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ASYMPTOTIC ANALYSIS OF THE RS-IMEX SCHEME FOR THE
SHALLOW WATER EQUATIONS IN ONE SPACE DIMENSION∗

HAMED ZAKERZADEH†

Abstract. In this article, we analyze a recently-presented scheme for singularly-perturbed sys-
tems of balance laws, the so-called Reference Solution Implicit Explicit scheme. RS-IMEX scheme’s
bottom-line is to use the Taylor expansion of the flux function and the source term around a reference
solution (typically the asymptotic limit or an equilibrium solution) to decompose the flux and the
source into stiff and non-stiff parts so that the resulting IMEX scheme is Asymptotic Preserving
(AP) w.r.t. the singular parameter ε as ε→ 0. After a brief introduction to the scheme, we prove the
asymptotic consistency, asymptotic `2-stability, solvability and well-balancing of the scheme for the
case of the one-dimensional shallow water equations and with two reference solutions (the lake at rest
and the zero-Froude limit). Thus, the scheme is AP and can be used for flows with various Froude
numbers. Finally we will test the scheme numerically for several test cases to show the quality of
the solutions and confirm the analysis.
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1. Introduction. Singular limits of conservation laws (or more generally PDEs),
may present severe difficulties to be treated either in analysis or numerics. The main
issue is that the type of the equations changes in the limit [46], e.g., when the Mach
number approaches zero for the Euler equations. This is a singular limit, since the
sound speed (the characteristic speed) goes to the infinity and the PDE changes to be
hyperbolic-elliptic, in the so-called incompressible limit. So, the convergence of the
solution of the compressible Euler equations to the incompressible one is not straight-
forward to be shown (see [34,35] for the first justification using the theory of singular
limits of symmetric hyperbolic systems [44]). We also refer the reader to consult
with [10, 45, 56] to review the results for the compressible-incompressible limit, and
with [46] for a nice review of different examples of singular limits in hydrodynamics.

Tackling such singular problems numerically is also complicated. For example in
the case of the compressible-incompressible limit problem, the Courant–Friedrichs–
Lewy (CFL) condition restricts the time step non-uniformly such that it should tend
to zero, i.e., ∆t . ε∆x. This leads to very small time steps thus huge computational
cost. Generally speaking, the usual numerical schemes also lose their accuracy in the
limit for under-resolved mesh sizes; see [13,14,22,23,51–53].

In the sequel and for the sake of simplicity, we only consider well-prepared initial
data to eliminate spurious initial layers (see Definition 3.2 and [21, 38, 47]). We also
assume that the solution of the PDE with the singular parameter ε converges to the
solution of the limit PDE as ε → 0, and aim to show that the counterpart of such
a convergence exists at the discrete level. This is in fact the idea of Asymptotic
Preserving (AP) schemes, which has been introduced by Jin in [29, 30] for relaxation
systems; see also [31] for a general review and [39] for older works (without being
named AP). Figure 1 illustrates this definition; Mε stands for a continuous physical
model with the (singular) perturbation parameter ε ∈ (0, 1], and Mε

∆ is a discrete-
level model which provides a consistent discretization of Mε. As in [31], if M0

∆ is a
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2 H. Zakerzadeh

suitable and efficient scheme for M0, then the scheme is called to be AP.

Fig. 1: Illustration of Asymptotic Preserving schemes.

Different interpretations of a suitable and efficient scheme give rise to various
definitions of an AP scheme. So, we define an AP scheme for the framework of this
article more precisely.

Definition 1.1. [AP schemes] A scheme is called to be AP, provided that the
following conditions are fulfilled for the scheme.

(i) It gives a consistent discretization of Mε for all ε, in particular for the limit
problem M0.

(ii) It is efficient uniformly in ε, e.g., the CFL condition should be uniform in ε and
the implicit step should be solved efficiently for all ε.

(iii) It is stable in some suitable sense, uniformly in ε.
For brevity, we call these properties respectively Asymptotic Consistency (AC), Asymp-
totic Efficiency (AEf), and Asymptotic Stability (AS).

Remark 1.2. As mentioned in [31], the asymptotic consistency suggests that the
solution belongs to a manifold which is driven to the limit manifold as ε → 0 (up
to some discretization error). For instance the velocity space of the solutions of the
weakly compressible Euler equations should be in an O(ε)-neighborhood of the div-free
(solenoidal) manifold, though there is a discretization error for the limit velocity itself
since ∆ > 0.

The AP property has been studied extensively for conservation laws as well as
kinetic equations, and several AP schemes have been developed and analyzed; just to
name a few see [6,9,12,15,18,24,28,32,40,43,48]. There are also several related works
without using the initialism AP; see [36] as one of the first examples for the Euler
equations and the review [37]. Note that while the uniform (asymptotic) consistency
of the scheme is often studied and proved in the literature, particularly in the context
of conservation laws there are only few results regarding the uniform (asymptotic)
stability like [15, 62] for the isentropic Euler equations; see also [11] and [16] for the
Euler–Poisson and Euler–Korteweg systems, respectively.

The bottom-line of these AP schemes is a mixed implicit-explicit (IMEX) strategy,
e.g., to split the flux (or its Jacobian) into two parts and treat one part explicitly in
time and the other one implicitly in time. This approach is definitely necessary to
find schemes with ε-uniform CFL conditions; but, not sufficient at all for asymptotic
stability; see for example [1] where it is shown that for an Explicit-Explicit splitting
with the Lax–Wendroff scheme, even if both split parts are stable in terms of CFL
condition, the resulting scheme is unconditionally unstable in L2-norm. On the other
hand, IMEX schemes are L2-stable as long as each step is so, as shown in [24]. Thus,
there is a huge gap between these two cases.

In [48], the authors applied a flux-splitting scheme to the full Euler equations,
which uses a variant of Klein’s auxiliary splitting [36]. The scheme required an ε-
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dependent time step for stability. This motivated the authors of [58] to begin a
stability analysis of the modified equation of linearized systems in Fourier variables,
which identified the importance of the commutator of the stiff and non-stiff flux
Jacobian matrices (see also [63] for a generalization of the analysis). That investigation
leads Noelle and his collaborators to the main idea of the RS-IMEX scheme [49] whose
rigorous asymptotic analysis is the core topic of this paper.

The key idea is the linearization around an asymptotic reference solution, which
results in a particularly small slow Jacobian Â, thus makes the commutator of the
stiff and non-stiff Jacobian matrices small such that the modified equation can be
shown to be stable. This heuristic argument makes the foundation of the RS-IMEX
scheme [49]; see also [63] for a detailed discussion about the stability in the sense
of modified equations. Note that in the work of our collaborators the RS-IMEX
scheme is shown to be quantitatively well-behaved in practice; see [57] and [33] for
the application of the scheme to the Van der Pol equation and the two-dimensional
isentropic Euler system, respectively.

In the present article, we restrict our attention to the rigorous AP analysis for
the case of one-dimensional shallow water system, i.e., asymptotic consistency, asymp-
totic stability and convergence to the limit for fixed grids (see Remark 3.12). These
make a solid background for the future works which extend the scheme to the multi-
dimensional shallow water system with different source terms; see [61] for instance.
Note that broadly speaking, the splitting developed in [6] can also be considered as a
particular example of the RS-IMEX scheme, with the lake at rest reference solution;
see Section 3 in general and Remark 3.5 in particular.

The remainder of this paper is organized as follows. In Section 2 we present a
short introduction to the RS-IMEX scheme, which follows in Section 3 and Section
4 with the rigorous AP analysis (consistency and stability) of the RS-IMEX scheme
for the one-dimensional shallow water equations, with the lake at rest and the zero-
Froude limit solution as the reference solution. We see that although the reference
solution is rather simple, the rigorous analysis is not too straightforward. Section 5
provides some numerical evidences to confirm the AP analysis and test the quality of
the solutions. The results of this manuscript supply some necessary elements for the
treatment of the more interesting case of the two-dimensional shallow water equations
in [61].

Acknowledgment. The author acknowledges the discussions and collabora-
tions of Arun K.R., Georgij Bispen, Klaus Kaiser, Rupert Klein, Mária Lukác̆ová-
Medvid̆ová, Claus-Dieter Munz, Sebastian Noelle and Jochen Schütz, leading to the
RS-IMEX approach. Also he would like to gratefully thank Negin Bagherpour and
Mohammad Zakerzadeh for very useful discussions regarding Section 3.2.

2. RS-IMEX splitting for hyperbolic systems of balance laws. The goal
of this section is to provide an introduction to the RS-IMEX scheme [49] (to be applied
to the shallow water equations in Section 3). Let us consider the general hyperbolic
system of balance laws

∂tU(x, t; ε) +∇x|t · F(U,x, t; ε) = S(U,x, t; ε),(2.1)
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where ∇α|β denotes the partial derivative with respect to α when β is fixed, and

U : Ω× R+ × (0, 1]→ Rn,
F : Rn × Ω× R+ × (0, 1]→ Rn×d,
S : Rn × Ω× R+ × (0, 1]→ Rn,

(2.2)

where U is the vector of conserved quantities, F is the flux matrix (in d space dimen-
sions), ε ∈ (0, 1] is the singular parameter (e.g., the Froude or Mach number), and S is
the source term, e.g., due to the gravitational force, Coriolis force, or bottom friction.
Note that we often suppress the dependence of U, F and S on ε as well as β in ∇α|β .

Ω is a subspace of Rd, usually be chosen to be periodic (a torus), i.e., Ω := Td. To
have a hyperbolic system, we also assume that F has a real diagonalizable Jacobian

F′(U,x, t) := ∂U|x,tF(U,x, t).

