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ANALYSIS OF A HIGH ORDER TRACE FINITE ELEMENT
METHOD FOR PDES ON LEVEL SET SURFACES

JORG GRANDE*, CHRISTOPH LEHRENFELD', AND ARNOLD REUSKEN*

Abstract. We present a new high order finite element method for the discretization of partial
differential equations on stationary smooth surfaces which are implicitly described as the zero level
of a level set function. The discretization is based on a trace finite element technique. The higher
discretization accuracy is obtained by using an isoparametric mapping of the volume mesh, based
on the level set function, as introduced in [C. Lehrenfeld, High order unfitted finite element methods
on level set domains using isoparametric mappings, Comp. Meth. Appl. Mech. Engrg. 2016]. The
resulting trace finite element method is easy to implement. We present an error analysis of this
method and derive optimal order H'(I')-norm error bounds. A second main topic of this paper is
a unified analysis of several stabilization methods for trace finite element methods. Three methods
known from the literature and one new method are analyzed in a general framework. Only the new
stabilization method, which is based on adding an anisotropic diffusion in the volume mesh, is able to
control the condition number of the stiffness matrix also for the case of higher order discretizations.
Results of numerical experiments are included which confirm the theoretical findings on optimal
order discretization errors and uniformly bounded condition numbers.

Key words. trace finite element method, isoparametric finite element method, high order
methods, geometry errors, conditioning, surface PDEs
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1. Introduction. Recently there has been an increasing interest in unfitted finite
element methods. These methods offer the possibility to handle complex geometries
which are not aligned with a computational (background) mesh. Also the development
and analysis of numerical methods for PDEs on (evolving) surfaces is a rapidly growing
research area.

The trace finite element method (TraceFEM) [20] is an unfitted FEM for PDEs
on implicit domains which are described via a level set function. In this paper we
introduce and analyze a higher order TraceFEM for surface PDEs. Furthermore,
several stabilization methods are studied. The aim of these methods is to obtain
condition numbers which are uniformly bounded with respect to the location of the
surface in the underlying volume triangulation.

Literature. The TraceFEM was introduced in [20] for elliptic PDEs on smooth
stationary surfaces. For piecewise linears, the method has been studied extensively.
For stationary surfaces, the conditioning properties of the resulting stiffness matrices
are discussed in [18]. Convection dominated problems are considered in [22, 4]. In [22]
a streamline diffusion stabilization is treated, whereas in [4] a Discontinuous Galerkin
formulation is studied. For PDEs on evolving surfaces, space-time formulations of the
TraceFEM were first considered in [9]. A space-time formulation of the TraceFEM is
analyzed in [10, 21, 19] . In all these publications, only piecewise linears are considered.

One major issue in the design and realization of high order methods in the context
of unfitted finite element methods is the problem of numerical integration on domains
which are represented implicitly. Different approaches to deal with this issue exist,
cf. the literature overview in [15].
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For surface PDEs on implicit domains, higher order FE methods have first been
considered in [7]. In that paper it is crucial that the surface is given as the zero
level of a smooth signed distance function d which is explicitly known. Based on d
a parametric mapping of a shape regular piecewise triangular surface approximation
to the zero level of the distance function is constructed which results in a higher
order surface representation. In that method the finite element space is explicitly
defined with respect to this triangular surface approximation. Hence, it is not a
TraceFEM. In [11] a higher order TraceFEM discretization is introduced for PDEs
on surfaces which are represented as the zero level of a level set function, which is
not necessarily a signed distance function. To this end, a parametric mapping of a
piecewise planar interface approximation is constructed based on quasi-normal fields.
Both in [7] and [11] optimal a-priori error bounds are derived. An approach, similar
to the one in [11], to enhance the geometry approximation of a piecewise planar
interface approximation has recently been introduced in [15]. In the latter paper,
however, a parametric mapping of the underlying mesh is used. The construction
of such a mapping is presented in [15], and optimal approximation properties have
been derived in [16] for an elliptic interface model problem. The parametric mapping
of the underlying mesh allows for a high order approximation of both bulk domains
and implicitly defined surfaces/interfaces. Hence this approach can be used to obtain
higher order discretizations for interface problems (as in [16]) as well as for surface-
bulk coupled problems with Trace FEM (as considered in [12]).

Different aspects, which are less relevant for the topic of this paper, of high order
discretizations on triangulated surface are treated in [7, 14, 1].

Related to the conditioning of stiffness matrices in TraceFEM we note the fol-
lowing. To improve the conditioning of the stiffness matrices in the TraceFEM the
“full gradient volume stabilization” has been considered in [5, 23]. Other techniques
known in the literature are the “ghost penalty stabilization” [2, 3] and the “full gradi-
ent surface stabilization” [6, 23]. A comparison of these methods is given in section 6.

Main contributions of this paper. We use the approach presented in [15] to
obtain a higher order isoparametric TraceFEM for surface PDFEs. The method needs
as input only a (high order) finite element approximation of the level set function
and is easy to implement (in particular, easier as the method treated in [11]). In this
TraceFEM a finite element space is defined on a transformed background mesh and
a discretization is obtained by restricting the corresponding functions to an (approx-
imated) surface and applying a Galerkin formulation. The isoparametric mapping of
the background mesh is the key ingredient for obtaining a higher order discretization,
very similar to the standard finite element isoparametric technique for higher order
boundary approximation. We present an error analysis for this method and derive
optimal order H'-norm discretization error bounds. A second main contribution of
this paper is concerned with stabilization methods for obtaining condition numbers
which are uniformly bounded with respect to the location of the surface in the un-
derlying volume triangulation. We present a unified framework for analyzing such
methods and introduce a new stabilization technique. The analysis reveals that none
of the known methods yields satisfactory results for higher order discretizations. The
new stabilization method, however, is applicable also to higher order discretizations.

Structure of the paper. In section 2 we recall the weak formulation of the
Laplace—Beltrami equation and introduce our assumptions concerning the geometry
description based on a level set function. The parametric mapping used to obtain a
high order accurate geometry description is introduced in section 3. The isoparametric
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trace FEM is given in section 4. In that section we introduce a generic stabilization
sp(+,+). In section 5 we derive an optimal a-priori discretization error bound in the
H'-norm. For this we need two conditions on the stabilization bilinear form sy, (-, -) to
hold. In section 6 we derive condition number bounds for the stiffness matrix which
are robust with respect to the position of the surface in the computational mesh. In
this analysis a third condition for the stabilization bilinear form sy (-, -) is introduced.
It is shown that the three conditions on s,(+, ) that arise in the analysis are satisfied
for certain known stabilization methods applied to linear FE discretizations. We
furthermore introduce a new stabilization technique which is suitable not only for the
linear but also for the higher order case. An analysis of this new stabilization is given
in section 7. Numerical experiments which illustrate the (optimal) higher order of
convergence and the conditioning of the corresponding stiffness matrices are provided
in section 8. A summary and outlook are given in section 9.

2. Problem formulation. Let @ C R3 be a polygonal domain and I' C  a
smooth, closed, connected 2D surface. Given f € H~(T), with f(1) = 0 we consider
the following Laplace-Beltrami equation: Find u € H}(T') := {ve HY(I) | [rv ds =
0} such that

a(u,v) = f(v) for all v € HY(T) (2.1)

with
a(u,v) = / Vru- Vv ds.
r

2.1. Geometry description through a level set function. We assume that
the smooth surface T' is the zero level of a smooth level set function ¢, i.e., ' = {x €
Q| ¢(x) = 0}. This level set function is not necessarily close to a distance function,
but has the usual properties of a level set function:

|Vo(z)|| ~1, |[D?*p(2)|| <c forall z in a neighborhood U of T. (2.2)

We assume that the level set function has the smoothness property ¢ € C*+2(U),
where k denotes the polynomial degree of the finite element space introduced below.
The assumptions on the level set function (2.2) imply the following relation, which is
fundamental in the analysis below:

|p(z + eVo(z)) — plax + EVP(x))| ~ e — €|, = €U, (2.3)

for |e|, |€] sufficiently small.

We assume a simplicial triangulation of 2, denoted by T € {Tn}n>0, and the
standard finite element space of continuous piecewise polynomials up to degree k by
th The nodal interpolation operator in th is denoted by I*.

For ease of presentation we assume quasi-uniformity of the mesh, and A denotes
a characteristic mesh size with h ~ hp := diam(T), T € 7.

As input for the parametric mapping we need an approximation ¢, € V,f of ¢, and
in the error analysis we assume that this approximation satisfies the error estimate

— Dl < pEtl-m o< < k41, 2.4
maX |6, — dlmco,mrv S , 0<m<k+ (2.4)

Here | - |m,0o,rnu denotes the usual semi-norm on the Sobolev space H™*(T' N U)
and the constant used in < depends on ¢ but is independent of h. Note that (2.4)
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implies the estimate

l¢n = dlloo,o + IV (D1 — ¢) oo, S BETE (2.5)

The zero level of the finite element function ¢, (implicitly) characterizes an approxi-
mation of the interface. The piecewise linear nodal interpolation of ¢y is denoted by
q@h = I'¢;,. Hence, gf)h(xz) = ¢p(x;) at all vertices z; in the triangulation 7. The low
order geometry approximation of the interface, which is needed in our discretization
method, is the zero level of this function:

= {z e Q| dn(z) = 0}.

