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Abstract

We consider a class of parametric operator equations where the involved parame-
ters could either be of deterministic or stochastic nature. In both cases we focus on
scenarios involving a large number of parameters. Typical strategies for addressing
the challenges posed by high dimensionality use low-rank approximations of solutions
based on a separation of spatial and parametric variables. One such strategy is based
on performing sparse best n-term approximations of the solution map in an a priori
chosen system of tensor product form in the parametric variables. This approach has
been extensively analyzed in the case of tensor product Legendre polynomial bases,
for which approximation rates have been established. The objective of this paper is to
investigate what can be gained by exploiting further low rank structures, in particular
using optimized systems of basis functions obtained by singular value decomposition
techniques. On the theoretical side, we show that optimized low-rank expansions
can either bring significant or no improvement over sparse polynomial expansions,
depending on the type of parametric problem. On the computational side, we an-
alyze an adaptive solver which, at near-optimal computational cost for this type of
approximation, exploits low-rank structure as well as sparsity of basis expansions.

MSC 2010: 41A46, 41A63, 42C10, 65D99, 65J10, 65N12, 65N15

Keywords: parameter-dependent PDEs, low-rank approximations, sparse polyno-
mial expansions, a posteriori error estimates, adaptive methods, complexity bounds

1 Introduction

Complex design, optimization, or uncertainty quantification tasks based on parameter
dependent families of PDEs arise in virtually all branches of science and engineering.
Typical scenarios are models whose physical properties – such as diffusivity, transport
velocity or domain geometry – are described by a finite number of real parameter values.
In certain instances, one may even encounter infinitely many parameters of decreasing
influence. This occurs for instance in the case of a random stochastic diffusion field
represented by an infinite expansion in a given basis. The development and analysis of
numerical strategies for capturing the dependence of the PDE on the parameters has been
the subject of intensive research efforts in recent years.
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1.1 Problem formulation

The problems that are addressed in this paper have the following general form. Let V be
a separable Hilbert space. We consider a parametric operator A(y) : V → V ′ of the form

A(y) := A0 +
∑
j∈I

yjAj , y ∈ Y := [−1, 1]I , (1.1)

where I = {1, . . . , d} or I = N in the finite or infinite dimensional case, respectively. In
the infinite dimensional case, we require that the above series converges in L(V, V ′) for
any y ∈ Y . We assume uniform boundedness and ellipticity of A(y) over the parameter
domain, that is

〈A(y)v, w〉 ≤ R‖v‖V ‖w‖V and 〈A(y)v, v〉 ≥ r‖v‖2V , v, w ∈ V, y ∈ Y, (1.2)

for some 0 < r ≤ R < ∞, which implies in particular that A(y) is boundedly invertible
uniformly in y ∈ Y , with

‖A(y)‖L(V ′,V ) ≤ r−1, y ∈ Y. (1.3)

We also consider parametric data f : Y → V ′, and for each y ∈ Y , we define u(y) ∈ V the
solution to the equation

A(y)u(y) = f(y). (1.4)

A guiding example is provided by affinely parametrized diffusion problems of the form

A(y)u := −div
(
a(y)∇u

)
= f, a(y) := ā+

∑
j≥1

yjθj , (1.5)

with homogeneous Dirichlet boundary conditions, posed in the weak sense on a spatial
domain D. In this particular case of frequent interest, the data f ∈ V ′ is independent of
y. The validity of (1.2) is then usually ensured by constraints on the expansion functions
θj , see (2.1) below. Thus, V is typically a function space defined over some physical
domain D, for example the Sobolev space H1

0 (D) in the above case of second order elliptic
equations with homogeneous Dirichlet boundary conditions. Therefore the solution may
either be viewed as the Hilbert space valued map

y 7→ u(y), (1.6)

which acts from Y to V or as the scalar valued map

(x, y) 7→ u(x, y) := u(y)(x), (1.7)

where x ∈ D and y ∈ Y are refered to as the spatial and parametric variables.
Approximating such solution maps amounts to approximating functions of a large

or even infinite number of variables. In applications, one is often interested in specific
functionals of the solution. Here we focus on the basic question of approximating the
entire solution map in an appropriate norm.

The guiding questions are the following:

(i) Is there a most suitable approximation to cope with the high dimensionality in
problems of the form (1.1)? If not, which features of problems (1.1) favor certain
approaches over others?

(ii) At what numerical cost can one find these approximations, and how do they depend
on particular features of the given problem?
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1.2 Sparse and low-rank approximability

Before addressing any concrete numerical schemes, we discuss basic concepts of approxi-
mations for the solution map (1.6). The approximations that we consider are of the general
form

u ≈ un :=

n∑
k=1

ux
k ⊗ u

y
k, (1.8)

where ux
k and uy

k are functions of the spatial and parametric variable respectively. By
analogy with a matrix, we say that such a un has rank at most n.

In other words,

u(x, y) ≈ un(x, y) =
n∑
k=1

ux
k(x)uy

k(y), (1.9)

or equivalently

u(y) ≈ un(y) =

n∑
k=1

ux
k u

y
k(y). (1.10)

The error between u and un can be measured in several ways, the two most common ones
being the uniform error ‖u−un‖L∞(Y,V ) and the mean-square error ‖u−un‖L2(Y,V ), where
the norms are defined by

‖v‖L∞(Y,V ) := sup
y∈Y
‖v(y)‖V , ‖v‖2L2(Y,V ) :=

∫
Y
‖v(y)‖2V dµ(y), (1.11)

and where µ is a given probability measure over Y . Note that ‖v‖L2(Y,V ) ≤ ‖v‖L∞(Y,V ),
and therefore the uniform error dominates the mean-square error.

In the present paper we focus on the mean-square error, with µ being the uniform
probability measure. Note that the Bochner space L2(Y, V ) has a tensor product structure
L2(Y, V ) = V ⊗L2(Y ) where L2(Y ) = L2(Y, µ). The optimal rank n approximation of u in
L2(Y, V ) is then given by truncation of the Hilbert-Schmidt decomposition of u interpreted
as the operator

Tu : v →
∫
Y
u(x, y)v(y)dµ(y), (1.12)

acting from L2(Y ) to V . Equivalently the functions ux
1, . . . , u

x
n are defined as the n first

basis vectors in the Karhunen-Loève expansion of the V -valued random variable u(y) when
y has the uniform distribution over Y , and un(y) is the V -orthogonal projection of u(y)
onto

Vn := span{ux
1, . . . , u

x
n} ⊂ V. (1.13)

This particular system of basis functions is a natural benchmark as it minimizes the rank
n = n(ε) required to ensure a mean-square accuracy ε. However, it is unclear how to
compute sufficiently good approximations of these basis functions at affordable cost, a
point to be taken up again later.

There exist several approaches for deriving computable expansions of the form (1.8).
A first category of methods consists in first constructing in an offline stage functions
ux

1, . . . , u
x
n and their span Vn. Then, in an online stage, for any given y ∈ Y , the approx-

imate solution ur(y) is defined as the Galerkin projection of u(y) on the space Vn. The
parametric functions y 7→ uy

i (y) are thus implicitly determined by this solution process.
Examples of such methods include the reduced basis (RB) and proper orthogonal decom-
position (POD) method, see e.g. [31, 38]. These methods benefit from the fact that in
many relevant cases the Galerkin projection gives a near-best approximation of u(y) in
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Vn. One obstruction is that the construction of spaces Vn which approach the optimal
choice described above may require a very large number of offline computations in the
case where Y is high-dimensional. For example, in the POD method, one performs ap-
proximately a principal component analysis based on samples u(y1), . . . , u(ym), where the
size of m ensuring an accurate approximation becomes prohibitive in high dimension, see
e.g. [26].

A second category of methods is based on defining un by approximation of y 7→ u(y),
i.e., the factors uy

k are computed explicitly as well. A low-rank approximation trying to
approximately realizing a truncated Hilbert-Schmidt decomposition would be a first exam-
ple for this category aiming at meeting the above mentioned benchmark. In this case the
error caused by truncation should ideally be balanced against the error in approximating
the unknown basis functions ux

k, u
y
k. These latter approximation problems could be formu-

lated as N -term approximations with respect to fixed bases for the spatial and parametric
components, respectively. Overall we thus face a highly nonlinear approximation problem.

A second simpler approach to approximating y 7→ u(y) is to employ an a priorily
chosen basis {uy

1, . . . , u
y
n}, and compute the ux

i as the corresponding coefficients of this
approximation. One prominent example of this approach are orthogonal polynomial ex-
pansion methods, see e.g. [17, 18, 33, 42]. In this case, the parametric functions uy

i are
picked from the set of tensorized Legendre polynomials

Lν(y) =
∏
j≥1

Lνj (yj), ν = (νj)j≥1, (1.14)

with (Lk)k≥1 the univariate Legendre polynomial sequence normalized in L2([−1, 1], dt2 ).
The functions (Lν)ν∈F are an orthonormal basis of L2(Y ), where F is Nd

0 in the case
I = {1, . . . , d} or the set of finitely supported sequences of non-negative integers in the
case I = N, that is

F := {ν ∈ NN0 : # supp ν <∞}. (1.15)

One thus has

u(y) =
∑
ν∈F

uνLν(y), uν =

∫
Y
u(y)Lν(y)dµ(y). (1.16)

Then, one natural choice for un is obtained by restricting the above expansion to the set
Λn ⊂ F of indices ν corresponding to the n largest ‖uν‖V , since this set minimizes the
error ‖u− un‖L2(Y,V ) among all possible choices of n-term truncations. This strategy for
generating sparse polynomial approximations in the context of parametric PDEs was first
introduced and analyzed in [11,12]. In practice, the set Λn is not accessible, but provides
a benchmark for the performance of algorithms. Note that on the one hand, even if the
set Λn and the coefficients uν were exactly known to us, there is no reason to expect
that the resulting un achieves an accuracy in L2(Y, V ) comparable to the best rank-n
approximations given by the truncation of the Hilbert-Schmidt decomposition.

On the other hand, it is not clear whether best rank-n approximations always achieve
a substantially better accuracy in L2(Y, V ) than the best n-term Legendre approximation.
In fact, such comparisons may depend strongly on the specific type of the parametric
problem. A first central question we would like to address in the present paper is therefore:

(I) For which types of parametric problems can we expect rank n approximations obtained
by Hilbert-Schmidt truncation to be substantially more accurate, regarding the number of
terms needed to realize any given target accuracy, than those obtained by best n-term trun-
cation of expansions in a priori chosen bases in the parametric variable such as Legendre
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polynomials?

One may as well go beyond the Hilbert-Schmidt decomposition (1.8) and consider
higher-order low-rank tensor representations that correspond to further decompositions
of the factors uy

k in (1.8). For simplicity, at this point let us consider this in the finite-
dimensional case d < ∞ (possibly after truncating the expansion (1.1) for A(y)). In-
troducing an additional tensor decomposition of the factors uy

k, we obtain the general
approximation format

un =

r0∑
k0=1

ux
k0
⊗
( r1∑
k1=1

· · ·
rd∑

kd=1

ak0,k1,...,kd

d⊗
j=1

uy,j
kj

)
, (1.17)

where each uy,j
kj

is a function of the individual variable yj . The minimal rj such that un
can be represented in the form (1.17) are called multilinear ranks of un.

In hierarchical tensor representations (with the tensor train format as a special case),
see e.g. [21,24,35], the high-order core tensor a = (ak0,k1,...,kd)k0,...,kd is further decomposed
in terms of lower-order tensors, based on matricizations of a. For instance, if

r̂i = rank
(
a(k0,...,ki),(ki+1,...kd)

)
, (1.18)

one has a factorized representations of the form

ak0,k1,...,kd =

r̂1∑
`1=1

M
(1)
k0,k1,`1

r̂2∑
`2=1

M
(2)
`1,k2,`2

· · ·
r̂d−1∑
`d−1=1

M
(d−1)
`d−2,kd−2,`d−1

M
(d)
`d−1,kd

(1.19)

in terms of the tensors M(i), i = 1, . . . , d of order at most three, and only these low-order
tensors need to be stored and manipulated.

This format contains sparse polynomial expansions (1.16) as a special case: let ν(k0),
k0 = 1, . . . , r0 be an enumeration of elements of Nd

0, and choose ak0,k1,...,kd = δν(k0),(k1,...,kd),

uy,j
kj

= Lkj . Another noteworthy special case concerns the choices r1 = . . . = rd = 1 and
ak0,1,...,1 = 1, which is often referred to as the canonical format. In this case n = r0 is called
the canonical rank. Thus, the overall necessary number of terms in such an approximation
format required for realizing a target accuracy ε in L2(Y, V ) may be smaller than for the
format (1.16), but comes at the expense of an even higher level of structural nonlinearity.

What has been discussed so far, however, does not yet give numerically realizable
approximations: the functions ux

k and uy
k in (1.8), ux

k0
and uy,j

kj
in (1.17), as well as the

coefficients vν in (1.16) in turn need to be approximated as well. For instance, one may
choose a fixed basis {ψλ}λ∈S of V and expand

uν =
∑
λ∈S

uλ,νψλ,

in (1.16), which leads us to consider full approximations of the form

u ≈
∑

(λ,ν)∈Λ

uλ,ν ψλ ⊗ Lν . (1.20)

with coefficients uλ,ν ∈ R and Λ ⊂ S × F . Here one can again ask for best n-term
approximations with respect to the basis {ψλ ⊗ Lν}λ∈S,ν∈F , obtained by minimizing the
error over all Λ with #Λ = n.

5



This can be compared to (1.8) using the respective basis expansions for ux
k and uy

k,
that is, to approximations of the form

u ≈
n∑
k=1

(∑
λ∈Λx

k

ux
k,λψλ

)
⊗
(∑
ν∈Λy

k

uy
k,νLν

)
(1.21)

with Λx
k ⊂ S, Λy

k ⊂ F , k = 1, . . . , n.

1.3 Computational complexity

There exist several computational approaches for constructing approximations of the types
outlined above, based on either a priori estimates or a posteriori criteria, which will be
discussed in more detail later.

Of course, the number of terms n in a separable approximation of the form (1.8) does
not yet determine the complexity of this approximation since each of the non a-priorily
chosen factors needs to be approximated. This can be addressed as in (1.21) by choosing
for each variable a fixed background basis and searching for sparse approximations of each
factor with respect to these bases. The resulting approximation is then described by a
finite number ndof =

∑n
k=1(#Λx

k + #Λy
k) of degrees of freedom. The smallest possible

ndof(ε) required for any approximation of accuracy ε in L2(Y, V ) describes the representa-
tion complexity of a function with respect to the given approximation format. Expanding
the arising products, the low-rank representation (1.21) can still be interpreted as a lin-
ear combination of prescribed tensor product basis functions, but with an algebraically
nonlinear parametrization of coefficients, as opposed to (1.20) where the coefficients enter
linearly. Thus the potentially more condensed representation by fewer degrees of freedom
comes at the price of handling this nonlinear mapping.

