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In this work, we introduce an IMEX discontinuous Galerkin solver for the weakly compressible
isentropic Euler equations. The splitting needed for the IMEX temporal integration is based on
the recently introduced reference solution splitting [1, 2], which makes use of the incompressible
solution. We show that the overal method is asymptotic preserving.
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1. Introduction

In this work, we consider the (weakly-)compressible isentropic Euler equations [3, 4] in dimensionless form,

ρt +∇ · (ρu) = 0

(ρu)t +∇ · (ρu⊗ u) +
1

ε2
∇p = 0.

(1)

The wave speeds in normal direction n of this (assumed two-dimensional) problem are

λ1 = u · n and λ2,3 = u · n± c

ε
, (2)

which means that there is a convective and two acoustic waves. In what follows, we assume that the reference
Mach number ε is small, i.e., ε � 1, and all the other quantities are O(1), which physically means that
the solution is a small disturbance of the incompressible solution. Indeed, it can be shown that under
suitable requirements on initial and boundary data (“well-preparedness”), there is convergence of density
and momentum (ρ, ρu) towards its incompressible counterpart as ε → 0, see [5, 6, 7] and the references
therein. Furthermore, it is obvious that this problem constitutes a singularly perturbed equation in ε, as the
equations change type in the limit.

Due to the change of type as ε→ 0, the equations get extremely stiff and therefore it is highly non-trivial
to design efficient and stable algorithms. Explicit-in-time solving techniques have the drawback that they
lead to a CFL condition in which the time step size ∆t must be proportional to ε∆x, where ∆x is a measure
for the spatial grid size. If it is not the goal to accurately resolve all the features, but only to resolve the
convective part of the flow, this condition is extremely restrictive, and a so called convective CFL condition

∆t .
∆x

‖u‖ (3)

is preferable. Fully implicit-in-time methods, on the other hand, which are stable under such a CFL
condition, tend to add too much spurious diffusion [8].
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In the past few years, so called IMEX (implicit-explicit) splitting schemes got more and more popular
for solving compressible flow problems, especially for low Mach numbers, see e.g. [9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19] and the references therein. Optimally, such a scheme should be designed in a way that
slow waves are handled with an explicit (thus efficient) and fast waves are handled with an implicit (thus
unconditionally stable) method. Of course such a strict splitting of waves is only possible in the linear
one-dimensional case [20], and therefore, a suitable splitting for the nonlinear multidimensional case has to
be defined very carefully.

Over the past few years, many famous splittings for the Euler equations at low Mach number have been
designed, beginning by the ground-breaking work of Klein [15]. For a non-exhaustive list, we refer to
[10, 12, 14] and the references therein. However, many of those splittings have their shortcomings. It has
been reported [21] that Klein’s splitting seems to be unstable in some instances. (Which does not include
Klein’s original algorithm as it is based on a semi discrete decoupling of the pressure.) Furthermore, all
of the mentioned splittings need a physical intuition and are not directly extendable to other singularly
perturbed differential equations.

To partly overcome these shortcomings, we have over the past few years developed a new type of splitting
that is based on the ε = 0 (“incompressible”) solution of the problem. The splitting, termed RS-IMEX
(see Sec. 3), is generic in the sense that it can in principle be applied to any type of singularly perturbed
equation, including singularly perturbed ODEs [1] and the isentropic Euler equations [2]. Related ideas have
already been published earlier, for the shallow water equations in [10, 22] and for kinetic equations in [23],
a stability analysis of the splitting has been done in [21] and [24].

In [1], we have applied the splitting idea to singularly perturbed ordinary differential equations with high-
order IMEX discretizations, namely IMEX linear multistep methods [25, 26, 27] and IMEX Runge-Kutta
methods [28, 29, 30, 31, 32, 33, 34]. In [2], we have applied the splitting idea to a low-order finite volume
scheme for the isentropic Euler equations. In both publications, we have seen that the newly developed
splitting can be highly advantageous. This present work is a ’natural’ extension of those previous works: We
combine a high-order-in-time IMEX Runge-Kutta scheme with a high-order-in-space discontinuous Galerkin
(DG) method (see [35, 36, 37, 38, 39] for classical DG and [40, 41, 42] for IMEX DG) using the newly
developed splitting. The difficulty herein lies in the subtle interplay of the stiffness induced by the singular
character of the equation and the stiffness induced by the high-order approximation of both spatial and
temporal variables. We show how to choose the numerical viscosities in such a way that the resulting method
is asymptotically consistent, see e.g. [43], which means that its ε → 0 limit is a consistent discretization
of the corresponding incompressible equations. Numerical results show the convergence of the method. It
turns out that the overal scheme is indeed stable under a convective CFL condition (3), order degradation
is not observed.

This paper is organized as follows: The governing equations are discussed in Sec. 2, the splitting and
corresponding IMEX time integration are presented in Sec. 3. The fully discrete method is introduced in
Sec. 4, with its asymptotic consistency property being discussed in Sec. 5. Numerical results are shown in
Sec. 6. As usual, the paper ultimately gives some conclusion and outlook in the last Sec. 7. To make the
paper more self-consistent, the Butcher tableaux for the used IMEX Runge-Kutta schemes are shown in the
appendix in Sec. A.