Let us consider the given function U as the reference solution:

U : R× R+ → Rn, (x, t) 7→ U(x, t).(2.3)

Typically, it is a steady state solution of the balance law, or the solution of the
asymptotic limit equation, derived from (2.1) as ε→ 0, e.g., it can be the lake at rest
(LaR) state for the shallow water equations or the incompressible limit for the Euler
equations.

Given the reference solution, we split the solution U of the balance law (2.1) into
the reference solution U and a perturbation Upert,

U(x, t; ε) = U(x, t; ε) + Upert(x, t; ε).(2.4)

Our goal is to design an algorithm for the perturbation Upert which is asymp-
totically stable and consistent. The algorithm uses the IMEX approach and the CFL
number for the explicit part which shall be independent of the small parameter ε.

For flux-splitting, we use the Taylor expansion of F around U(x, t):

F(U,x, t) = F(U,x, t) + F′(U,x, t) Upert + F̂(U,Upert,x, t)

= F + F̃ + F̂,(2.5)

where we have used the shortcuts

F := F(U(x, t),x, t),

F̃ := F′(U(x, t),x, t) Upert,

F̂ := F(U(x, t) + Upert,x, t)− F− F̃.

Analogously, one can do the expansion for the source term to get the following splitting
with similar definitions.

S(U,x, t) = S + S̃ + Ŝ.(2.6)

It may be useful to scale the components of the perturbed solution, since by the
suitable scaling one can work with O(1) terms in the analysis of the scheme. Later
on in Section 3, we see that a physically appropriate choice of the scaling matrix, not
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only makes the analysis more illustrative (see Remark 3.11) but also may affect the
numerical solution (see Remark 4.4). For this reason, we introduce the diagonal matrix
D := diag(εdj ) with j = 1, . . . , n and define the scaled (preconditioned) perturbed
solution vector V(x, t) as V := D−1 Upert and denote the corresponding scaled flux
and source terms by

G(U,V,x, t) := D−1F
(
U(x, t) +DV(x, t)

)
,(2.7)

Z(U,V,x, t) := D−1S
(
U(x, t) +DV(x, t)

)
.(2.8)

So, with G, G̃, Ĝ,Z, Z̃ and Ẑ defined analogously as for F and S, the splittings (2.5)
and (2.6) can be re-written as

G(U,V,x, t) = G + G̃ + Ĝ,

Z(U,V,x, t) = Z + Z̃ + Ẑ.

Remark 2.1. Note that the eigenvalues of F̃′ and F̂′ are exactly the same as the
eigenvalues of G̃′ and Ĝ′, respectively.

Defining R := −∇ ·G + Z (with analogous definitions for R, R̃ and R̂), and also
T(x, t) as the (a priori-known) scaled model truncation error of the reference solution

T := D−1∂tU−R,(2.9)

one can reformulate the original balance law (2.1) as

∂tV = −T + R̃ + R̂,(2.10)

which is a balance law for the scaled perturbed solution V around the reference
solution U. Note that this reformulation is not necessary for the numerical scheme,
but it is suitable notably for the asymptotic consistency analysis. Note also that
T ≡ 0 if and only if the reference solution U is an exact solution of (2.1). This may
be the case, e.g., when the reference solution is a stationary solution of the system.

2.1. RS-IMEX scheme. In (2.5), F̃, and G̃ due to Remark 2.1, has stiff eigen-

values. So, to solve (2.10) numerically, it is reasonable to treat the stiff part R̃ im-
plicitly in time to avoid restrictive time steps in the limit, e.g., by using the implicit
Euler time integration. The term R̂ is expected to be non-stiff; so, an explicit scheme
(like explicit Euler scheme) is a suitable choice. The scaled model truncation error
T, is computed independently. For instance for the Euler system and incompressible
reference solution, an appropriate incompressible solver is employed to compute T.
Thus, we can define the RS-IMEX scheme as follows.

Definition 2.2. Given the reference solution U(x, t), the RS-IMEX scheme for
(2.10) is given by

DtV
n

∆ = −T
n+1

∆ + R̃n+1
∆ + R̂n

∆,(2.11)

where Dt and the subscript ∆ stand respectively for a choice of discretization method
in time and space.

From now on, we limit ourselves to the Rusanov-type numerical flux in space and
the implicit/explicit Euler time integration. So, given a time step ∆t and a vector
φ(x, t), the Euler time discretization of ∂tφ, denoted by Dtφ(x, t), is defined as

Dtφ(x, t) :=
φ(x, t+ ∆t)− φ(x, t)

∆t
.(2.12)
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For the spatial discretization in one dimension, the Rusanov-type flux function for
the scalar flux f(u) at the interface i+ 1/2 is defined as

fi+1/2 :=
f(ui) + f(ui+1)

2
−
αi+1/2

2
(ui+1 − ui) ,(2.13)

when α is originally chosen such that αi+1/2 ≥ maxu∈[ui,ui+1] (f ′(u)). However in this
paper, we choose α for the stiff sub-system rather arbitrary not to make the scheme
too dissipative. The extension of this numerical flux to systems and/or in multi-
dimensions is obvious. Note that the residual includes also a source term, which should
be discretized appropriately so that the scheme preserves the equilibrium (C-property
or well-balancing, cf. [8]). Since this property depends heavily on the structure of the
system being studied, we postpone it to Section 3 where we discuss the RS-IMEX
scheme for the shallow water equations with topography.

In fact for the RS-IMEX scheme, two systems should be solved separately, one
for the reference solution and the other for the scaled perturbation. With a given
reference state at step n, one finds the discretized scaled perturbation Vn+1

∆ , while

the reference state may evolve in time and should be computed independently, U
n+1

∆ .

At the end of each step, the solution can be computed as U
n+1

∆ + DVn+1
∆ . The

algorithm of the RS-IMEX scheme is as Algorithm 1.

Algorithm 1 RS-IMEX scheme

1: Get U
n

∆ and Vn
∆ .

2: Find the updated reference state U
n+1

∆ .

3: Solve DtV
n

∆ = R̂n
∆ to find the Vn†

∆ .

4: Solve DtV
n†

∆ = −T
n+1

∆ + R̃n+1
∆ to find the updated perturbation Vn+1

∆ .

5: Find the updated solution as Un+1
∆ = U

n+1

∆ +DVn+1
∆ .

6: Continue with step 2.

In the next section, we apply the RS-IMEX algorithm to the one-dimensional
shallow water system. The ultimate goal is to check if the stability and consistency
of the scheme are uniform in ε, under a CFL condition independent of the maximal
eigenvalue of the stiff flux Jacobian G̃′.

3. Shallow water equations with the LaR as reference solution. In this
section and as an example of the RS-IMEX scheme for the general balance law
(2.1), we follow the procedure described in Section 2 to derive the scheme for one-
dimensional shallow water equation with topography. Then we discuss solvability and
well-balancing for the lake at rest equilibrium state, as well as asymptotic consistency
and convergence to the limit. We also show that the scheme is asymptotically stable
in `2-norm. Note that we present these analyses with the lake at rest reference solu-
tion. Then in Section 4 we consider the reference state to be the zero-Froude limit
solution. From now on, we assume the spatial domain Ω to be periodic unless stated
otherwise.

The non-dimensionalized shallow water equations in one space dimension, using
z = h+ b (with b < 0) and m = hu, can be written as has been proposed in [6]:

U =

[
z
m

]
, F(U) =

 m
m2

z − b
+
z2 − 2zb

2ε2

 , S(U) =

[
0

−zbx
ε2

]
.(3.1)
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In this notation, z is the surface elevation from some chosen constant surface level
Href , m is the momentum and b is the water depth measured from Href with a negative
sign (see Figure 2). The singular parameter ε ∈ (0, 1] is called the Froude number
for simplicity (though it is different from the Froude number by a constant factor,
cf. [35]). We also consider the given z0(x) := z(x, 0) and m0(x) := m(x, 0) as initial
conditions.

This formulation of the shallow water equations (with the opposite sign for the
bottom topography) has been introduced at first in [54,55] to give a balanced system
and circumvent the need to devise any specific source term discretization for well-
balancing. Because (3.1) cannot be readily used for the cases involving wet-dry fronts,
a modified (but similar) formulation has been introduced later on in [17,41,42].

Fig. 2: Variables used in the shallow water formulation (3.1).

In this section, we set the reference state as the lake at rest, U := (z◦,m◦)
T

with
z◦ constant in space and m◦ = 0. Therefore, due to (2.5), the flux splitting is as:

F =

[
0

1

2ε2
z◦(z◦ − 2b)

]
, F′(U) =

[
0 1

z◦ − b
ε2

0

]
,

F̃ =

[
mpert

(z◦ − b)
ε2

zpert

]
, F̂ =

 0
m2
pert

z◦ + zpert − b
+
z2
pert

2ε2

 .
Owing to (2.6), the source term is split analogously as

S =

[
0

−z◦bx
ε2

]
, S′(U) =

[
0 0

−bx
ε2

0

]
,

S̃ =

[
0

−zpertbx
ε2

]
, Ŝ = 0.

One can see that the Jacobian of F̃ (w.r.t. Upert) has stiff eigenvalues µ̃ = O(1/ε),

while the eigenvalues of F̂′, denoted by µ̂, are non-stiff, more precisely

F̃′ =

[
0 1

z◦ − b
ε2

0

]
, µ̃ := ±

√
z◦ − b
ε

,

F̂′ =

[
0 0

−u2
pert +

zpert
ε2

2upert

]
, µ̂ = 0, 2upert,
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where upert :=
mpert

z◦ + zpert − b
. Thus, the splitting is admissible in the sense of [58].

Remark 3.1. Note that the RS-IMEX splitting with U = 0 gives the same
splitting as in [5, 6].

Before continuing, we should find the scaling matrix D by the asymptotic analysis
of the system, which has been done in Appendix A. This analysis justifies the following
definition for the formal asymptotic limit of the shallow water equations. We present it
for one-dimensional case, however it can be generalized effortlessly to multi-dimensions
(see [5, Sect. 2.3]).