We thus need to address the possibly higher computational cost entailed by a stronger
structural nonlinearity, which could well offset the n-term rate: Computing for a given
approximation format such an ε-accurate approximation by a given algorithm will require
a number nop = nop(ε) of operations that is typically larger than the representation
complexity ndof(ε).

Here we aim for algorithms that are universal in the sense that they do not require a
priori knowledge on the approximability of the solution (e.g., on the decay of coefficients),
but adjust to such approximability automatically. This goes hand in hand with a mecha-
nism for obtaining a posteriori error bounds, making use only of the given data, viz., right
hand side and operator representation.

A second main question addressed in this paper is therefore:

(II) For a given parametric problem and approximation format (1.16), (1.8) or (1.17),
can one contrive a universal numerical scheme that can achieve any given target accuracy
ε, certified a posteriori? Are the approximate solutions close to the minimum required
representation complexity ndof(ε)? And can we relate nop to ε and hence to ndof(ε)?

1.4 Relation to previous work

There is a variety of results on the convergence of sparse polynomial expansions (1.16), see,
e.g., [4, 11, 12]. Furthermore, some estimates are available that include multilevel spatial
discretizations and hence provide upper bounds for the error of best n-term approximation
(1.20), see, e.g., [12,13]. Concerning our question (I), there are only few specialized results
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on possible gains by low-rank approximations, all concerning the case of finitely many
parameters [31], [2].

There are various approaches for generating sparse polynomial expansions, for instance
based on collocation [1, 7] or adaptive Taylor expansion [8]. Note that these strategies
do not currently yield a-posteriori error bounds for the computed solutions, and their
performance is thus described by a-priori estimates which may not be sharp.

The adaptive method proposed in [14], based on finite element discretization for the
spatial variable, yields a posteriori error bounds for the full approximations. However,
complexity bounds are given only in terms of the resulting finite element meshes.

Adaptive schemes using wavelet-based spatial discretizations, which yield approxima-
tions of the form (1.20), have been studied by Gittelson [19, 20]. In this case, bounds for
the complete computational complexity are proven.

Reduced basis and POD methods [26,37,38] correspond to expansions of the form (1.8),
where only the spatial basis elements ux

k are explicitly computed. For known variants of
these methods, accuracy guarantees in the respective norms require a sufficiently dense
sampling of the parameter domain, which becomes prohibitive for large d, and one only
obtains a posteriori bounds for the resulting V -error in each given y ∈ Y .

In methods based on higher-order tensor representations, instead of sampling in the
parameter domain, one also approximates uy

k as in (1.17), at the price of additional ap-
proximability requirements as in (1.19). A variety of schemes have been proposed that
operate on fixed discretizations [27, 28, 30, 34], which do not yield information on the dis-
cretization error. Based on [14], an adaptive scheme for hierarchical tensor approximation
is proposed in [15]. It provides rigorous a posteriori bounds for the approximation error,
but is not proven to converge.

1.5 Novelty of the paper and outline

Question (I) posed in §1.2 is addressed in §2, by studying specific examples of parametric
problems of the diffusion form (1.5). For a certain class of such problems, we prove
that the best n-term Legendre approximation is already near-optimal among all rank-
n approximations. In other words, the L2(Y, V ) error achievable by this particular fully
separable approximation is bounded, up to a fixed multiplicative constant, by the L2(Y, V )
error achieved by any fully separable approximation of the form (1.17). For other examples,
we prove that optimized low rank approximations perform significantly better than best n-
term Legendre approximations in terms of faster convergence rates. In summary, regarding
n-term approximation there is no universally best strategy.

Question (II) is addressed in sections §3 to §7. A generic algorithm is described in
§3 based on the work in [5], which is guaranteed to converge. Furthermore, it yields
rigorous a posteriori error bounds, using only information on the problem data. Suitable
specifications cover all above mentioned types of approximations (1.8), (1.16), and (1.17).
The scheme is formulated in a general sequence space framework, using a discretization
of the space L2(Y, V ) through a basis with elements of the form ψλ ⊗ Lν . Here, {ψλ}µ∈S
is a given Riesz basis of V (for example, a wavelet basis in the case where V is a Sobolev
space) and {Lν}ν∈F is the previously described multivariate Legendre basis. The algorithm
performs an iteration in the sequence space `2(S ×F), which involves at each step specific
routines recompress and coarsen aiming at respectively controlling the rank of the
current approximation as well as the number of degrees of freedom that describe the
different factors involved in this approximation.

We then describe two realizations of this generic algorithm corresponding to two dis-
tinct settings. In §4 we apply the algorithm for the generation of approximations with

7



full separation, as described by (1.17). In this case the recompress routine is based on a
hierarchical SVD truncation, that is, SVD truncations for the matrices involved in a given
hierarchical format. We analyze the performance of the algorithms for classes described
by the decay of the corresponding singular value and joint sparsity of the corresponding
singular vectors. In this particular realization, it is required that the dimension d of the
parametric variable is finite.
§5 to 7 are devoted to the case of anisotropic parameter dependence in the diffusion

problem (1.5), where we allow the dimension d of the parametric variable to be infinite. In
this latter case any numerical scheme involves a truncation of the operator representation
(1.1). Being able to retrieve then the representation complexity ndof(ε) of the exact solu-
tion turns out to depend on how the decay of the truncation error relates to the sparsity
parameters governing the representation complexity ndof(ε) of the approximation format
under consideration. A first major theme in §5 is therefore the interplay between the decay
of the corresponding truncation error and the approximability of the solutions. Specifically,
we discuss two types of operator parametrizations, namely, in §5.1, Karhunen-Loève type
expansions comprising globally supported basis functions with increasing oscillatory be-
havior, and in §5.2 wavelet-type multilevel expansions with corresponding space-frequency
localization. One of our central findings is that in the case of wavelet-type parametriza-
tions one can better exploit the approximability of the solutions in the adaptive scheme,
since this has a substantial influence on the compressibility of the operator. It is perhaps
worth mentioning that our further algorithmic developments require substantially weaker
assumptions on the Aj in (1.1) than the methods in [14,15], which require summability of
(‖Aj‖)j≥1.

In §6 we analyze a specialized version of Algorithm 3.1 producing n-term sparse Leg-
endre expansions. In this version the routine recompress is simply the identity, and
hence Algorithm 3.1 agrees with the adaptive solver developed and analyzed in [10]. A
key ingredient is the adaptive approximation of the operator analyzed in §6.1 (based on
matrix compression results in Appendix A) for the operator parametrizations from §5.2.
We then establish in §6.2 convergence and complexity rates which significantly improve
on earlier results for similar schemes in [19] in that best n-term rates are retrieved for a
wider range of solution approximabilities.

In §7 we apply Algorithm 3.1 for the generation of approximations with only space-
parameter separation (1.8) and (1.21), assuming again parametrizations of the type con-
sidered in §5.2. In particular, in this realization, we allow the dimension d of the para-
metric variable to be infinite. In this case the recompress routine is based on standard
SVD truncation. We analyze the performance of the algorithm for classes of solutions
described on the one hand by the rate of decay of the singular values which appear in the
Hilbert-Schmidt decomposition, and on the other hand by a notion of joint sparsity for
the corresponding singular vectors.

For each realization of the basic algorithm, we derive convergence and complexity
estimates for suitable benchmark classes motivated by the considerations in §2 and §5 and
discuss their optimality in the respective contexts.

2 Low-rank approximability of parametric problems

The goal of this section is to use a particular example of a problem of the type (2.1)
in order to identify two basic regimes of parameter-dependent problems which lead to
different conclusions when comparing sparse and low-rank approximations.
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We shall focus in what follows on affinely parametrized diffusion problems of the form

A(y)u := −div
(
a(y)∇u

)
= f, a(y) := ā+

∑
j≥1

yjθj , (2.1)

posed in the weak sense on a domain D with homogeneous Dirichlet boundary conditions,
where the expansion of the coefficient satisfies the uniform ellipticity assumption.∑

j≥1

|θj(x)| ≤ ā(x)− α, x ∈ D, (2.2)

for some α > 0. We then have V = H1
0 (D), and the corresponding operators Aj : V → V ′

for j ∈ {0} ∪ I are defined by

〈A0u, v〉 :=

∫
D
ā∇u · ∇v dx , 〈Aju, v〉 :=

∫
D
θj∇u · ∇v dx, i ∈ I,

for u, v ∈ V .
For any ν = (νj)j≥1 ∈ F , we define the coefficients

tν(y) =
1

ν!
∂νu(y), ν! :=

∏
j≥1

νj !, (2.3)

of a Taylor expansion of u at y. Denoting by ej = (0, . . . , 0, 1, 0, . . . ) is the j-th Kroenecker
sequence, by differentiating the equation, we find that these coefficients are given by the
recursion

tν(y) := −A(y)−1
∑

j∈supp ν

Ajtν−ej (y), (2.4)

initialized by
t0(y) = A(y)−1f = u(y). (2.5)

As simple yet instructive examples, we consider spatially univariate problems with Ω =
]0, 1[, ā = 1, and

θj = bjχDj , (2.6)

where bj ∈]0, 1[ are constants and the open subintervals Dj of Ω have disjoint closures so
that the diffusion coefficient is a strictly positive piecewise constant,

a(y) = ā+
∑
j≥1

yjbjχDj .

We consider two types of such inclusion systems. As a first scenario, we consider the
following.

Example 2.1. Let d := #I < ∞, Dj ⊂]0, 1[ for j = 1, . . . , d with pairwise disjoint Dj ,
and bj = ξ for some ξ ∈]0, 1[.

For low-rank approximation, we then have the following result.

Proposition 2.2. In Example 2.1, for any f ∈ V ′, one has rank(u) ≤ 4d+ 1.

Proof. This follows by the same arguments as in [2, Example 2.2]: the endpoints of the
Dj induce a partition of ]0, 1[ into 2d + 1 intervals. For each such interval I, for any F
such that F ′′ = f , we have u(y)|I ∈ span{χI , xχI , F χI}. Hence u(y) is contained in a
y-independent space of dimension 6d+ 3 for all y. In addition, there are 2d+ 2 continuity
conditions, independent of y, at the interval boundaries, which leaves at most 4d + 1
degrees of freedom.
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We observe on the other hand that the Legendre expansions for this problem involves
infinitely many nonzero coefficients, that is, the solution map y 7→ u(y) is not a polynomial
in y. This can be checked for example by considering the Taylor coefficient of order n in
a given variable j at the origin, that is,

tn,j := tnej (0) =
1

n!
∂nyju(0). (2.7)

As a particular case of (2.4), we have∫
D
ā∇tn,j · ∇v dx = −

∫
D
θj∇tn−1,j · ∇v dx. (2.8)

Since t0,j = u(0) is not trivial, there is at least one variable j such that t1,j does not vanish
on Dj . Then, taking v = tn−1,j in the above recursion shows by contradiction that tn,j
does not vanish on Dj , for all values of n ≥ 0. Thus y 7→ u(y) cannot be a polynomial.

Low-rank approximations thus give substantially faster convergence than Legendre ex-
pansions in this case. Similar results showing substantial advantages of best low-rank
approximations have also been obtained for spatially two-dimensional examples of analo-
gous structure in [2].

As a second scenario, we consider a problem with countably many parameters of de-
creasing influence.

Example 2.3. Let I = N, and let Dj ⊂]0, 1[ be disjoint with |Dj | > 0 for all j. In
addition, let (bj)j≥1 ∈ `q(N) for some q > 0.

As an immediate consequence of the results in [4, §4.1], one has the following.

Proposition 2.4. In Example 2.3, for all right hand sides f ∈ V ′, one has (‖uν‖V )ν∈F ∈
`p(F) for p = 2q

2+q , and there exists f ∈ V ′ such that (‖uν‖V )ν∈F /∈ `p′(F) for 0 < p′ < p.

If σn are the singular values of u, then for the decreasing rearrangement (u∗n)n≥1

of (‖uν‖V )ν∈F we clearly have u∗n ≥ σn. As the following new result shows by similar
arguments as in [4, §4.1], in general the singular values actually do not have faster decay
in this situation than the ordered norms of the Legendre coefficients.

Proposition 2.5. In Example 2.3, if (bj) /∈ `q
′
(N) for any 0 < q′ < q, then there exists

an f ∈ V ′ such that the singular values of u are not in `p
′
(N) for 0 < p′ < p = 2q

2+q .

Proof. We first observe that the singular values of u =
∑

ν∈F uν ⊗ Lν are bounded from
below by those of ũ =

∑
j≥1 uej ⊗Lej , with ej denoting the j-th Kronecker sequence. This

follows from the fact that ũ = (I⊗ P̃ )u, where P̃ is the projector onto span{Lej}j≥1.
For uej , one has by Rodrigues’ formula the explicit representation

uej =

√
3

2

∫
Y
tj(y) (1− y2

j ) dµ(y) (2.9)

in terms of the first-order derivatives tej (y) = ∂yju(y).
Let hj be the symmetric hat functions with support Dj . We now choose

f = −
∑
j≥1

cjh
′′
j ,

where
∑

j≥1 c
2
j/|Dj | <∞, which yields f ∈ V ′ and

t0(y) =
∑
j≥1

(1 + bjyj)
−1cjhj .

10



By (2.4),
tej (y) = −(1 + bjyj)

−2bjcjhj

and as a consequence of (2.9),

uej = −Mjbjcjhj , Mj :=

√
3

2

∫ 1

−1

1− y2

(1 + bjy)2

dy

2
≥ 1

4
√

3(1−maxj bj)
=: M0.

We thus obtain
〈uei , uej 〉V = 0, i 6= j,

as well as

‖uej‖V ≥M0bjcj‖hj‖V =
2M0bjcj√
|Dj |

.

Since (bj) is precisely in `q(N), by choosing cj = b
q/2
j

√
|Dj |, which guarantees in particular

that (cj/
√
|Dj |)j≥1 ∈ `2(N) as required, we arrive at the statement.

The above result shows that from an asymptotic point of view, in Example 2.3, there
is in general nothing to be gained by low-rank approximation: there always exist right
hand sides f such that the singular values have exactly the same asymptotic decay as the
ordered norms of Legendre coefficients.

Numerical tests as in Example 5.2 indicate that this also holds true for problems with
different types of parametrization and more general f .