All elements in the triangulation 7~ which are cut by ' are collected in the set 71 :=
{T € T | TNTM +£(}. The corresponding domain is Q' := {z € T | T € T'}. We
define the set of facets inside OF, F¥' := {F = ToNTy; Ty, Ty, € TY, measy_1(F) > 0}.

3. The isoparametric mapping. We use the mesh transformation introduced
in [15] and [16]. We only outline the important ingredients in the construction of the
mapping. For details we refer to the thorough discussion in [16, Section 3].

We first introduce a mapping ¥ on Q' with the property ¥(I'") = I'. Using
G = V¢ a function d : Q' — R is defined as follows: d(z) is the (in absolute value)
smallest number such that

oz + d(z)G(x)) = op(z) for z e QF. (3.1)

Let CY(TY) = {v | v|r € CYT), T € T'}, I € Ny, be the space of element-wise
C'-continuous functions that can be discontinuous across element faces. In [16] it
is shown that for h sufficiently small the relation in (3.1) defines a unique d(z) and
d e C(Q)NHL(QY)NCHL(TT). Given the function dG € [C(QD)2PN[HY(QN)]3
we define:

U(z) =z +d(z)G(z), zcQl. (3.2)

In general, e.g., if ¢ is not explicitly known, the mapping ¥ is not computable. We
introduce an easy to construct accurate approximation of ¥ as follows.

We define the polynomial extension & : P(T) — P(R3) so that for v € V}¥ we
have (Erv)|r = v|r, T € TT. For a search direction G, we need a sufficiently accurate
approximation of V¢. In this paper we take

Gh=Von,

but there are other options. Given G}, we define a function dj, : 7% — [, 8], with
d > 0 sufficiently small, as follows: dj(x) is the (in absolute value) smallest number
such that

Eron(x + dp(2)Gi(x)) = ¢p(x), for zeTeTr. (3.3)
In the same spirit as above, corresponding to d; we define
Uy, () := 2+ dp(2)Gp(z), for z€TeTh, (3.4)

which is an approximation of the mapping ¥ in (3.2). The mapping may be discon-
tinuous across facets. Using a simple projection P, we map this transformation into
the continuous finite element space, resulting in

O = P, € [V;{c]37 (35)
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cf. [16, Section 2.2] for details. Based on this transformation we define

Iy, = 0, (") = {2 | ¢4 (0} (z)) = 0} (3.6)

F1G. 3.1. Sketch of different transformations. ¥ maps the interface approzimation T'™ onto
the exact interface T'; ©y, is the discrete approximation of ¥. The transformation Fj, := ©p o U1
has the property Fp(I') = I'y,.

REMARK 1. The polynomial extension Ep used in (3.4) ensures that the com-
putation of dp|r only depends on ¢p|r, i.e. element-local quantities. This avoids
searches in a neighborhood of the element, which enhances the computational effi-
ciency, especially in case of a parallel implementation.

A key result of the error analysis in [16] is summarized in the following lemma.

LEMMA 3.1. The following estimates hold:

184 = ¥lloc or +AlID(Oh = ¥)[loc or S A, (3.7)
1 = ¥|so,or + [T = DY|so,0r < . (3.8)

Proof. [16, Lemma 5.5 and (5.28)]. O

We emphasize that the constants hidden in the < notation in (3.7), (3.8), and
also in the estimates in the remainder, do not depend on how T'"™ intersects the
triangulation 71. We define the transformed cut mesh domains QF := ©,(QF),
QL == U(QF), of. Fig. 3.1. The results in Lemma 3.1 imply that, for h sufficiently
small, both ©; : QI — Qg and ¥ : QF — QF are homeomorphisms. Furthermore,
using (3.7) one easily derives ([16, Lemma 5.6]):

dist(I',,T) < AFFL (3.9)

For the analysis we also need a result on the approximation of normals in a neighbor-
hood of T'. Let n(z), x € T be the unit normal to T (in the direction of ¢ > 0). In
a (sufficiently small) neighborhood of T' we define n(z) := V¢/||Vl||2. In case that ¢
is a signed distance function this coincides with n(z) = n(p(x)) where p is the closest
point projection on I'. In the following lemma we consider a computable accurate
approximation of n(z).

LEMMA 3.2. Forxz € T € TV define

D@h (l‘)_T’thn
HD@h(x)*Tnnn |2 ’

Von(z) _ Véh|T

T IVo@la (Veurls
5
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Let nr, (z), x € Ty a.e., be the unit normal on Ty, (in the direction of ¢p > 0). The
following holds

Inh =7l so0r S h* (3.10)
e, = nlloo,r, S 2" (3.11)

Proof. Define the isosurface T := {z € QF | ¢y(x) = ¢} (not necessarily
connected) and its image I'j, . := {©Op(z) | * € T}, Note that ', = I', 0. Take
x €T € TP and ¢ such that x € Ti". The unit normal on T''" at z is given by nyy.
The unit normal on I'y, . at O (z) is given by n,(Or(x)). Hence, for y = Oy (z) € T'y,
we have nr, (y) — n(y) = np(On(x)) — n(On(x)), and thus (3.11) follows from (3.10).
Let T'. := {z € Qf | #(z) = ¢} be the c-isosurface of I'. The definition of ¥ implies
that T, = {¥(z) | # € Ti" }. Thus we get

~ DY(x) Ty,
n(¥(z)) = | DE(2)~Tnim|2

Using this and the result in Lemma 3.1 we get (uniformly in = and T'):

121, (On(2)) = n(On(2))[[2 < 71 (On(z)) — n(¥(2))ll2 + |n(On(2)) — n(¥(2))ll2

H DOy (z) Tnyy, DY (z) " Tnyy, Lk
IDO4(2) Thpnllz D (x)Trunll2 ||,
H D@h( ) D\Il( ) )nhnH2 hk+1 <hk.

N HD\IJ(I)7 n11n||2

In the last inequality we used (3.8) and (3.7). This proves (3.10). O

One further property that we need in the analysis is the uniform local regularity
of the mapping O that we will show in Lemma 3.4. As a preliminary we give the
following lemma.

LEMMA 3.3. For h sufficiently small, T € T', and F' € F*, the functions dj, and
Uy, defined in (3.3) and (3.4) have the properties

< <
fnax ldn |l 0o () < 1, fnax [nllgoe(ry S 1 I<k+1, (3.12a)

max [|[dn]plloc,r S P, max [[Wa]plleor S A, (3.12b)
FeFr FeFr

where [-]r denotes the usual jump operator across the facet F.

Proof. The proof of the first bound in (3.12a) follows similar lines as the proof of
[16, Lemma 5.3]. The proof of the second bound is similar to the proof of [16, Lemma
5.4]. For completeness we include a proof in Appendix A. I

LEMMA 3.4. The following holds: maxpeyr |Onll gy S 1, 1 < k+ 1.

Proof. Recall that ©;, = P,V cf. (3.5). We fix an element T € 7' and set
U = Wp|r € C*HL(T). We have

1On | oo () < MWl oo 7y + 1PaY A — VT || oo (1) + [TV — W] i,oo (1

where I is the nodal interpolation operator into P*(T). For the latter interpolation
error we have

T — V| ooy S 1Vl i (1)
6



With Lemma 3.3 we have ||| g1.0c(r) S 1 uniformly in 7" and hence can bound the
first and the last term with O(1). It remains to show the estimate for P, ¥, — [IU.
Let {4;}iez,, be the nodal basis in P(T), as also used in the definition of B}, (cf. [16,
Section 2.2]), and {z;}iez, the corresponding nodes, we can write (on T')

Py, — 1V = Z (Az, (Tn) — Up(x;))ts,
€L

where A, (¥},) is an average of values of U}, on different elements that share the node
x;. For finite element nodes which lie inside an element 7', i.e. x; & 91, we have
Ay, (¥y,) = Up(x;). For x; € 9T we can use Lemma 3.3 and thus obtain:

|Ag, (Un) = Op(2:)| = [Ap, (U — ErP)| S ) [Walller S A (3.13)
FeFrnT

In this estimate we used that the number of facets that share a point is uniformly
bounded on shape regular meshes. With the bound in (3.13) we get

1Pa®s, = T || ey S Y |Awi(Wn) = O (@o)| [l ey ST, 1<k+1.
€L

SRR < bt

which completes the proof. O
We note that Lemma 3.4 implies that for v € H/(T), T € T¥, 1 < k + 1, we have
luo 0, mt @,y S lullar)-