Definition 3.2. The formal zero-Froude limit of the shallow water equations is
defined as

z(0), z(1) = const.,

∂xm(0) = 0,

∂tm(0) + ∂x

(
m2

(0)

z(0) − b
+ p(2)

)
= −z(2)η

b
x,

where p(h) = h2

2 is the (hydrostatic) pressure function and with the following asymp-
totic (Poincaré) expansion

z(x, t) = z(0) + εz(1) + ε2z(2),

m(x, t) = m(0) + εm(1) + ε2m(2).
(3.2)

Thus, the well-prepared initial data can be defined as

z0
WP(x) := z0

(0) + ε2z0
(2)(x),

m0
WP(x) := m0

(0) + εm0
(1)(x).

(3.3)

where z0
(0) and m0

(0) are constant values.

The motivation for scaling the equations was to work with O(1) quantities. So,
due to (3.3), we pick z◦ = z0

(0), which implies D := diag(ε2, 1). From now on, such a
scaling matrix is denoted by D2. For the sake of simplicity, we stick to this particular
choice of z◦ throughout this section. Nonetheless, it is rather straightforward to
confirm that the asymptotic analysis we are going to present holds for every constant
z◦, while the choice may affect the numerical solution for ε = O(1).

Remark 3.3. Note that the analysis in Appendix A has been done for periodic
domains. However, with some other boundary conditions such as open boundary con-
ditions with a fast decaying momentum, h(0) and h(1) would have similar asymptotic
expansion as the periodic case and D2 is again a relevant scaling.

3.1. RS-IMEX scheme. For the scaling matrix D2, the scaled split fluxes and
source terms read

Ĝ =

 0
v2

2

z◦ + ε2v1 − b
+ ε2

v2
1

2

 , G̃ =

[ v2

ε2
(z◦ − b)v1

]
,(3.4)

Ẑ = 0, Z̃ =

[
0

−bxv1

]
,(3.5)
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where

V :=

[
v1

v2

]
:= D−1

2 Upert =

[
zpert/ε

2

mpert

]
(3.6)

Since the lake at rest is a stationary solution of the system, z◦ is constant in
time and the reference solution needs not to be updated. Thus T ≡ 0, and one can
reformulate the one-dimensional shallow water equations as

∂tV = −∂x
[

v2/ε
2

(z◦ − b)v1

]
− ∂x

 0
v2

2

z◦ + ε2v1 − b
+ ε2

v2
1

2

+

[
0

−bxv1

]
.(3.7)

This is the system that one solves by the RS-IMEX scheme, with unknowns v1 and
v2. For the numerical scheme, one should treat the stiff parts of (3.7) implicitly and
the rest explicitly. So, the RS-IMEX scheme for the shallow water equations with the
lake at rest reference solution can be written as

Vn†
∆,i = Vn

∆,i −
∆t

∆x

(
Ĝn
i+1/2 − Ĝn

i−1/2

)
+ ∆t Ẑni Explicit step,(3.8)

Vn+1
∆,i = Vn†

∆,i −
∆t

∆x

(
G̃n+1
i+1/2 − G̃n+1

i−1/2

)
+ ∆t Z̃n+1

i Implicit step,(3.9)

for each cell i ∈ {1, 2, . . . , N} in the computational domain ΩN of size N , where G̃i+1/2

and Ĝi+1/2 denote the Rusanov flux (as defined in (2.13)) with Ĝ and G̃ as defined

in (3.4), and Ẑni and Ẑni are central discretizations of the source terms in (3.5). One
can re-write (3.8)-(3.9) as

Vn†
∆,i = Vn

∆,i −
∆t

2∆x

 0

vn,22,i+1

z◦ + ε2vn1,i+1 − bi+1
−

vn,22,i−1

z◦ + ε2vn1,i−1 − bi−1
+
ε2

2

(
vn,21.i−1 − v

n,2
1.i−1

)


+
∆t

2∆x

(
α̂i+1/2V

n
∆,i+1 − (α̂i+1/2 + α̂i−1/2)V

n
∆,i + α̂i−1/2V

n
∆,i−1

)
,(3.10)

Vn+1
∆,i = Vn†

∆,i −
∆t

2∆x

[ (
vn+1

2,i+1 − v
n+1
2,i−1

)
/ε2

(z◦ − bi+1) vn+1
1,i+1 − (z◦ − bi−1) vn+1

1,i−1

]
+

∆t

2∆x

(
α̃i+1/2V

n+1
∆,i+1 − (α̃i+1/2 + α̃i−1/2)V

n+1
∆,i + α̃i−1/2V

n+1
∆,i−1

)
− ∆t

2∆x

[
0

vn+1
1,i (bi+1 − bi−1)

]
.(3.11)

Note that for simplicity, we have suppressed the subscript ∆ for the components of
V∆.

Due to Remark 2.1, the eigenvalues of F and G (and their splittings) are the
same. From above, one can clearly see that the eigenvalues of the non-stiff systems
are O(1), so it may not give a small commutator needed for the heuristic stability
based on the modified equation. Indeed, the commutator can be obtained as

[
G̃′, Ĝ′

]
:= G̃′Ĝ′ − Ĝ′G̃′ =

v1 −
v2

2

(z◦ + ε2v1 − b)2

2v2/ε
2

z◦ + ε2v1 − b
−2(z◦ − b)v2

z◦ + ε2v1 − b
−v1 +

v2
2

(z◦ + ε2v1 − b)2

 ,
(3.12)
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which is formally O(1/ε2). However, as shown in [63], the modified equation is asymp-
totically stable. In the next section and in Theorem 3.4, we prove the asymptotic
stability of the scheme rigorously.

3.2. Stability analysis. We collect the stability properties of the RS-IMEX
scheme in the following theorem.

Theorem 3.4. For the shallow water equations with topography and well-prepared
initial data in the sense of Definition 3.2, the RS-IMEX scheme (3.10)-(3.11)

(i) is solvable, i.e., it has a unique solution for all ε > 0, which does not blow-up
for ε→ 0, under the assumption of constant α̃.

(ii) is consistent with the asymptotic limit in the fully-discrete settings, i.e., it is
asymptotically consistent.

(iii) is asymptotically `2-stable, i.e., there exists a constant CN,T depending on the
final time T = n∆t and the number of grid points N such that ‖Vn

∆ ‖`2 ≤
CN,T ‖V0

∆‖`2 .
(iv) preserves the lake at rest equilibrium state, i.e., it is well-balanced.

We present the proof of Theorem 3.4 in the next sections.
Remark 3.5. As we already mentioned. the scheme in [5, 6] can be considered

as a particular example of the RS-IMEX scheme with zero reference solution. So, one
may expect that the AP analysis in [5] coincides with Theorem 3.4. The first difference
which should be taken into account is that the analysis of [5] is for the two-dimensional
shallow water system with the elliptic approach (in which the surface perturbation is
computed by an elliptic equation [5, eq. (7.5a)]). Moreover, the rigorous asymptotic
consistency proof in [5] is basically for the flat bottom case and a detailed analysis has
been done for various high order reconstructions. By contrast, throughout this paper,
we focus on the first-order schemes in one space dimension and prove asymptotic
consistency for an arbitrarily topography. In addition, we also analyze asymptotic
stability. In Section 4 and later on in [61], we show respectively that a similar analysis
can be used for more general reference solutions as well as two-dimensional problems.

3.2.1. Solvability of the scheme. Here, we aim to show that the scheme has
a unique solution for all ε > 0. Also we show that the solution does not blow-up
for small ε; this implies incidentally the validity of the formal asymptotic consistency
analysis since the solution is bounded for small ε. We take two cases into consideration:
At first for simplification, we assume α̃ and the topography b to be constant (which
makes the system similar to the isentropic Euler system). Afterwards, we generalize
the arguments for the shallow water equations with varying bottom but again for
constant α̃. To simplify the notation, we define h◦ := z◦ − b and β := ∆t

2∆x .

(i) constant b and constant α̃. It is not difficult to observe in (3.11) that JεV
n+1
∆ =

Vn†
∆ . So, the implicit solution operator is J−1

ε , where matrix Jε ∈ R2N×2N is defined
as

Jε :=

[
P

β

ε2
Q

βh◦Q P

]
(3.13)

and P and Q are circulant matrices defined as

P := Circ (1 + 2α̃β,−α̃β, 0, . . . , 0,−α̃β) ,

Q := Circ (0, 1, 0, . . . , 0,−1) .
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Note that P and Q are symmetric and skew-symmetric respectively, and P is strictly
diagonally dominant (SDD). Also note that the matrix Q is the companion matrix
for the central discretization.

In the following, we first show that Jε is non-singular, thus there exists a unique
solution for the implicit step (and so for the scheme). Then, we prove that the solution
operator and the solution itself, are bounded in terms of ε. We call such a property ε-
stability hereinafter. Note that the ε-stability of the solution operator does not provide
ε-stability of the solution per se. For that, one also needs the ε-stability of the explicit
step at the intermediate time n†. For now, we simply assume the ε-stability of the
explicit step and we show it in Section 3.2.2.

Existence of J−1
ε . Since P and Q are circulant, they commute [20], and one knows

from [59, Thm. 1] (see [4, Sect. 2.14] for more general cases) that since all blocks of
Jε commute with each other, the determinant of Jε can be computed as

det(Jε) = det

(
P 2 − h◦β

2

ε2
Q2

)
.

Due to Gerschgorin’s circle theorem [26, Chap. 6], the numerical range of −h◦β
2

ε2 Q2

is located in the right half-plane while of P 2 is strictly positive, and both these parts
are symmetric with real eigenvalues. So, using the sub-additivity of numerical range
(Rayleigh quotient), the eigenvalues of the sum are bounded away from zero. Thus
Jε is not singular, and there exists a unique solution for the scheme.