Remark 2.6. The conclusion of Proposition 2.5 reveals that, in the case of Example 2.3
and if (bj)j≥1 /∈ `q

′
for all 0 < q′ < q, then any separable approximation of the form (1.8)

satisfies
‖u− un‖L2(Y,V ) ≥ crn−r, n ≥ 1, (2.10)

for some cr > 0, whenever r > 1
q . In turn, we also have

‖u− un‖L∞(Y,V ) ≥ crn−r, n ≥ 1. (2.11)

This implies that the Kolmogorov n-width

dn(M)V = inf
dim(E)≤n

max
v∈M

dist(v,E)V , (2.12)

of the solution manifold M := {u(y) : y ∈ Y } satisfies a similar lower bound

dn(M)V ≥ crn−r, n ≥ 1. (2.13)

While upper bounds for dn(M)V in parametric PDEs are typically proved by exhibiting a
particular separable approximation and studying its convergence in L∞(Y, V ), see [?, 2],
lower bounds are generally out of reach and the ones given above constitute a notable
exception.

Remark 2.7. One arrives at analogous observations in similar higher-dimensional set-
tings. The construction of Example 2.3 immediately carries over to spatial domains with
m > 1 when the definition of f is based on higher-dimensional hat functions. Examples
similar to Example 2.1 with m = 2 have been considered in [2], where the sequence of
singular values is no longer compactly supported but still decays exponentially.
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3 A generic algorithm

In this section, we follow the approach developed in [5], by first reformulating the general
equation (1.4) in a sequence space, and then introducing a generic resolution algorithm
based on this equivalent formulation.

We first notice that (1.4) may also be written as,

Au = f, (3.1)

where A is elliptic and boundedly invertible from L2(Y, V ) to L2(Y, V ′) and can be defined
in a weak sense by

〈Au, v〉 :=

∫
Y
〈A(y)u(y), v(y)〉dµ(y), u, v ∈ L2(Y, V ). (3.2)

We assume that f ∈ L2(Y, V ′), so that there exists a unique solution u ∈ L2(Y, V ).
Given a Riesz basis {ψλ}λ∈S of V , we tensorize it with the orthonormal basis {Lν}ν∈F

of L2(Y ). The resulting system {ψλ⊗Lν}(λ,ν)∈S×F is a Riesz basis of L2(Y, V ), which we
now use to discretize (3.1). For this purpose, we define the matrices

Aj :=
(
〈Ajψλ′ , ψλ〉

)
λ,λ′∈S and Mj =

(∫
Y
yjLν(y)Lν′(y) dµ(y)

)
ν,ν′∈F

, (3.3)

where M0 is set to be the identity matrix, and the right hand side column vector

f :=
(
〈f, ψλ ⊗ Lν〉

)
(λ,ν)∈S×F . (3.4)

We thus obtain an equivalent problem

Au = f (3.5)

on `2(S × F) where

A :=
∑
j≥0

Aj ⊗Mj (3.6)

and u =
(
uλ,ν

)
(µ,ν)∈S×F is the coordinate vector of u in the basis {ψµ ⊗ Lν}(µ,ν)∈S×F .

Regarding ν ∈ F as the column index of the infinite matrix u = (uµ,ν)µ∈S,ν∈F , we
denote by uν the columns of u, which are precisely the basis representations of the Legendre
coefficients uν ∈ V .

In what follows we always denote by ‖·‖ the `2-norm on the respective index set which
could be S, F or S × F , or the corresponding operator norm when this is clear from
the context. Since {ψµ}µ∈S is a Riesz basis for V we have ‖uν‖V ∼ ‖uν‖ uniformly in
ν ∈ F which together with boundedness and ellipticity of A implies that A is bounded
and elliptic on `2(S × F) and we have

‖u‖ ∼ ‖Au‖ ∼ ‖Au‖L2(Y,V ′) ∼ ‖u‖L2(Y,V ) (3.7)

with uniform constants. On account of (3.7), solving (3.5) approximately up to some
target accuracy is equivalent to solving (3.5) in `2 to essentially the same accuracy.

As a further consequence, one can find a fixed positive ω such that ‖I−ωA‖ ≤ ρ < 1,
ensuring that a simple Richardson iteration converges with a fixed error reduction rate per
step. This serves as the conceptual starting point for the adaptive low-rank approximation
scheme introduced in [5] as given in Algorithm 3.1.
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Algorithm 3.1 uε = solve(A, f ; ε)

input
ω > 0 and ρ ∈ (0, 1) such that ‖I− ωA‖ ≤ ρ, λA ≤ ‖A−1‖−1,
κ1, κ2, κ3 ∈ (0, 1) with κ1 + κ2 + κ3 ≤ 1, and β ≥ 0.

output uε satisfying ‖uε − u‖ ≤ ε.
1: u0 := 0, δ := λ−1

A ‖f‖
2: k := 0, J := min{j : ρj(1 + (ω + β)j) ≤ 1

2κ1}
3: while 1

2k
δ > ε

4: w0 := uk, j ← 0
5: repeat
6: ηj := ρj+1 1

2k
δ

7: rj := apply(wj ;
1
2ηj)− rhs(1

2ηj)
8: wj+1 := recompress(wj − ωrj ;βηj)
9: j ← j + 1.

10: until (j ≥ J ∨ λ−1
A ρ‖rj−1‖+ (λ−1

A ρ+ ω + β)ηj−1 ≤ 1
2k+1κ1δ)

11: uk+1 := coarsen
(
recompress(wj ;

1
2k+1κ2δ);

1
2k+1κ3δ

)
12: k ← k + 1
13: end while
14: uε := uk

This basic algorithmic template can be used to produce various types of sparse and low-
rank approximations, with appropriate choices of the subroutines apply, rhs, coarsen,
and recompress.

The procedures coarsen and recompress are independent of the considered A and
f , and satisfy

‖coarsen(v; η)− v‖ ≤ η, ‖recompress(v; η)− v‖ ≤ η, (3.8)

for any η ≥ 0 and any compactly supported v ∈ `2(S × F). Here coarsen is intended
to reduce the support of the sequence v, whereas recompress reduces the rank of v in
a low-rank tensor representation. The particular realizations of these routines depend on
the dimensionality of the problem and on the type of approximation. We shall use the
constructions given in [5].

The routines apply and rhs are assumed to satisfy, for compactly supported v and
any η > 0, the requirements

‖apply(v; η)−Av‖ ≤ η, ‖rhs(η)− f‖ ≤ η. (3.9)

Their construction not only depends on the type of approximation, but also on the specific
problem under consideration. These two routines are indeed the main driver of adaptivity
in Algorithm 3.1, and a major part of what follows concerns the construction of apply in
different scenarios.

It hinges on the compression of matrices by exploiting their near-sparsity in certain
basis representations. We use the following notion introduced in [9]: A bi-infinite matrix B
is called s∗-compressible if there exist matrices Bn with αn2n entries per row and column
and such that

‖B−Bn‖ ≤ βn2−sn, for 0 < s < s∗, (3.10)

and where the sequences α = (αn)n∈N and β = (βn)n∈N are summable. Here we always
assume B0 = 0. Furthermore, a bi-infinite matrix B that has at most k entries in each
row and column is called k-sparse.
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Remark 3.1. As shown in [5], regardless of the specifications of the routines apply,rhs,
coarsen,recompress, Algorithm 3.1 terminates after finitely many steps and its output
uε satisfies ‖u− uε‖ ≤ ε.

At this point, we record for later usage a particular feature of A that arises as a
consequence of our choice of tensor product orthogonal polynomials for the parameter-
dependence: The approximate application of A is facilitated by the fact that the matrices
Mj are bidiagonal. That is, in view of the three-term recurrence relation

tLn(t) = pn+1Ln+1(t) + pnLn−1(t), L−1 ≡ 0, (3.11)

where

p0 = 0, pn =
1√

4− n−2
, n > 0, (3.12)

one has
∫
U yj Lν(y)Lµ(y) dµ(y) = 0 whenever j /∈ supp ν ∪ supp µ, providing

(Mj)ν,ν′ = pνjδν+ej ,ν′ + pνj−1δν−ej ,ν′ (3.13)

with the Kronecker sequence (eji )i∈I := (δi,j)i∈I ∈ F .

4 Hierarchical tensor representations in the case of finitely
many parameters

We begin by considering the setting

I = {1, . . . , d}. (4.1)

then F = Nd
0 and u ∈ `2(S ×N0 × · · · ×N0).

Here we are interested in the case that all coordinates in I have comparable influence.
As illustrated in §2, a direct sparse Legendre expansion of u over S×F will then in general
be infeasible already for moderately large d. However, one may as well exploit Cartesian
product structure in F , regarding u as a higher-order tensor, and using corresponding
hierarchical low-rank representations. As we shall detail in what follows, the results of [5]
can be adapted to this problem in a rather straightforward manner.

It will be convenient to introduce a numbering of tensor modes as follows: Gx := S,
G1 := N0, . . . , Gd := N0. We additionally introduce the notation

Î := {x} ∪ I.

The representations of higher-order tensors which we consider are built on the Hilbert-
Schmidt case via matricizations: for each nonempty M ⊂ Î, u induces a compact operator

T
(M)
u : `2(

Ś

i∈Î\M Gi)→ `2(
Ś

i∈M Gi).
In terms of the left singular vector {U(i)

k }k∈N of T
({i})
u , i ∈ Î, we obtain the HOSVD

representation [32] in the Tucker format [40, 41] as in (1.17),

u =
∑

1≤ki≤ri: i∈Î

ak
⊗
i∈Î

U
(i)
ki
, (4.2)

where a = (ak)k∈Nd+1 is referred to as core tensor and (rx, r1, . . . , rd) as the multilinear
ranks of u.
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The hierarchical tensor format [25], on which the variant of our scheme described in
this section is based, can be interpreted as a further decomposition of a into tensors of
order at most three. This decomposition is obtained using further matricizations of the
tensor according to a recursive decomposition of the set of modes Î into a binary tree,

which we denote by D. For each α ∈ D, the rank of the corresponding matricization T
(α)
u

is denoted by rankα(u), where rankÎ(u) = 1 for all u 6= 0, and we set

rank(u) :=
(
rankα(u)

)
α∈D\Î . (4.3)

The hierarchical format can offer substantially more favorable complexity characteris-
tics for large d than (4.2). The left singular vectors of the involved matricizations yield
a hierarchical singular value decomposition [21]. We refer also to [16, 22, 24, 25, 29] for
detailed expositions regarding the finitely supported case (see also [35, 36] for the related
tensor train representation), and to [5] for analogous results for tensors in sequence spaces,
with notation analogous to the present paper.

The contractions

π(i)(v) =
(
π(i)
νi (v)

)
νi∈Gi

, π(i)
µ (v) =

( ∑
ν : νi=µ

|vν |2
)1/2

, i ∈ Î, (4.4)

as introduced in [5], can be evaluated efficiently (without any d-dimensional summations)
due to the relation

π(i)
µ (v) =

(∑
k

|U(i)
k,µ|

2|σ(i)
k |

2
)1/2

, (4.5)

where σ
(i)
k are the mode-i singular values of v. As in our previous notation, we abbreviate

suppi v := supp
(
π(i)(v)

)
, i ∈ Î.

4.1 Adaptive scheme

In the present case, we consider Algorithm 3.1 with the routines recompress and coarsen
for the hierarchical format as given in [5, Rem. 15]. recompress is based on a truncation
of a hierarchical singular value decomposition up to a prescribed accuracy η > 0, which
can be ensured based on the `2-norm of omitted singular values of matricizations. We
denote this operation by P̂η. It satisfies the quasi-optimality property [21]

‖v − P̂η(v)‖ ≤
√

2d− 3 inf
{
‖v −w‖ : rank(w) ≤ rank(P̂η(v))

}
, (4.6)

with the inequality between ranks understood componentwise.
coarsen retains the degrees of freedom for each mode that correspond to the largest

contractions (4.4). Let (µ∗i,k)k∈N be such that (π
(i)
µ∗i,k

(v))k∈N is nonincreasing. Denote for

Λ ⊂ S×F by RΛ v the array obtained by retaining all entries of v corresponding to indices
in Λ, while replacing all others by zero. Given η > 0, we define the product set

Λ(η) =
ą

i∈Î

{µ∗i,k : k ≤ Ni},

where Ni, i ∈ Î are chosen to such that
∑

i∈Î Ni is minimal subject to the condition(∑
i∈Î

∑
k>Ni

|π(i)
µ∗i,k

(v)|2
)1/2

≤ η. (4.7)
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Noting that the left side in (4.7) is an upper bound for ‖v−RΛ(η) v‖, we define coarsen as

a numerical realization of Ĉη v := RΛ(η) v, for which one has an analogous quasi-optimality

property as in (4.6) with constant
√
d.

Furthermore, A as defined in (3.6) is here a finite sum of Kronecker product operators,
which considerably simplifies the construction of the corresponding routine apply. More
specifically, A is a sum of d + 1 Kronecker product terms Aj ⊗Mj , j = 0, . . . , d. The
action of A can thus increase each hierarchical rank of its argument at most by a factor
of d + 1. Consequently, apply can be obtained following the generic construction given
in [5], provided that the operators Aj and Mj acting on each mode have the required
compressibility properties. Recall that by (3.13), the infinite matrices Mj are bidiagonal,
and hence do not require any further approximation. To use the construction of [5], we thus
only need that the operators A0, . . . ,Ad acting on the spatial variables are s∗-compressible.

Remark 4.1. In contrast to the case considered in [6], here the Hilbert space H = V ⊗
L2(Y ) on which the problem is posed is endowed with a cross norm. As a consequence, the
isomorphism that takes v ∈ H to its coefficients v ∈ `2(S × F) with respect to the tensor
product basis is of Kronecker rank one. The original low-rank structure (1.1) of A(y) is
therefore preserved in the `2-representation (3.6) of the problem.

4.2 Approximability of solutions

We illustrate next the approximability in hierarchical tensor format of a problem with
finitely many parameters. In our test problem, the coefficients are piecewise constant
and vary according to a spatially two-dimensional “checkerboard” geometry. That is, we
consider a partition of D :=]0, 1[2 into congruent square subdomains Dj , j = 1, . . . , d. For
d = 16, this is illustrated in Figure 1.

The low-rank approximability of such problems with respect to space-parameter sep-
aration has been studied in [2]. For the case d = 4 (that is, a 2 × 2-checkerboard), it is
shown there that for each n ∈ N one can find ux

k, u
y
k for k = 1, . . . , n such that for some

c > 0, ∥∥∥u− n∑
k=1

ux
k ⊗ u

y
k

∥∥∥
L2(Y,V )

. e−cn.

Numerical tests indicate that an analogous estimate can be achieved also for geometries
of the type shown in Figure 1 with d = 9, 16, 25, . . ., where c has a moderate dependence
on d. Note also that for a hierarchical tensor representation, the ranks of further matri-
cizations enter as well. We are not aware of any bounds for these additional ranks. The
numerically observed decay of the corresponding singular values for different values of d
(using a linear dimension tree) are shown in Figure 2.