4. The isoparametric trace FEM. We start by introducing the space used in
the isoparametric trace FEM. We consider the local volume triangulation 71 and the
standard affine polynomial finite element space V;¥ restricted to 71, i.e., (V¥)qr. To
this space we apply the transformation ©j resulting in the isoparametric space

th’@ = {’Uh o (“)}:1 ‘ Vp € (V;f)mr },

(4.1)

th,g = {vp € th,@ \ vp dsp = 0}.
Fh

The latter space will be used in our finite element discretization (4.4) below. In the
error analysis of the method we also use the following larger (infinite dimensional)
space:

Viegh 1= {v € HY(Qg) | tr|p,v € H'(Tx)} D ViFo,

on which the bilinear forms introduced below are well-defined. Besides the bilinear
form related to the Laplace-Beltrami operator, we also use a stabilization sp(-,-)
which we assume to be symmetric positive semi-definite and well-defined on the space
Vieg,n- We allow s5(,-) = 0. The error analysis will reveal that for s5(-,-) = 0 we
have optimal order discretization error bounds. For sp(-,-) = 0, however, the stiffness
matrix can be very ill-conditioned, depending on how the interface cuts the outer
triangulation. The stabilization is used to obtain the usual O(h~2)-bound for the
condition number of the stiffness matrix, uniformly w.r.t. the cut geometry. In the
analysis below we derive conditions on sy (-, -) such that the latter property holds and
we still have optimal order discretization error bounds. Specific choices for s (-, ) are
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discussed in Section 6. We introduce the bilinear form
Ap(u,v) == ap(u,v) + sp(u,v), ©,v € Vieg hs (4.2)

ap(u,v) = Vr,u-Vp,v dsp. (4.3)
Ty
For the discrete problem we need a suitable extension of the data f to I'j,, which
is denoted by fj. Specific choices for f; are discussed in Remark 5. The discrete
problem is as follows: Find uy, € Vh]f’é) such that

Ah(uh,vh) = / frop dsp,  for all vy, € V}i’eo (44)
I'n

REMARK 2. Because we take the trace of outer finite element functions on the
surface approximation I'j, it is natural to introduce the following trace spaces:

Vhl—:@ = tr|1"h (Vhﬁ@%

(4.5)

Vhr,’(—()) ={vn€Vie |l vpdsy =0}
Ty

Concerning (4.4), there is the issue that there may be different wp,w, € V,ﬁ ’(g with
the same trace v}, € Vhljg. In the case sp(-,-) = 0 only trace values on I'j, are used
in (4.4), an thus we can replace the trial and test space V}ﬁ’eo in (4.4) by V}S’(g. The
latter formulation then has a unique solution u} € Vhr,g , whereas the one in (4.4) may
have more solutions, which however, all have the same trace ug. This non-uniqueness
issue is directly related to the fact that the set of traces of the outer finite element
nodal basis functions form only a frame (in general not a basis) of the trace space
Vhlj@. In some of the stabilization approaches introduced further on, the bilinear form
sp(up,vy) will depend also on function values uy (), vy (x) with o € ©,(QF) \ T.
This is the reason why we use Vhlfg (instead of Vhr,g ) in (4.4). Adding an appropriate
stabilization term s, will remove the above-mentioned non-uniqueness issue.

REMARK 3 (Implementational aspects). The integrals in (4.4) can be imple-
mented based on numerical integration rules with respect to '™ and the trans-
formation ©p. We illustrate this for the bilinear form an(-,-), cf. (4.3). With
Up = Up 0 Op, Vp = vp 0O € VhF, there holds

/ Vr,un - Vr,vn dsp = Jr - Py(DOy) TVay, - P,(DOL) TV, ds),
Fh Flin

with P, = I — npn}l the tangential projection, ny, = N/||N| the unit-normal on I'j,
with N = (D)~ Thy, where Ay, = Vy,/||Vonl is the normal with respect to T'lin)
and Jr = det(D®y,)-||N||. This means that we only need an accurate integration with

respect to the low order geometry I''™ and the explicitly available mesh transformation
(SIS [th]?’.

5. Discretization error analysis. The discretization error analysis that we
present is along similar lines as in most papers on finite elements for surface PDEs.
We use a Strang Lemma which bounds the discretization error in terms of an ap-
proximation error and a consistency error (due to the geometric error). For bounding
these two error terms we use results known from the literature. The only essential
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difference between the analysis below and the analyses known in the literature is that
we allow for a generic stabilization sp(+,-) and introduce conditions on this bilinear
form which are sufficient for deriving optimal order discetization error bounds.

We need an extension of the solution u of (2.1) to a neighborhood of the interface.
Let U, = {z € R? | |d(z)| <r}, with Qf C U, be a tubular neighborhood of I'. The
closest-point projector onto I' is denoted as p: U, — I". We define the extension w®
of w € HY(T) by wé(x) := w(p(z)) for all z € U,. We then have n - Vw® = 0 on U,.
In the error analysis we use the natural (semi-)norms

lullf = llullg + sn(u,w),  ullf = an(u,v),  u € Viegn. (5.1)

REMARK 4. On Vhpg the semi-norm || - ||, defines a norm. This follows from a
Poincaré inequality in Vhr’g. This implies that, for a solution u;, € V,f) ’(g of the discrete
problem (4.4), the trace uy|r, € Vhrg is unique. The uniqueness of uj, € V}fg depends
on the stabilization term and will addressed in Remark 6 below.

The error analysis is based on a Strang Lemma:

LEMMA 5.1. Let u € HY(T) be the unique solutions of (2.1) with the extension

u® € Viegn and up, € th’(g be a solution of (4.4). Then we have the discretization
error bound

(5.2)

Ah u® Wwhp) — fhw; dSh
[ —uplp <2 min fu®—wplln 4+ sup Ay wn) = Jr, : |

e wn eV l|wnln

Proof. For vy, € Vf’g and wy,, = up, — vy, € thg we have

Ap(up, — vp,up —vp)
l|wn|n

Ap(up — u®, wp)

< Ju® = vplln +
w5

[lun — vnlln <

Together with (4.4) and the triangle inequality ||u® — up||n < ||u® — vplln + [Jun — valln
the claim follows. O
In the following two subsections we analyze the terms in the Strang error bound.

5.1. Approximation error. We first recall some known approximation results
from the literature. The isoparametric interpolation I§ : C(€Qg) = Vi g is defined by
(IEv)0O), = I*(v0O},). Using the property in Lemma 3.4, the theory on isoparametric
finite elements, cf. [17], yields the following optimal interpolation error bound for
0<I<k+1L

o= I8l e o, (1)) S B0l presro, ¢y for allv € HEYH(O,(T)), T € T. (5.3)
We will also need the following trace estimate [13]:
ol Zary S BT 20,y + BIIVOIT20, (), v € H'(OW(T)), (5-4)

with 'y := T, N ©,(T). To obtain an interpolation in Vf’eo, we define
Ié’ov = Igv — |I‘h|*1/ I&v dsy,.
I8

For this interpolation operator we have the following error estimate.
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LEMMA 5.2. The following holds for all v € H*(QY)), 1 =0,1,2:

/ vdsy,
Ty

h

k,0 - 3
v = 180l ag) S B ol e agy + b

Proof. From a triangle inequality and [Q5| < |Txlh we get:

/ IEvdsy,
Tn

The first term on the right-hand side can be bounded by chk+1_l||v||Hk+1(Q(r_)) using
the result in (5.3). For the second term we have, using (5.4),

/Igvdsh /"uffgvdsh /vdsh
'y Iy Iy

/F vdsp| < lv— IgvHLz(Qg) + hijv — IgvHHl(Qg) +h3
h

Together with (5.3) this completes the proof. O

k,0 1
[o = 16 0l g xS llo = 180l mar) + b2 , 1=0,1,2.

1
S h v —I8v| 2,

/ vdsy,
I'n

+h?

=

h2 <h

+h?

