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Stable ALS Approximation in the TT-Format for

Rank-Adaptive Tensor Completion

Lars Grasedyck∗ Sebastian Krämer∗

Abstract

Low rank tensor completion is a highly ill-posed inverse problem, particularly
when the data model is not accurate, and some sort of regularization is required
in order to solve it. In this article we focus on the calibration of the data model.
For alternating optimization, we observe that existing rank adaption methods do
not enable a continuous transition between manifolds of different ranks. We denote
this flaw as instability (under truncation). As a consequence of this flaw, arbitrarily
small changes in the singular values of an iterate can have arbitrarily large influence
on the further reconstruction. We therefore introduce a singular value based reg-
ularization to the standard alternating least squares (ALS), which is motivated by
averaging in micro-steps. We prove its stability and derive a natural semi-implicit
rank adaption strategy. We further prove that the standard ALS micro-steps are
only stable on manifolds of fixed ranks, and only around points that have what
we define as internal tensor restricted isometry property iTRIP. Finally, we provide
numerical examples that show improvements of the reconstruction quality up to
orders of magnitude in the new Stable ALS Approximation (SALSA) compared to
standard ALS.

Keywords. tensor completion, MPS, tensor train, TT, hierarchical Tucker, HT,
alternating optimization, ALS, high-dimensional, low rank, SVD, ill-posedness, sta-
bility
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1 Introduction

Data sparse formats for high-dimensional tensors are typically based on notions of (low)
rank(s) and non-unique representations with correspondingly few degrees of freedom -
for comprehensive survey articles, we refer to [14, 16, 18]. These representations can be
understood as technical tools to generate tensors, which are the main, or sole, objects of
interest. A method may be based on these representations, such as ALS, and follow the
same concept for any fixed rank. However, through the correspondence of data and full
tensor, the method may also yield an accordant map acting on the full tensor space.
In the setting of matrix completion, the data model, or tensor format T , often is the low
rank representation, i.e. a function τr : (X,Y ) 7→ XY T ∈ Rn×m for (X,Y ) ∈ Dr :=
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Rn×r×Rm×r. A methodM applied to this model may be the least squares optimization
of Y , i.e.

Mr(X,Y ) = (X, argmin
Ỹ

‖XỸ T −M‖P ), (1.1)

where P is the sampling set. In order to obtain a well defined function, the minimization
of ‖XỸ T ‖F serves as secondary criterion if there is not yet a unique argument of the
minimum. Formally, for each value of the classical matrix rank r, these are different
functions. Our starting point as well as the central objective of this paper is the continuity
of these algorithmic steps as functions on the whole tensor space

A ∈ RI , I := I1 × · · · × Id, Iµ := {1, . . . , nµ}, µ ∈ D := {1, . . . , d}.

Definition 1.1 (Stability). Let T be a tensor format in respect of which every tensor
has a unique rank r ∈ Nm0 and hence belongs to one of the disjoint subsets T (r) ⊂ RI .
Let further τr : Dr → RI be the function that maps a representation to its tensor and M
be a method that maps any rank r to a function Mr : Dr → Dr (the optimization method
for fixed rank). We define the following properties:

• M is called representation independent, if τr(Mr(G)) = τr(Mr(G̃)) for all r and

G, G̃ ∈ Dr with τr(G) = τr(G̃). We then define τ−1
r to map to one possible repre-

sentation (we want to circumvent the use of equivalence classes).

• M is called fix-rank stable, if it is representation independent and for any fixed rank
r, the map τr ◦Mr ◦ τ−1

r : T (r)→ RI is continuous.

• M is called stable (under truncation), if it is representation independent and the
function

fM : RI → RI , fM(A) := τr(A) ◦Mr(A) ◦ τ−1
r(A)(A), (1.2)

where r(A) is the rank of A, is continuous.

Certainly, stability implies any fix-rank stability. Properly calibrating the rank r
for unstable methods poses a very intricate problem. Most of the operators applied to
representations are stable, e.g. truncations based on matrix singular values. The situation
changes if we apply a partial optimization (or micro-) step on a low rank representation,
which is a very common step for many algorithms.