Remark 4.2. As we have noted for the spatially one-dimensional case in Example 2.1 in
§2, for the separation between spatial and parametric variables for that case one always
obtains fixed finite ranks that grow linearly in the number of parameters d. Note, however,
that the approximation ranks corresponding to further separations among the parametric
variables may then still not be uniformly bounded; see e.g. [28, Prop. 2.5] for an analysis
of a simple example.

4.3 Convergence analysis

Our complexity results aim at the following type of statements: given a certain approxima-
bility of the solution, the algorithm recovers the corresponding convergence rates without
their explicit knowledge.
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Figure 1: Example geometry of piecewise constant coefficients, d = 16.
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Figure 2: Hierarchical singular values of u, where D has
√
d×
√
d-checkerboard geometry

as in Figure 1. Solid lines: singular values of matricizations T
({i})
u associated to i ∈ Î,

dashed lines: singular values of further matricizations in the hierarchical representation.
The horizontal axes show the numbers of the decreasingly ordered singular values.
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To describe these approximability properties, we now recall the definition of approxima-
tion classes to quantify the convergence of hierarchical low-rank approximations from [5].
Let γ =

(
γ(n)

)
n∈N0

be positive and strictly increasing with γ(0) = 1 and γ(n) → ∞ as

n→∞, for v ∈ `2(S × F) let

|v|AH(γ) := sup
r∈N0

γ(r) inf
|rank(w)|∞≤r

‖v −w‖

as well as

AH(γ) :=
{
v ∈ `2(S × F) : |v|AH(γ) <∞

}
, ‖v‖AH(γ) := ‖v‖+ |v|AH(γ).

We restrict our considerations to γ that satisfy

ργ := sup
n∈N

γ(n)/γ(n− 1) <∞ ,

which corresponds to a restriction to at most exponential growth.
For an approximation v of bounded support to u, the number of nonzero coefficients

# suppi v required in each tensor mode to achieve a certain accuracy depends on the best
n-term approximability of the sequences π(i)(u).

This approximability by sparse sequences is quantified by the classical approximation
classes As = As(J ), where s > 0 and J is a countable index set, comprised of all
w ∈ `2(J ) for which the quasi-norm

‖w‖As(J ) := sup
N∈N0

(N + 1)s inf
Λ⊂J

#Λ≤N

‖w − RΛ w‖ (4.8)

is finite.
In particular, if π(i)(u) ∈ As(Gi), these sequences can be approximated within accuracy

η by finitely supported sequences with O(η−1/s) nonzero entries. In what follows, we do
not explicitly specify the index set in the spaces As when this is clear from the context.

The observations of Section 4.2 lead us to the following benchmark assumptions for
analyzing the complexity of the algorithm.

Assumptions 4.3. For the hierarchical tensor approximation in the case (4.1) of d para-
metric variables, we assume the following:

(i) π(i)(u), π(i)(f) ∈ As(Gi), i ∈ Î, for an s > 0.

(ii) u, f ∈ AH(γ), where γ(n) := ec̄n
1/b̄

with b̄, c̄ > 0.

(iii) The Aj, j ∈ Î, are s∗-compressible for an s∗ > s, and hence there exist matrices
Aj,n with αj,n2n entries per row and column and such that ‖Aj −Aj,n‖ ≤ βj,n2−sn,
and where the sequences αj = (αj,n)n∈N and βj = (βj,n)n∈N are summable.

(iv) The routine rhs satisfies, for sufficiently small η > 0 and fη := rhs(η),

# suppi(fη) . η−
1
s ‖π(i)(f)‖As , ‖π(i)(fη)‖As . ‖π(i)(f)‖As ,

|rank(fη)|∞ .
(
d−1 ln(‖f‖AH(γ)/η)

)b
,

with hidden constants that do not depend on d, and there exists C > 0 independent
of d such that the required number of operations is bounded by

C
(
d|rank(fη)|3∞ + |rank(fη)|∞

∑
i∈Î

# suppi(fη)
)
.

18



We will use the above assumptions as a reference point for the scaling with respect
to ε of the computational complexity. In order to also compare different parametric
dimensionalities d in the complexity bounds, we additionally need a specific reference
family of d-dependent problems. We introduce the following model class motivated by the
considerations of Section 4.2.

Assumptions 4.4. For the quantities in Assumptions 4.3, in addition let the following
hold:

(i) ‖π(i)(u)‖As, ‖π(i)(f)‖As, i ∈ Î, and ‖u‖AH(γ), ‖f‖AH(γ) as well as c̄−1 grow at most
polynomially in d.

(ii) b̄ and ‖Aj‖, ‖αj‖`1, ‖βj‖`1 for j ∈ Î are bounded independently of d.

It needs to be emphasized that Algorithm 3.1 does not require any knowledge on the
approximability of u stated in Assumptions 4.3 and 4.4; these merely describe a model
case for complexity bounds. Recall from Remark 3.1 that Algorithm 3.1 produces uε
satisfying ‖u− uε‖ ≤ ε in finitely many steps.

Theorem 4.5. Let Assumptions 4.3 hold, let α > 0 and let κ1, κ2, κ3 in Algorithm 3.1 be
chosen as

κ1 =
(
1 + (1 + α)(

√
d+
√

2d− 3 +
√
d(2d− 3))

)−1
,

κ2 =
√

2d− 3(1 + α)κ1, κ3 =
√
d(1 +

√
2d− 3)(1 + α)κ1.

Then for each ε > 0 with ε < ε0, the approximation uε produced by Algorithm 3.1 satisfies

|rank(uε)|∞ ≤
(
c̄−1 ln

[
2(ακ1)−1ργ ‖u‖AH(γ) ε

−1
])b̄

.

(
|ln ε|+ ln d

c̄

)b̄
, (4.9)

as well as ∑
i∈Î

# suppi(uε) . d1+ 1
s

(∑
i∈Î

‖π(i)(u)‖As
) 1
s
ε−

1
s . (4.10)

Let in addition Assumptions 4.4 hold, then there exist c, C > 0 such that the number of
required operations is bounded by

Cdc ln d|ln ε|2b̄ε−
1
s , (4.11)

where c depends on α, ρ, ω, s, and C may additionally depend on u and f .

Proof. The validity of (4.9) and (4.10) follows by [5, Thm. 7], which can be immediately
applied to the result of line 11 in Algorithm 3.1. Concerning (4.11), we can apply [5, Thm.

8] (with Ri = d and uniform constants Ĉ
(i)
α̂ , Ĉ

(i)

β̂
and Ĉ

(i)

Ã
in the notation used there) to

obtain, for wη := apply(v; η),

# suppi(wη) . d1+s−1
η−

1
s

(∑
j∈Ix

‖π(i)(v)‖As
) 1
s
, ‖π(i)(wη)‖As . d1+s‖π(i)(v)‖As ,

as well as rank(wη) ≤ (d + 1) rank(v). With these estimates, (4.11) follows exactly as
in [5, Thm. 9].
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5 Anisotropic dependence on infinitely many parameters

We now turn to the case I = N, that is, problems involving countably many parameters
(yj)j≥1 that have decreasing influence as j increases. Here we consider problems of the
type (1.5),

−div
(
a(y)∇u(y)

)
= f, a(y) = ā+

∑
j≥1

yjθj , (5.1)

for u ∈ L2(Y, V ), with V = H1
0 (D) on a domain D ⊂ Rm and Y = [−1, 1]N, under the

uniform ellipticity assumption (2.2) on a.
In this section we address two principal interrelated issues. On the one hand, the

performance of the previously discussed different approximation formats (realized by vari-
ants of Algorithm 3.1) for the present scenario; on the other hand, the influence of the
particular type of parametric expansion system (θj)j∈N in (5.1) on the performance of the
approximation method.

Any numerical scheme necessarily involves a truncation of the series for A. Defining
for each nonnegative integer M the corresponding truncation error

eM :=
∥∥∥∑
j>M

Aj ⊗Mj

∥∥∥ (5.2)

of replacing A by
∑M

j=1 Aj ⊗Mj , where e0 = ‖A‖, the decay of eM describes the approx-
imability of A. We will be concerned with algebraic rates

eM ≤ CM−S , M ∈ N, (5.3)

where C, S > 0 are fixed constants. Note that in particular, our further developments do
not require summability of (‖θj‖L∞)j≥1 as assumed, e.g., in [14,15].

In principle, the results of the previous section concerning a full separation of variables
based on hierarchical tensor formats could be applied with any finite truncation dimension
d. However, assuming (5.3), a total error of order ε requires d(ε) ∼ ε−1/S . As a conse-
quence, due to the d-dependent quasi-optimality (4.6) of the hierarchical SVD truncation,
we can only obtain a highly suboptimal complexity bound in (4.11).

Concerning low-rank decompositions, we therefore concentrate here on a more basic
case, namely a separation of spatial and parametric variables in a Hilbert-Schmidt decom-
position: The sequence u defines a Hilbert-Schmidt operator `2(F)→ `2(S) with singular
value decomposition

u =
∞∑
k=1

σkU
(x)
k ⊗U

(y)
k , (5.4)

where σk ≥ 0, {U(x)
k }, {U

(y)
k } are orthonormal in `2(S) and `2(F), respectively, and∥∥∥u− r∑

k=1

σkU
(x)
k ⊗U

(y)
k

∥∥∥2
=
∑
k>r

σ2
k = min

rank(w)≤r
‖u−w‖2. (5.5)

Since this separation also occurs in any hierarchical representation, the resulting Hilbert-
Schmidt rank provides a lower bound for the maximum hierarchical ranks that one can
obtain in a hierarchical format involving further matricizations.

To understand the joint approximability of the infinite vectors U
(i)
k , i = x, y, we

consider the particular contractions defined, for v ∈ `2(S × F), by

π(x)(v) :=

((∑
ν∈F
|vλ,ν |2

)1/2
)
λ∈S

, π(y)(v) :=

((∑
λ∈S
|vλ,ν |2

)1/2
)
ν∈F

. (5.6)
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Note that π
(y)
ν (u) is uniformly proportional to the norm of the corresponding Legendre

coefficient of u, that is, π
(y)
ν (u) ∼ ‖uν‖V .

Let (λ∗k)k∈N and (ν∗k)k∈N be such that (π
(x)
λ∗k

(v))k∈N and (π
(y)
ν∗k

(v))k∈N are nonincreasing,

respectively. Then the singular values σk(v) of v satisfy

σk(v) ≤ π
(x)
λ∗k

(v), π
(y)
ν∗k

(v), k ∈ N. (5.7)

In view of our results for Example 2.3 (and the further numerical experiments of
Example 5.2), we expect algebraic decay of singular values, which we quantify in terms
of classes AH(γ) specialized to tensors of order two and to the specific sequence γ(k) :=
(1 + k)s̄. This yields the approximation classes

Σs̄ :=
{
v ∈ `2(S × F) : sup

k∈N
(1 + k)s̄

(∑
j>k

σk(v)2
)1/2

=: ‖v‖Σs̄ <∞
}
.

The approximate sparsity of the sequences π(x)(v), π(y)(v) is measured in terms of the
largest sx, sy > 0 such that π(x)(v) ∈ Asx(S), π(y)(v) ∈ Asy(F) according to (4.8).

In the light of the findings for Example 2.3 in §2, showing that sparse Legendre expan-
sions can be nearly optimal in the n-term sense for infinite parametric expansions with
terms of decreasing influence, we include in the competition a method for constructing a
direct sparse approximation in a tensor product basis {ψλ⊗Lν}λ∈S,ν∈F of L2(Y, V ). This
variant of Algorithm 3.1 is similar to the scheme proposed in [20], following the approach
of [9, 10].

All adaptive strategies that we consider are in essence driven by rigorous a posteriori
bounds in terms of residuals and involve dynamically adapted applications of compressed
versions of the spatial operator components Aj . This leads in the end to a complete
convergence and complexity analysis for the respective fully discrete method.

However, the efficiency of approximately evaluating residuals depends on the com-
pressibility of the Aj (which is affected by the oscillatory nature of the expansion system
(θj)j∈N) and on the decay of the truncation errors (5.3). This is where the second issue of
the influence of the parametric expansion on the performance of adaptive methods comes
into play. In this regard we compare below two representative models of expansion sys-
tems: on the one hand, globally supported θj as they arise in Karhunen-Loève expansions
for stationary processes, and on the other hand, multilevel- or wavelet type expansions
of a. We show that in the former case the decay (5.3) is typically too slow to be able
to fully exploit the approximability properties of the solution, a fact that has already
been observed in [20]. In contrast, as shown in §5.2, a multilevel parametrization leads to
near-optimal complexity bounds for the considered model classes. In this context, recall
from [3] that for lognormal diffusion coefficients, in typical model examples of Matérn
covariances both parametrization types are possible.

We proceed next considering the two scenarios that serve as a motivation for the
assumptions that we shall make in the complexity analysis of the adaptive schemes. In
particular, they demonstrate the fundamental impact of the choice of θj on the achievable
computational complexity.

5.1 Global-type parameter expansions

To first shed some light on certain fundamental issues in approximating A, we use the
example of a simple operator which is representative of a certain class of parametrizations
of the coefficient a.
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We consider the following spatially one-dimensional setting with D =]0, 1[: for a mono-
tonically decreasing positive sequence (cj)j∈N with

∑
j≥1 cj ≤

1
2 , take θj = cj cos(jπ·), so

that
a(y) = 1 +

∑
j≥1

yjcj cos(jπ·). (5.8)

We consider this as a representative model case for the setting of globally supported θj
that become increasingly oscillatory as j →∞.

Let us now discuss the approximability of the operator, and how it relates to the
approximability of the solution. With α > 1

2 , consider cj := 1
2ζ( 1

2
+α)

j−( 1
2

+α), where

t 7→ ζ(t) is the standard zeta function. Then ‖Aj‖ ∼ cj ,

eM .M−α+ 1
2 ,

and therefore S = α− 1
2 . This corresponds precisely to the example considered in [20].

These considerations do not depend on a particular choice of basis of V = H1
0 (D).

For a complete sparse approximation of A, however, this choice is relevant, since it de-
termines the s∗-compressibility properties of the Aj . In the present case (5.8) obtain
a particularly simple representation using the orthonormal basis {φk}k≥1 with φk(x) :=√

2(kπ)−1 sin(kπx) of V . Then not only the Mj , but also the Aj are bidiagonal, since
A0 = I and for j ≥ 1,

Aj,kl = cj

∫ 1

0
cos(jπx)φ′k(x)φ′l(x) dx =

cj
2

(
δk+l,j + δl−k,j + δk−l,j

)
.

As a consequence, each Aj is indeed exactly sparse and does not need to be further approx-
imated. In other words, in this case the approximability of A is determined completely
by eM . In case that Aj need to be compressed as well, one obtains a further reduction of
the compressibility of A relative to S, see Remark 6.3.