2. Governing equations

Let Ω ⊂ R2 be a two-dimensional domain, and consider the isentropic Euler equations as in (1), with ρ ∈ R
density and u = (u, v)T ∈ R2 velocity in x− and y−direction, respectively. p denotes pressure given for
polytropic fluids as p(ρ) := κργ with a κ > 0 and a γ ≥ 1. Note that the (scaled) characteristic Mach
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number ε is given by

ε :=
u∗√

p(ρ∗)/ρ∗
,

where u∗ and ρ∗ are the corresponding characteristic values for velocity and density, respectively, used to
nondimensionalize the equation. The isentropic Euler equations can directly be rewritten as a conservation
law in divergence form

wt +∇ · f(w) = 0, ∀x ∈ Ω, t ∈ (0, T ) (4)

w(x, t = 0) = w0(x), ∀x ∈ Ω (5)

with

w :=

(
ρ
ρu

)
and f(w) :=

(
ρu

ρu⊗ u+ 1
ε2
p · Id

)
,

where Id denotes the two dimensional identity matrix. w0 are given initial data. Computing the eigenvalues
of ∂wf(w) · n gives the characteristic wave speeds

λ1 = u · n and λ2,3 = u · n± c

ε
, (2)

where c =
√

γp
ρ denotes the speed of sound of the system. Obviously, these eigenvalues are on different

scales w.r.t. ε. Scales can be best understood by considering an asymptotic expansion of every quantity,
namely

w = w(0) + εw(1) + ε2w(2) +O(ε3). (6)

Inserting this expansion into the isentropic Euler equations (1), collecting terms with equal power of ε and
taking the limit ε→ 0 leads to the incompressible Euler equations [5]

ρ(0) ≡ const > 0, ∇ · u(0) = 0,

(u(0))t +∇ · (u(0) ⊗ u(0)) +
∇p(2)

ρ(0)
= 0.

(7)

The existence of a limit necessitates the use of specially designed initial data, see e.g. [5, 6, 7] and the
references therein, which we introduce in the sequel for the isentropic Euler equations:

Definition 1 (Well prepared initial conditions). We call initial data w0 = (ρ0, ρ0u0)T for the compressible
equation well prepared if they can be represented by an asymptotic expansion as in (6) and fulfill

ρ0 = const +O(ε2), ∇ · u0 = O(ε).

Well prepared initial data, together with sufficient smoothness, guarantee the convergence of the solution as
ε→ 0 [5].

3. RS-IMEX time integration

The core idea of IMEX schemes is to separate stiff and non-stiff parts, and then to treat the former ones
implicitly, and the latter ones explicitly. For the ease of presentation, we start by considering the simplest
setting of all IMEX frameworks, the IMEX-Euler semi discretization to define the splitting. Then, we extend
the proceeding to IMEX Runge-Kutta methods.

The temporal domain is given by [0, T ] with T ∈ R+. To define our methods, we have to split this domain
into N + 1 time instances tn := n∆t,

0 = t0 < . . . < tn < . . . < tN = T.

Uniform time slabs are not a necessity, but are used for notational convenience.
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3.1. RS-IMEX splitting

We assume for the moment that a splitting of the convective flux into

f(w) = f̃(w) + f̂(w) (8)

is already given. Then, applied to (4), the time-discrete IMEX-Euler scheme is defined by

wn+1 −wn + ∆t∇ ·
(
f̃(wn+1) + f̂(wn)

)
= 0. (9)

Note that f̃ is the part that is treated implicitly, while f̂ is the part that is treated explicitly. In the
following the upper index n of wn corresponds to the numerical solution - with respect to time - at time
instance tn.

As already pointed out in the introduction, the choice of a splitting of the convective flux function f is a
core ingredient to obtain a stable and efficient numerical method in the low-Mach range. This work relies
on the recently introduced RS-IMEX splitting [1, 2, 21], where RS stands for reference solution and denotes
the limit-solution w(0) = (ρ(0), ρ(0)u(0))

T , see (7). The splitting relies on a linearization of the flux function
f around w(0) being used in the stiff part. For a more detailed derivation of the RS-IMEX splitting we
refer to [1, 2], but also to [23, 10, 22] for earlier applications of a similar idea. More formally the RS-IMEX
splitting is given in the following definition.

Definition 2 (RS-IMEX). The RS-IMEX splitting is defined by

f̃(w) = f(w(0)) + ∂wf(w(0)) · (w −w(0)),

f̂(w) = f(w)− f̃(w),

where w(0) denotes the asymptotic solution solution w(0) = (ρ(0), ρ(0)u(0))
T from (7), ∂wf denotes the

Jacobian of f .

Due to its definition, f̃ is linear in w and, as this part is treated implicitly, the resulting system can be
solved efficiently by a linear solution technique. Note that, although the idea stems from a linearization,
there is no second-order linearization error of the flux, because remaining terms are collected in f̂ . Applying
the definition of f given in (4) to the RS-IMEX splitting, one can directly compute the flux functions f̂ and
f̃ for the isentropic Euler equations:

Definition 3 (RS-IMEX splitting for the isentropic Euler equations). The RS-IMEX splitting for the is-
tentropic Euler equations is given by

f̃(w) =

(
ρu

−ρu(0) ⊗ u(0) + ρu⊗ u(0) + ρu(0) ⊗ u+ 1
ε2

(
p(ρ(0)) + p′(ρ(0))(ρ− ρ(0))

)
· Id

)
,

f̂(w) =

(
0

ρ(u− u(0))⊗ (u− u(0)) + 1
ε2

(
p(ρ)− p(ρ(0))− p′(ρ(0))(ρ− ρ(0))

)
· Id

)
.