Example 1.2 (Instability of alternating least squares matrix completion steps). Let a ∈
R \ {0, 1} be a possibly very small parameter. We consider the target matrix M and an
ε-dependent initial approximation A = A(ε)

M :=




? 1.1 1
1 1 1

1.1 1 1


 , A(ε) :=




1 1 1
1 1 1
1 1 1


+ ε




a 0 −a
1 + a 0 −1− a
1− a 0 −1 + a


 ,

where the entry M1,1 (the question mark above) is not known or given. The matrix M is
of rank 3 and A(ε) is of rank r = 1 for ε = 0 and of rank r = 2 otherwise. We seek a best
approximation of (at most) rank 2 in the least squares sense for the known entries of M .
In a single ALS step, as defined by (1.1), we replace Y (ε) of the low rank representation
A(ε) = X(ε)Y (ε)T by the local minimizer, where in this case

A(0) =




1
1
1


(1 1 1

)
, A(ε) =




1 a
1 1 + a
1 1− a



(

1 1 1
ε 0 −ε

)
if ε > 0.
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This optimization yields a new matrix, B(ε) = τr ◦Mr ◦ τ−1
r (A(ε)), given by

B(0) =




1.05 ∗ ∗
1.05 ∗ ∗
1.05 ∗ ∗


 , B(ε) =




1 + 1
20a ∗ ∗

1.0 ∗ ∗
1.1 ∗ ∗


 if ε > 0. (∗ is some value)

Now let a be fixed and let ε tend to zero so that the initial guess A(ε)→ A(0). However,
B(ε) 9 B(0), thus violating the stability. One minor detail is that the rank two approxi-
mation B(1) diverges as a→ 0, in particular it is not convergent although the initial guess
A(1) converges to a rank two matrix as a → 0. Thus, the micro-step is not even stable
for fixed rank. We want to stress that the initial guess is bounded for all ε, a ∈ (0, 1), but
the difference between B(0) and B(ε) is unbounded for a→ 0. The unboundedness can be
remedied by adding a regularization term in the least squares functional, e.g. +‖XY T ‖,
but the ALS step remains unstable.

This example likewise demonstrates that ALS for tensor completion is not stable.
It is easy to see that this is not an exceptional problem, but occurs systematically (cf.
Example 2.1). For the rest of this article we consider the problem of (approximately)
reconstructing a tensor from a given data set MP = {Mi}i∈P , where P ⊂ I is fixed. For
the underlying tensor M it is assumed that there exists some (low) rank r ∈ Nd−1 to
yield an approximation Mε ∈ TT (r) where TT (r) is the tensor train [28, 29] (or matrix
product state (MPS) [35,39], or special case of the hierarchical [12,17]) format:

Definition 1.3 (TT format). A tensor A ∈ RI is in the set TT (r), r ∈ Nd−1 if for
µ = 1, . . . , d and iµ ∈ Iµ there exist Gµ(iµ) ∈ Rrµ−1×rµ (r0 = rd = 1) such that

A(i1, . . . , id) = G1(i1) · · ·Gd(id), i ∈ I.

The representation of A in this form is shortly called the TT(r) or TT format. If we
want to stress the dependency of A on the so-called cores Gµ then we write A = τr(G) :=
G1� . . .�Gd, where we define � for two cores H1, H2 as (H1�H2)(i, j) := H1(i) H2(j)
(interpreting TT-cores as vectors of matrices). For the matrix Kronecker product we use
the symbol ⊗.

We do not use any more information, explicitly no detailed knowledge about
the rank r = (r1, . . . , rd−1) is assumed and we will demonstrate why this can be
troublesome in the following.

Notation 1.4 (TT singular values). Analogously to the TT-ranks, we define the TT-
singular values σ = (σ(1), . . . , σ(d−1)) of a tensor A as the unique singular values of the
corresponding matricizations A(1,...,µ) ∈ R(I1×···×Iµ)×(Iµ+1×···×Id) with entries

A(1,...,µ)((i1, . . . , iµ), (iµ+1, . . . , id)) := A(i)

of A, such that σ(µ) contains the ordered singular values of A(1,...,µ), µ = 1, . . . , d − 1.
Hence, the TT-rank rµ is the number of nonzero TT-singular values in σ(µ). We also
call σ(µ) the µ-th singular values and σ the (TT-)singular spectrum.