LeEMMA 5.3. For the space th,eo we have the approximation error estimate

min ([[v® = vnllL2(r,) + AV (0 = vn)llz2r,))
vn€Vho (5.5)
e k,0 e e k,0 e
<l = 1500 oy + AIV O — 50 2y S B ol s oy
for all v € H**Y(T') N HY(T'). (Recall that v¢ is a normal extension of v.)
Proof. Take v € H*(T') N HY(T'), hence [,vds = 0 holds. From (5.4) and
Lemma 5.2 we obtain
v — I(S’OUEHL?(F;L) + AV (v — Ig)’ove)HL?(Fh)

Sh3 v = I [l pegar) + B2 IIve — I8 | o) + b2 10 = 1670 | 2 o)

< W0 |y o) + / ot dsa (5.6)
Now note that
1D u| 120y S R ull ey for all we H™I), [u] < m, (5.7)
holds, cf. [23, Lemma 3.1]. Using this we get
[0 ity < B2 ol oy- (5.8)

We now treat the term ‘th v®dsp|in (5.6). Recall that p is the closest point projection
on I'. We use standard results from the literature. For the transformation of the
surface measure the relation

ppdsy(z) = ds(p(x)), for z €Ty, (5.9)
holds. The function uj satisfies

11— pnlloo,r, S HHFY, (5.10)
10



cf. [8, 23]. Using this and v € H(T) we get
v¢dsy, :’/ vedsh—/vds‘:‘/ v(1 — pp) dsp
/F;L T r T ( ) (5.11)

S P 2,y S P 0l L2 -
Combining this with the results in (5.6), (5.8) completes the proof. O
Using this interpolation bound one easily obtains a bound for the approximation
term in the Strang Lemma.
LEMMA 5.4. Assume that the stabilization satisfies

sp(w,w) < h*3||w||iz(ﬂg) + h*1||Vw||2L2(Qg) for all w € Vieg p. (5.12)
Then
min |u® — vplln < hk||u||Hk+1(p) holds for all w € H* 1 (T') N HL(Q).
Uhth,b

Proof. Take u € H**Y(T') 0 HX(I) and vy, := I u®. From Lemma 5.3 we get
[u¢ = valla S A¥|Jullgre+1ry. From the assumption (5.12) combined with the results
in Lemma 5.2 and the estimates (5.8) and (5.11) we get sp(u® — vp,u® — vp)2 <
h¥[|ul| 41 (ry, which completes the proof. O

5.2. Consistency error. We derive a bound for the consistency error term on

the right-hand side in the Strang estimate (5.2). We have to quantify the accuracy of
the data extension f5. We recall the definition of pp, cf. (5.9), and define

Op = fn—unf® on Ty,

LEMMA 5.5. Let u € H}(T) be the solution of (2.1). Assume that the data error
satisfies |07 || 2(r,) S RFTY fllpzry and the stabilization satisfies

e
sup sp(u®, wp)

e

SEY Fllzey, withl=Fk orl=k+1. (5.13)

Then the following holds:
|Ap(u®,wn) = [p, frwn dshl

sup SR fll L2y
whEV}i’g HwhHh
Proof. We use the splitting
| Ap(u®, wp) */ frwn dsp| < lan(u®,wp) — [ fown dsp| + sp(u®, wp).
Fh Fh

The first term has been analyzed in [23], Lemma 5.5. In the analysis one essentially
only needs the closeness properties in (3.9), (3.11) and the bound on the data error.
The analysis yields

|ah(ue, wh) — th fhwh d8h|
sup

S f ey
whévhli’(g H'LUh Hh

We use assumption (5.13) to bound the second term. O
11



5.3. Optimal H'-error bound. As an immediate consequence of the previous
results we obtain the following main theorem.

THEOREM 5.6. Let u € HFTY(T') N HL(T) be the solution of (2.1) and uy, € Vhﬁg
a solution of (4.4). Assume that the data error satisfies |02,y S P*H| fll 2y
and the stabilization satisfies the conditions (5.12), (5.13). Then the following holds:

st = wnlln S B fulges oy + B o, (5.14)

REMARK 5. We comment on the data error ||6¢(/z2(r,), with d = fr, — pp f©. For
the choice f, = f¢ — ﬁ fr, f€dsp, which in practice often can not be realized, we

obtain, using (5.10), the data error bound ||8¢|z2(r,) < ch**1||f| z2(r) (as in Lemma
5.3). For this data error bound we only need f € L?(T'), i.e., we avoid higher order
regularity assumptions on f. Another, more feasible, possibility arises if we assume
f to be defined in a neighborhood Us, of I'. As extension one can then use

1
Cf i = —
AT

fn(@) = f(z) — ¢y, f dsh. (5.15)

Using [ f ds =0, (3.9), (5.10) and a Taylor expansion we get |cy| < chk+1||f||H1,oo(U50)
and [|f — pnfellr2r,) < Chk+1||f||H1,oo(U50). Hence, we obtain a data error bound
18¢llz2(r,) < ER*FH fllzz(ry with &= e(f) = ¢l fll oy, 172 () and a constant
independent of f. Thus in problems with smooth data, f € H>°(Us,), the extension
defined in (5.15) satisfies the condition on the data error in Theorem 5.6.

COROLLARY 5.7. As a trivial consequence of the theorem above we obtain optimal
H'-error bounds for the case without stabilization, i.e., sp(-,+) = 0.

6. Condition number analysis. In this section, we derive condition number
bounds for the stiffness matrix resulting from the discretization (4.4). It is well-known
that in the case sp(,-) = 0 already for &k = 1 the stiffness matrix of the discrete
problem may have a condition number that does not scale like h~2. This is due to the
fact that the condition number depends on the position of the interface with respect
to the volume triangulation. Remedies were proposed in [3, 5, 23] for the case k = 1.
Below we formulate an assumption on the generic stabilization sp(,-) that, together
with (5.12) and (5.13), is sufficient to guarantee a stiffness matrix condition number
of O(h=2), while still preserving optimal order a-priori discretization error bounds.
We thus have a general framework for comparing and analyzing different stabilization
techniques. In Sections 6.2—6.4, for k = 1 we discuss three stabilizations known from
the literature. In Section 6.5, we introduce a fourth stabilization which is easy to
implement and satisfies the aforementioned conditions also in the higher order case
k>1.

Let u € RY be the representation of uj, € V,f,@ with respect to the standard

nodal basis in V,f’(_), ie., up = Zivzl u;p;, and similarly v € RY is the representation
of vy, € V}f’@. The volume mass matrix is defined by

(Mu, v) :/ upvyp, do for all wuy, v, € ViFg.
QL '
(S}
This matrix is symmetric positive definite and from standard finite element theory it
follows that there are positive constants ¢y, and ¢y, depending only on k£ and on the
12



shape regularity of the outer triangulation 7, such that

(Mu, u)

<cy forall ueRY, u#o. (6.1)
(u,u)

L >

The stiffness matrix S € RV*¥ is defined by
(Su,v) = Ap(up,vp) for all up,vp € V;ﬁ@.

This matrix is symmetric positive semi-definite. In the discretization we search for
up € th,@ with th up dsp = 0. For the vector representation of the latter constraint

we introduce ¢ € RY with ¢; := Jr, ¢idsn, 1 <i <N, and define
RN ={ueRY |u-c=0}. (6.2)
Hence uy, € V,i’(g iffue Riv. Let qr. > 0, gqu > 0 be such that

A
qr, < W <gqu forall upe V}ﬁ’g, up, # 0. (6.3)

L2(Qg)
The estimates in (6.1) and (6.3) imply

maXuGRiV,||uH2:l<Suv u) —: cond,(S) < cuqu (6.4)
* - cLqL

MRy, uf,=1(SW, 1

Hence, we want to obtain (sharp) estimates for the bounds in (6.3). We are interested
in the dependence of qr,, gy on h. Recall that in the inequalities < (also used below)
the constant is independent of h and of how the surface cuts the volume triangulation.
Concerning the upper bound in (6.3) we have the following result.

LEMMA 6.1. Assume that the stabilization satisfies (5.12). The following holds:

A p
Anlun ) 45 for ity € Ve, un £ 0. (6.5)

~

Huh‘liz(gg)

Proof. We use Lemma 3.1 and finite element inverse inequalities which we apply
to dp := up 0 Oplr, T € TT, so that for all uy € Vh’f@ there holds

IVurll?, nepir) SIVanFinnr SETHIVanZeery S 2@l L2y Sh3Munlltzo, 1)
Summing over T € 7T we get
an(un,un) = |Vr,unliew,) < IVurlia@,) S 072 lunll?zop)-
The assumption (5.12) and an inverse inequality yield the same bound for s, (-, -)
sh(un, un) S h73||uh||3,2(9{_)) + hﬂ”v“hniz(gg) S h73||uh||%2(gg)-

|
From Lemma 6.1 and the result in (6.4), we obtain as a corollary the following
main result.

13



THEOREM 6.2. Assume that the stabilization satisfies (5.12) and that
ap(up, up) + sp(up, up) = h_lHuhH%g(Qg) for all up € th”eo. (6.6)

Then, the spectral condition number satisfies

cond, (S) < h 2. (6.7)

REMARK 6. From the previous theorem it follows that if the stabilization satisfies
(5.12) and (6.6) then the stiffness matrix is regular and thus the discrete problem (4.4)
has a unique solution, cf. Remark 2.