Remark 1. Note that the RS-IMEX splitting idea as given in Def. 2 can directly be extended to a wide
range of different singularly perturbed equations.

Remark 2. In contrast to f , both f̂ and f̃ depend - through the use of the reference quantity w(0) -
explicitly on t. We do not add t as an additional variable to the fluxes to keep the notation short. It will
become important in the definition of the IMEX-Runge-Kutta scheme, because technically, we do not treat
an autonomous differential equation any more.

That f̂ is indeed ’non-stiff’ is indicated by the following lemma:
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Lemma 1. 1. The eigenvalues of ∂wf̂(w) · n of are given by

λ̂ =

 0
(u− u(0)) · n
2(u− u(0)) · n

 .

2. The in magnitude largest eigenvalues of the Jacobian of the implicit part are in O
(

1
ε

)
.

We can conclude two different things from La. 1. First, the stiffness of the equation is completely hidden
in the implicit part. Second, if we take the limit ε→ 0, the influence of the explicit part vanishes.

3.2. IMEX Runge-Kutta method

We have discussed the RS-IMEX splitting in the context of a straightforward IMEX-Euler discretization,
see (9). The extension to higher-order methods is evident, methods of choice are, e.g., high-order IMEX
Runge-Kutta methods [28, 29, 30, 31, 32, 33, 34] or high-order IMEX linear multistep methods [25, 26, 27].
In this work, we consider IMEX Runge-Kutta methods, where we restrict ourselves to a (relatively large)
subclass which we identified as important in our previous work [1]:

• We only consider IMEX Runge-Kutta methods which are globally stiffly accurate (GSA), see e.g. [29].
In short this is fulfilled if the update step is equal to the last internal stage of the Runge-Kutta method.
This corresponds to the first same as last property for an explicit and the stiffly accurate property
for an implicit Runge-Kutta method. The IMEX Runge-Kutta methods are fully defined by the two
Butcher tableaux Ã and Â and the corresponding temporal coefficients c̃ and ĉ.

• We only consider IMEX Runge-Kutta methods where the implicit matrix Ã is a lower triangular one,
such that in every internal stage only one implicit variable occurs. This is mostly due to efficiency
reasons.

• We only consider IMEX Runge-Kutta methods of type A or type CK. This is given if the implicit
matrix Ã is invertible (type A) or the first entry of the implicit matrix equals 0 and the remaining
submatrix is invertible (type CK). See Def. 4 for more details. For a more detailed classification of
IMEX Runge-Kutta methods we refer to [44].

In the following, we first introduce such a Runge-Kutta scheme for the semi-discrete-in-time discretization
of the Euler equations (4).

Definition 4 (GSA IMEX Runge-Kutta scheme for (4)). For every tn+1 = tn + ∆t do the following:

1. For i = 1, . . . , s solve

wn,i −wn + ∆t

 i∑
j=1

Ãi,j∇ · f̃(wn,j) +

i−1∑
j=1

Âi,j∇ · f̂(wn,j)

 = 0, (10)

where wn,i denotes the solution of the ith internal stage. Note that f̃ is evaluated at time t̃n,j, and f̂
at t̂n,j, with

t̃n,j := tn + c̃j∆t, t̂n,j := tn + ĉj∆t,

see also Rem. 2.

2. Set wn+1 := wn,s.
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The coefficients of the IMEX RK method are given by two Butcher tableaux, the one with overhats referring
to the explicit, the other to the implicit part. Because of our restrictions on the Runge-Kutta method, the
implicit coefficient matrix has to fulfill Ãii 6= 0 for i = 2 . . . s. For a type A method, there even holds Ã11 6= 0
in addition.

Based on our work in [1], we use the IMEX Runge-Kutta methods presented in Tbl. 2, 3, 4 and 5; also
given in [28, 33, 34]. A classification of these methods can be seen in Tbl. 1.

4. IMEX DG method

High-order temporal integration has to be coupled to a high-order spatial discretization. The method
of choice of the latter in this work is a combination of a high-order IMEX Runge-Kutta method with a
high-order discontinuous Galerkin (DG) discretization [35, 36, 37, 38, 39], yielding an IMEX DG method
[40, 41, 42].

4.1. Preliminary definitions

We assume that the periodic domain Ω ⊂ R2 is divided into ne ∈ N non-overlapping cells Ωk as

ne⋃
k=1

Ωk = Ω and Ωk ∩ Ωi = ∅ ∀k 6= i.

The boundary of the cell Ωk is denoted by ∂Ωk and nk denotes the corresponding outward normal vector.
On this triangulation {Ωk} we define a broken polynomial space by

Vq := {v ∈ L2(Ω) : v|Ωk
∈ Pq(Ωk) ∀ k = 1, . . . ,ne},

where Pq(Ωk) denotes the space of all polynomial functions with maximum degree q on cell Ωk. For system-
valued functions (there are three components in the Euler equations) we define the corresponding space

V 3
q := Vq × Vq × Vq.

Of course an adaptive choice of q is possible. For a value x ∈ ∂Ωk, we define the interior (−) and exterior
(+) value, respectively, of a function σ ∈ Vq by

σ∓(x) := lim
0<δ→0

σ(x∓ δnk). (11)

If a boundary is considered independently of a specific cell, we can in a similar way define a value of σ∓

based on an arbitrary, but fixed direction of edge normal vectors.