Many tensors of relevance have very well and uniformly behaving singular values, but
this is certainly not the general case, as the following example demonstrates. One can
even prove that there is no limitation to the shape of the singular spectrum for fixed
rank, except the trivial ‖σ(i)‖22 = ‖σ(j)‖22, ∀i, j, provided the mode sizes n1, . . . , nd are
large enough [22].

Example 1.5 (Rank adaption test tensor). For k ∈ N, let Q ∈ Rn1×...×n4 be an orthog-
onally decomposable 4-dimensional TT Tensor with rank (k, k, k) and uniform singular

3



values σ(1) = σ(2) = σ(3) = (α, α, . . .) as well as B ∈ Rn5×n6 be a rank 2k matrix with
exponentially decaying singular values σ(5) ∝ (β−1, β−2, . . .) for some α, β > 0. Then the
separable tensor A ∈ Rn1×...×n6 defined by A(i) = Q(i1, . . . , i4) · B(i5, i6) has singular
values σ and rank r = (k, k, k, 1, 2k). For an explicit construction, see Appendix A.

By definition, A is separable into a 4- and a 2-dimensional tensor (Q, B). Knowing
this would of course drastically simplify the problem. We now consider the performance
of two very basic rank adaption ideas.

1. Greedy, single rank increase: We test for maximal improvement by increase of
one of the ranks rµ (µ = 1, . . . , d − 1) starting from r ≡ 1. Solely increasing
either of r2, r3 or r4 will give close to no improvement. As further shown in
[10], approximation of orthogonally decomposable tensors with lower rank can be
problematic. In numerical tests, we can observe that r5 is often increased to a
maximum first. Thereby, extremely small singular values are involved that lie
far beneath the current approximation error, although the rank is not actually
overestimated.

2. Uniform rank increase and coarsening : We increase every rank rµ (µ = 1, . . . , d−1)
starting from r ≡ 1 and decrease ranks when the corresponding singular values
are below a threshold. The problem with this strategy is quite obvious, namely
that r5 = 1. If this rank is overestimated, the observed sampling points will be
misinterpreted (oversampling) and it does not matter how small corresponding
singular values become (see Lemma 2.1).

These indicated difficulties gain more importance with high dimension, but for one micro-
step at a time, can be resolved by regarding only three components of a tensor. We will
come back to this in Section 3.

1.1 Relation to Other Tensor Methods

Whenever a tensor is point-wise available, algorithms such as the TT-SVD [28] can just
establish the exact rank based on its very definition or a reliable rank estimate as well as
representation can be obtained through cross-approximation methods, a setting in which
the subset of used entries can be chosen freely [4, 27].
If only indirectly given, adapting the rank of the sought low rank tensor can still be
straight-forward, e.g. when the rank has to be limited only due to computational com-
plexity, while in principle the exact solution is desired [2, 5]. Here, an optimal regula-
tion of thresholding parameters becomes most important. This mainly includes classical
problems that have been transferred to large scales. These may for example be solved
with iterative methods [1, 3, 25], which naturally increase the rank and rely on subse-
quent reductions, or also by rank preservative optimization, such as alternating opti-
mization [8, 10,19,32], possibly combined with a separate rank adaption.
Provided that the tensor restricted isometry property holds, the task may be interpreted
as distance minimization with respect to a norm that is sufficiently similar to the Frobe-
nius norm and analyzed based on compressed sensing [30]. Black box tensor completion
for a fixed sampling set, however, requires a certain solution to a positive-semi definite
linear system. Hence neither an exact solution is reasonable nor does any norm equiva-
lence hold. Thus, the available data is easily misinterpreted, the more so if the rank is
overestimated, and truncation based algorithms, including DMRG [19,21], are misled.
Nuclear norm minimization, being closely related to compressed sensing as well, for the
matrix case [6,7,15,31] has a very strong theoretical background, yet the simplifications
required for an adaption to tensors [11, 24, 33] do not seem to allow for an appropri-
ate generalization [26]. While these approaches rely on a direct adaption of the target
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function, that is convex relaxation, our starting point are the micro steps provided by
alternating least squares. In that sense, we treat each update and adaption as part of a
learning progress.
For fixed or uniform rank, there have been proposals in hierarchical, or tree-, for-
mats [23, 34] as well, the essential adaption of which however is rarely considered, all
the less in numerical tests, and remains an open problem in this setting. A mentionable
approach so far is the rank increasing strategy [13, 37] and its regularization properties
are a first starting point for this work.