6.1. Assumptions on the stabilization term. We summarize the assump-
tions on the stabilization term s, used to derive Theorem 5.6 (optimal discretization
error bound) and Theorem 6.2 (condition number bound):

sp(w,w) < h_3||w||%2(9(g) + h_1||Vw||2L2(Q£)) for all w € Vieg,n, (6.8a)

sup sn(u’, wn) S fllpay, withl=Fkorl=k+1, (6.8b)

wpevre  lwnlln
an(up,up) + sp(un, up) = h—1||uh||2Lz(Qg)) for all wy € thfeo- (6.8¢)

The first two are needed for optimal discretization error bounds, and the first and
third one are needed for the uniform O(h~?2) condition number bound. We note that
we only need | = k in (6.8b) to obtain optimal H! error bounds. Having (6.8b) with
I = k + 1 may be useful in order to derive L? error bounds. The latter has not been
studied, yet.

6.2. Ghost penalty stabilization. The “ghost penalty” stabilization is intro-
duced in [2] as a stabilization mechanism for unfitted finite element discretizations.
In [3], it is applied to a trace finite element discretization of the Laplace-Beltrami
equation with piecewise linear finite elements (k = 1). This stabilization is defined by
the facet-based bilinear form

sn(un,vn) = ps Y /[[sz-nh]][[vwz-nh]] ds,
F

FeFy,

with a stabilization parameter ps > 0, ps ~ 1, and with nj; the normal to the facet.
For k = 1, the assumptions in (6.8) are satisfied due to results in [3]: Assumption(6.8a)
follows from [3, Lemma 4.6], (6.8b) follows from [Vu®-n;] = 0 for the smooth solution
u, and (6.8¢) follows from [3, Lemma 4.5].

A less nice property of the ghost-penalty method is that the jump of the deriva-
tives on the element-facets changes the sparsity pattern of the stiffness matrix. The
facet-based terms enlarge the discretization stencils.

To our knowledge, there is no higher order version of the ghost penalty method
for surface PDEs which provides a uniform bound on the condition number.

6.3. Full gradient surface stabilization. The “full gradient” stabilization is a
method which does not rely on facet-based terms and keeps the sparsity pattern intact.
It was introduced in [6, 23]. The bilinear form which describes this stabilization is

sp(up,vp) == Vuy, - np Voy, - ny, dsp, (6.9)
Fh,
14



where n;, denotes the normal to T'y,. Thus, we get Ap(up,vy) = th Vuy, - Vo, dsp,
which explains the name of the method. The stabilization is very easy to implement.
The conditions (6.8a) and (6.8b) hold for any k with [ = k, cf. [23, Lemma 5.5].

For the case k = 1, it is shown in [23] that one has a uniform condition number
bound as in (6.7). The proof in [23] relies on estimates similar to (6.8a) and (6.8c¢),
see [23, Lemma 6.3]. For the case k > 1, full gradient stabilization does not result in
a uniform bound on the condition number, cf. [23, Remark 6.5]. This can be traced
back to a failure to satisfy (6.8c¢).

6.4. Full gradient volume stabilization. Another “full gradient” stabiliza-
tion was introduced in [5]. It uses the full gradient in the volume instead of (only) on
the surface. The stabilization bilinear form is

sp(up,vp) = ps/ Vuy, - Vo, dz,

Q6

with a stabilization parameter p; > 0, ps ~ h. Again, it is easy to implement this
stabilization as its bilinear form is provided by most finite element codes.

Condition (6.8a) is satisfied as sp(w, w) ~ h||Vw||%2(Qg). In [5, Lemma 4.2], the
condition (6.8¢) is shown to hold. Hence, the bound (6.7) for the spectral condition
number holds for arbitrary & > 1. The consistency condition (6.8b), however, is
satisfied only in the case | = k = 1, cf. [5, Lemma 6.2, Term III].

6.5. Normal derivative volume stabilization. In the lowest-order case k =
1, the stabilization methods discussed in Section 6.2, 6.3, and 6.4 satisfy the conditions
(6.8a), (6.8b), and (6.8c). For k > 1, however, for all of these methods at least one
of the three conditions in (6.8) is violated. We now introduce a new stabilization
method which fulfills (6.8) for arbitrary & > 1. Its bilinear form is given by

sp(up,vp) == ps/ ny - Vupny - Vo, do (6.10)
Q

o

with np, as in Lemma 3.2 and pgs > 0. This is a (natural) variant of the stabilizations
treated in Section 6.3 and 6.4. As in the full gradient surface stabilization only normal
derivatives are added, but this time (as in the full gradient volume stabilization) in
the volume Qg. The implementation of this stabilization term is fairly simple as it fits
well into the structure of many finite element codes. The scaling of the stabilization
parameter pg is assumed to satisfy

h<ps <ht (6.11)

In the next section we prove that this stabilization satisfies all three conditions in
(6.8), for arbitrary k > 1.

7. Analysis of the normal derivative volume stabilization. In this section
we analyze the normal derivative volume stabilization (6.10). We will prove that this
method satisfies the conditions in (6.8). The structure of this section is as follows. In
section 7.1 we consider the, relatively easy to prove, conditions (6.8a) and (6.8b). It
turns out that condition (6.8¢) is more difficult to prove and requires more analysis,
which is given in section 7.2.
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7.1. The conditions (6.8) for the normal derivative volume stabilization.
LEMMA 7.1. If the scaling assumption (6.11) holds, the normal derivative volume
stabilization satisfies condition (6.8a).

Proof. Using the scaling assumption we get

sp(w, w) = psllng - Vw||22(ﬂg) S h_lewHi2(Qg)7

and thus (6.8a) holds. O

LEMMA 7.2. If the scaling assumption (6.11) holds, the normal derivative volume
stabilization satisfies condition (6.8b) with | = k.

Proof. Using the Cauchy—Schwarz inequality and (5.1), we obtain

1
sup < ps nn - VUEHB(Q{_)) :

wnevre  lwnlly
From n - Vu® =0, (3.10) and (5.7) we get
lnn - Vsl o gary < B IV pagry < B2 [ Viul oy -
Together with the well-posedness of (2.1), this yields

€
sup sp(u, wp)

1 1 i 1
T S PRIVl gy < 0B e
whEV;i’(_()) Wh|p

The assertion follows from the upper bound for ps in (6.11). O

REMARK 7. From the proof above it follows that if ps ~ h the normal derivative
volume stabilization satisfies condition (6.8b) with | =k + 1.

LEMMA 7.3. If the scaling assumption (6.11) holds, the normal derivative volume
stabilization satisfies (6.8¢) for h sufficiently small.

Proof. The analysis is given in the next section, cf. Corollary 7.9. O

7.2. Proof of Lemma 7.3. In a neighborhood of I we introduce the following
local coordinate system. We write z = (£,s), with £ € T" and s € (—e¢,¢) (with € > 0
suffciently small) iff x = £ + sn(§), with n = nr.

Let v C I be a simply connected subdomain of I with meass(y) > 0 (e.g., v =T).
Below, we consider neighborhoods U, of I' which have the form

Uy ={(s) | £ €7, —g(§)h < s < G()h}, (7.1)

with scalar Lipschitz functions g > 0, G > 0. This means that U, is bounded by the
graphs of g and G over I' (when mapped in the normal direction), cf. the sketch in
Figure 7.2 below.

The following lemma is of fundamental importance in our analysis.

LEMMA 7.4. Let Uy be a set as in (7.1) and assume ||g + G|y S 1. The
following holds:

lullZzw,) < Bllullis) + B2 Ine - Vulliae,)  forall we H'(U,).  (7:2)

Proof. Let w € C*°(U,). For each £ € v, let F¢ denote the line-segment {{+sn(§) |
—g(&)h < s < G(§)h} C U,. From the fundamental theorem of integration, we get
for each & = £ + sn(§) € F¢ that

e = u(er +2 [ (€ tn(€)n(€) - Vule + n(&)) dt.
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The Cauchy—-Schwarz inequality implies
u(z)® <u(é)?+2 HUHL2(F§) [[n- VU||L2(F§) :

We integrate over # € F¢ and apply the inequality 2ab < r;'a® + r¢b® with re =
3 € 3 ¢
meas (F¢) to obtain

2 2
HUHL?(F{) < 27"5“(5)2 + 7’2 [[m- VUHLQ(F{) :

The coarea formula for the retract p: U, — v C I' along n and a function f €

> (U,) is
/U fdxz[y/Fgfdtda(f).

~

For f=u?, we get HuHi?(U,Y) <2 [ reu?+ [ 1 |n- qui?(Fg)' Using [|g + G|l poc(y) S 1
gives r¢ S h and thus the result in (7.2). A density argument completes the proof. O

This lemma shows that one can control the L?-norm in the volume U, with the
normal derivative in the same volume (as used in the stabilization) and the L?-norm
on the surface. The result in (7.2) can be interpreted as a “local version” of (6.8c).
Below we will use this in combination with a localization argument to obtain a result
as in (6.8c) up to a geometric error (Q, vs. QF). This geometric error can be dealt
with as shown in Lemma 7.8.

T
Q\I/
Fic. 7.1. Depending on the shape of the T € T, Qg is not a graph over I' as in (7.1).