4.2. IMEX Runge-Kutta Discontinuous Galerkin method

Following the common steps [39], we can define the DG residual of both ∇ · f̂(w) and ∇ · f̃(w) by the
quantities

R̂(w∆x;ϕ) := −
∫

Ω
f̂(w∆x) · ∇ϕdx+

ne∑
k=1

∫
∂Ωk

ĥ(w−∆x,w
+
∆x)ϕ · nkds, and

R̃(w∆x;ϕ) := −
∫

Ω
f̃(w∆x) · ∇ϕdx+

ne∑
k=1

∫
∂Ωk

h̃(w−∆x,w
+
∆x)ϕ · nkds,
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respectively. Note that integration over Ω is to be understood in the cell-wise sense. h̃ and ĥ are stiff and
non-stiff numerical flux function, respectively, given by

h̃(w−,w+) :=
1

2

(
f̃(w−) + f̃(w+)

)
+

1

2
Diag

(
1

ε2
, 1, 1

)(
w− −w+

)
· n, (12)

ĥ(w−,w+) :=
1

2

(
f̂(w−) + f̂(w+)

)
+ ε

(
w− −w+

)
· n. (13)

Remark 3. The numerical flux is of Rusanov-type.

• Let us note that a somewhat similar choice of the stiff stabilization, for the equations in primitive
variables, has been made in [45], motivated by the fundamental work of Turkel [46], who introduced
preconditioning of the time derivative to enhance steady-state computations for low-Mach flows.

• The choice of the non-stiff stabilization is motivated by La. 1, as the eigenvalues of ∂wf̂(w) ·n are in
O(ε) if one assumes that u = u(0) +O(ε).

• As observed in [10] and [2], the choice of the numerical flux function affects asymptotic consistency.
The choice here guarantees the latter important property.

The extension of Def. 4 to the fully discrete DG scheme can be done in a straightforward way by replacing
fluxes f by discrete fluxes R. To get the notation right, we shortly review this discretization here:

Definition 5 (High-order method for weakly compressible flows). For every tn+1 = tn+∆t do the following:

1. For i = 1, . . . , s solve∫
Ω

(
wn,i

∆x −wn
∆x

)
ϕdx+ ∆t

 i∑
j=1

Ãi,jR̃(wn,j
∆x;ϕ) +

i−1∑
j=1

Âi,jR̂(wn,j
∆x;ϕ)

 = 0 ∀ϕ ∈ V 3
q , (14)

where wn,i
∆x denotes the solution of the ith internal stage. Also R̃ and R̂ depend on time t and are

evaluated at

t̃n,j := tn + c̃j∆t, and t̂n,j := tn + ĉj∆t,

respectively.

2. Set wn+1
∆x := wn,s

∆x.

In Def. 5, we have summarized the final algorithm to be used in this work. With this, we are now ready
to prove asymptotic consistency.

5. Asymptotic consistency

As mentioned in Sec. 1, our aim is to develop a method whose ε→ 0 limit is a consistent discretization of
the limit equation (7), which means that it preserves the asymptotic behavior of the corresponding equation.
We prove that our method is asymptotically consistent, for the ease of presentation in two steps:

1. First, we consider the semi discrete (discrete in time) setting (10).

2. Then, we consider the fully discrete setting (14).

Unfortunately, the methods we have introduced require a lot of notation. The following list gives an
overview of the terms we use.
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Remark 4 (Notation). 1. An upper index n, e.g., un, indicates that the quantity is given at time level
t = tn.

2. An additional upper index i, e.g., un,i, denotes the ith internal stage of an IMEX Runge-Kutta method.

3. A lower index ∆x, e.g., u∆x, denotes a variable which belongs to a discontinuous Galerkin discretiza-
tion.

4. An additional upper index − or +, e.g., u∓∆x, denotes the interior or exterior value corresponding to
an edge, see (11).

5. A lower index in brackets (i), e.g., u(i), denotes a variable which belongs to the ith component of an
asymptotic expansion, see (6)

5.1. Semi discrete setting

We start by considering the RS-IMEX splitting for the isentropic Euler equation (1) coupled to an IMEX
Runge-Kutta temporal discretization as in (10).

Theorem 1. The RS-IMEX splitting, given in Def. 3, coupled to an IMEX Runge-Kutta temporal dis-
cretization as given in Def. 4 is asymptotically consistent if well prepared initial data at time t = 0 and
periodic boundary conditions are used.

Proof. We first show that, given wn is well-prepared, also wn+1 is well-prepared. Because w0 is well-
prepared, one can then inductively prove that all wn are well-prepared.

We assume that all the (discrete) quantities can be represented with an asymptotic expansion as in (6),
e.g.,

(ρu)n,j = (ρu)n,j(0) + ε(ρu)n,j(1) + . . . .

If Ã1,1 = 0, which happens for type CK methods, then the first internal stage is equal to the previous time
instance wn

∆x. It is therefore directly well prepared. Therefore, we consider the ith internal stage with

Ãii 6= 0.
Because the numerical density is constant up to O(ε2), we know that its zeroth-order expansion is equal

to the reference density ρ(0). Therefore, considering the O(ε−2) terms of the momentum equation, we obtain

0 =∇Ãi,i
ε2

(
p(ρ(0)) + p′(ρ(0))(ρ

n,i
(0) − ρ(0))

)
⇔ 0 =∇Ãi,i

ε2

(
p′(ρ(0))ρ

n,i
(0))
)

⇔ 0 =∇ρn,i(0).