Boundedness of J−1
ε (ε-stability). Circulant matrices are commutable, so equiva-

lently they are simultaneously diagonalizable. Thus, one can write Jε as

Jε = diag (FN , FN ) Ξε diag (F ∗N , F
∗
N ) ,(3.14)

where ∗ denotes the conjugate transpose, and FN is a (unique) unitary matrix, which
consists of eigenvectors of circulant matrices of size N . It is important to mention
that FN does not depend on the entries of Jε; it only depends on the size N (see [20]).
Ξε denotes a matrix containing the diagonal part (eigenvalues) of blocks of Jε:

Ξε :=

[
Γ

β

ε2
Λ

βh◦Λ Γ

]
.(3.15)

Since Q is skew-symmetric, it has only eigenvalues on the imaginary axis, so Λ∗ = −Λ.
Also note that diag (FN , FN ) is a unitary matrix. Thus, one can bound the norm of
J−1
ε as

‖J−1
ε ‖ ≤ ‖diag (FN , FN ) ‖‖diag (F ∗N , F

∗
N ) ‖‖Ξ−1

ε ‖
≤ cond (diag (FN , FN )) ‖Ξ−1

ε ‖,

for a suitable natural matrix norm. This bound depends on ε only through ‖Ξ−1
ε ‖, so

in the following lemma we show that Ξ−1
ε is uniformly bounded in ε.

Lemma 3.6. The inverse of matrix Ξε, has a bounded norm in terms of ε.

Before we prove this lemma, let us mention the following lemma for the inverse
of partitioned matrices, since we are going to use it several times. This is a classical
result in the linear algebra; for example the reader can find it in [4, Prop. 2.8.7].
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Lemma 3.7 (Schur complement). Consider the portioned matrix M =

[
M11 M12

M21 M22

]
.

Then, the inverse of M exists and it writes

M−1 =

[ (
M11 −M12M

−1
22 M21

)−1 −M−1
11 M12

(
M22 −M21M

−1
11 M12

)−1

−M−1
22 M21

(
M11 −M12M

−1
22 M21

)−1 (
M22 −M21M

−1
11 M12

)−1

](3.16)

if all the inverses exist.
Proof. From Lemma 3.7, the inverse of Ξε reads

Ξ−1 =


(

Γ− β2h◦
ε2

Λ2Γ−1

)−1

− β
ε2

Γ−1Λ

(
Γ− β2h◦

ε2
Λ2Γ−1

)−1

−bβΓ−1Λ

(
Γ− β2h◦

ε2
Λ2Γ−1

)−1 (
Γ− β2h◦

ε2
Λ2Γ−1

)−1

 .
So, one can easily check that the entries of Ξ−1

ε are bounded, thus is ‖Ξ−1
ε ‖.

Due to this lemma, one can clearly conclude that the implicit solution operator
J−1
ε is bounded in terms of ε.

Remark 3.8. The immediate result of this ε-stability is that the scaled perturba-
tion V∆ should be O(1) as long as the explicit step is ε-stable. This result justifies the
asymptotic consistency analysis we are going to present in Section 3.2.2.

(ii) constant α̃ with varying b. For this case, one of the blocks of Jε is not circulant
any longer; the matrix Jε is written as

Jε =

[
P

β

ε2
Q

βRb P

]
,(3.17)

where Rb is an almost circular matrix, i.e., its i-th row (up to a circulation) is

(Rb)i = (bi+1 − bi−1, h◦,i+1, 0, . . . , 0,−h◦,i−1) .

Note that Rb is circulant if and only if its arguments are constant for all rows (or
equivalently if the bottom is flat). This non-circulant structure makes the analysis of
solvability and ε-stability more delicate.

Existence of J−1
ε . In the following lemma we show that Jε can be inverted, so it

is non-singular and the scheme is again solvable.
Lemma 3.9. For Jε as in (3.17) there exists an inverse.
Proof. From Lemma 3.7, the inverse exists if all necessary inverses exist in (3.16).

Matrix P is SDD, thus invertible [26, Thm. 6.1.10]. For P − β2

ε2 QP
−1Rb and P −

β2

ε2 RbP
−1Q the arguments for the invertibility are similar; we show the invertibility

of the former in the following.

Assume α̃ = 0, so P = IN . For an eigenvalue of IN − β2

ε2 QRb to be zero, there

should exist an eigenvalue ofQRb to be β2

ε2 (for every choice of β), which is not possible:
Suppose that for a particular β and ε, denoted by β0 and ε0, one of the eigenvalues

of QRb is
β2
0

ε20
. So, by changing β this equality does not hold anymore. Note that

since there are only finite eigenvalues, such an appropriate choice of β always exists.
For α̃ 6= 0, the same argument works by factoring out P (since it is full-rank), and

studying the eigenvalues of IN − β2

ε2 P
−1QP−1Rb in a similar way.
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Boundedness of J−1
ε (ε-stability). Regarding the boundedness of J−1

ε , employing
the diagonal form of circulant matrices cannot simplify all the blocks of J−1

ε (as in
(3.15)) and the procedure of Lemma 3.6 does not seem to be fruitful. On the other
hand, one knows that ‖J−1

ε ‖`2 = σ−1
min (Jε) [27, Fact 4.5], thus showing that σmin (Jε)

does not approach zero in the limit is enough to conclude the boundedness of J−1
ε .

From Lemma 3.9, Jε is not singular for all ε > 0. So the singular values are equal to
the square root of the eigenvalues of JTε Jε. In the following lemma, Lemma 3.10, we
prove the existence of a (positive) non-vanishing lower-bound for the eigenvalues of
JTε Jε, which concludes the boundedness of J−1

ε .
Lemma 3.10. For Jε as in (3.17), there exists a constant C independent of ε,

such that limε→0 ‖J−1
ε ‖ ≤ C.

Proof. Here, we consider α̃ = 0 to simplify the analysis. However the analysis
for α̃ 6= 0 can be done similarly. Again, making use of the fact that all the circulant
matrices have the same eigenspace, we can write Jε as in (3.14) with

Ξε :=

[
IN

β

ε2
Λ

βRb IN

]
, Rb := F ∗NRbFN .

Note that because diag (FN , FN ) is unitary, and a unitary similarity transformation
does not change the singular values, we find a lower-bound for the singular values of
Ξε rather than Jε. Ξ∗εΞε can be written as

Ξ∗εΞε =

 IN + β2R∗bRb β

(
Λ

ε2
+R∗b

)
β

(
Λ

ε2
+R∗b

)∗
IN +

β2

ε4
Λ∗Λ

 .
So we should analyze the numerical range of Ξ∗εΞε to show that it is bounded away
from zero with an O(1) bound. Ξ∗εΞε can be re-written as

Ξ∗εΞε = I2N + β2

[
R∗bRb ON

ON
1

ε4
Λ∗Λ

]
+
β

ε2

[
ON Λ
Λ∗ ON

]
+ β

[
ON R∗b
Rb ON

]
,

where ON stands for the zero matrix of size N .
Now, consider the vector z := (u,v)T ∈ C2N with ‖z‖`2 = 1, where both of u

and v are vectors of the same size N with complex entries. Then by the definition of
numerical range, one gets

W (Ξ∗εΞε) = ‖βRbu + v‖2`2 +
∥∥ β
ε2

Λv + u
∥∥2

`2
.(3.18)

From this, it is clear that if v /∈ N ε2(Λ) :=
{
u| ‖Λu‖ = O(ε2)

}
, then

∥∥∥ βε2 Λv + u
∥∥∥
`2

goes far from zero when ε → 0. Otherwise for v ∈ N ε2(Λ), since (u,v) lives on the
unit sphere, adding β

ε2 Λv and βRbu (which are O(1)) would perturb (u,v) from the
unit circle by O(β); so, the numerical range, thereby the eigenvalues of Ξ∗εΞε, are
bounded away from zero. This concludes the lemma.

Assuming the ε-stability of the explicit step, Lemma 3.10 verifies that the scaled
perturbation V∆ is O(1), which justifies the formal asymptotic consistency of the next
section.

Remark 3.11. So far, one important advantage of the RS-IMEX scheme with
a suitable scaling and reference solution has been to simplify the procedure of Lemma
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3.6 and Lemma 3.10 to conclude the ε-stability of the implicit solution operator (and
of the numerical solution later on).

Remark 3.12. Note that the ε-stability of the solution implies that there exists
a sequence {Vn+1

∆,εk
}k∈N (εk → 0 as k → ∞) converging strongly to a limit (after

extracting a subsequence if necessary). To determine whether this limit is the correct
zero-Froude limit will be the topic of the next section, Section 3.2.2.

3.2.2. Asymptotic consistency. AP analysis has three parts, as we have de-
scribed in Definition 1.1: asymptotic consistency, asymptotic efficiency and asymp-
totic stability. We discuss the asymptotic consistency in this section. Because we
have already discussed solvability and ε-stability of the implicit solution operator,
the asymptotic consistency analysis we are going to present is not only formal (like
[9, 12,24]), but also rigorous, since —owing to the ε-stability— the coefficients of the
asymptotic expansion have been shown to be bounded in terms of ε. Similar ideas
has been used in [5] in the context of the Finite Volume Evolution Galerkin (FVEG)
scheme [6], and in [62] for the Lagrange–projection scheme.

For the RS-IMEX scheme applied to the shallow water system, the asymptotic
consistency requires that the zeroth- and first-order expansions of momentum to be
constant in space. Due to the appropriate choice for the reference solution, the surface
elevation z satisfies the continuous asymptotic expansions simply by construction.