7.2.1. Localization argument. In general, we cannot expect QY = Ur for
some Ur as in (7.1), cf. Figure 7.1. Therefore, we present a localization argument
which is based on the following observation (lemma 7.5 below): On the finite element
space (as opposed to H' (U, ) used in (7.2)), it suffices to control the L?-norm on suit-
able subsets in order to get a bound on the L?(Q%,)-norm. We apply the localization
argument to the triangulation 7, = {¥(T) | T € T' } because this triangulation
corresponds to the globally smooth surface T, cf. Fig. 3.1. On T we define the finite
element space

VEg ={an=upoFy|uy € Viig}.

Let {Br | T € T{'} be a collection of balls with By C T and radius(Br) =: rp 2> h
for all T € T4 Let

2
ull B = Z ||uHL2(BT)' (7.3)
TeTy
17



— 7T
— T
> £ U.

T

Br

Or

lgr + GrllLecyey - h Sh

diam(yr) < n

F1G. 7.2. Sketch of the domains involved in Assumption 1.

LEMMA 7.5. On V}f,q, the uniform norm equivalence || - |p ~ || - | L2 (qr) holds.

Proof. As By C T holds for all T € T, we immediately find |u||p < [ull L2 o)
for all u € V}ﬁq,.

To prove the other direction of the estimate, let u € th, gandT € 7—\11; be arbitrary.
We can write T = ¥(S), S € TT. Furthermore, u|r = @0 ¥~1|1 for some polynomial
4 of degree k. Using ¥ = I + O(h), cf. (3.8), it follows that there is a ball Sp C
U~Y(Br) with radius(St) 2 h. From standard finite element analysis we obtain
lallz2(s) ~ [l 2(sy)- Using this and [lul| g2y ~ [|@[| f2(g), which follows from (3.8),
we get

lull2Br) ~ NallL2sry ~ Nl pory »

and summing over T' € T{ completes the proof. O

The following assumption specifies quantitatively that each T € T{ contains a
sufficiently big ball which is “locally visible” from I' in a set as in (7.1).

ASSUMPTION 1. For each T € T§ there exists a set U, as in (7.1) with the fol-
lowing properties. The graph functions gr > 0, Gr = 0 onyr satisfy |97 + Gl e (1) S
1. Purthermore, U,, C QY, diam(yr) < h and U,,. contains a ball By C T with ra-
dius rr 2 h.

For a sketch of the domains involved in Assumption 1 we refer to Figure 7.2.

LEMMA 7.6. If Assumption 1 is satisfied, the following holds:

2 2 2
||UHL2(Q§,) Sh H“||L2(F) + 12 ||nr - VUHH(%) Jor all u € Vhliqf-

Proof. Let u € th,\p be arbitrary. From Lemma 7.5 and Assumption 1, we get

2 2 2
lulaor) < el < 3l
TeTy

We apply Lemma 7.4 on each T € T4 ,

2 2 2
Sl £ 5 (Rl + 22 loe - ValZag ).

TETY TeT

Due to diam(yr) < h, cf. Assumption 1, we can apply a standard finite intersection
argument. Hence the right-hand side of the previous estimate is uniformly bounded
by

2 2
Z (h lull72rgy + B Inr - VU||L2(T)) :
TeTy
18



[T : _>
—r Soh” —r
Uy Usr

Br O Br

~ ¢

FiG. 7.3. Sketch of the two cases: There either exists & € T', so that dist*(ﬁo,aQE,) > 01 hmin

left) or dist« (I, 00 ) < 81hmin (right). According to the two cases the sets U..., yr and B can
v T
be found. Note that the sketch uses the local coordinates (&, s) as in (7.1).

0
Finally we treat Assumption 1:

LEMMA 7.7. On a quasi-uniform family of triangulations, for sufficiently small
h, Assumption 1 holds.

Proof. By hmin we denote the minimal radius of the (maximal) inscribed spheres
over all T' € 7(}: Due to quasi-uniformity we have h ~ hyi,. The local intersection
is denoted by I'r :== I'NT, T € T4. We assume that h is sufficiently small such
that I'y is “flat” in the following sense. Due to smoothness of I' we can take h small
such that there is a 2D plane P, which intersects I', and I'r can be represented as the
graph of a function g7 : Pr — R3, Pr C P. We assume h small enough such that for
some fixed € with 0 < ¢ < 1 we have ||V g7z~ (p;) < €hmin. The idea of the proof
is as follows. We will define sets U,, as in (7.1) based on (parts of) spheres in local
coordinates with radius ~ h. We distinguish two cases. Either such a sphere can be
put strictly inside T" or such a sphere is centered around a vertex. In the former case
all requirements in Assumption 1 are satisfied by taking U,, equal to this sphere,
whereas in the latter case we take U,, equal to a suitably defined intersection of the
sphere with a half-space, which then satisfies all requirements.

First we introduce (small) spheres in local coordinates. In a fixed (sufficiently
small) tubular neighborhood of I' we define the distance dist. ((¢, s), (€, )= (¢ -

- 1

€l3+|s—5]) 2, where [|||2 is the Euclidean distance and (¢, s) are the local coordinates.
This distance is equivalent to the Euclidean distance: there are constants dp > 0 and
dy such that for all x = (£, s) and Z = (£, §) from the tubular neigborhood we have

dollz — ||z < dist.((£, 5), (£,3)) < di]jz — Z|2. (7.4)

In this distance the spheres with center & € I" are denoted by B.(£o;9) := { (&, s) |
dist. ((£0,0), (&, s)) < &}. For defining the suitable half-spheres we introduce some
further notation. We define the part of the domain QY, with negative (positive) level
set values and the corresponding part of the outer boundary:

Vyri={reQy|gx) S0}, Tu:=02\T

For & € T we define the “half-spheres” BF(£y;60) := B.(&;6) N Ql\;/,f Using
the quasi-uniformity assumption on the family of triangulations one can show that
dista(T'y,T_) = h. Hence, also dist.(I'+,T'—) 2 h holds. Using this we conclude that
there exists a dp > 0 (independent of h) such that for all §, € T

Bf(€3d0h) C Qg or B (&;d0h) C Qy (7.5)
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holds. In the remainder we take such a fixed §o > 0. One checks that B, (&p; doh) and
also the corresponding half-spheres are of the form U, as in (7.1), with v:={{ € T'|
||§ — 50”2 < §0h} and Hg + G”Loo(py) < 250, dlam('y) g h.

We now turn to the construction of sets U,,. which satisfy the conditions required
in Assumption 1. For this we introduce the following boundary strip. For fixed d;
with 0 < 6; < %50 we define

5, 1= {x € QY | dist,(z,00%) < 61humin }-

Take T € T{. Then either 't C ['s, or there exists & € I'z with dist.((&,0),9Q%) >
01 min. We first consider the latter case. Then we take Uy, := B, (§0;01Amin) C L,
see Figure 7.3 (left) for a sketch. Due to shape regularity of T’ we have |U,, NT| > h?
and thus we can construct a ball with radius r¢ 2 h and Br C TN U,,. Hence, for
this U, all conditions in Assumption 1 are satisfied.

We now consider the case I'r C T's, and take the vertex zy = (§y,sy) of T
which is closest to I'r. We assume (&y,sy) € QF _ and thus B (§y;80h) C QFIH_,
cf. (7.5) (the other case can be treated by the same arguments). We define U, :=
B, (.’1?\/7 (50h) n Qg’+ C B:(fv; 60]7,) and have |U7T ﬂT| > |B*(£V, (Soh) ﬂTl — ‘F51 ﬂT|,
see Figure 7.3 (right) for a sketch. Due to shape regularity of the mesh we have that
|B.(&v,00h) N'T| 2 k% and |Ts, NT| < §1h3, so that for sufficiently small §; we can
guarantee |U,, NT| 2 h% and thus we can construct a ball with radius rr > h and
Br c TNU,,. Hence, for this U,, all conditions in Assumption 1 are satisfied. O

7.2.2. Geometric error. In this section we treat the geometric error (%, vs.
Q(F_)) by a straightforward perturbation argument. We assume that we have a quasi-
uniform family of triangulations, hence Assumption 1 is satisfied (for h sufficiently
small).