Thus the limit density is constant in space. Next we consider the O(1) terms of the first equation and
integrate over the whole domain. Using the periodic boundary conditions we get∫

Ω
ρn,i(0) − ρ

n
(0)dx = 0.

Since both values are constant in space, we can conclude that ρn,i(0) is constant in i, and therefore it is equal

to ρ(0). Considering again the O(1) terms of the mass equation we now obtain∑
j

Ãij∇ · (ρu)n,j(0) = 0.
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Since wn is well-prepared, one can then inductively show that all stage values (ρu)n,i(0) are solenoidal, and one

can directly obtain ∇ · (ρu)n,i(0) = 0 if Ãii 6= 0. This means that all stage values are well-prepared. Because
the underlying IMEX RK method is globally stiffly accurate, the update step is equal to the last stage. This
automatically proves that the values wn+1 are well-prepared.

The proof is finalized by the remark that the discrete limit momentum equation is a consistent discretiza-
tion of the limit momentum equation.

A question which arises from the use of the RS-IMEX splitting is how to compute the limit solution. In
an ideal case this solution is given, but generally we need a numerical method for its computation. It is
useful to compute the limit solution in such a way that it corresponds to the solution of the limit method.

Theorem 2. The limit of the semi discrete method (10) is a discretization that is fully implicit-in-time.

Proof. We consider the ith internal stage and add a zero as

ρ(0)u
n,j
(0) ⊗ u

n,j
(0) − ρ(0)u

n,j
(0) ⊗ u

n,j
(0) ,

then the limit numerical method reads (see also Def. 3)(
0

ρ(0)u
n,i
(0)

)
=

(
0

ρ(0)u
n
(0)

)

−∆t
∑
j

Ãij∇ ·
(

un,j(0)

−ρ(0)(u
n,j
(0) − u(0)(t̃

n,j))⊗ (un,j(0) − u(0)(t̃
n,j)) + ρ(0)u

n,j
(0) ⊗ u

n,j
(0) + p′(ρ(0))ρ

n,j
(2) · Id

)

−∆t
∑
j

Âij∇ ·
(

0

ρ(0)(u
n,j
(0) − u(0)(t̂

n,j))⊗ (un,j(0) − u(0)(t̂
n,j)) +

(
pn,j(2) − p′(ρ(0))ρ

n,j
(2)

)
· Id

)
.

We show that the limit method corresponds to a fully implicit method with the help of mathematical
induction. Therefore we assume that the reference solution equals to the limit numerical solution for the
i−1 previous stages (which should be given for the first instance due to the initial data). Additionally, from
the asymptotic expansion one concludes

pn,i(2) = p′(ρ(0))ρ
n,i
(2).

Finally, this all together simplifies to(
0

ρ(0)u
n,i
(0)

)
=

(
0

ρ(0)u
n
(0)

)

+ ∆t
∑
j

Ãij∇ ·
(

un,i(0)

−ρ(0)(u
n,i
(0) − u(0)(t̃

n,i))⊗ (un,i(0) − u(0)(t̃
n,i)) + ρ(0)u

n,i
(0) ⊗ u

n,i
(0) + pn,i(2) · Id

)
,

which is a fully implicit discretization of the incompressible equation with additional terms in (un,i(0) −
u(0)(t̃

n,i)). If u(0)(t̃
n,i) has been computed by a fully implicit method (which takes only the implicit part

of the used IMEX Runge-Kutta method), the two solutions correspond to each other. This concludes the
proof.
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5.2. Fully discrete setting

Here, we consider the fully discrete setting, i.e., temporal discretization with an IMEX Runge-Kutta method
and spatial discretization with a DG method, see (14). To clarify the choice of the numerical diffusion
coefficients in (12), we start with the following lemma:

Lemma 2. Let the function σ∆x ∈ Vq be such that∫
∂Ωk

(σ−dx − σ+
∆x)ϕ−ds = 0, ∀ϕ ∈ Vq, ∀k = 1, . . . ,ne . (15)

Then, σ∆x is continuous.

Proof. We can choose ϕ = σ∆x in (15) and obtain∫
∂Ωk

(σ−∆x − σ+
∆x)σ−∆xds = 0

on every cell Ωk. Summing up over the whole domain and rearranging terms leads to

0 =
∑
k

∫
∂Ωk

(σ−∆x − σ+
∆x)σ−∆xds =

∑
e

∫
e
(σ−∆x − σ+

∆x)2ds.

This means that σ−∆x = σ+
∆x and therefore the quantity σ∆x is continuous over every cell boundary.

This lemma has a direct consequence for the numerical solution, namely, if we can show that the numerical
stabilization of one quantity lives on a different scale (with respect to ε) than the rest of the corresponding
equation, the ε = 0 limit of this quantity is continuous. We will apply this to the momentum equation and
show that the discrete approximation to ρ(0) is continuous, and one can then easily prove that it is constant.

Theorem 3. The RS-IMEX splitting, given in Def. 3, coupled to an IMEX Runge-Kutta temporal dis-
cretization as given in Def. 5 is asymptotically consistent if periodic boundary conditions and discretely well
prepared initial data, see (16), at time t = 0 are used.