We now consider the discrete version of the asymptotic expansion, which is similar
to the continuous version (3.2):

z(xi, tn) = z(0) + εz(1) + ε2z(2)(xi, tn),

m(xi, tn) = m(0)(tn) + εm(1)(t) + ε2m(2)(xi, tn).

Since we assumed the reference state to be the lake at rest with the scaling matrix
D2, it turns out that the scaled variables at time tn write

v1(x, tn) = z(2)(x, tn),

v2(x, tn) = m(0)(tn) + εm(1)(tn) + ε2m(2)(x, tn).

The goal is to determine whether or not the zeroth- and first-order expansions of the
momentum are constant in space. Substituting (3.19) into the momentum update of
the explicit step (3.10) yields

vn†2(0)i = mn
(0)i −

∆t

2∆x

mn,2
(0)i

h◦,i+1h◦,i−1
(bi+1 − bi−1) = mn

(0)c −
∆t

2∆x

mn,2
(0)c

h◦,i+1h◦,i−1
(bi+1 − bi−1),

vn†2(1)i = mn
(1)i −

∆t

∆x

mn
(0)im

n
(1)i

h◦,i+1h◦,i−1
(bi+1 − bi−1) = mn

(1)c −
∆t

∆x

mn
(0)cm

n
(1)c

h◦,i+1h◦,i−1
(bi+1 − bi−1),

where mn
(0)c and mn

(1)c are some constants. So, the explicit step for the momentum

does not introduce an O(1/ε) term into the scheme, i.e., Vn†
∆ = O(1). Note that

the surface perturbation does not change through the explicit step; see (3.4). Thus,
the explicit step is asymptotically consistent up to O(∆x) provided that the bottom
function is assumed to have a bounded derivative. Such a small slope assumption is
usually imposed for the validity of the shallow water model (see [7]).

Incidentally, Remark 3.8 implies that the boundedness of Vn†
∆ leads to the ε-

stability of the implicit solution in Section 3.2.1. Thus, from the implicit v1 update
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(3.11), one can (rigorously) conclude that

vn+1
2(0)i+1 = vn+1

2(0)i−1, vn+1
2(1)i+1 = vn+1

2(1)i−1.(3.19)

So, the updated momentum is almost constant, i.e., the discrete divergence operator
vanishes in the limit div∆Vn+1

2,∆ = O(ε2). Although this is often interpreted as the
asymptotic consistency in the literature, it does not imply necessarily that the limit
has been actually obtained. For example, one can confirm that although the dis-
cretization is consistent with the continuous div-free condition of the momentum, its
null space allows for non-constant sequences, which may lead to the so-called checker-
board oscillations. Here we prove that the checker-board phenomenon, if happens, is
as small as O(ε2). Thus, it does not ruin the numerical solution in the limit.

Lemma 3.13. For the RS-IMEX scheme (3.10)-(3.11) with constant α̃, applied
to the shallow water equations with flat bottom, the deviations of the computed mo-
mentum is O(ε2), as ε → 0. In other words, the possible checker-board oscillations
for the computed momentum are at most O(ε2).

For the proof, note that the linearity of the implicit step implies that for the
differences of the solution [[vk,i]] := vk,i − vk,i−1 with k = 1, 2, the following holds:

Jε

[
[[Vn+1

1,∆ ]]

[[Vn+1
2,∆ ]]

]
=

[
[[Vn†

1,∆]]

[[Vn†
2,∆]]

]
.(3.20)

For the case of flat bottom, we will show that the blocks of Kε := J−1
ε behave as

‖K11‖, ‖K12‖, ‖K22‖ = O(1), ‖K21‖ = O(ε2).(3.21)

Then, it follows ∥∥∥[[Vn+1
2,∆ ]]

∥∥∥ =
∥∥∥K21[[Vn†

1,∆]] +K22[[Vn†
2,∆]]

∥∥∥
≤ C

(∥∥∥[[Vn†
2,∆]]

∥∥∥+ ε2
∥∥∥[[Vn†

1,∆]]
∥∥∥) ,

and since ‖[[Vn†
1,∆]]‖ = O(1) and ‖[[Vn†

2,∆]]‖ = O(ε2) (as shown above for the case of flat
bottom), it turns out that ∥∥∥[[Vn+1

2,∆ ]]
∥∥∥ = O(ε2),

which implies that the possible checker-board oscillations are O(ε2).
It only remains to study the behavior of the blocks in (3.21), and in particular

K21 and K22. Let us re-write the inverse Kε as

Kε =


(
P − βh◦

ε2
QP−1Q

)−1

−β
2

ε2
P−1Q

(
P − β2h◦

ε2
QP−1Q

)−1

−βh◦P−1Q

(
P − β2h◦

ε2
QP−1Q

)−1 (
P − β2h◦

ε2
QP−1Q

)−1

 .
It is clear from Lemma 3.6 and the structure of Kε that since K12 = β

ε2h◦
K21 and

‖K21‖ = O(1), then

‖K21‖ = O(ε2), ‖K22‖ = O(1),
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which concludes the proof of Lemma 3.13.

When the bottom is non-flat, (3.20) is not valid anymore since the momentum
equation has contributions of non-constant coefficients terms. However, one can con-
firm that (assuming α̃ = 0 for simplicity)

Hε

[
[[Vn+1

1,∆ ]]

[[Vn+1
2,∆ ]]

]
=

[
[[Vn†

1,∆]]

[[Vn†
2,∆]]

]
, Hε =:

[
IN

β

ε2
Q

βR∆
b IN

]
.(3.22)

Defining R∆
b , which is the point of departure of Hε from Jε, we write the implicit

momentum update for the jumps in (3.22)

[[vn+1
2,i ]] + β

(
h◦,i+1[[vn+1

1,i+1]]−
(
bi − b,i−1

)
[[vn+1

1,i ]]− h◦,i−2[[vn+1
1,i−1]]

)
= [[vn†2,i]],(3.23)

which should be compared with what Jε provides

[[vn+1
2,i ]] + β

(
h◦,i+1[[vn+1

1,i+1]] +
(
bi+1 − bi−1

)
[[vn+1

1,i ]]− h◦,i−1[[vn+1
1,i−1]]

)
= [[vn†2,i]].(3.24)

Hence showing the smallness of checker-board oscillations may need more than a direct
use of Lemma 3.10. Let us recall that since the proof of Lemma 3.10 does not depend
on the structure of J21, one can apply it to Hε, so limε→0 ‖H−1

ε ‖ <∞, thus the blocks
of H−1

ε

H−1
ε =


(
IN −

β2

ε2
QR∆

b

)−1

− β
ε2
Q

(
IN −

β2

ε2
R∆
b Q

)−1

−βR∆
b

(
IN −

β2

ε2
QR∆

b

)−1 (
IN −

β2

ε2
R∆
b Q

)−1


are bounded in ε, i.e., they are all at most O(1). So, it can only be concluded
that ‖[[Vn+1

2,∆ ]]‖ = O(1). However R∆
b is close to h◦Q (with O(∆x) difference); so,

it is plausible to claim that since ‖(H−1)12‖ = O(1), one gets ‖(H−1)21‖ = O(ε2).

Because ‖[[Vn†
2,∆]]‖ = O(∆x) there is an O(∆x) deviation from the result of the flat

bottom, which gives ‖[[Vn+1
2,∆ ]]‖ = O(ε2) +O(∆x).

Hence, for both cases, one can conclude that the momentum is close to a constant
value in the limit.

To conclude the asymptotic consistency, it is also required to show that the scheme
provides a consistent discretization of ∂tm(0). To show that, we consider the limit of
the momentum update for each step (with constant α̂ and α̃):

Explicit step:

vn†2(0),i − v
n
2(0),i

∆t
+

1

2∆x

[
v2,n

2(0),i+1

z◦ + ε2vn1(0),i+1 − bi+1
+
ε2

2
v2,n

(0)1,i+1

−
v2,n

2(0),i−1

z◦ε2vn1(0),i−1 − bi−1
− ε2

2
v2,n

(0)1,i−1

]

− α̂

2∆x

(
vn2(0),i+1 − 2vn2(0),i + vn2(0),i−1

)
= 0.(3.25)
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Implicit step:

vn+1
2(0),i − v

n†
2(0),i

∆t
+

1

2∆x

(
(z◦ − bi+1)vn+1

1(0),i+1 − (z◦ − bi+1)vn+1
1(0),i+1

)
− α̃

2∆x

(
vn1(0),i+1 − 2vn1(0),i + vn1(0),i−1

)
= − 1

2∆x
vn+1

1(0),i (bi+1 − bi−1) .(3.26)

It is clear that (3.25) and (3.26) provide consistent discretizations of ∂tm(0) for both
explicit and implicit steps. Thus, the scheme is AC.

3.2.3. Asymptotic stability. In this section, we discuss the rigorous stability
analysis of the RS-IMEX scheme in `2-norm. Motivated by [24, Lemma 3.1] (see
[50,60] for further details), one can define the stability (in finite time) as follows.

Definition 3.14. Assume that Ei for i = 1, . . . , s are some discrete evolution
operators, like explicit and implicit operators for the RS-IMEX, and suppose that the
numerical solution at the step k (for k = 0, 1, . . . , n− 1 and n = T/∆t) is obtained as

Yk =

s−1∏
i=0

Es−i Yk−1.

Then, the numerical method is said to be stable in `p-norm (in finite time), i.e.,
‖Yn‖`p ≤ CT‖Y0‖`p for all n ∈ N and with the constant C independent of ∆t,
provided that there exist constants ci independent of ∆t such that

‖Ei‖`p ≤ 1 + ci∆t, i = 1, . . . , s.(3.27)

In what follows we aim to show that the condition (3.27) holds for the RS-IMEX
scheme. Note that for the RS-IMEX scheme, s = 2 and E1 and E2 denote the explicit
and implicit operators, respectively.