LEMMA 7.8. Let 7u be such that ||t —nrl|o or < h holds. For h sufficiently small,
the following holds:

||Uh||L2 QI‘) ~ h’”uh”LQ(F;) + h2||n vuhHL2(QF) fOT’ all up € th,@. (76)
Proof. We use the homeomorphism Fj, = 0, 0 U=1: QF — QU (see also Figure
3.1) which satisfies

11 = Fullso,or + Al = DFyllo or < A", (7.7)

oo, [

cf. Lemma 3.1. Take uj € Vh o and define uy, = up o F}, € Vh ¢+ Using standard
transformation rules and the result in Lemma 7.6 we obtain

lunlagag ~ a2 qg ) S Allanl3aq + B2 lnr - Vil

—1
~ hHuhH%Z(Fh) +h*|(DFynr) o - VUhH%Z(Qg)-
From a triangle-inequality, |2 —nr||o,or < h and (7.7) we get, for h sufficiently small:
[(DFynr) o Fy =it oo 0, S -
Hence we obtain, using an inverse inequality:

lunlZzory < hllunlie,) + B2 17 VunlZegny + b2 lunl 7z g -
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For h sufficiently small, we can adsorb the last term on the right-hand side in the
term on the left hand-side, and this completes the proof. O

On T, there holds the Poincaré inequality |lul|p2r) S [[Vrullg2py for all u €
H}(T'). Using the properties of the mapping Fj,: Qf — QY in Lemma 3.1, one can
derive a Poincaré inequality on I'y, (see e.g. [23, Remark 5.3]),

[unll 2oy S UV tnll 2, for all u, € Vg, (7.8)

COROLLARY 7.9. If the scaling assumption (6.11) holds, the normal derivative
volume stabilization satisfies (6.8¢) for h sufficiently small.

Proof. Take it = nj, as defined in Lemma 3.2, cf. (3.10). Hence, [ —nr|[o or S h
holds. Using this, Lemma 7.8 and h < ps we get

h*”uhHQLz(Qg) < Huh”%%m) + sp(up,up) for all wuy € V}ﬁ@.

The assertion follows from the Poincaré inequality (7.8) and ||V, up, ||2LQ(Fh) = ap(up, up).
0

8. Numerical example. In this section we present numerical results for the
isoparametric trace FEM explained in section 4 with a stabilization sp(-,-) as in
section 6.5. We first briefly discuss how we solve the linear systems arising from the
discretization of the Laplace—Beltrami operator on the finite element spaces th,®~ The
linear systems are singular because V,{f@ contains constant functions.

REMARK 8 (Solution of (singular) linear systems). Let S € R"*™ be the stiffness
matrix arising from the discretization such that S; ; = Ap(p;, i) for basis functions
¥i, pj of th,e’ i,7€{l,.,n},n= dim(fo,@), cf. section 6. We seek a solution of

Su = f with u subject to (c,u) =0,

cf. (6.2). Here u € R™ denotes the coefficient vector of the solution such that the
discrete solution is u; = Z?:l u;p;, f € R™ denotes the right-hand side functional,
and ¢ € R" describes the constraint that the solution should be mean value free,
cf. (6.2). We denote the coefficient vector of the discrete function which is (constant)
one on O,(Q) by e and note that ker(S) = span(e). Note that c represents a
functional (in (V,f)@)' ) whereas e represents a discrete function (in Vh’f@). There holds
¢ = Mre with the L?(T;,)-mass-matrix Mr of V}ﬁ@.

In order to obtain a solvable linear system the compatibility condition must hold
on the discrete level: th frndsp = (f,e) = 0. Due to geometrical discretization errors
it is not inherited from the corresponding property of the continuous problem (2.1).
We proceed as suggested in Remark 5. Given an initial approximation f on T (f' with

f, = th feidsy, i € {1,..,n}), we define f; as in (5.15) and let f = f — (f.) ¢ Note

(c,e)
that we have f,(v) = 0 for every function v which is constant on 'y, i.e. f € range(S).

To solve the constrained linear system we consider the uniquely solvable problem

Su=f, with S:=S+~cc’.

Here, we choose v = (31, diag(S);)/(>_1_, ¢?) to approximately match the scaling of
both terms. S is symmetric positive definite and the solution of this system is unique
and fulfils the equation Su = f and the constraint (c,u) = 0. To solve the system we

apply a standard conjugate gradient method with diagonal preconditioning.
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FiG. 8.1. Numerical solution on the initial mesh for k = 3 for the example in section 8.1: T
and T (left), ©n,(TT) and Ty, (center), up € Vi’(g (right).

8.1. Laplace—Beltrami equation on a toroidal surface. We consider an
example from [11] and apply the discretization described above with the normal
derivative stabilization. The surface is a torus prescribed by the level set function
o, I'={z € Q| ¢(z) =0} with

p(x) = <w§ + ((xf +a3)? —R)2>2 —r, R=1,r=06.

The surface is embedded in the domain Q = [-2,2]3, and the solution is given as
u(z) = sin(3¢) cos(30+y) where (@, 0) are the angles describing a surface parametriza-
tion, cf. [11] for details. The right-hand side function f is taken consistent with the
solution w and fh is chosen as the natural extension of this f. Then f} is constructed
as described above, see remark 8. Note that u and f have mean value zero on I' while
up, and fp, have mean value zero on I'p,. We start from a structured 16 x 16 x 16
mesh (h ~ %) and repeatedly apply uniform refinements (at the interface). In Fig-
ure 8.1 the initial mesh is shown along with the surface approximations I''*, I';, and
the discrete solution for k = 3. We investigate the behavior of the following quanti-
ties under mesh refinement. As a measure of the geometrical approximation quality
we take egise := dist(I'p,T'). We further investigate the convergence of the errors
er2 = [|[u® — unllL2r,), €4 = IV, (u® — up)llz2(r,) and €}y = ||Vup - nll2(r,)-
Here u°® is the constant extension of u along the normals of I'. In contrast to the
stabilization term s (-,-) the error measure €7, is evaluated on the (discrete) surface
T';,. Finally, we also collect the number of CG iterations IV;;s necessary to reduce the
initial residual by a factor of 1- 1079,

We carry out the numerical experiment for the cases p, ~ h™! and ps ~ h, k €
{1,..,5} and apply mesh refinements up to meshes with around a million unknowns.
In the numerical experiments we find that p, = h~! gives much better results than
ps = h in the sense that in the latter case we observe a strong dependence of the
iteration number (N;;s > k?) on the polynomial degree k. As a remedy we introduce
a factor independent of h into p, ~ h. From a small test series we find that p, = k*h
gives results which are more robust with respect to variations in k. At this point,
we have no mathematical justification for the choice of the factor k*. Note that in
our analysis the dependence of the constants in the estimates on k& has not been
considered. The results of the numerical experiments are displayed in Table 8.1.

As predicted in (3.9) we observe O(h**!)-convergence for the geometrical error
measure eg;s;. We note that the initial triangulation is sufficiently fine to guarantee
the mesh regularity of the deformed meshes at all refinement levels.

With respect to the error measures efql and er2 we only display the results for p; =
h~' in Table 8.1 because the differences between the different stabilization scalings in
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Ps ~ h! ps ~h

€dist (eoc) ep2 (eoc) ei{l (eoc) e (eoc) Nits en (eoc) Nis
k=1 (912 — 900K unknowns)

2.9-1072 7.2-1071 7.6- 100 3.0-10° 71 5.5-100 69
8.0-1073 (1.9) 2.2-107'(1.7) 3.8-10° (1.0) 2.0-10° (0.6) 118 4.0-10° (0.5) 121
1.8-1073 (2.1) 5.1-1072(2.1) 1.9-10° (1.0) 9.9-10~'(1.0) 229 3.1-10° (0.4) 248
4.9-107% (1.9) 1.3-1072(2.0) 9.5-1071(1.0) 5.0-1071(1.0) 442 2.6-10° (0.3) 473
1.2-10~% (2.0) 3.3-1073(2.0) 4.8-10~1(1.0) 2.5-10~'(1.0) 849 2.4-10° (0.1) 937
3.1-107% (2.0) 9.5-107%(1.8) 2.4-1071(1.0) 1.2-1071(1.0) 1652 2.3-10° (0.0) 1872
k=2 (5.3K — 5.3M unknowns)

3.9-1073 5.4-1072 1.4-10° 1.2-10° 130 1.2-10° 130
4.5-107%* (3.1) 8.4-1073(2.7) 4.3-10~%(1.7) 3.1-107%(2.0) 181 4.0-1071(1.6) 192
5.9-1075 (2.9) 1.1-1073(2.9) 1.1-107!(2.0) 7.7-1072(2.0) 326 1.3-107%(1.6) 378
8.0-107% (2.9) 1.6-10%(2.8) 3.0-1072(1.9) 2.1-1072(1.9) 623 4.5-1072(1.5) 730
1.0-1076 (3.0) 1.9-107°(3.0) 7.3-1073(2.0) 5.2-1073(2.0) 1178 1.4-1072(1.7) 1543
1.3-10~7 (3.0) 2.4-1076(3.0) 1.8-1073(2.0) 1.3-103(2.0) 2275 3.4-1073(2.0) 3118
k=3 (16K —4M unknowns)