We also have (‖θj‖)j∈N ∈ `p(N) for any p > 1
1
2

+α
, and as a consequence of the results

in [12],
π(y)(u) ∈ As for any s < α.

Hence we can take sy to be any value less than α. In summary, in the present example
one has

α− 1

2
= S < sy < α.

Remark 5.1. As the above example demonstrates, for parametrizations of such type the
operator approximability is in general strictly weaker than the relevant sparse approxima-
tion rates of the solution. Thus, in an adaptive scheme based on approximate residual
evaluations one has to expect that the overall complexity is determined by the rate S in
(5.3), and the sparsity of the solution cannot be fully exploited since S < sy. This leads
us to consider below an alternate parametrization type.

5.2 Wavelet-type expansions

Let Ξ = {ξµ}µ∈Λ be a system of compactly supported multilevel basis functions with
diam(supp(ξµ)) ∼ 2−|µ| and ‖ξµ‖L∞(D) = 1. With (µj)j≥1 an enumeration of Λ by in-
creasing level and some fixed α > 0, we consider

θj = cµjξµj , where cµj = 2−α|µj |. (5.9)
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To simplify notation, we also set cµ0
:= 1, ξµ0

:= ā, and |µ0| := 0. Note that for what
follows, it would in fact suffice to assume cµ ∼ 2−α|µ|, with a constant that is uniform over
Λ, but we assume equality to simplify the exposition. If the ξµ are sufficiently smooth, we
then have a(y) ∈ Bα

∞,∞(D), that is, for any y ∈ Y ,

a(y) ∈ Cα(D) for α /∈ N. (5.10)

Let us first compare the resulting rates in the spatially one-dimensional case m = 1.
As shown in [4], here we have π(y)(u) ∈ As for any s > 0 with

s < s∗y := α,

where one may have ‖π(y)(u)‖As →∞ as s→ s∗y. Here we also obtain

eM .M−α,

that is, S = α. In summary,
sy < s∗y = S,

which in the light of Remark 5.1 is a more favorable situation.
Regarding s∗x, for sufficiently regular f and sufficiently regular wavelets ψλ, we also

have π(x)(u) ∈ As for any
s < s∗x := α.

This can be seen as follows: Let 0 < s < α, and let ψλ be sufficiently smooth to form a
Riesz basis of H1+s(D). Then∑

λ∈S
22s|λ||π(x)

λ (u)|2 =
∑
λ∈S

∑
ν∈F

22s|λ||uλν |2 ∼
∫
Y
‖u(y)‖2H1+s(D) dµ(y).

By (5.10) and [23, Thm. 9.1.16] we have ‖u(y)‖H1+s . ‖f‖H−1+s uniformly in y for any
s < α (where uniformity in y can be seen by inspection of the proof, see also [23, Thm.
9.1.8]).

When m > 1, we obtain in the same manner

s∗x = s∗y = S =
α

m
, (5.11)

where for the result concerning s∗x we additionally need to assume a sufficiently smooth
domain D; otherwise, one may have s∗x < α/m.

For low-rank approximation, a crucial question is how sx and sy relate to the largest
s̄ such that (σk(u))k∈N ∈ Σs̄. In view of (5.7), for this s̄ one always has s̄ ≥ sx, sy. In
addition, we are interested in the performance of best n-term approximation of the form
(1.20), that is, the largest s such that u ∈ As(S×F). We are not aware of results that give
sharp statements on s̄ and s for the present example with parametrization as in (5.9). The
following representative numerical example gives an indication of what one may expect. x

Example 5.2. We consider m = 1 with D =]0, 1[, ā = 1, f = 1 and

θj(x) = cα2−α`h(2`x− k), j = 2` + k

for ` ≥ 0 and k = 0, . . . , 2` − 1, where h(x) = (1 − |2x − 1|)+ and cα is chosen so as to
ensure uniform ellipticity. In other words, the parameter is expanded in a Schauder hat
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Figure 3: Absolute values of tensor product expansion coefficients |uλ,ν |, Legendre coef-

ficient norms ‖uν‖V (proportional to π
(y)
ν (u)) and singular values σk(u), for α = 1 and

α = 1
2 in Example 5.2. The dashed lines show the known asymptotic decay rates of ‖uν‖V

according to [4].

function basis. The resulting observed decay1 of |uλ,ν |, of ‖uν‖V (which are proportional

to π
(y)
ν (u)), and of σk(u) is shown in Figure 3. Note that in both cases α = 1 and α = 1

2 ,
the σk(u) clearly decay at exactly the limiting rate s∗y + 1

2 that is theoretically guaranteed
for the Legendre coefficient norms ‖uν‖V ; the ‖uν‖V themselves approach this rate only
fairly late. Thus, we can at best expect s̄ = s∗y = α here. Note also that the decay of
|uλ,ν | is closely aligned to that of ‖uν‖V .

In contrast to the setting of section 5.1, in the present setting (5.9), where the θj have
multilevel structure, the eM have sufficient decay to match the approximability of the
solution. The construction of a routine apply that can take full advantage of this approx-
imability, however, depends in an essential way on the compressibility of the matrices Aj ,
which in turn depends on the basis that is used for V . This is considered in more detail
in the next section.

6 Spatial-parametric sparse approximation

In this section we consider a version of Algorithm 3.1 that produces n-term approximations
to u ∈ L2(Y, V ) in terms of the wavelet-Legendre tensor product basis {ψλ ⊗Lν}λ∈S,ν∈F .
That is, the approximation that we seek in this case is of the form

u ≈ un =
∑

(λ,ν)∈Λn

uλνψλ ⊗ Lν , (6.1)

where we aim to identify Λn that yields an error close to that of the best n-term approxi-
mation in this basis.

In this case, coarsen performs a standard coarsening operation on a sequence, and
recompress(v; η) := v for any η. The scheme thus reduces to the adaptive method of [10],
which has been considered for this particular type of approximation of parametric PDEs
also in [20]. The key ingredient that remains to be described is the adaptive application
of A to representations of the form (6.1).

1Here we choose ψλ to be piecewise cubic L2-orthonormal multiwavelets rescaled to be Riesz bases of
H1.
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6.1 Adaptive operator application

In view of Remark 5.1 and the preceding discussion we concentrate in what follows on
wavelet-type parametrizations as in (5.9). The compressibility of the corresponding ma-
trices Aj is analyzed in Appendix A. These findings justify to proceed under the following
hypothesis (see (A.15), (A.16)).

Assumptions 6.1. Let {θj}j≥1 satisfy (5.9). There exist a τ > α
m and matrices An,j,

n ∈ N0, with the following properties:

(i) the number of nonvanishing entries in each column of An,j does not exceed a uniform
constant multiple of

(
1 + |µj |q

)
2n, for some q ≥ 1;

(ii) one has
‖Aj −Aj,n‖ . cµj2

−τn, n ∈ N, (6.2)

where the hidden constant is independent of j, n and cµj is defined as in (5.9).

Specifically, it is shown in Appendix A that the above assumptions can be realized
for arbitrarily large τ by choosing the functions ξµ and the spatial wavelets sufficiently
smooth, the latter having sufficiently many vanishing moments.

As we shall see, making use of a multilevel structure in the parametrization that leads
to Assumptions 6.1, one can obtain substantially better compressibility of A than under
the generic assumptions used in [20]. We show that under such a hypothesis the matrix
A is s∗-compressible where s∗ < α/m comes as close to α/m as one wishes when τ is
suitably large. Consequently, the n-term approximability of u can be fully exploited.

Proposition 6.2. Let Assumption 6.1 be valid. Then A is s∗-compressible for any

s∗ <
α

m

2τ

1 + 2τ
. (6.3)

Proof. We construct approximations An of A by choosing sequences n = (nj)j≥0 of
bounded support and defining An : `2(S × F)→ `2(S × F) by

An :=
∑
j≥0

Aj,nj ⊗Mj . (6.4)

Our aim is to find such nJ such that the corresponding AJ := AnJ satisfy

‖A−AJ‖ . J−22−s
∗J , J ∈ N, (6.5)

with s∗ as in the assertion, and such that AJ is J−22J -sparse, i.e., the number of nonzero
entries in the each column of AJ does not exceed a fixed constant multiple of J−22J .

We take L ∈ N be arbitrary but fixed. Recall that we assume µj to be ordered by
increasing level, that is, |µj+1| ≥ |µj |. We now consider (nj)j≥0 such that nj = 0 for
j > ML := dL2m/α2mLe. Since then eML

. L−22−αL (see (5.3), (5.11)), we obtain

‖A−An‖ .
∥∥∥∥ML∑
j=0

(
Aj −Aj,nj

)
⊗Mj

∥∥∥∥+ L−22−αL. (6.6)

Within each level ` ≥ 0, i.e., for each µ with |µ| = `, there are only finitely many µ′ with
|µ′| = ` such that supp ξµ ∩ supp ξµ′ 6= ∅. Since the images of Aj corresponding to ξµj
with disjoint support are orthogonal, we obtain∥∥∥∥ML∑

j=0

(
Aj −Aj,nj

)
⊗Mj

∥∥∥∥ .

dL+ 2
α

log2 Le∑
`=0

( ∑
j : |µj |=`

‖Aj −Aj,nj‖2
) 1

2
, (6.7)
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where the constant depends on the maximum number of wavelets of overlapping support
on each level. Taking

nj = n` =
⌈m`

2τ
+
α

τ

(
L+

2

α
log2 L− `

)
+

1

τ
log2(1 + `)2

⌉
for µj of level ` and recalling that for such j we have |cµj | = 2−α` gives

dL+ 2
α

log2 Le∑
`=0

( ∑
j : |µj |=`

‖Aj −Aj,nj‖2
) 1

2
.

dL+ 2
α

log2 Le∑
`=0

2
m
2
`2−α`2−τn` . L−22−αL. (6.8)

The resulting An is NL-sparse with

NL .

dL+ 2
α

log2 Le∑
`=0

(1 + `q)2m`2n` . L
2
α 2

α
τ
L

dL+ 2
α

log2 Le∑
`=0

(1 + `)q+
2
τ 2(1+ 1

2τ
)m`−α

τ
`

. Lq+
2(1+m)

α 2
1+2τ

2τ
mL, (6.9)

where we have used τ > α/m.
We now fix s∗ > 0 with s∗ < t := α

m
2τ

1+2τ and take J := d ts∗
1+2τ

2τ mLe = d αs∗Le and

nJ := n. Since then NL . Jq+
2(1+m)

α 2
s∗
t
J we see that NL . J−22J with a constant that

depends on α,m and increases when s∗ approaches t. It immediately follows from (6.8)
that

‖A−AJ‖ . J−22−s
∗J (6.10)

with a constant depending on m. Thus A is s∗-compressible for any s∗ < t.

Remark 6.3. In [20], where the case of globally supported θj as in §5.1 is considered,
compressibility with only s∗ = 1

2(α − 1
2) for A with m = 1 is obtained when taking the

compression of the individual Aj into account. The example given in [20] is completely

analogous to the case θj ∼ j−(α+ 1
2

) cos(jπ·) considered in §5.1. In this case, one finds

that Assumptions 6.1 are replaced by ‖Aj −Aj,n‖ . j−(α+ 1
2

)2−γn with O(j(1 + log2 j)2
n)

entries per row and column. We comment further in Remark A.3 on how this leads to the
limitation to s∗ = 1

2(α− 1
2).

6.2 Complexity

Let apply be constructed according to Proposition 6.2 with s∗ as in (6.3), and let u ∈ As
for an s < s∗. Then f ∈ As and we can construct rhs satisfying

# supp(rhs(η)) . η−
1
s ‖f‖

1
s
As , ‖rhs(η)‖As . ‖f‖As .

By the results in [10] we obtain the following complexity bound.

Theorem 6.4. For any given ε > 0, the approximation uε produced by the above modifica-
tion of Algorithm 3.1 operating on approximations of the form (6.1) satisfies ‖u−uε‖ ≤ ε,
and if u ∈ As, we have

# supp(uε) . ε−
1
s ‖u‖

1
s
As , ‖uε‖As . ‖u‖As ,

and the number of operations is bounded up to a multiplicative constant by 1 + ε−
1
s ‖u‖

1
s
As.
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7 Low-rank approximation

We now turn to an adaptive method for finding low-rank approximations based on the
Hilbert-Schmidt decomposition (5.4),

u =

∞∑
k=1

σkU
(x)
k ⊗U

(y)
k .

On the one hand, a fast decay of the singular values σk means that relatively low ranks suf-
fice to realize a given target accuracy. At the same time the generally infinitely supported

mode frames {U(x)
k }, {U

(y)
k } need to be approximated by finitely supported sequences that

ideally should be best n-term approximations. Hence, in order to minimize computational
complexity one should intertwine adaptivity in rank and in the basis expansions. As in
the scheme considered in §4, this is done by iteratively improving low-rank expansions
of varying ranks, while at the same time identifying finitely supported approximations in
`2(S) and `2(F), both based on approximate residual evaluations.

For the low-rank approximation, the routines recompress and coarsen used in Algo-
rithm 3.1 are based on the specialization to tensors of order two of the routines described
in the previous section. recompress(v; η) is a numerical realization of P̂η(v), which
we define as the operator producing the best low-rank approximation of v with error at
most η with respect to ‖·‖, obtained by truncating the singular value decomposition of its
argument.

The routine coarsen(v; η) is constructed as in §4 based on the contractions π(x)(v),
π(y)(v) defined as in (5.6). The following result differs from [5, Theorem 7], which is for-
mulated for general hierarchical tensors, in that we now consider differing sparsity classes
for the contractions π(i), i = x, y. In view of the preceding discussion, it is reasonable to
assume possibly different but algebraic decay for both contractions.

Theorem 7.1. Let u,v ∈ `2(S × F) with ‖u− v‖ ≤ η. Then for

wη := Ĉ23/2(1+α)η

(
P̂(1+α)η(v)

)
, (7.1)

we have
‖u−wη‖ ≤

(
2 + α+ 23/2(1 + α)

)
η. (7.2)

Moreover, when u ∈ A(γ), π(i)(u) ∈ Asi, i = x, y, we have

|rank(wη)|∞ ≤ γ−1
(
ργ‖u‖A(γ)/(αη)

)
, ‖wη‖A(γ) ≤ C1‖u‖A(γ), (7.3)

with C1 = 2(1 + α−1) and

# suppx(wη) + # suppy(wη) ≤ 2 +

(
2‖π(x)(u)‖Asx

αη

) 1
sx

+

(
2‖π(y)(u)‖Asy

αη

) 1
sy

‖π(i)(wη)‖Asi ≤ C2‖π(i)(u)‖Asi , i = x, y,

(7.4)

where C2 depends on α and si, i = x, y.