The rest of the article is organized as follows: In Section 2, we further inves-
tigate instability and exemplarily analyze approaches towards it in the matrix case. In
Section 3, we introduce further notations and thereby reduce the setting to essential
three dimensions. In the main Section 4, we continue with the previously carried out
ideas and thereby motivate a modified, iterate dependent residual function. We then de-
rive its minimizer and prove stability (Theorem 4.13) for the thereby obtained regularized
micro-steps. Subsequently, in Section 5, these results are transferred back to arbitrarily
dimensional tensors. Section 6 finishes with the necessary details for the algorithm, in-
cluding its rank adaption as it is naturally given through stable alternating least squares.
Comprehensive numerical tests (exclusively for unknown ranks) are provided in Section
7. Appendix A provides remaining proofs and in Appendix B, we shortly analyze a key
element of SALSA. Appendix C includes detailed, experimental data.

2 Instability and Approaches to Resolve the Problem

As previously mentioned, instability poses a systematic flaw in ALS, or for that matter,
in any such range based optimization:

Example 2.1 (ALS is unstable). Consider the micro-step M as in (1.1). Let U, V be
orthogonal, such that UΣV T is a truncated SVD of a rank r matrix A = τr(U, V ΣT ).
We now let σr → 0 such that A∗ := A|σr=0 has rank r− 1. The update is independent of
the value σr > 0:

fM(A) = τr(Mr(U, V ΣT )) = U argmin
Y

‖UY T −M‖P = lim
ε↘0

fM(A|σr=ε) (2.1)

However, if σr = 0, then A|σr=0 has rank r− 1 and a truncated SVD UcΣcV
T
c . It is easy

to see that the update

fM(A|σr=0) = τr−1(Mr−1(Uc, VcΣc)) = Uc argmin
Y

‖UcY T −M‖P

is in general different from the limit (2.1). The same holds for an analogous update of
X = UΣ.

The micro-steps of ALS in the tensor case behave in the same way. The only dif-
ference is that there are two tuples of singular values σ(µ−1) and σ(µ) adjacent to the
core Gµ. Modifying the micro-steps such that stability is gained is one task. Another
aspect, however, is that we aim for a natural way to do this, which we will discuss in the
following.
A quite successful approach for completion has been the rank increasing strategy, e.g. [37].
By the given limitation to all ranks, a regularization is introduced to the target func-
tion. High frequencies, corresponding to low singular values, are excluded up to a certain
progress.
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A similar kind of effect can be achieved by assuming an uncertainty of the current iterate,
or, equivalently, averaging the tensor update function. That way, the level of regular-
ization can be adapted continuously and is less dependent on the technical rank that is
currently used. We will first view this in a minimal fashion for the matrix case and the
method M defined by (1.1). With this approach, we can motivate an algorithm that
is stable under truncation and allows to straightforwardly adapt ranks nonuniformly. It
optimizes, in a loose sense, continuously between manifolds of different ranks.
Assuming local integrability of fM (as defined in (1.2)), we obtain that the averaged
function

f∗M(A) :=
1

|VA,ω|

∫

VA,ω
fM(H) dH (2.2)

VA,ω := {H ∈ image(τr̃) | ‖H −A‖ ≤ ω}

is continuous within image(τr̃), where r̃ may be considered an upper bound to the rank,
cf. Figure 1. However, this function does not preserve low rank structure and therefore
we cannot find a methodM∗ for which f∗M = fM∗ . Consider instead a scenario in which

B1

B2

B3

C

fM(Bi)

fM(C)

A

fM(A)

image(τr)

image(τr̃)

VA,ω

I C
B1

B2

B3

f ∗M(B1)

f ∗M(B2)

f ∗M(B3)

f ∗M(C)

A

f ∗M(A)

image(τr)

image(τr̃)