1.2-1073 1.3-1072 4.3-1071 4.3-1071 263 2.5-1071 273
8.2-1075 (3.9) 7.3-107%(4.2) 5.0-1072(3.1) 5.1-1072(3.1) 344 4.9-1072(2.3) 335
5.1-1076 (4.0) 4.6-107°(4.0) 6.5-1073(2.9) 5.6-1073(3.2) 429 6.7-1073(2.9) 530
6.5-10~7 (3.0) 3.1-10%(3.9) 8.7-107%(2.9) 7.6-107%(2.9) 768 1.2-1073(2.5) 1011
4.4-1078 (3.9) 1.9-1077(4.1) 1.0-10~%(3.1) 9.1-107°(3.1) 1420 1.7-107%4(2.8) 2073
k=4 (35K — 8.9M unknowns)

6.5-10~4 1.4-1073 6.5- 1072 1.2-1071 528 8.4-1072 482
1.1-107°% (5.9) 5.0-1075(4.8) 4.9-103(3.8) 6.0-1073(4.3) 600 5.0-1073(4.1) 464
4.3-1077 (4.7) 1.8-107%(4.8) 3.2-107%(3.9) 3.5-107%(4.1) 681 3.5-1074(3.8) 680
1.6-1078 (4.8) 8.2:1078(4.5) 2.7-1075(3.6) 2.5-1075(3.8) 945 3.2-1075(3.4) 1261
5.5-10719(4.9) 2.6-107°(5.0) 1.5-107%(4.2) 1.5-107%(4.0) 1613 2.6-1076(3.7) 2582
k=5 (66K — 1M unknowns)

9.7-10~4 4.4-10~4 3.3-1072 3.6- 1072 1071 2.1-1072 935
1.2-107% (9.7) 6.0-1076(6.2) 6.1-107%4(5.8) 8.4-107%(5.4) 1236 6.9-1074(4.9) 1016
2.5-107% (5.5) 9.1-1078(6.1) 1.9-1073(5.0) 2.5-1073(5.1) 1312 2.3-1075(4.9) 1098
7.3-10719(5.1) 2.4-107°(5.2) 7.6-1077(4.7) 9.9-1077(4.6) 1676 1.1-107%(4.4) 1836

TABLE 8.1

Results for the example in section 8.1 with ps = h™% (left) and ps = hk* (right).

those error measures are only marginal. For e';, we observe O(h¥)-convergence which

rate O(h¥+1), but have no a priori analysis for this, yet.

is in agreement with the prediction of Theorem 5.6. For e;2, we observe the optimal

The previous error measures are essentially unaffected by the choice of the sta-

bilization scaling. This is different for the number of iterations N;;s and the error

measure e%;. For k = 1 we observe that e};; does not convergence for ps ~ h

while it converges with order one for p, ~ h~L.
the difference in the results is much smaller. For both scalings we observe at least

In the higher order case, k > 1,

_ —1/2 .. .
et < hk=1/ 2/)5 / . The results even indicate a convergence order k in both cases,

although this is more pronounced for p, ~ h~! than for p, ~ h.

The iteration counts for both scalings increase linearly with the mesh size for

sufficiently fine meshes which is in agreement with the condition number bound in
Theorem 6.2. On coarser grids and for increasing order k£ the numbers of iterations
stagnate before the asymptotic regime starts and the iteration counts grow linearly.

REMARK 9 (No stabilization, s;(-,-) = 0). It is known that for & = 1 stabilization
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is in general not necessary for satisfactory iteration numbers in the CG method,
provided diagonal preconditioning is applied, cf. [18]. Accordingly, we repeated the
previous numerical experiment with £ = 1 and p; = 0. We obtain similar results
for e’}{l and er2, whereas el;; does not converge (with similar errors as for k = 1
and ps ~ h). The iteration counts are larger (95, 175, 360, 793, 1470, 2890), but
also increase linearly with h. In our experience, for moderate orders, k = 2,3, a
discretization with ps = 0 often yields results for efql, er2 and N;;s which are similar
to those obtained with stabilization. However, there is no control on e%; and, more
importantly, sometimes the linear solver fails to converge or the iteration numbers
are very high (even with diagonal preconditioning). For even higher order, k > 4, in
general the (diagonally preconditioned) CG solver does not converge for ps = 0.

9. Conclusion and outlook. We introduced and analyzed a higher order iso-
parametric trace FEM. The higher discretization accuracy was obtained by using an
isoparametric mapping of the volume mesh, based on a high order approximation
of the level set function. The resulting trace finite element method was easy to
implement. We presented an error analysis of this method and derived optimal order
H(T')-norm error bounds. A second main topic of this paper was a unified analysis
of several stabilization methods for this class of surface finite element methods. A
new stabilization method, which was based on adding an anisotropic diffusion in the
volume mesh, was introduced. This method was able to control the condition number
of the stiffness matrix also for the case of higher order discretizations.

We mention a few topics which we consider to be of interest for future research.
Firstly, the derivation of an optimal order L2-error bound has not been investigated,
yet. We think that most ingredients needed for such an anlysis are available from
this paper, e.g. the O(h¥*1)-consistency-bound in Lemma 5.5. A second, much
more challenging, topic is the extension of the higher trace finite element technique
presented in this paper to the class of PDEs on evolving surfaces. It may be possible
to extend the isoparametric mapping technique to a space-time setting and then
combine it with the trace space-time method for discretization of PDEs on evolving
surfaces given in [21, 19]. As a final topic we mention the extension of the higher order
discretization technique presented in this paper to coupled bulk-surface problems.

Appendix A. Proof of Lemma 3.3.

Proof. First we prove the bound in (3.12a). For T € T we consider the function
F(z,y) = Eron(x + yGr(x)) — ép(x) for (z,y) € T x (—aph, agh), with Gy, := V.
From [16, Lemma 3.2] we know that there exists a hg > 0 so that for all 0 < h < hg
the function dj(x) = y(z) solves F(z,y(x)) = 0 on T. Since ¢n,Erdp and G, are
polynomials and hence F' € C*° (T x (—agh, aph)) it follows from the implicit function
theorem that y € C(T). Due to D*¢;, = 0 for |a| > 1 we have |D%p|lcor <
||| 2.0 (1) independent of . Using the extended element U(T) := {z +w | = €
T, |w| < 2aph} and the continuity of the polynomial extension operator & we have
with l = |a] <k + 1

DG, F loo, 7% (~aoh,aoh) S NETPR| mrco () |Ghll 1o (1)

) (A1)
S énllaee (| @nll v () S N F+1.00 (1) S 1-
Differentiating F'(z,y(x)) = 0 yields, for |a| = 1:
Dy(x) = =Dy F(z,y(x)) " DI F(x,y(z)) = —A(z) D F(x,y(x)). (A.2)
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with A(z) = S(z)7 Y, S(x) = D, F(z,y(x)) = VEron(x + yGn(z))TVen € [co,ci]
with cg,¢1 > 0 independent of h,z,T. Differentiating S(z)A(x) = 1 yields

DA(z) = —A(x)>D*S(z), |a| = 1. (A.3)

From (A.2) and (A.3) we deduce that |D%y(x)|, || = I, can be bounded in terms
of [A(z)| and |D, F(z,y(x))|, |a| <. Combining this with (A.1) gives the first
bound in (3.12&). From HGhHHl,oc(T) S H(bhHHLJrl,oo(T) 5 ||¢||HL+I,OQ(T) 5 1 and the
first bound we obtain the second bound in (3.12a).

For (3.12b) we consider an interior facet F' € F' with neighboring tetrahedra
denoted by 11, Ty € TF. We set di = dp|r, and G}, = Gy|r, for i = 1,2. As qgh is
continuous we have

Er,0n(0 + dL(2)GL()) — Enyn(a + d2(@)GE@) =0 foralle B (Ad)
Using (2.3) we obtain for € F' and with G := V¢,

|dn(2) = di ()] ~ [é(x + dj(2)G () = d(z + dj. (2)G(@))]
S 1o + djy(2)G(2) — d(x + djy ()G} (@)

+ Yoz +dy (2)G(2)) — d(a + dj,(x) G} (2))].

i=1

For the sum we use the regularity of ¢ in U, (2.3) and the estimates for Gi, — G (cf.
[16, Lemma 3.1]):

|6(a + dj,(2)G(2)) = ¢ + d}, ()G}, (2))] < |dy ()]G () = G(@)ll2 S B2,
For the other term we use y; := = + d}, (z)Gi (z) and (A.4):

1Pp(y1) — d(y2)| < 9(y1) — Ery Pn(y1)| + |P(y2) — E, n(y2)l-

The two terms on the right-hand side can be bounded by O(h**!) using Taylor
expansion arguments, cf. [16, Proof of Lemma 3.2], which concludes the proof of the
first bound in (3.12b).

Finally, we consider [¥,] = [dnGr] = [dn]{Gr} + {dn}Gr] (with {a} =
@1192)  From [16, Lemma 3.1] and the assumed regularity of ¢ we have (uniform in
z) G} <1, |[Gr]] £ hF and with the first bound in (3.12b) and [16, Lemma 3.2
we have |[d,]| < hF+1 and |{d, }| < h%. Together this proves (3.12b). O
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