Stability of the explicit step E1. To prove the stability of the explicit step requires
to choose a suitable norm for the nonlinear operator E1. Let us define the operator
norm for the operator T as ‖T ‖op,`r := max‖Y‖`r=1 ‖TY‖`r . For the explicit step,
T = E1 and r is chosen to be 2. Thus, ‖E1Y‖`2 ≤ ‖E1‖op,`2‖Y‖`2 . It remains to show
that the condition (3.27) holds for ‖E1‖op,`2 . Assuming α̂ = 0 for simplicity and from

(3.10), one can write ‖E1‖op,`2 as (note that Y =

[
V1,∆

V2,∆

]
)

‖E1‖op,`2 ≤ 1 +
2β

hmin
‖〈V2,∆,V2,∆〉‖`2 + ε2β‖〈V1,∆,V1,∆〉‖`2

≤ 1 + β

(
2

hmin
+ ε2

)
‖Y‖2`4 ,

≤ 1 + β

(
2

hmin
+ ε2

)
,

since for sequence spaces, ‖Y‖`q ≤ ‖Y‖`p for 1 ≤ p ≤ q and ‖Y‖`2 = 1 by definition.
Here hmin is the lower-bound for the water height, i.e.

hmin := min
i∈ΩN

∣∣z◦ + ε2v1,i − bi
∣∣ for

∥∥∥∥[V1,∆

V2,∆

]∥∥∥∥
`2

= 1.
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This implies that for small enough ε, hmin is bounded away from zero; so, the explicit
step is asymptotically stable (in finite time).

Stability of the implicit step E2. As we have mentioned earlier, the implicit oper-
ator is J−1

ε . So, one should find some bound of the form 1 + c1∆t for J−1
ε . Let us

assume the norm to be `2. So, one can write

‖E2‖`2 = ‖J−1
ε ‖`2 = ‖Ξ−1

ε ‖`2 =
1

σmin (Jε)
=

1

ω1/2(Ξ∗εΞε)
,

where ω(Ξ∗εΞε) := min |W (Ξ∗εΞε)|. On the other hand, as we have discussed in the
proof of Lemma 3.10, ω(Ξ∗εΞε) can be written as 1−βC1 with some positive ε-uniform
constant C1, which gives

‖E2‖`2 ≤
1

1− βC2
≈
∞∑
k=0

(βC2)
k ≤ 1 + βC,

due to the Taylor expansion around β = 0 and with another positive ε-uniform con-
stant C . Thus, the implicit operator is asymptotically stable (in finite time).

Hence, combining these two results for explicit and implicit steps, one can con-
clude asymptotically stability. For non-small ε, one should add the positivity assump-
tion to conclude that the positive solutions of RS-IMEX scheme are `2-stable.

Remark 3.15. As we have seen so far, the scheme is AC and AS. Due to
Definition 1.1, for the scheme to be AP, asymptotic efficiency is also necessary: The
CFL condition is ε-uniform (with material velocity), but the condition number of Jε
increases as ε → 0 (see Remark 4.4). Although, literally speaking, the scheme is not
AP in the sense of Definition 1.1, we call it AP (at least in a weaker sense) since it
is AC and AS under a non-restrictive CFL condition.

3.2.4. C-property (well-balancing). Considering the lake at rest, the C-
property for the explicit step is boiled down to consistency of the numerical flux
(due to lack of non-stiff source term) which is fulfilled by the construction.

For the implicit step, if one discretizes the source term central, i.e., bx(xi) ≈
bi+1−bi−1

2∆x , the compatibility of the equilibrium solution is clear since there is exactly
such a term in the difference of Rusanov fluxes as well. Because the implicit step has
a unique solution, this compatibility confirms that the RS-IMEX scheme preserves
the lake at rest equilibrium state, i.e., it is well-balanced.

4. Shallow water equations with the zero-Froude limit reference state.
Here, we consider the same shallow water system as in (3.1) on a periodic domain,
but with the zero-Froude limit solution of (3.1) as the reference solution, i.e., U =
(z◦,m◦)

T . This can be formally obtained from the Definition 3.2 and (3.3), i.e.,
z◦ = z0

(0) and m◦ = m0
(0). Additionally, we assume the bottom to be flat to make the

zero-Froude limit stationary (owing to periodic boundary conditions). This makes T
to vanish and avoids the difficulties stem from the truncation error of the reference
solution T in the asymptotic analysis (as will be discussed and analyzed in detail
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in [61]). With this reference solution the splitting can be obtained as

F :=

 m◦
m2
◦

z◦ − b
+
z2
◦ − 2z◦b

2ε2

 , F̃ :=

 mpert

− m2
◦

(z◦ − b)2 zpert +
z◦ − b
ε2

zpert +
2m◦
z◦ − b

mpert

 ,
F̂ :=

 0

(m◦ +mpert)
2

z◦ + zpert − b
+
z2
pert

2ε2
− m2

◦
z◦ − b

+
m2
◦

(z◦ − b)2 zpert −
2m◦
z◦ − b

mpert

 .
Based on the asymptotic analysis presented in Appendix A, we choose the scaling
matrix as D3 := diag(ε2, ε), and the scaled RS-IMEX splitting reads

G̃ :=

 v2/ε

− m2
◦εv1

(z◦ − b)2 +
(z◦ − b)v1

ε
+

2m◦v2

z◦ − b

 ,
Ĝ :=

 0
(m◦ + v2ε)

2

ε (z◦ + ε2v1 − b)
+
εv2

1

2
− m2

◦
ε (z◦ − b)

+
m2
◦v1ε

(z◦ − b)2 −
2m◦v2

z◦ − b

 .
(4.1)

One can see that the splitting is admissible in the sense of [58]. That is to say,

the eigenvalues of G̃ are stiff and those of Ĝ are non-stiff:

µ̃ =
m◦
z◦ − b

±
√
z◦ − b
ε

,

µ̂ = 0,
2ε (v2(z◦ − b)− εm◦v1)

(z◦ − b)(z◦ − b+ ε2v1)
.

(4.2)

So the zero-Froude limit reference state makes the wave speeds of the slow system of
O(ε), thus the commutator would be O(1). In fact, it can be obtained formally that
(for ε� 1) [

G̃′, Ĝ′
]

=

 v1 +O(ε2)
2v2

z◦ − b
−2v2 +O(ε) −v1 +O(ε2)

 ,(4.3)

which is O(1). Similar to the case of the lake at rest reference solution, the modified
equation is stable for this splitting.

For this case, the RS-IMEX scheme is defined as in (3.8)-(3.9) when Ĝ and G̃
change according to (4.1).

4.1. Stability analysis. We collect the stability properties of the RS-IMEX
scheme in the following theorem.

Theorem 4.1. For the shallow water equations with a flat bottom and well-
prepared initial data in the sense of Definition 3.2, the RS-IMEX scheme (3.8)-(3.9)
and (4.1)

(i) is solvable, i.e., it has a unique solution for all ε > 0, which does not blow-up
for ε→ 0, under the assumption of constant α̃.

(ii) is consistent with the asymptotic limit in the fully-discrete settings, i.e., it is
asymptotically consistent.

(iii) is asymptotically `2-stable, i.e., there exists a constant CN,T depending on the
final time T = n∆t and the number of grid points N such that ‖Vn

∆ ‖`2 ≤
CN,T ‖V0

∆‖`2 .
We present the proof of Theorem 4.1 in the next sections.
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4.1.1. Solvability of the scheme. Like Section 3.2, it is not difficult to see
that Jε reads

Jε :=

 P
β

ε
Q(

−m
2
◦ε

h2
◦

+
h◦
ε

)
βQ P +

2βm◦
h◦

Q

 .(4.4)

In the following, we first show that Jε is non-singular, thus there exists a unique
solution for the implicit step (and so for the scheme). Then, we prove that the
solution operator and the solution are ε-stable.

Existence of J−1
ε . Like Section 3.2, Since P and Q are circulant, the blocks of Jε

commute and from [59, Thm. 1] the determinant of Jε can be computed as

det(Jε) = det

P 2 − β2

ε

(
−m

2
◦ε

h2
◦

+
h◦
ε

)
Q2︸ ︷︷ ︸

=:A

+
2βm◦
h◦

PQ︸ ︷︷ ︸
=:B

 .

One can confirm that PQ is skew-symmetric; so, B does not change the real eigenval-
ues of A which is symmetric. This is a result from Bendixon [3,25]. Thus, it remains
to show that A has only non-zero eigenvalues, which can be done as in Section 3.2.1,
by a suitable and ε-uniform choice of β. Hence Jε is non-singular.

Boundedness of J−1
ε . Again similar to Section 3.2, we can find Ξε as

Ξε :=

 Γ
β

ε
Λ(

−m
2
◦ε

h◦
+
h◦
ε

)
βΛ Γ +

2βm◦
h◦

Λ

 .
In the following lemma we show that Ξ−1

ε is ε-stable.
Lemma 4.2. The inverse of matrix Ξε, has a bounded norm in terms of ε.
Proof. From Lemma 3.7, the inverse of Ξε reads

Ξ−1
11 =

(
Γ− β2

ε

(
−m

2
◦ε

h◦
+
h◦
ε

)
Λ2

(
Γ + 2

βm◦
h◦

Λ

)−1
)−1

,

Ξ−1
12 = −β

ε
Γ−1ΛΞ−1

22 ,

Ξ−1
21 = −

(
Γ +

2βm◦
h◦

Λ

)−1(
−m

2
◦ε

h2
◦

+
h◦
ε

)
βΛΞ−1

11 ,

Ξ−1
22 =

(
Γ +

2βm◦
z◦ − b

Λ− β2

ε

(
−m

2
◦ε

h2
◦

+
h◦
ε

)
Γ−1Λ2

)−1

.