Figure 1: The schematic display of the unstable function fM (left) and the averaged, stable f∗M (right).
In both pictures, the image of τr is depicted as black curve contained in the image of τr̃ shown as blue
area (with magenta boundary). A is a rank r tensor, while C and each Bi has rank r̃. Left: Regardless
of their distance to A, the tensors B1, B2 and B3 (and any other point of the dotted line except the
lower rank tensor A) are mapped to the same point fM(Bi). Likewise, C is, although as close to A
as B1, mapped to a completely different point. The teal circle exemplarily shows one possible range of
averaging at the point A. Right: If a tensor (such as B1 and C) is close to A, then this also holds for
their function values. However, the f∗M(A) is not rank r anymore (in fact, the image of f∗M is generally
not even rank r̃).

we limit the disturbance that the left singular vectors U receive due to the variation of
A to only one component (as limit case of σ1 � σ2 ≈ ω). From this, we will observe
important consequences.

Lemma 2.2 (Averaged low rank matrix approximation). Let M be defined by (1.1) and
P = I. Let further A = UΣV T ∈ Rn×m be of rank two, given by its SVD components
U = (u1 | u2), Σ = diag(σ1, σ2) and V as well as M ∈ Rm×m arbitrary and 0 < ω <
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√
2σ2. Then

f̂M(A) :=
1

|Vω|

∫

Vω

fM
(
(u1 | u2 + ∆u2)ΣV T

)
d∆u2

= u1u
T
1 M︸ ︷︷ ︸

optimization

+ (1− αω)2u2u
T
2 M︸ ︷︷ ︸

regularization

+
2αω − α2

ω

m− 2
(Im − u1u

T
1 − u2u

T
2 )M

︸ ︷︷ ︸
replenishment

(2.3)

Vω :=
{

∆u2 | ‖(u1 | u2 + ∆u2)ΣV T −A‖ = ω, (u1 | u2 + ∆u2) is column orthogonal
}

for αω = ω2

2σ2
2

, such that αω → 1 if ω →
√

2σ2. Alternatively, considering complete

uncertainty of the second singular vector, we obtain

1

|Vω|

∫

Vω

fM ((u1 | ∆u2)ΣV ) d∆u2 = u1u
T
1 M +

1

m− 1
(Im − u1u

T
1 )M,

where here Vω := {∆u2 | (u1 | ∆u2) is column orthogonal}.

Proof. We parametrize Vω. First, ω = ‖(u1 | u2 + ∆u2)ΣV T − A‖ = ‖∆u2‖ σ2 and
hence ‖∆u2‖ = ω

σ2
. By orthogonality conditions, we obtain ∆u2 = −αωu2 + ∆u⊥2 with

∆u⊥2 ⊥ range(U) for a fixed αω = ω2

2σ2
2
. Hence, Vω is an (m − 3)-sphere of radius

βω =
√

ω2

σ2
2
− α2

ω, that is βωS
m−2. The update for each instance of ∆u⊥2 is given by

fM((u1 | u2 + ∆u2)ΣV T ) = (u1 | u2 + ∆u2)(u1 | u2 + ∆u2)TM.

We integrate this over Vω and obtain
∫

Vω

fM =

∫

Vω

u1u
T
1 M +

∫

Vω

(1− αω)2u2u
T
2 M +

∫

Vω

∆u⊥2 ∆u⊥2
T
M

since all integrals of summands which contain ∆u⊥2 exactly once vanish due to symmetry.
We can simplify the last summand with Lemma 4.5 to

∫

Vω

∆u⊥2 ∆u⊥2
T
M =

∫

βωSm−2

(Hx)(Hx)TM dx = HHT 2αω − α2
ω

m− 2
|Vω|M

for a linear, orthonormal map H that maps x ∈ βωSm−2 to ∆u⊥2 , that is, embeds it into
Rm. One can then conclude that HHT = Im−u1u

T
1 −u2u

T
2 , since the rank of H is m−2

and range(H) ⊥ range(U). The division by |Vω| then finishes the first part. The second
part is analogous.