The estimates (7.1), (7.2) have been already shown in [5]. The only deviation concerns
the stability estimate (7.4), which we prove in Appendix B.

To apply Algorithm 3.1 it remains to specify the approximate application of A by the
procedure apply to representations of the form (5.4). As part of this procedure, we shall
also use a modified routine coarseny which operates only on the second tensor mode and
leaves suppx unchanged. For this routine, we shall only use the simpler statement that for
any v ∈ `2(S × F) with π(y)(v) ∈ Asy(F), vy := coarseny(v; η) satisfies

# suppy(vy) . η
− 1
sy ‖π(y)(v)‖

1
sy

Asy , ‖π(y)(vy)‖Asy . ‖π(y)(v)‖Asy .
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7.1 Adaptive operator application

We now describe a specification of the more generic routine used in [5] that is tailored to
exploit anisotropy in the parametrizations of parametric operators. For given any given
η > 0 and finitely supported v we aim to construct wη such that ‖Av − wη‖ ≤ η. We
follow here the general strategy of combining a priori knowledge on A with a posteriori
information on v, which is given in terms of a suitable decomposition of v.

To that end, we first apply a preprocessing step to the finitely supported input v that
consists of applications of recompress and coarseny. We choose for a given η > 0 the
tolerances of order η in such a way that the resulting vη satisfies

‖v − vη‖ ≤
η

2‖A‖
. (7.5)

As a consequence, for any positive sy, s̄ we have

rank(vη) . η−
1
s̄ ‖v‖

1
s̄

Σs̄ , ‖vη‖Σs̄ . ‖v‖Σs̄ , (7.6)

and

# suppy(vη) . η
− 1
sy ‖π(y)(v)‖

1
sy

Asy , ‖π(y)(vη)‖Asy . ‖π(y)(v)‖Asy . (7.7)

We then have the SVD of vη at hand,

vη =

K∑
k=1

σkU
(x)
k ⊗U

(y)
k , (7.8)

and set Kp = {2p, . . . ,min{K, 2p+1 − 1}}, for p = 0, 1, . . ., p ≤ log2K. Furthermore, for

q = 0, 1, . . ., let Λ̂
(y)
q be the support of the best 2q-term approximation of π(y)(vη). We

set Λ
(y)
0 := Λ̂

(y)
0 and Λ

(y)
q := Λ̂

(y)
q \ Λ̂

(y)
q−1 for q > 0. With this subdivision of suppy(vη), we

now define

v[p,q] := RS×Λ
(y)
q

∑
k∈Kp

σkU
(x)
k ⊗U

(y)
k =

∑
k∈Kp

σkU
(x)
k ⊗ R

Λ
(y)
q

U
(y)
k , (7.9)

and obtain

Avη =
∑
p,q≥0

∞∑
j=0

(Aj ⊗Mj)v[p,q] =
∑
p,q≥0

∞∑
j=0

∑
k∈Kp

σk
(
AjU

(x)
k

)
⊗
(
Mj R

Λ
(y)
q

U
(y)
k

)
. (7.10)

To construct an approximation wη of Avη based on this decomposition, we truncate
the summations over j for each p, q at some index Mp,q ∈ N, to be determined later,
and then replace the remaining terms Aj by compressed versions, again depending on
the respective p, q. With eM defined for nonnegative integer M as in (5.2), for any given
choice of Mp,q we have

∥∥∥Av −
∑
p,q≥0

Mp,q∑
j=0

(Aj ⊗Mj)v[p,q]

∥∥∥ ≤ ∑
p,q≥0

eMp,q‖v[p,q]‖. (7.11)

We now choose the Mp,q such that∑
p,q≥0

eMp,q‖v[p,q]‖ ≤
η

4
. (7.12)
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This can be done by choosing positive weights αp,q such that
∑

p,q αp,q = 1, computing
‖v[p,q]‖, and adjusting the Mp,q so as to guarantee that

eMp,q‖v[p,q]‖ ≤ ηp,q := αp,qη/4. (7.13)

We will give an a priori choice for Mp,q below, but one may as well use e.g. the Greedy
scheme proposed in [19] for selecting these values.

Next, in order to realize an approximate application of the (generally) infinite matrices

Aj to U
(x)
k in (7.10) we replace Ajv[p,q] by by an approximation Ãj,p,qv[p,q] using (3.10)

so as to satisfy ∥∥∥∥Mp,q∑
j=0

(Aj − Ãj,p,q)⊗Mj v[p,q]

∥∥∥∥ ≤ ηp,q. (7.14)

The approximate operators Ãj,p,q will be specified later. The sought approximation of Av
can now be obtained as

wη :=
∑
p,q≥0

Mp,q∑
j=0

(Ãj,p,q ⊗Mj)v[p,q], (7.15)

which by the above construction satisfies the (computable) error bound

‖Avη −wη‖ ≤
∑
p,q≥0

(
eMp,q‖v[p,q]‖+ ηp,q

)
≤ η/2 , (7.16)

so that
‖Av −wη‖ ≤ η. (7.17)

In summary, the above adaptive approximation of A to a given finitely supported v
involves the following steps:

apply : v→ wη, with v given by its SVD

(S1): compute vη := coarseny(recompress(v; η/4‖A‖); η/4‖A‖) and (quasi-)sort2 the

entries of π(y)(vη) to obtain the sets Λ
(y)
q ;

(S2): compute the quantities ‖vp,q‖ and determine the truncation values Mp,q = Mp,q(η);

(S3): compute the quantities
(
π

(x)
ν (v[p,q])

)
ν∈S and use these to obtain the compressed

matrices Ãj,p,q, using (7.9) in the assembly step (7.15).

7.2 Complexity analysis

To quantify the complexity of computing wη in (7.15) we need to specify the properties of
the operator A(y) as well as the sparsity properties of the input. In view of our preceding
discussion, in the scenario of primary interest, the singular values of the solution u as well
as the best n-term approximations of the contractions π(i)(u), i ∈ {x, y}, exhibit algebraic
decay rates. As before, these rates are denoted by s̄ and sx, sy, respectively.

As indicated earlier, the complexity of the above scheme depends, in particular, on
the operator approximability by truncation. We adhere to the natural assumption that

2As usual, to warrant a linear scaling, instead of exact ordering it suffices to perform a quasi-sorting
into buckets according to some fixed exponential decay.

29



eM ≤ CM−S for some positive S, see (5.3). Since, as explained in §5.2, we have S > si,
i ∈ {x, y}, in the expansion model (5.9), we confine the subsequent discussion to this
setting, where S = α

m . We gather next the properties upon which the complexity analysis
will be based.

Assumptions 7.2. The solution u to (3.5) and the matrix A have the following properties:

(i) One has π(i)(u), π(i)(f) ∈ Asi, i = x, y, with sx, sy > 0.

(ii) u, f ∈ Σs̄ for some s̄ ≥ sx, sy.

(iii) There exists a constant C such that eM ≤ CM−S, M ∈ N, where eM is defined by
(5.2) and

S ≥ s̄, sy. (7.18)

(iv) The representations Aj, j ∈ N, satisfy Assumptions 6.1 where τ satisfies

2τ

1 + 2τ

α

m
=

2τ

1 + 2τ
S > sx. (7.19)

(v) The routine rhs satisfies, for sufficiently small η > 0 and fη := rhs(η),

# suppi(fη) . η
− 1
si ‖π(i)(f)‖Asi , ‖π(i)(fη)‖Asi . ‖π(i)(f)‖Asi , i ∈ {x, y},

rank(fη) . η−
1
s̄ ‖f‖

1
s̄

Σs̄ , ‖fη‖Σs̄ . ‖f‖Σs̄ ,

and requires O
(
η
− 1
s̄
− 1

min{sx,sy}
)

operations.

The main result of this section states that up to a logarithmic factor the sparsity
properties of the input are preserved by the output of apply.

Theorem 7.3. Suppose that the properties listed under Assumptions 7.2 hold. Then,
given any finitely supported input v ∈ `2(S ×F), the output wη produced by the procedure
apply, based on the steps (S1)–(S3), satisfies

‖Av −wη‖ ≤ η. (7.20)

Moreover, with some b ≤ 2 + 4
sx

one has

rank(wη) . η−
1
s̄ ‖v‖

1
s̄

Σs̄(1 + |log η|)b, ‖wη‖Σs̄ . ‖v‖Σs̄(1 + |log η|)s̄b, (7.21)

and

# suppy(wη) . η
− 1
sy ‖π(y)(v)‖

1
sy

Asy (1 + |log η|)b,

‖π(y)(wη)‖Asy . ‖v‖Asy (1 + |log η|)syb,
(7.22)

as well as

# suppx(wη) . η−
1
sx ‖π(x)(v)‖

1
sx
Asx (1 + |log η|)b,

‖π(x)(wη)‖Asx . ‖π(x)(v)‖Asx (1 + |log η|)sxb,
(7.23)

where the constants depend also on si, |log ‖π(i)(v)‖Asi |, i ∈ {x, y}, and on τ in Assump-
tion 7.2.
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Proof. The error bound (7.20) is implied by the construction. As for the remaining claims,
to assess the complexity of computing wη, given by (7.15), we estimate first Mp,q = Mp,q(η)
in terms of η. To obtain a priori bounds for the Mp,q, we use Assumptions 7.2(i) and (ii)
to conclude that

‖v[p,q]‖ ≤ 2−syq‖π(y)(v)‖Asy , ‖v[p,q]‖ ≤ 2−s̄p‖v‖Σs̄ . (7.24)

Then Assumption 7.2(iii) and (7.24) yield the sufficient conditions

Mp,q = Mp,q(η) ≥

(
4C min{2−s̄p‖v‖Σs̄ , 2−syq‖π(y)(v)‖Asy}

αp,q η

) 1
S

. (7.25)

From (7.15) and the decomposition (7.10) we see that

rank(wη) ≤
∑
p,q≥0

Mp,q2
p , # suppy(wη) ≤

∑
p,q≥0

3Mp,q2
q . (7.26)

Note that the factor of 3 in the bound for # suppy(wη) results from the bidiagonal form
of the matrices Mj ; that is, the action of each of these matrices can add at most twice the
number of nonzero entries in the preimage sequence, in addition to the existing ones.

The following lemma provides bounds for the right hand sides in (7.26).

Lemma 7.4. For any fixed constant a > 1 choose

αp,q = c
(
(1 + p)(1 + q)

)−a
, c :=

( ∑
p,q≥0

(
(1 + p)(1 + q)

)−a)−1
, (7.27)

as weights in (7.25). Then for S ≥ s̄ one has∑
p,q

2pMp,q . η−
1
S ‖v‖

1
S

Σs̄

(
1 + log2 # suppy(v)

)1+ a
S

×
(
1 + log2 rank(vη)

)1+ a
S
(
rank(vη)

)1− s̄
S , (7.28)

where the constant depends on a, S, s̄, on c in (7.27), and on C in Assumptions 7.2(iii).
Similarly, for S ≥ sy one has∑
p,q

2qMp,q . η−
1
S ‖π(y)(v)‖

1
S
Asy
(
1 + log2 rank(vη)

)1+ a
S

×
(
1 + log2 # suppy(vη)

)1+ a
S
(
# suppy(vη)

)1− sy
S (7.29)

with similar dependencies of the constants as before, but with s̄ replaced by sy.

Proof. Bounding Mp,q . η−
1
S ‖v‖

1
S

Σs̄(1 + q)
a
S (1 + p)

a
S 2−

s̄p
S , we derive∑

p,q

2pMp,q . η−
1
S ‖v‖

1
S

Σs̄

(
1 + log2 # suppy(vη)

)1+ a
S
∑
p

(1 + p)
a
S 2p(1− s̄

S ), (7.30)

which gives (7.28), where the constant depends on a, S, s̄ and c, C from (7.25).

To bound
∑

p,q 2qMp,q we use Mp,q . η−
1
S ‖π(y)(v)‖

1
S
Asy (1+p)

a
S (1+q)

a
S 2−

syq

S and obtain∑
p,q

2qMp,q . η−
1
S ‖π(y)(v)‖

1
S
Asy
(
1 + log2 rank(vη)

)1+ a
S
∑
q

(1 + q)
a
S 2q(1− sy

S )

which yields (7.29).
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We proceed estimating the various sparsity norms of wη. We first address rank growth
and parametric sparsity, which are independent of the specific choice of Ãj,p,q. Using
(7.26) and (7.28) in Lemma 7.4 together with (7.6) and (7.7), for S ≥ s̄ we obtain

rank(wη) . η−
1
S (1 + |log η|)2(1+ a

S )‖v‖
1
S

Σs̄ η
− 1
s̄ (1− s̄

S )‖v‖
1
s̄ (1− s̄

S )
Σs̄ ,

= η−
1
s̄ ‖v‖

1
s̄

Σs̄(1 + |log η|)2(1+ a
S ), (7.31)

where the constant depends also on |log ‖π(i)(v)‖Asi |, i ∈ {x, y}. Now suppose that Nη is
an upper bound for rank(wη). To simplify the exposition, let us assume without loss of
generality that η ∈ (0, 1). Then, by definition, one has

‖wη‖Σs̄ = sup
N≤Nη

N s̄ inf
rank(w)≤N

‖wη −w‖ ≤ sup
B∈[1,η−1]

N s̄
Bη‖wη −wBη‖

≤ sup
B∈[1,η−1]

N s̄
Bη

(
‖wη −Avη‖+ ‖Avη −wBη‖

)
≤ sup

B∈[1,η−1]

2BηN s̄
Bη.

Now we can invoke for each B ∈ [1, η−1] the upper bound for rank(vη) given by (7.31),
and observe that the resulting bound is maximized for B = η−1 when S ≥ s̄. This gives

‖wη‖Σs̄ . ‖v‖Σs̄(1 + |log η|)2s̄(1+ a
S ), (7.32)

which confirms (7.21).
Similarly, using the second estimate in (7.26) and (7.29) in Lemma 7.4 and invoking

(7.7) yields, for S ≥ sy,

# suppy(wη) . η−
1
S ‖π(y)(v)‖

1
S
Asy (1 + |log2 η|)2+ 2a

S

(
‖π(y)(v)‖Asy

η

) 1
sy

(1− sy
S )
. (7.33)

By the same argument as before one obtains

# suppy(wη) . η
− 1
sy ‖π(y)(v)‖

1
sy

Asy (1 + |log2 η|)2+ 2a
S . (7.34)

We can then continue as above, denoting by Mη an upper bound for # suppy(wη), to
argue

‖π(y)(wη)‖Asy ≤ sup
B∈[1,η−1]

M
sy
Bη

(
‖π(y)(wη)− π(y)(Avη)‖+ ‖π(y)(wBη)− π(y)(Avη)‖

)
≤ sup

B∈[1,η−1]

M
sy
Bη

(
‖wη −Av‖+ ‖wBη −Av‖

)
≤ sup

B∈[1,η−1]

2BηM
sy
Bη.