Proof. The proof is similar as before. We show inductively, starting from n = 0, that given well-prepared
values wn

∆x, the algorithm preserves the well-preparedness. More precisely, we show that the internal stage

wn,i
∆x of the RS-IMEX DG method fulfills ρn,i∆x = ρ(0) + O(ε2), and ∇ · u∆x,(0) = 0 in a discrete sense, see

(16) (i.e., it is well prepared in a discrete sense) if all the previous internal stages and the previous time
instances are also discretely well prepared, and there holds that ρn∆x = ρ(0) + O(ε2). Together with the
well-preparedness at time t = 0 and the GSA property, this yields the well-preparedness of all discrete
quantities.

Note that if Ã1,1 = 0 then the first internal stage is equal to the previous time instance wn
∆x, thus it

is directly well prepared. Therefore we now consider a given i such that Ãi,i 6= 0. We assume that every
quantity can be expressed by an asymptotic expansion as in (6), e.g.,

ρn∆x = ρn∆x,(0) + ερn∆x,(1) + ε2ρn∆x,(2) +O(ε3).

Due to the numerical stabilization the only terms in O(ε−2) in the momentum equation are the pressure
terms, thus

0 =Ãi,i

∫
Ωk

(
p(ρ(0)) + p′(ρ(0))(ρ

n,i
∆x,(0) − ρ(0))

)
∇ϕdx

− Ãi,i
1

2

∫
∂Ωk

(
p(ρ(0)) + p′(ρ(0))(ρ

n,i,−
∆x,(0) − ρ(0)) + p(ρ(0)) + p′(ρ(0))(ρ

n,i,+
∆x,(0) − ρ(0))

)
ϕnkdx

10



for every test-function ϕ ∈ V 2
q . Note that we have directly used the fact that the initial values and all

previous stages are well prepared. Therefore, there are no explicit contributions. Using integration by parts
and changing signs leads to

0 =Ãi,i

∫
Ωk

∇
(
p(ρ(0)) + p′(ρ(0))(ρ

n,i
∆x,(0) − ρ(0))

)
ϕdx

− Ãi,i
1

2

∫
∂Ωk

(
p(ρ(0)) + p′(ρ(0))(ρ

n,i,−
∆x,(0) − ρ(0))− p(ρ(0))− p′(ρ(0))(ρ

n,i,+
∆x,(0) − ρ(0))

)
ϕnkds

=Ãi,i

∫
Ωk

∇p′(ρ(0))ρ
n,i
∆x,(0)ϕdx− Ãi,i

1

2

∫
∂Ωk

p′(ρ(0))(ρ
n,i,−
∆x,(0) − ρ

n,i,+
∆x,(0))ϕnkds.

Due to La. 2 and the choice of the implicit stabilization, which is in O(ε−2) for the first equation, we know
that ρn,i∆x,(0) is continuous over the cell boundary of Ωk. Therefore we obtain

0 =

∫
Ωk

∇ρn,i∆x,(0)ϕdx.

This holds true on every cell Ωk and for every test-function ϕ and therefore ρn,i∆x,(0) must be a cell-wise
constant. Since it is also continuous it is constant over the whole domain. Similarly, one can also conclude
that ρn,i∆x,(1) is constant over the whole domain. Next we consider the O(1) terms of the conservation of mass
equation. Note that, because this part is purely implicit, the reference solution does not occur, so for all
ϕ ∈ Vq there holds

0 =

∫
Ωk

(
ρn,i∆x,(0) − ρ

n
∆x,(0)

)
ϕdx−∆t

∑
j

Ãi,j

∫
Ωk

ρn,j∆x,(0)u
n,j
∆x,(0) · ∇ϕdx

+ ∆t
∑
j

Ãi,j
1

2

∫
∂Ωk

(
ρn,j∆x,(0)u

n,j,−
∆x,(0) + ρn,j∆x,(0)u

n,j,+
∆x,(0)

)
nkϕds

+ ∆t
∑
j

Ãi,j
1

2

∫
∂Ωk

(
ρn,j,−∆x,(2) − ρ

n,j,+
∆x,(2)

)
ϕds.

With the help of periodicity we can now choose ϕ ≡ 1 as the test function and summing over the whole
domain. This leads to

0 =
(
ρn,i∆x,(0) − ρ

n
∆x,(0)

)
|Ω|.

Consequently, ρn,i∆x,(0) is also constant in time and is equal to ρ(0) because of the requirements on the previous
stages and initial conditions. Considering again conservation of mass, this equation can now be written as

0 =
∑
j

Ãi,j

∫
Ωk

ρ(0)u
n,j
∆x,(0) · ∇ϕdx

−
∑
j

Ãi,j
1

2

∫
∂Ωk

(
ρ(0)u

n,j,−
∆x,(0) + ρ(0)u

n,j,+
∆x,(0)

)
nkϕds (16)

−
∑
j

Ãi,j
1

2

∫
∂Ωk

(
ρn,j,−∆x,(2) − ρ

n,j,+
∆x,(2)

)
ϕds.

This is a consistent discretization of ∇ · u = 0 with stabilization terms in ρn,i∆x,(2). This corresponds to a

stabilization with the pressure, since pn,i∆x,(2) = γκρ(0)
γ−1ρn,i∆x,(2). Stabilizing the divergence equation with

11



the pressure is also used in literature for discontinuous Galerkin methods for incompressible equations, see
e.g. [47].

