reduced basis trust region
framework for PDE-constrained optimization of quadratic cost functionals, as well
as novel a posteriori error bounds for the reduced basis cost approximation and its
gradient. In this approach, reduced basis models are leveraged in several ways: First,
reduced basis models are used as the model function within the trust region opti-
mization, reducing the time for each optimization function evaluation. Second, the
reduced basis a posteriori error bounds are used to choose when to accept and reject
trust region optimization iterates. Third, the error bounds are used to systematically
determine when to update the reduced model. Fourth and finally, the existence of
error bounds for RBM allows rigorous proof of convergence of the algorithm to a
stationary point of the full model. We have implemented the proposed algorithm on
a thermal fin model problem using least-squares cost functions with up to 6 variable
parameters, and achieve reductions in the number of full evaluations needed relative
to a high-fidelity interior point approach in all cases tested, with up to 3-fold gains in
the elliptic case and 7-fold gains in the parabolic case.
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Appendix A. Parabolic a posteriori error estimation.

A.1. Proof of Lemma 7 .

Proof. We refer to [12] for the proof of (41). We thus only need to show (42). It
follows from (16) and (39) that the error in the dual variable, ekdu ∈ X, satisfies

(55) m
(
v, ekdu − ek+1

du

)
+ ∆t · a

(
v, ekdu;µ

)
= ∆t · 2d

(
ekpr, v

)
+ ∆t · rkdu(v;µ).

Following the usual procedure, we choose v = ekdu to obtain

m
(
ekdu, e

k
du − ek+1

du

)
+ ∆t · a

(
ekdu, e

k
du;µ

)
= 2∆t · d

(
ekdu, e

k
pr

)
+ ∆t · rkdu

(
ekdu;µ

)
.(56)

First, we invoke the Cauchy-Schwarz and Young’s inequalities to get

m
(
ekdu, e

k+1
du

)
≤ 1

2
m
(
ekdu, e

k
du

)
+

1

2
m
(
ek+1

du , ek+1
du

)
.(57)

Also, from Young’s inequality it follows that

rkdu

(
ekdu(µ);µ

)
≤ 1

αLB

∥∥rkdu(·;µ)
∥∥2

X′ +
αLB

4

∥∥ekdu(µ)
∥∥2

X
,(58)

and

d
(
ekdu, e

k
pr

)
≤ 2γ2

d

αLB(µ)

∥∥ekpr

∥∥2

X
+
αLB

8

∥∥ekdu

∥∥2

X
;(59)

where we also used the continuity of (4) of the bilinear form d. Substituting (57),
(58), and (59) into (56) we obtain

m
(
ekdu, e

k
du

)
−m

(
ek+1

du , ek+1
du

)
+ 2∆t · a

(
ekdu, e

k
du;µ

)
≤ 2∆t

αLB(µ)

∥∥rkdu(·;µ)
∥∥2

X′ +
8γ2
d∆t

αLB(µ)

∥∥ekpr

∥∥2

X
+ αLB(µ)∆t

∥∥ekdu

∥∥2

X
(60)

Finally, summing over k = 1..K it follow that

(61)

m
(
e1

du, e
1
du

)
+ ∆t

K∑
k=1

a(ekdu(µ), ekdu(µ);µ) ≤

K∑
k=1

(
8γ2
d∆t

αLB(µ)

∥∥ekpr

∥∥2

X
+

2∆t

αLB(µ)

∥∥rkdu(·;µ)
∥∥2

X′

)
.

The result (42) follows from (41).

A.2. Proof of Theorem 8 .

Proof. We first note from (15a) and (36) that

eJ(µ) = ∆t

K∑
k=1

{
d
(
uk(µ), uk(µ)

)
− d
(
ukN (µ), ukN (µ)

)
+ `
(
ekpr(µ)

)}
(62)

Adding and subtracting d
(
2ukN (µ), ekpr(µ)

)
within the sum, we obtain

(63)
eJ(µ) = ∆t

K∑
k=1

{d
(
2ukN (µ), ekpr(µ)

)
+ `
(
ekpr(µ)

)
+d
(
uk(µ), uk(µ)

)
− d
(
ukN (µ), ukN (µ)

)
− d
(
2ukN (µ), ekpr(µ)

)
}
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and note that

(64)

d
(
uk(µ), uk(µ)

)
− d
(
ukN (µ), ukN (µ)

)
− d
(
2ukN (µ), ekpr(µ)

)
= d
(
uk(µ), uk(µ)

)
− d
(
2ukN (µ), uk(µ)

)
+ d
(
ukN (µ), ukN (µ)

)
= d
(
ekpr(µ), ekpr(µ)

)
Thus, combining (63) and (64), we have

(65) eJ(µ) = ∆t

K∑
k=1

{d
(
2ukN (µ), ekpr(µ)

)
+ `
(
ekpr(µ)

)
+ d
(
ekpr(µ), ekpr(µ)

)
}.