Thus we obtain

‖π(y)(wη)‖Asy . ‖π(y)(v)‖Asy (1 + |log2 η|)2sy(1+ a
S ), (7.35)

which together with (7.34) shows (7.22).
We now turn to estimating # suppx(wη) and ‖π(x)(wη)‖Asx . To this end, we specify

suitable compressed matrices Ãj,p,q in (7.14). Denoting by π(x)(v[p,q])` the best `-term

approximation of π(x)(v[p,q]), we set Λp,q,0 = supp(π(x)(v[p,q])1) and

Λp,q,n := supp
(
π(x)(v[p,q])2n

)
\ supp

(
π(x)(v[p,q])2n−1

)
, n ∈ N.

Note that

‖RΛp,q,n×F v[p,q]‖ ≤ ‖RΛp,q,n π
(x)(v[p,q])‖ ≤ 2−sxn‖π(x)(v[p,q])‖Asx .

To proceed we employ the following convenient reformulation of Proposition 6.2.
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Remark 7.5. Let M ∈ N and any s∗ < 2τ
1+2τ S. Then for any J ∈ N we can find AJ

j ,
j ≥ 0, such that ∥∥∥ M∑

j=0

(
Aj −AJ

j

)
⊗Mj

∥∥∥ ≤ βJ2−s
∗J ,

and the following holds: for each λ ∈ S, for the sum of the number of corresponding
nonzero column entries of the AJ

j we have the bound

M∑
j=0

# supp
(
AJ
j,λ′λ

)
λ′∈S ≤ αJ2J . (7.36)

Here α,β are positive summable sequences.

For a suitable nonnegative integer N = Nj,p,q,η, let Ãj,p,q :=
∑N

n=0 A
N−n
j RΛp,q,n and

wp,q :=

Mp,q∑
j=0

(Ãj,p,q ⊗Mj)v[p,q]. (7.37)

Then

∥∥∥wp,q −
Mp,q∑
j=0

(
Aj ⊗Mj

)
v[p,q]

∥∥∥ =
∥∥∥Mp,q∑
j=0

N∑
n=0

(
(AN−n

j −Aj) RΛp,q,n ⊗Mj

)
v[p,q]

∥∥∥.
Using Remark 7.5 with s∗ = sx, the right side can be estimated by

N∑
n=0

βN−n2−sx(N−n)2−sxn‖π(x)(v[p,q])‖Asx +2‖A‖
∑
n>N

2−sxn‖π(x)(v[p,q])‖Asx

. 2−sxN‖π(x)(v[p,q])‖Asx ,

where the constant depends on sx, ‖A‖, and ‖β‖`1 . By (7.36), we obtain

# suppx(wp,q) .
N∑
n=0

2nαN−n2N−n . 2N . (7.38)

If we now choose the smallest N such that (7.14) holds, i.e., 2−sxN‖π(x)(v[p,q])‖Asx . ηp,q,
we obtain

# suppx(wp,q) . η
− 1
sx

p,q ‖π(x)(v[p,q])‖
1
sx
Asx . η

− 1
sx

p,q ‖π(x)(vη)‖
1
sx
Asx .

Keeping the definition of ηp,q = αp,qη and (7.6), (7.7) in mind, summing over p, q gives
(7.23) with b = 2

(
1 + a

sx

)
> 2

(
1 + a

S

)
, where the bound on ‖π(y)(wη)‖Asy follows as in

(7.32) and (7.35).

Remark 7.6. Note that in Assumptions 7.2, we state that S ≥ s̄, sy and S > sx. While
other cases can in principle be considered in the same manner, the convergence rate S of
the operator truncation then limits the achievable efficiency: if S < s̄, for instance, it is
easy to see that in general one can only obtain rank(wη) ∼ O(η−1/S).
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Proposition 7.7. Under the assumptions of Theorem 7.3, let v be given by its SVD with
r := rank(v) and ni := # suppi(v) for i ∈ {x, y}. Then for the number of operations
ops(wη) required to obtain wη, one has

ops(wη) . (nx + ny)r2 +
(

(1 + |log η|)
2a
sx η−

1
sx ‖π(x)(v)‖

1
sx
Asx

+ (1 + |log η|)
2a
S η
− 1
sy ‖π(y)(v)‖

1
sy

Asy

)
η−

1
s̄ ‖v‖

1
s̄

Σs̄ . (7.39)

For the proof, we refer to Appendix B.

Theorem 7.8. For any ε > 0, the approximation uε produced by Algorithm 3.1, specified
as above for approximations of the form (1.21) based on Hilbert-Schmidt decomposition
(5.4), satisfies ‖u− uε‖ ≤ ε.

Moreover, if Assumptions 7.2 hold, then

rank(uε) . ε−
1
s̄ ‖u‖

1
s̄

Σs̄ , ‖uε‖Σs̄ . ‖u‖Σs̄ (7.40)

and ∑
i∈{x,y}

# suppi(uε) .
∑

i∈{x,y}

ε
− 1
si ‖π(i)(u)‖

− 1
si
Asi , ‖π(i)(uε)‖Asi . ‖π(i)(u)‖Asi . (7.41)

The number of operations ops(uε) required to produce ε then satisfies

ops(uε) . 1 + (1 + |log ε|)ζ
(
ε−

1
s̄ ‖u‖

1
s̄

Σs̄

)2 ∑
i∈{x,y}

ε
− 1
si ‖π(i)(u)‖

− 1
si
Asi , (7.42)

where ζ > 0 depends on sx, cond(A), and on the choice of κ1, β in Algorithm 3.1. The
constants in (7.40), (7.41), and (7.42) may also depend on S, s̄, sy, and on the further
parameters of Algorithm 3.1.

Proof. We follow the general strategy of the proofs as in [5] and in Theorem 4.5, combining
the properties of the complexity reduction procedures coarsen and recompress with the
specific adaptive operator application that we have constructed for the present problem.

The bound (7.40) and (7.41) follow from Theorem 7.1 applied to the result of line 11 in
Algorithm 3.1. Note that here, the number J of inner iterations depends only on cond(A)
(via ρ, ω) and on the choice of κ1 and β. With the complexity estimates for apply from
Theorem 7.3 and Proposition 7.7 at hand, we obtain (7.42).

Remark 7.9. As can be seen from the proofs Theorem 7.3 and Proposition 7.7, the numer-
ical cost for the approximate operator application is dominated by the cost of performing
orthogonalizations of the input. In particular, this leads to a quadratic dependence on the
approximation ranks. The number of subsequent operations required to construct the low-
rank representation of the output, however, remains proportional to the respective number
of degrees of freedom.

8 Summary and conclusions

In this work, we have studied the approximation of the solution map Y 3 y 7→ u(y) ∈ V
in L2(Y, V ) for parametric diffusion problems, where the parameter domain Y is of high
or infinite dimensionality. We have considered approximations based on sparse expansions
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in terms of tensor product Legendre polynomials in y, low-rank approximations based on
separation of spatial and parametric variables, and higher-order tensor decompositions
using further hierarchical low-rank approximation among the parametric variables. Each
of these approximations can be regarded as an expansion in terms of a fixed tensor product
reference basis, with the degrees of freedom entering in different nonlinear ways.

The central aim is to investigate the performance of adaptive algorithms for each type
of approximation that require as input only information on the parametric operator and
right hand side, and that produce rigorous and computable a posteriori error bounds.
These goals are achieved, in a unified manner for all considered types of approximations,
by Algorithm 3.1. Such algorithms are necessarily based on the approximate evaluation of
residuals. They are also intrusive, in that they do not treat the underlying parametrized
problem as a black box; however, we are not aware of any non-intrusive method with
comparable properties.

Although the resulting schemes do not use a priori information on the convergence
of the respective approximations of the solution map, they still produce approximations
of near-optimal complexity (e.g., with respect to the number of terms or tensor ranks).
The question of also guaranteeing a near-optimal operation count for constructing these
approximations is more delicate: this computational complexity depends on the costs of
approximating the residual, and thus on the approximability properties of the operator. In
the case of low-rank approximations, due to the required orthogonalizations, the number
of operations also scales at least quadratically with respect to the arising tensor ranks.

Especially keeping the latter point in mind, there is no single type of approximation
that is most favorable in all of the representative model scenarios that we have considered.
In the case of finitely many parameters of comparable influence, hierarchical tensor rep-
resentations of u turn out to be advantageous: We can show near-optimal computational
complexity on certain natural approximability classes (as in Assumptions 4.3, 4.4) for the
adaptive scheme based on the method in [5].

The situation turns out to be different in the case of infinitely many parameters of
decreasing influence. We have proven in §2, for a certain class of such problems, that
the norms of Legendre coefficients of u have the same asymptotic decay as the singular
values in its Hilbert-Schmidt decomposition. In other words, the ranks in a corresponding
low-rank approximation need to increase at the same rate as the number of terms in a
sparse Legendre expansion as we accuracy is increased. The numerical tests given in Fig-
ure 3 of §5 indicate that this holds true also for substantially more general problems. As
a consequence, even with the careful residual evaluation given in §7, which can preserve
near-optimal ranks, due to the nonlinear scaling with respect to the ranks the compu-
tational complexity of finding low-rank approximations scales worse than a direct sparse
expansion as considered in §6. This conclusion remains true also for hierarchical tensor
decompositions involving the same separation between spatial and parametric variables.

It is interesting to note that the results in Figure 3 also indicate that best n-term
approximations with respect to a suitable fixed spatial-parametric tensor product basis
have the same decay as the Legendre coefficient norms. For a fully discrete approximation
one can consequently obtain the same convergence rate with respect to the number of
terms as for a semi-discrete parametric Legendre expansion, which is better than the
currently available estimates.

For both schemes in §7 and §5, we have seen that whether the residual can be eval-
uated at a cost that matches the approximability of the solution depends on the type of
parameter-dependence in the diffusion coefficient. As the simple example given in §5.1
shows, in the case of diffusion coefficients expanded in terms of increasingly oscillatory
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functions of global support, the complexity of the methods is in general dominated by the
residual evaluation. However, in the case of diffusion coefficients whose parametrization
has a multilevel structure, we have demonstrated that one can come arbitrarily close to
fully exploiting the approximability of u.
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[13] D. Dũng, Linear collective collocation and Galerkin methods for parametric and
stochastic elliptic PDEs, ArXiv e-prints, (2015).

[14] M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander, Adaptive stochastic
Galerkin FEM, Comput. Methods Appl. Mech. Engrg., 270 (2014), pp. 247–269.

36



[15] M. Eigel, M. Pfeffer, and R. Schneider, Adaptive stochastic Galerkin FEM
with hierarchical tensor representions. Preprint 2153, WIAS Berlin, 2015.
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A Compressibility of parametric operators

The approximate application of the operator A in Algorithm 3.1 must involve, in partic-
ular, an approximate application of the spatial components Aj . With the exception of
very particular situations (such as the model case considered in §5.1), the infinite matrices
Aj are not sparse, but contain infinitely many nonzero entries in each column. Their
approximation hinges on the compressibility of these operator representations as defined
in Assumptions 6.1.

These are closely related to s∗-compressibility of Aj as in (3.10), which here means
that there exist matrices Aj,n with αj,n2n entries per row and column and such that

‖Aj −Aj,n‖ ≤ βj,n2−sn, for 0 < s < s∗, (A.1)

and where αj ,βj ∈ `1. This is known to hold for each fixed j when employing a piecewise
polynomial wavelet-type Riesz basis {ψλ}λ∈S for V , see e.g. [9,39]. However, when insisting
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on the same compressibility bound s∗ for all Aj , the quantities ‖αj‖`1 and ‖βj‖`1 can
in general not be expected to both remain uniformly bounded in j when the θj become
increasingly oscillatory as in the model cases considered in §5. This dependence is reflected
in Assumptions 6.1.

In the light of the discussion in §5 we confine ourselves to operators Aj arising from
multilevel representations of the parameter of the form (5.9). To obtain this compression,
we use a wavelet basis {ψλ}λ∈S in the spatial variable.

To understand the basic mechanism, recall that the compressibility of the Aj is gov-
erned by the modulus of its entries 〈θj∇ψλ,∇ψλ′〉, where 〈·, ·〉 denotes the L2-inner prod-
uct. Specifically, recall e.g. from [9] that compression strategies for wavelet representations
of an elliptic second order operator with diffusion field c ∈ L∞(D) are based on bounds of
the type

|〈c∇ψλ,∇ψλ′〉| . ‖c‖W b−m/2(L∞(D))2
−||λ|−|λ′||b, (A.2)

where m is the dimensionality of the spatial domain, and where b > m/2 depends on the
smoothness of the diffusion coefficient c and of the wavelets ψλ. From this one derives the
compression order

s∗ =
b

m
− 1

2
. (A.3)

Specifically, for piecewise polynomial wavelets with kth order vanishing moments and for
c ∈ Hk+1(D), whenever the support of the higher-level wavelet is essentially disjoint from
the singular support of the lower-level wavelet, one has b = m

2 + k + 1. In those cases one
formally gets s∗ = (k+ 1)/m. A subtle analysis of the remaining cases where the singular
support of the lower-level wavelet is overlapped, which prevents the highest possible order
of vanishing moments from being applicable, shows that an overall compression rate s∗ >
k/m can be obtained, which is the highest possible n-term convergence rate, see [39].

However, in our case the overall compression rate is also limited by the decay of the
operator truncation error (5.2). In view of Proposition 6.2, the objective here is rather to
have a compression rate for the individual components Aj that is as high as possible, so
that one approaches the limiting value imposed by (5.2).

We now summarize the conditions on the multilevel parametric expansion functions
and the spatial wavelet basis under which we will verify Assumptions 6.1. To simplify
notation, let Sλ := suppψλ.

Assumptions A.1. For some γ > 0,

ξµ∇ψλ′ ∈ Hγ(Sλ), µ ∈ Λ, λ, λ′ ∈ S, (A.4)

and the ψλ have vanishing moments of order k with k > γ − 1.

Note that the ∇ψλ then have vanishing moments of order k + 1 > γ. If |λ|, |µ| ≤ |λ′|,
using (A.4) we obtain the standard estimate

|〈ξµ∇ψλ,∇ψλ′〉| ≤ inf
P∈Πmk+1

‖ξµ∇ψλ − P‖L2(Sλ′ )
‖ψλ′‖L2 . 2−|λ

′|γ |ξµ∇ψλ|Hγ(Sλ′ )
. (A.5)

Combining this with |ξµ∇ψλ|Hγ(Sλ′ )
. 2−

m
2
||λ|−|λ′||2γmax{|µ|,|λ|}, we obtain

|〈ξµ∇ψλ,∇ψλ′〉| . 2−(γ+m
2

)||λ|−|λ′||2γ(|µ|−|λ|)+ . (A.6)

Note that the requirement (A.4) could be weakened along the lines of [39] to piecewise
smoothness, in which case combinations of wavelets with overlapping singular supports
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need to be considered separately. Since this is not essential for our purposes, to keep the
exposition accessible we do not consider this in further detail.