From this, and similar to Lemma 3.6 one can show that the blocks of Ξ−1
ε are bounded,

so is ‖Ξ−1
ε ‖.

Due to this lemma and assuming the ε-stability of the explicit step (see Section
4.1.2), one can clearly conclude that the solution of the implicit step (thus the whole
scheme) cannot blow-up as ε→ 0, i.e., it is ε-stable.

Remark 4.3. The ε-stability of the solution implies that the scaled perturbation
V∆ is O(1), which justifies the asymptotic consistency analysis we are going to present
in the next section.
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Remark 4.4. It is worth mentioning that the condition number of Jε depends on
the scaling matrix. For example, one can confirm that using D2 and D3 makes the
condition number to be O(1/ε2) and O(1/ε) respectively. The proof is straightforward
from the definition of the condition number and the bound of Jε (see Lemma 3.6 for
the lake at rest reference solution and similar result for the zero-Froude limit reference
solution in this section). We also wish to mention that in this sense, the scaling by
the diagonal matrix D is the equilibration of matrices in essence, whose basic idea
is to scale the matrix rows and columns by (possibly different) diagonal matrices to
improve the condition number, cf. [19, Sect. 3.5.2]. This is exactly the advantage of
D3 over D2 as shown in Table 1.

Scaling by D2 Scaling by D3

Jε

 1 O(1/ε2)

1 1

  1 O(1/ε)

O(1/ε) 1


Table 1: Comparison of different scaling for matrix Jε.

4.1.2. Asymptotic consistency. We are going to show the asymptotic consis-
tency of the scheme formally. But, as we mentioned before, the analysis is rigorous
owing to the ε-stability results.

For the explicit step and similarly to the case with the lake at rest reference
solution, no O(1/ε) contribution is associated with the explicit update since

lim
ε→0

[
(m◦ + vn2 ε)

2

ε (z◦ + ε2vn1 − b)
− m2

◦
ε (z◦ − b)

]
= O(1).(4.5)

So, it is asymptotically consistent (and ε-stable). This implies that for the implicit
step, as shown in the previous section, Vn+1

∆ = O(1). So the perturbation vanishes
in the limit and only U remains, which concludes the asymptotic consistency of the
scheme.

Remark 4.5. The asymptotic stability analysis for the implicit step is very simi-
lar to Section 3.2.3; so, we skip it here. We just wish to stress that for the explicit step,
one should use (4.5) to find an ε-uniform bound for ‖E1‖op,`2 . Hence, one can con-
clude that the scheme is AP in a weaker sense than Definition 1.1, i.e., it is AC and
AS under a non-restrictive CFL condition but the condition number of Jε increases
as ε→ 0.

5. Numerical results. In this section, we show that the RS-IMEX scheme,
which has been discussed throughout this paper, has well-qualified solutions com-
pared to existing schemes. Also we confirm numerically the AP property (asymptotic
consistency and asymptotic stability) of the scheme.

At first, we consider the flat bottom case in two examples and provide numerical
evidences regarding the convergence order and asymptotic consistency and stability.
We also discuss the quality of the numerical solution by comparing it to other existing
results like [2, 5]. Then, we continue with a non-flat bottom example.

Note that unless stated otherwise, the time step has been computed as ∆t :=
min (∆tCFL,∆tAux) where the CFL time step ∆tCFL and the auxiliary time step
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∆tAux are defined as below:

∆tCFL := CFL ∆x/max
j∈ΩN

α̂j ∆tAux := CFL ∆x/max
j∈ΩN

α̃j |ε=1.

5.1. Shallow water equations with flat bottom. In this section, we discuss
numerical results for the case of shallow water equations with a flat bottom. Firstly,
we consider a colliding pulses example of [12], which has been also discussed in [5].
Then, we discuss another colliding pulses example from [2]. In each case, we show that
the quality of the solution is comparable and the convergence order is fine. Also we
confirm the asymptotic consistency and stability, as well as the smallness of checker-
board oscillations.

5.1.1. Colliding pulses (I). Example 6.1 in [12] uses the pressure function
p(%) = %2 and the following well-prepared initial data:

x ∈ [0, 0.2] ∩ (0.8, 1] : h0(x) = 1, m0(x) = 1− ε2

2
,

x ∈ (0.2, 0.3] : h0(x) = 1 + ε2, m0(x) = 1,

x ∈ (0.3, 0.7] : h0(x) = 1, m0(x) = 1 +
ε2

2
,

x ∈ (0.7, 0.8] : h0(x) = 1− ε2, m0(x) = 1,

with the final time T = 0.05, CFL = 0.45 and the periodic domain [0, 1). Since, the
pressure function for the shallow water equations is a bit different (by a factor of 1

2 ),
we compare the results of the RS-IMEX scheme with [5, Sect. 8.1].

Figures 3 and 4 show the results of the RS-IMEX scheme with m◦ = 0 (LaR)
and m◦ = 1 (zero-Froude limit) for ε = 0.8 and ε = 0.1. Comparing to [5, Fig. 8.2],
it is clear that the computed solutions are well-qualified. Note that for this example,
the schemes in [5, Fig. 8.2] uses the same splitting as the RS-IMEX and they enjoy
an elliptic approach for the surface perturbation update. For more details, the reader
should consult with [5, 6]. As Figure 3 and Figure 4 suggest, the computed surface
perturbation z does not depend on the reference solution particularly for ε = 0.1.
For the momentum, the m◦ = 1 case gives a bit more accurate solution in terms of
capturing the extrema; this can be clearly seen in Figure 4 where the exact solution
is computed on a very fine mesh with N = 6400. Note that for ε = 0.1 both schemes
cannot capture the details of the waves (micro-structures), which is also the case
in [5, 12].

Figure 5 illustrates the experimental order of convergence for different ε and
m◦ = 0, 1, for an error defined as

e(U∆) := ‖U∆ − Uexact‖L1 =
1

N

∑
j∈ΩN

|U∆,j − Uexact,j | ,(5.1)

where U is the variable of interest (momentum, height, etc.) and U∆ and Uexact are
the computed solution and the exact solution respectively. For this example, the exact
solution is computed on a finer mesh with N = 3200. Figure 5 shows that the scheme,
regardless of the reference solution, has an almost uniform order of convergence for
ε = 0.8, 0.1, 0.05, which coincides with the result of [12, Tab. 2].

Verifying asymptotic consistency and stability, Figure 6 shows the solution for a
small ε, namely ε = 10−8. It confirms that the solution is close to the incompressible
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manifold. That is to say, the surface elevation is almost constant, and the momentum
is div-free. It also confirms the smallness of the checker-board oscillations. Note that
for the lake at rest reference solution the scheme uses D2, which makes the condition
number of Jε to grow as O(1/ε2) (see Remark 4.4). This clearly affects the solution
in the limit as one can see by comparing Figure 6(b) and Figure 6(d). If one changes
the scaling matrix (for LaR) to D3, the limit solution gets much closer to the limit
manifold, as Figure 6(e) confirms.

Note that for the zero-Froude limit reference state, due to O(ε) eigenvalues for
the non-stiff system as in (4.2) , ∆tCFL = O(1/ε); so, it gets larger as ε decreases.
For this example, since there are only O(ε2) deviations of the initial momentum from
m◦ one expects ∆tCFL = O(1/ε2). This is confirmed by Table 2.
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(a) Comparison of surface perturbation.
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(c) Zoomed view of (a).
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Fig. 3: The comparison of the RS-IMEX solutions for Example (I) with ε = 0.8, CFL = 0.45, T = 0.05,
and the LaR and the zero-Froude limit reference states.

5.1.2. Colliding pulses (II). This example, which has been discussed in [2]
uses the initial data

h0(x) = 0.955 +
ε

2
(1− cos(2πx)) ,

u0(x) = −sgn(x)
√

2 (1− cos(2πx)) .
(IIa)
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Fig. 4: (a) and (b): The comparison of the RS-IMEX solutions for Example (I) with ε = 0.1, CFL = 0.45,
T = 0.05, and the LaR and the zero-Froude limit reference states. (c) is a close-up of (b) with mesh
refinement.

ε
10−1 10−3 10−6

LaR 1.06e-03 1.12e-03 1.12e-03
Constant 1.11e-01 1.12e+03 1.12e+09

Table 2: Comparison of ∆tCFL w.r.t. ε for different reference states in Example (I).

We set CFL = 0.45 and consider the problem in the periodic domain [−1, 1).

Figure 7 shows the evolution of water height for the final time T = 0.1 and
ε = 0.1 with N = 200 and the lake at rest reference solution. We have also chosen
z◦ = −0.045. The figure shows that, comparing to [2], the computed solution is fine.
Note that in [2], the height is computed by an elliptic approach; see [2] for more
details.

Confirming the order of convergence, we keep the initial surface perturbation as
in (IIa) and modify the initial velocity in case (IIa) to be solenoidal, i.e., div u0

(0) = 0.



Asymptotic analysis of the RS-IMEX scheme 25

"x
10-3 10-2 10-1

E
rr

o
r
in

L
1

fo
r
z

10-4

10-3

10-2

10-1

100

0=8e-1
0=1e-1
0=5e-2

(a)

"x
10-3 10-2 10-1

E
rr

o
r
in

L
1

fo
r
m

10-4

10-3

10-2

10-1

100

0=8e-1
0=1e-1
0=5e-2

(b)

"x
10-3 10-2 10-1

E
rr

o
r
in

L
1

fo
r
z

10-4

10-3

10-2

10-1

100

0=8e-1
0=1e-1
0=5e-2

(c)

"x
10-3 10-2 10-1

E
rr

o
r
in

L
1

fo
r
m

10-4

10-3

10-2

10-1

100

0=8e-1
0=1e-1
0=5e-2

(d)

Fig. 5: The comparison of the order of convergence for the RS-IMEX solutions of Example (I) with CFL =
0.45, T = 0.05: (a) and (b) for the LaR (m◦ = 0) reference state, (c) and (d) for the zero-Froude limit
(m◦ = 1) reference state.