Taking (39) with v = ekpr(µ), we can express the first two terms of (65) as follows:

(66)

K∑
k=1

{d
(
2ukN (µ), ekpr(µ)

)
+ `
(
ekpr(µ)

)
} =

K∑
k=1

{rkdu

(
ekpr(µ);µ

)
+ a
(
ekpr(µ), pk(µ);µ

)
+

1

∆t
m
(
ekpr(µ), pkN (µ)− pk+1

N (µ)
)
}.

Since e0
pr(µ) = 0 and pk+1

N (µ) = 0, we observe that

(67)

K∑
k=1

m
(
ekpr(µ), pkN (µ)− pk+1

N (µ)
)

=

K∑
k=1

m
(
ekpr(µ)− ek+1

pr (µ), pkN (µ)
)
.

We may then substitute the primal error-residual relationship,

rkpr(v;µ) = a
(
ekpr(µ), v;µ

)
+

1

∆t
m
(
ekpr(µ)− ek+1

pr (µ), v
)
, ∀v ∈ X,

with v = pkN (µ) into (66) to obtain

(68)

K∑
k=1

{d
(
2ukN (µ), ekpr(µ)

)
+ `
(
ekpr(µ)

)
} =

K∑
k=1

{rkdu

(
ekpr(µ);µ

)
+ rkpr

(
pkN (µ);µ

)
}.

Substituting (68) into (65), we get

(69) eJ(µ) = ∆t

K∑
k=1

{rkdu

(
ekpr(µ);µ

)
+ rkpr

(
pkN (µ);µ

)
+ d
(
ekpr(µ), ekpr(µ)

)
}.

It then follows from the continuity of d(·, ·) that

(70) eJ(µ) ≤ ∆t

K∑
k=1

{
∥∥rkdu(·;µ)

∥∥
X′

∥∥ekpr(µ)
∥∥
X

+ γd
∥∥ekpr(µ)

∥∥2

X
+ rkpr

(
pkN (µ);µ

)
}.

We now invoke the Cauchy-Schwarz inequality to the first term on the right hand side
which yields

(71) eJ(µ) ≤

(
∆t

K∑
k=1

∥∥rkdu(·;µ)
∥∥2

X′)

) 1
2
(

∆t

K∑
k=1

∥∥ekpr(µ)
∥∥2

X

) 1
2

+ γd∆t

K∑
k=1

∥∥ekpr(µ)
∥∥2

X
+ ∆t

∣∣∣∣∣
K∑
k=1

rkpr

(
pkN (µ);µ

)∣∣∣∣∣.



26 E. QIAN, M. GREPL, K. VEROY, AND K. WILLCOX

Finally, we note that

∆t

K∑
k=1

‖ekpr(µ)‖2X ≤
∆t

αLB(µ)

K∑
k=1

a(ekpr(µ), ekpr(µ);µ) ≤ 1

αLB(µ)
|||eKpr(µ)|||2pr(72)

to arrive at the desired results by invoking (41).

A.3. Proof of Theorem 9 .

Proof. Similar to the elliptic case, we define e∇µiJ(µ) to be the error in the
derivative of the cost with respect to µi, the ith element of the paramector vector µ.
It then follows from (17) and (37) that

(73) e∇µiJ(µ) = ∆t

K∑
k=1

{
fµi
(
ekdu(µ);µ

)
−
[
aµi
(
uk(µ), pk(µ);µ

)
− aµi

(
ukN (µ), pkN (µ);µ

)]}
.

Follow the same steps as in the proof of Theorem 4 we arrive at

(74)
e∇µiJ(µ) =∆t

K∑
k=1

{
‖fµi(·;µ)‖X′

∥∥ekdu(µ)
∥∥
X

+ γUBaµi
(µ)
∥∥ekpr(µ)

∥∥
X

∥∥ekdu(µ)
∥∥
X

+γUBaµi
(µ)
∥∥ekpr(µ)

∥∥
X

∥∥pkN (µ)
∥∥
X

+ γUBaµi
(µ)
∥∥ukN (µ)

∥∥
X

∥∥ekdu(µ)
∥∥
X

}
Invoking the Cauchy-Schwarz inequality and Lemma 7, we obtain (45).
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