The consequences of the estimate (A.6) depend on the relations between |µ|, |λ|, and
|λ′|. We distinguish the three following cases:

If |µ| ≤ |λ|, |λ′|, we obtain an estimate analogous to the standard case (A.2),

|〈ξµ∇ψλ,∇ψλ′〉| . 2−(γ+m
2

)||λ|−|λ′||. (A.7)

If |λ| ≤ |µ| < |λ′|, we obtain the modified estimate

|〈ξµ∇ψλ,∇ψλ′〉| . 2−γ(|λ′|−|µ|)2−
m
2
||λ|−|λ′||. (A.8)

Note that for each fixed µ and fixed levels |λ|, |λ′|, there exist in this case O(2m(|λ′|−|µ|))
entries that may be nonzero.

Finally, if |λ|, |λ′| ≤ |µ|, then for each µ, there exist |µ| indices λ such that the corre-
sponding supports overlap, and in turn there exist O(|µ|2) pairs of λ, λ′ that may give a
nonvanishing entry. These entries satisfy

|〈ξµ∇ψλ,∇ψλ′〉| . 2−m|µ|2
m
2

(|λ|+|λ′|). (A.9)

Note that we do not assume any vanishing moments for ξµ. Hence in general not much
can be gained by discarding further entries in this third case.

Our strategy for dealing with the increasingly oscillatory nature of ξµ as |µ| → ∞
is to retain a common compression rate s∗ in (A.1) uniformly in µ without losing the
decay induced by the factors cµ, which is the result required in Assumptions 6.1. To take
increasingly oscillatory behavior into account, we need to retain additional entries of the Aj

in the cases (A.8) and (A.9). This results in the j-dependent number of nonzero entries in
each row and column of the compressed operators Aj,n, which is of order O((1+ |µj |q)2n).

Let aµj ,λ,λ′ denote the entries of Aj , that is,

aµj ,λ,λ′ = cµj 〈ξµj∇ψλ,∇ψλ′〉.

Proposition A.2. Under Assumptions A.1, the conditions in Assumptions 6.1 are sat-
isfied, with τ := γ/m and q := max{1, τ−1}, for Aj,n obtained by retaining only those
entries from Aj = (aµj ,λ,λ′)λ,λ′∈S for which

dµj (λ, λ
′) := max

{
|λ|, |λ′|

}
−max

{
|µj |,min{|λ|, |λ′|}

}
≤ n

m
+

log2(1 + |µj |)
γ

.

Proof. For j ∈ N, we set µ := µj . In a first step, for N > 0, we obtain a compressed
version AN

j of Aj as follows: for the column λ, retain only those entries with row index
λ′ such that dµ(λ, λ′) ≤ N . Note that by symmetry of dµ in its two arguments and that
of Aj , the approximation AN

j is also symmetric. We now show that for

N = Nn :=
n

m
+

log2(1 + |µ|)
γ

, (A.10)

we arrive at Assumptions 6.1. We use the standard weighted Schur Lemma, which in the
present symmetric case yields that

ω−1
λ

∑
λ′ : dµ(λ,λ′)>N

ωλ′ |aµ,λ,λ′ | ≤ B, λ ∈ S, implies ‖Aj −AN
j ‖ ≤ B. (A.11)
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Note that dµ(λ, λ′) > 0 implies that |λ| > |µ| or |λ′| > |µ|. Thus, as a particular conse-
quence of (A.6), if dµ(λ, λ′) > 0 we have

|aµ,λ,λ′ | . cµ2−γdµ(λ,λ′)2−
m
2
||λ|−|λ′||. (A.12)

With the usual choice ωλ := 2−
m
2
|λ|, and setting

I(λ;N) := {λ′ : dµ(λ, λ′) > N},

we obtain

ω−1
λ

∑
λ′∈I(λ;N)

ωλ′ |aµ,λ,λ′ | . cµ
∑

λ′∈I(λ;N)

2−m(|λ′|−|λ|)+2−γdµ(λ,λ′).

We now decompose I(λ;N) = I1 ∪ I2 ∪ I3 ∪ I4, where

I1 := {λ′ ∈ I(λ;N) : |λ′| ≤ |µ| < |λ|}, I2 := {λ′ ∈ I(λ;N) : |λ| ≤ |µ| < |λ′|},
I3 := {λ′ ∈ I(λ;N) : |µ| < |λ′| ≤ |λ|}, I4 := {λ′ ∈ I(λ;N) : |µ| < |λ| < |λ′|}.

Since #(I1) . 1 + |µ|, ∑
λ′∈I1

2−m(|λ′|−|λ|)+2−γdµ(λ,λ′) . (1 + |µ|)2−γN . (A.13)

Likewise, we obtain the estimates

∑
λ′∈I2

2−m(|λ′|−|λ|)+2−γdµ(λ,λ′) .
∞∑

`=|µ|+N

∑
λ′∈I2
|λ′|=`

2−m(|λ′|−|λ|)2−γ`

.
∞∑

`=|µ|+N

2−γ`
(
2m(`−|µ|)2−m(`−|λ|))

. 2−γN

and ∑
λ′∈I3

2−m(|λ′|−|λ|)+2−γdµ(λ,λ′) .
|λ|−N∑
`=|µ|

2−γ(|λ|−`) . 2−γN ,

as well as ∑
λ′∈I4

2−m(|λ′|−|λ|)+2−γdµ(λ,λ′) .
∞∑

`=|λ|+N

2−γ`
∑
λ′∈I4
|λ′|=`

2−m(`−|λ|)

.
∞∑

`=|λ|+N

2−γ`
(
2m(`−|λ|)2−m(`−|λ|))

. 2−γN .

Note that #(I3) . N and #(I2),#(I4) . 2mN . Except for (A.13), the constants in these
bounds are independent of µ. In summary, we thus obtain

‖Aj −AN
j ‖ . cµ(1 + |µ|) 2−γN (A.14)
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with a uniform constant. As pointed out above, each column of AN
j has at most O(|µ|+

2mN ) entries. With τ = γ/m and Nn as in (A.10), the estimate (A.14) takes the desired
form

‖Aj −ANn
j ‖ . cµ2−τn, (A.15)

where the number of nonzero entries can be bounded further by

|µ|+ 2mNn . |µ|+ 2n(1 + |µ|)
m
γ .

(
1 + |µ|max{1,m/γ})2n, (A.16)

and thus Assumptions 6.1 are valid.

Relation (A.15), (A.16) show that the resulting compression rate is limited by the
smoothness of the expansion functions ξµ and the spatial wavelets ψλ and by the number
of vanishing moments of the ψλ, expressed by the value γ. As Proposition 6.2 shows,
with increasing γ the rate of compressibility of the complete operator A approaches the
limiting value determined by the decay of its tail (5.2).

Remark A.3. Proposition A.2 yields, as we have also noted in Remark 6.3, a compress-
ibility result for multilevel-type parametrizations that is substantially more favorable than
what can in general be obtained for globally supported θj. In the case θj ∼ j−(α+ 1

2
) cos(jπ·)

on D =]0, 1[ considered in §5.1, in place of (A.6) we obtain the analogous bound

|〈θjψ′λ, ψ′λ′〉| . j−(α+ 1
2

)2−(γ+ 1
2

)||λ|−|λ′||2γ(log2 j−|λ|)+ .

One may thus proceed as in the proof of Proposition A.2, with |µ| replaced by log2 j, to
obtain Aj,n such that

‖Aj −Aj,n‖ . j−(α+ 1
2

)2−γn.

However, among the pairs of indices (λ, λ′) with |λ| ≤ log2 j, we are eventually left with
O(j(1 + log2 j)2

n) entries per row and column.
Using these bounds to obtain a compressibility result for A as in Proposition 6.2, in

this case we have, for An as defined in (6.4), the simpler estimate

‖A−An‖ .
M∑
j=0

∥∥Aj −Aj,nj

∥∥+M−(α− 1
2

) . 2−γn0 +

M∑
j=1

j−(α+ 1
2

)2−γnj +M−(α− 1
2

).

Choosing nj appropriately to ensure that the right hand side is of order M−(α− 1
2

) and
summing the resulting total numbers of nonzero entries, as in [20] one arrives at the
limiting value s∗ = 1

2(α− 1
2) for the compressibility of A.

B Proofs of auxiliary results

Proof of Theorem 7.1. The estimates (7.1), (7.2) are obtained exactly as in [5]. To prove
(7.4) we follow the lines of the argument in [5], and adopt the notation used there, let
N ∈ N be the minimal integer such that

‖u− C̄u,Nu‖ ≤ αη. (B.1)

Then

αη < ‖u− C̄u,N−1u‖ (B.2)

≤ inf
#Λx+#Λy≤N−1

{
‖π(x)(u)− RΛx π

(x)(u)‖+ ‖π(y)(u)− RΛy π
(y)(u)‖

}
≤ (#Λx)−sx‖π(x)(u)‖Asx + (#Λy)−sy‖π(y)(u)‖Asy . (B.3)
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Abbreviating ni := #Λi, i = x, y, to obtain a good upper for bound N = N(η) from (B.1),
we would like to find the minimal nx + ny such that

αη ≤ (nx)−sx‖π(x)(u)‖Asx + (ny)−sy‖π(y)(u)‖Asy , (B.4)

to conclude that N(η) ≤ nx +ny. Equilibrating the upper bound yields a pair nx, ny given
by

ni = ni(η) :=
⌈(

2‖π(i)(u)‖A(γi)/αη
)1/si⌉

, i = x, y, (B.5)

This yields

# suppx wη + # suppy wη ≤ 2 +

(
2‖π(x)(u)‖Asx

αη

)1/sx

+

(
2‖π(y)(u)‖Asy

αη

)1/sy

, (B.6)

which is the first inequality in (7.4).
Regarding the second inequality in (7.4), note first that

N ≤ Bini, i = x, y, (B.7)

where Bi depend only on sx, sy. To bound ‖π(i)(wη)‖Asi we only need to estimate

sup
n
nsi inf

# supp ŵ≤n
‖ŵ − π(i)(wη)‖, i = x, y,

for n ≤ # suppiwη ≤ N . To that end, denoting by û
(i)
n a best n-term approximation to

π(i)(u) and using (7.3), we obtain

inf
# supp ŵ≤n

‖ŵ − π(i)(wη)‖ ≤ ‖π(i)(wη)− π(i)(u)‖+ ‖π(i)(u)− û(i)
n ‖

≤ ‖wη − u‖+ n−si‖π(i)(u)‖Asi
≤ C(α)η + n−si‖π(i)(u)‖Asi

≤ 2C(α)

α
n−sii ‖π

(i)(u)‖Asi + n−si‖π(i)(u)‖Asi ,

where we have used (B.5) and where C(α) :=
(
2 + α+ 23/2(1 + α)

)
. Hence

nsi inf
# supp ŵ≤n

‖ŵ − π(i)(wη)‖

≤
(

1 +
2C(α)

α

(
n

ni

)si)
‖π(i)(u)‖Asi ≤

(
1 +

2C(α)Bsi
i

α

)
‖π(i)(u)‖Asi ,

which completes the proof.

Proof of Proposition 7.7. As we assume v to be given in SVD form, recompress in step
(S1) of the procedure apply takes only O(r) operations. Since it preserves the SVD form,
the subsequent coarsen using quasi-sorting takes O(r(nx + ny)) operations (with the
computation of the contractions as the dominating contribution).

In computing the quantities ‖vp,q‖ and π
(x)
ν (v[p,q]) in steps (S2) and (S3), we need to

take into account that the vectors R
Λ

(y)
q

U
(y)
k , k ∈ Kp, need no longer be orthonormal.

To this end, let V ∈ R2q×2p denote the matrix with columns Vk := σk R
Λ

(y)
q

U
(y)
k , and

let
ûν = (U

(x)
k,ν)k∈Kp ∈ R2p .
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If q ≥ p, we compute the Gramian VTV, which takes O(22p+q) operations. We then
directly obtain ‖v[p,q]‖2 = tr(VTV). Moreover, for each given ν we can evaluate

|π(x)
ν (v[p,q])|2 = ûTν (VTV)ûν

using O(22p) operations. If p > q, we first factorize VT = QR, where Q ∈ R2p×2q has
orthonormal columns and R ∈ R2q×2q . This takes O(2p+2q) operations. In addition, we
form RRT using O(23q) operations. We then have ‖v[p,q]‖2 = tr(RRT ) and for each

ν, we can evaluate ûTνQ and subsequently |π(x)
ν (v[p,q])|2 = (ûTνQ)(RRT )(ûTνQ)T using

O(2p+q + 22q) operations.
Altogether, abbreviating rη := rank(vη) and nη,y := # suppy(vη), the computational

work required for obtaining ‖v[p,q]‖ and |π(x)
ν (v[p,q])| is of order

(nx + nη,y)r2
η ≤ (nx + ny)r2. (B.8)

With these values at hand, it remains to assemble wη in the form (7.15), which amounts
to building each wp,q as in (7.37). The action of the bidiagonal matrices Mj , on the one
hand, for each p, q and j requires 2p+q operations, and the total costs for assembling the
y-components of the result are therefore bounded up to a constant by∑

p,q≥0

2p+qMp,q . η−
1
S ‖v‖

1
S

Σs̄(1 + log2(nη,y))
a
S nη,y(1 + log2(rη))

a
S (rη)

1− s̄
S

. η−
1
s̄ ‖v‖

1
s̄

Σs̄(1 + |log η|)
2a
S η
− 1
sy ‖π(y)(v)‖

1
sy

Asy ,

where the estimate on the right is obtained as in (7.30) and (7.31). Assembling the x-
components requires the action of the approximate operators Ãp,q,j . By our construction,

the combined action of Ãp,q,j , j = 1, . . . ,Mp,q, on a single vector U
(x)
k , k ∈ Kp, takes a

number of operations proportional to the resulting # suppx(wp,q). Consequently, the total
number of operations for the x-components is bounded up to a constant by∑

p,q≥0

2p# suppx(wp,q) .
∑
p,q≥0

2p(1 + p)
a
sx (1 + q)

a
sx η−

1
sx ‖π(x)(vη)‖

1
sx
Asx

. rη(1 + |log η|)
2a
sx η−

1
sx ‖π(x)(vη)‖

1
sx
Asx

. η−
1
s̄ ‖v‖

1
s̄

Σs̄(1 + |log η|)
2a
sx η−

1
sx ‖π(x)(vη)‖

1
sx
Asx .
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