As for the semi discrete case, it is straightforward to see that the limit momentum equation is a consistent
discretization of the corresponding equation. Thus the method is asymptotically consistent.

This section is finalized with some remarks:

Remark 5. • The choice of the numerical flux function is essential for the previous theorem. Taking
implicit stabilization coefficients in O(1), periodic boundary conditions and polynomial degree q = 0
results in a method which is not guaranteed to be AC. In [2], this problem has been solved by using a
different type of boundary condition, based on the work of [14]. In [48], this problem is solved by adding
implicit diffusion to the mass equation, which is similar to the choice of the numerical flux functions
presented in this work.

• The proof of the asymptotic consistency does not rely on the fact that the equations are two-dimensional.
In fact, the three-dimensional case is also covered.

6. Numerical results

In this section we consider an example with exact solution to investigate the numerical method in terms of
stability and accuracy. The high-order vortex is given by a pressure function p(ρ) = 1

2ρ
2 and periodic initial

conditions

ρ0(x, y) = 2 + 250, 000ε2

{
1
2e

2
∆r ∆r − Ei

(
2

∆r

)
r < 1

2

0 otherwise

u0(x, y) =

(
1/2
0

)
+ 500

(
1
2 − y
x− 1

2

)
·
{
e

1
∆r r < 1

2

0 otherwise
,

where r :=
√

(x− 1
2)2 + (y − 1

2)2 and ∆r := r2− 1
4 . The solution is a transport of the vortex in x-direction,

i.e.

ρ(x, y, t) = ρ0

(
x− 1

2
t, y

)
, u(x, y, t) = u0

(
x− 1

2
t, y

)
.

The high-order vortex can be seen as a high-order extension to a vortex defined by Bispen et al. [10]. Note
that the vortex is defined with the help of the exponential integral function

Ei(x) :=

∫ x

−∞

et

t
dt.

This exponential integral function is, amongst others, implemented in the boost package [49, 50], which is
used in this implementation. The finite element code is based on the software Netgen [51]; linear systems
are solved through PETSc [52, 53, 54].

Remark 6. In the following, if not stated otherwise, we use an ”exact” reference solution. This means
that we project the exact reference solution onto¡ the given DG space and use this projection to compute the
splitting.
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Figure 1: Initial values of the high order vortex for ε = 1. Left: initial density ρ0. Middle and right:
components of u0.

6.1. Choice of the CFL number

The stable use of IMEX schemes should be possible under a convective CFL number, see (3). In this section,
we try to numerically determine a proper ratio of ∆t

∆x that produces a stable method. The investigation
here will be purely numerically. For preliminary analytical work in this direction, we refer to the work of
Zakerzadeh [24] and Zakerzadeh and Noelle [21].

We choose a fixed grid (ne = 64) and perform 500 steps with the numerical method for different polynomial
degrees, advective CFL numbers (more precisely for ∆t/∆x = CFL/max ‖u0‖∞) and values of ε. We
compute the L2−error of the numerical approximation in every step and if this error raises over a threshold
(1000) we can say that the combination of CFL number and ε is instable. Of course such a test can only be
a rough indication of stability, and not replace a proof.

10−4 10−3 10−2 10−1 100
10−2

10−1

100

101

ε

C
F
L
/
m
a
x
‖u

0
‖ ∞

q = 0

10−4 10−3 10−2 10−1 100

ε

q = 1

10−4 10−3 10−2 10−1 100

ε

q = 2

10−4 10−3 10−2 10−1 100

ε

q = 3

stable

unstable

Figure 2: Numerical stability analysis of the RS-IMEX DG method for q = 0 with the IMEX-Euler method
(left), q = 1 with the IMEX-DPA-242 method (middle-left), q = 2 with the IMEX-ARS-443
method (middle-right) and q = 3 with the IMEX-ARK-4A2 method (right). In all cases a fixed
grid was chosen (ne = 64), and 500 time-steps were performed. If the L2-error raises over a specific
threshold we call the method unstable (orange) if it keeps below a specific threshold we call the
method stable (white).

In Fig. 2 we summarized the results of this analysis. Note that in this example

‖u0‖∞ ≈ 1.43.

For the low order (q = 0) case, one can see that stability is very pronounced. This is a result of the relatively
large numerical diffusion in the numerical flux. For the higher order case the influence of the numerical flux
function is much less pronounced. There is a threshold in the CFL number below which the method is
stable. Fortunately, this threshold is independent of ε; it gets smaller with q increasing. (This is of course
for standard DG known quite well [55].) Furthermore, we can observe that the method seems to be less
stable for larger ε, which is not surprising since with ε → 0, the influence of the implicit part gets more
pronounced.
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Figure 3: Convergence of the RS-IMEX DG method for the high-order vortex with an exact reference so-
lution: Different values of ε and for q = 0 with the IMEX-Euler method (left), q = 1 with the
IMEX-DPA-242 method (middle-left), q = 2 with the IMEX-ARS-443 method (middle-right) and
q = 3 with the IMEX-ARK-4A2 method (right). As an error measure, we chose the L1 error
between the numerical solution and the exact solution. The dashed lines give the different optimal
convergence order, from first order up to fourth order.