For example:

(IIb) u0(x) = −
√

2 +
√

2 ε sgn(x) cos(2πx).

As Figure 8 suggests, the experimental order of convergence is one, uniformly in ε, i.e.,
the scheme is uniformly consistent. Note that the error has been measured compared
to the exact solution computed on a very fine mesh with N = 3200. Also note that
the figure suggests that the error decreases as ε→ 0, which is natural due to the well-
prepared initial data. One may prefer to divide the error by ε2 to see the effective
error reduction; but, here we only care about the order of consistency.

Moreover, Figure 9 confirms the stability of the scheme in `2-norm, with the
growth factor Gw, which for the quantity w is defined as

Gnw :=
‖wn∆‖`2
‖wn−1

∆ ‖`2
.(5.2)

As Figure 9 suggests, the scheme is stable uniformly in ε for variables like z, m and u.
Also note that since there is an O(ε) contribution in h0(x), v1 is not O(1) as shown
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Fig. 6: Incompressible limit of the RS-IMEX solution for Example (I), with N = 200 and ε = 10−8. (a)
and (b) are for the LaR reference solution with scaling matrix D2, (c) and (d) are for the zero-Froude limit
reference solution with scaling D3. (e) is for the LaR reference solution with scaling matrix D3.

in Lemma 3.6 and grows as O(1/ε). The figures also show that the time step ∆t does
not depend on ε.

To compare the lake at rest and the zero-Froude limit reference solutions, for the
case (IIa), we keep z◦ = −0.045 and change the reference momentum to m◦ =

√
2

(case IIc) (which is not the zero-Froude limit anymore!). As Figure 10 shows, such
a choice gives rise to a non-symmetric solution. Since the solution of the PDE does
not change regardless of the choice of the reference solution, this issue should stem
from the operator splitting which does not necessarily preserve the structure of the
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solution, in particular when the solution of each step has been perturbed significantly
from the exact solution (here due to an unsuitable choice of the reference momentum).
Figure 10 confirm this conjecture, as it shows that the solution tends to get symmetric
with mesh refinement, i.e., as the operator splitting error gets smaller.

x
-1 -0.5 0 0.5 1

z

0.94

0.96

0.98

1

1.02

1.04

1.06
max=1.055, min=0.95502

(a) t = 0.0.

x
-1 -0.5 0 0.5 1

z

0.9

0.95

1

1.05

1.1

1.15
max=1.1051, min=0.91619

(b) t = 0.01.

x
-1 -0.5 0 0.5 1

z

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
max=1.2861, min=0.85632

(c) t = 0.03.

x
-1 -0.5 0 0.5 1

z

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
max=1.2008, min=0.80317

(d) t = 0.06.

x
-1 -0.5 0 0.5 1

z

0.85

0.9

0.95

1

1.05

1.1
max=1.0944, min=0.85334

(e) t = 0.08.

x
-1 -0.5 0 0.5 1

z

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04
max=1.0392, min=0.97281

(f) t = 0.1.

Fig. 7: RS-IMEX solution for Example (IIa) with ε = 0.1, CFL = 0.45, T = 0.1 and the LaR reference
solution.
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Fig. 8: Order of convergence of the RS-IMEX scheme for Example (IIb), for ε = 10−1, 10−3, 10−6. The
error is measured for the momentum.

5.2. Shallow water equations with non-flat bottom (III). In this section,
we study the result of the RS-IMEX scheme for the non-flat bottom case, and confirm
the experimental order of convergence for a specific example. Also we verify the
asymptotic consistency of the scheme, numerically. We set the initial condition as
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Fig. 9: Growth factor and time step regarding ε, for Example (IIb) with the LaR reference solution.

follows

z0(x) = ε2 sin(2πx),

m0(x) =−
√

2 + ε
√

2 sgn(x) cos(2πx),

with the bottom function b(x) = − (3 + sin(πx)), ∆t = 0.2 ∆x, T = 0.01, z◦ = 0, in
a periodic domain [−1, 1).

In Figure 11, the convergence rate of the scheme has been plotted, which shows
super-convergence. Also Figure 12 shows the (almost) incompressible limit of the
numerical solution with ε = 10−8; surface elevation is almost constant and the mo-
mentum is div-free. The figure clearly confirms the asymptotic consistency for the
surface elevation, i.e., it is zero up to the machine accuracy. Also for the momen-
tum, it can be obtained that the oscillations is of the order 10−14. This justifies the
asymptotic consistency of the scheme. Moreover, Table 3, shows the smallness of
the checker-board oscillations for v2. It can be seen that as ε approaches the limit,
‖[[V2,∆]]‖`∞ (which indicates the amplitude of possible checker-board oscillations) de-
cays with the rate of O(ε), which is better than the analysis in Section 3.2.2, up to
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Fig. 10: Vanishing effect of an unsuitable reference solution for Example (IIc) as ∆x → 0, for ε = 10−1,
T = 0.1 and N = 200, 400, 800, 1600.

some threshold ε where the condition number of Jε gets very large and affects the
solution. It can also seen that cond2(Jε) = O(1/ε). Regarding the mesh refinement,
the condition number is almost constant: The refinement can improve the oscillations
to some extent (for rather coarse meshes); however after some point, the amplitude
of the oscillations does not change with ∆x.
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Fig. 11: Order of convergence of the RS-IMEX scheme for Example (III), with T = 0.01, ∆t = 0.2 ∆x and
the LaR reference solution.

6. Concluding remarks. In this paper, we have analyzed the RS-IMEX scheme
for the shallow water equations w.r.t. the Froude number. The scheme has been
presented in one space dimension and its quality is guaranteed by numerical analysis
as well as several numerical tests. In practice, we have shown that the scheme is
uniformly stable and consistent, when the analysis confirms the asymptotic preserving
property for the scheme, as well as C-property regarding the lake at rest equilibrium
state. Indeed, the asymptotic consistency and stability analyses are not only formal
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Fig. 12: Incompressible limit of the RS-IMEX scheme for Example (III), computed with ε = 10−8, N = 200,
T = 0.01 and ∆t = 0.2 ∆x.

ε N ‖[[Vn+1
2,∆ ]]‖`∞ cond2(Jε) ε N ‖[[Vn+1

2,∆ ]]‖`∞ cond2(Jε)

10−2 200 3.68e-05 8.72e+01 10−6 50 1.52e-08 7.98e+05
10−3 200 8.30e-10 8.18e+03 10−6 100 1.75e-11 8.11e+05
10−4 200 5.97e-11 8.17e+03 10−6 200 5.89e-13 8.17e+05
10−5 200 5.83e-12 8.17e+04 10−6 400 1.95e-14 8.21e+05
10−6 200 5.89e-13 8.17e+05 10−6 800 7.73e-14 8.22e+05
10−7 200 6.91e-14 8.17e+06 10−6 1600 2.54e-13 8.23e+05
10−8 200 1.49e-14 8.17e+07
10−9 200 1.29e-14 8.17e+08

Table 3: Smallness of the checker-board oscillations regarding the refinement in ε and ∆x for Example
(III).

but also rigorous.

These results are so far for two reference solutions, the lake at rest and the zero-
Froude limit, and limited to one space dimension and first-order schemes on periodic
domains. As we have seen, even with these assumption the AP analysis is delicate.
Extending the analysis to multi-dimensions, with more complicated source terms and
boundary conditions are left for future works and is in progress. For example in [61]
it would be shown that a similar analysis (as in Section 3.2) can be utilized for the
two-dimensional RS-IMEX scheme applied to the shallow water equations.

A. Asymptotic analysis of shallow water equations. This section is to
provide the formal asymptotic analysis for the low-Froude shallow water equations in
one space dimension. On a periodic domain Ω, consider the usual formulation of the
non-dimensionalized shallow water equations with ηb as the bottom function:

∂th+ ∂xm = 0,

∂tm+ ∂x

(
m2

h
+
h2

2ε2

)
= −hη

b
x

ε2
.

(A.1)
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Then, we expand h and m in terms of the Froude number ε as

h(x, t) = h(0)(x, t) + εh(1)(x, t) + ε2h(2)(x, t),

m(x, t) = m(0)(x, t) + εm(1)(x, t) + ε2m(2)(x, t).
(A.2)

Substituting (A.2) in (A.1), O(ε−2) terms yield h(0) ∂x(h(0) + b) = 0. So the leading

order of the water surface (or total height) ηs := h + ηb is constant in space since
ηs

(0) := h(0) + ηb = ηs(0)(t). Using this, one can find for the higher order terms that

h(0) ∂xh(1) = 0 which leads to constant h(1) in space, i.e., h(1) = h(1)(t).
Moreover, the leading order of the continuity equation ∂xh(0) + ∂xm(0) = 0 gives

d

dt

∫
Ω

(
h(0) + ηb

)
dx = −

∫
∂Ω

m(0).nds = 0,

owing to the divergence theorem and the assumption of periodic boundary conditions.
Thus ∂th(0) = 0 and ηs(0) = const., which gives

h(0) = h(0)(x) = ηs(0) − η
b(x),

and hencem(0) = m(0)(t). With similar arguments, one can easily find that ∂th(1) = 0,
so h(1) = const. and m(1) = m(1)(t). For the evolution of m(0) in time, one gets

∂tm(0) = − 1

|Ω|

∫
Ω

h(2)η
b
xdx = − 1

|Ω|

∫
Ω

z(2)η
b
xdx.

Thus the leading order momentum does not evolve in time when the bottom is flat,
i.e., ∂tm(0) = 0.

Summing up all these results gives Definition 3.2 for the formal asymptotic limit
of the shallow water equations.
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