Overall these results give us an indication on how to choose the advective CFL number in the following
numerical results. To be completely away from the unstable points we choose

∆t

∆x
=

CFL

max ‖u0‖∞
= 0.05.

Since ‖u0‖∞ ≈ 1.43 this corresponds to an advective CFL number of

CFL ≈ 0.05 · 1.43 ≈ 0.0715.

6.2. Convergence study

In this section we compute the convergence order for the previously defined example. Grids have been
generated with quadratic cells and results, presented in the following, are compared using the L1-norm of
the error at the time instance T = 0.125.

The computations are summarized in Fig. 3. In the following we discuss the results for the various
polynomial degrees q.

q = 0 and q = 1 For both low order cases we obtain the desired convergence order. Just for the first order
case (q = 0) the convergence order is not reached before some refinements are done. We believe that this
is due to the large numerical diffusion we add in the conservation of mass equation. Choosing a higher
polynomial degree reduces the influence of the numerical flux and therefore the second order method gives
the desired results.

q = 2 The convergence order of this formally third order method is only ≈ 2.7. Since all other methods
deliver the desired results, we believe that this effect is not due to the low Mach number, but insufficient
grid resolution. To justify this assumption we also computed the convergence of a third order explicit DG
method for ε = 1, see Fig. 4. Also this method starts with a convergence order of about 2.7; after several
refinements the convergence order gets close to 3. Such a highly refined grid is unfortunately at this moment
not feasible for our solver and an implicit method.

q = 3 This is the most interesting case. For large values of ε the correct convergence order is given but
for ε = 10−3 the order reduces in the last given refinement and for ε = 10−4 the error gets even constant.
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Figure 4: Convergence of a third order explicit DG method for the high order vortex.
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Figure 5: Convergence of the RS-IMEX DG method for the high-order vortex with an implicit method
for computing the reference solution: Different values of ε and for q = 0 with the IMEX-Euler
method (left), q = 1 with the IMEX-DPA-242 method (middle-left), q = 2 with the IMEX-
ARS-443 method (middle-right) and q = 3 with the IMEX-ARK-4A2 method (right). As an error
measure, we chose the L1 error between the numerical solution and the exact solution. The dashed
lines give the different optimal convergence order, from first order up to fourth order.

We do not believe that this effect is due to order reduction, as presented in [44] for IMEX RK methods,
because this would happen for a time step ∆t depending on ε and therefore the effect of order reduction
would occur for ε = 10−3 first and then for ε = 10−4, not the other way around. Furthermore, it is also
not a stability issue, as with decreasing ε, the method is stable for more values of ∆t. We believe that with
this example, we are hitting the machine accuracy: ε = 10−4, so the term in front of the pressure gradient
is 1

ε2
= 108. Furthermore, the error level is about 10−6. Multiplying already yields machine accuracy of

around 2 · 10−14. Similar issues and how to solve them are discussed in the works [56, 57].

6.3. Convergence study: discrete reference solution

Up to this point we only used a given reference solution. Of course in more complex examples an exact
solution is not given. Therefore we also computed the same numerical example with an approximate reference
solution. Due to Theorem 2 we use a fully implicit discontinuous Galerkin method to solve the incompressible
equation.

In Fig. 5 the results for the same setting as in the previous section are summarized, showing that they
are pretty similar to the ones from the previous section.

7. Conclusion and outlook

In the current paper we have coupled the RS-IMEX splitting with a high-order temporal and spatial dis-
cretization. The resulting method has been shown to be asymptotically consistent. Furthermore, numerical
results give rise to the conjecture that the method is asymptotically stable and asymptotically accurate.
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The next important steps in the development of the RS-IMEX splitting are inherent. First, a more
detailed stability analysis is desirable to prove analytically that the method is stable under a convective CFL
restriction. Second, the identification of more complex test-cases or equations is useful to test the method in
a large range of settings. Furthermore, reducing the computational effort is extremely important, especially
compared to other numerical methods given in literature. Therefore our aim is to figure out in which way
the reference solution can be computed most efficiently, especially if a less accurate reference solution can
also be employed. Another step is the use of more efficient numerical methods for the implicit part, e.g.,
the hybridized discontinuous Galerkin method for spatial discretization (see e.g. [58, 59, 60, 61, 62]).

Up to now, we have only considered IMEX Runge-Kutta methods. Unfortunately, those methods are
difficult to construct when going to orders larger than four. A very interesting class of IMEX schemes are
the IMEX general linear methods (GLM), see, e.g., [63, 64] and the references therein. They can be more
easily constructed to higher order while preserving properties such as A-stability. An investigation of an
IMEX GLM is therefore of high interest.
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A. IMEX Runge-Kutta methods

For the sake of completeness, we list the employed Runge-Kutta methods in this appendix section. They

are listed in the standard Butcher-tableau form

(
c̃ Ã ĉ Â

b̃ b̂

)
.

IMEX-Euler IMEX-DPA-242 IMEX-ARS-443 IMEX-ARK-4A2

Order 1 2 3 4
GSA Yes Yes Yes Yes
Type CK A CK CK

Butcher Tbl. Tbl. 2 Tbl. 3 Tbl. 4 Tbl. 5

Table 1: Classification of the used IMEX Runge-Kutta methods concerning their order, structure and type.

0 0 0 0 0 0
1 0 1 1 1 0

0 1 1 0

Table 2: A first order IMEX RK method called IMEX-Euler [28]. Left: implicit, right: explicit.
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