We can observe that, in this case, choosing ω close to σ2, or in that sense a low σ2, will
filter out influence of u2. This is indeed in agreement to the update which the rank 1 best-
approximation to A would yield. Note however that we fixed ‖∆u2‖ = ω (for simplicity)
as well as that for ω >

√
2σ, Example 2.2 does not make sense. Allowing perturbations

up to a magnitude ω will prohibit that the influence of u2 vanishes completely, hence u2

is never actually truncated.
More importantly, the result f̂M(A) in (2.3) is not low rank, yet is close to the rank 2
approximation U(uT1 M, (1 − αω)2uT2 M)), in which the first component U has remained
the same. While the averaged model as in (2.2) remains the root idea, it appears too
complicated to use for the derivation of a stable method M∗. We instead consider a
slightly modified approach in Section 4:
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Lemma 2.3 (Low rank matrix approximation using a variational residual function). In
the first situation of Example 2.2, we have

argmin
Ṽ

1

|Vω|

∫

Vω

‖(u1 | u2 + ∆u2)Ṽ −M‖2 d∆u2 = (uT1 M | (1− αω)uT2 M) (2.4)

Proof. With the same derivation as in Lemma 2.2, we obtain

|Vω|Ṽ =

∫

Vω

(u1 | u2 + ∆u2)TM d∆u2

=

(
uT1 M |Vω| | uT2 M |Vω|+

∫

Vω

−αωuT2 M + ∆u⊥2 Md∆u2

)

= |Vω|
(
uT1 M | (1− αω)uT2 M

)
.

Comparing this to the rank 2 approximation of the previous result (2.3), we observe
that there is only one difference, i.e. (1 − αω)2 has been replaced by 1 − αω. For our
purpose, these terms are sufficiently similar if αω ∈ (0, 1).
The replenishment term however, which we so far ignored, is crucial. Without this term,
some parts of the iterates will simply converge to zero for fixed ω (cf. Appendix B). We
later bypass this problem by setting a lower limit to all occurring singular values.
We also refer to a Matlab implementation of a (superficially random) Monte Carlo ap-
proach to the unsimplified averaged micro-step f∗M as in (2.2) for matrix completion.
Likewise, an implementation of the final algorithm SALSA (Algorithms 2, 3), which is
developed from the idea in Lemma 2.3, can be found for the matrix case, as well as for
the tensor case of course, under www.igpm.rwth-aachen.de/personen/kraemer.

3 Notations and Reduction to Three Dimensions

As mentioned earlier, we reduce the d dimensional setting to a three dimensional one:

Notation 3.1 (Unfoldings). For a core H (possibly a product of smaller cores in the TT
representation) with H(i) ∈ Rk1×k2 , i = 1, . . . , n, we denote the left and right unfolding
L(H) ∈ Rk1·n×k2 , R(H) ∈ Rk1×k2·n by

(L(H))(`,j),q := (H(j))`,q , (R(H))`,(q,j) := (H(j))`,q ,

for 1 ≤ j ≤ n, 1 ≤ ` ≤ k1 and 1 ≤ q ≤ k2. For a representation G, we correspondingly
define the interface matrices

G<µ = L(G1 � . . .�Gµ−1) ∈ Rn1...nµ−1×rµ−1 ,

G>µ = R(Gµ+1 � . . .�Gd) ∈ Rrµ×nµ+1...nd (cf. Definition 1.3).

We further define the core A(µ) ∈ (Rn1...nµ−1×nµ+1...nd)
Iµ as core unfolding with respect

to mode µ of a tensor A by

A(µ)(iµ)(i1,...,iµ−1),(iµ+1,...,id) = A(i).

For any representation it hence holds

(τr(G))(µ) = G<µ �Gµ �G>µ. (3.1)

From now on we will mostly skip the symbol � in terms as in (3.1) or for any scalar
product of a core and a matrix (where the matrix is regarded as scalar). This relation is
displayed in Figure 2.
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=

=(τr(G))(2)

n1

n2

n3n4

n1

r1

G<2 G2

r1

r2

n2

G>2

r2

n3n4

Figure 2: The decomposition of a core unfolding with respect to 2 of a four dimensional tensor into the
left and right interface matrices as well as the intermediate core.

We will further use the following, convenient notations, since we often have to reshape,
restrict or project objects.

Notation 3.2 (Restrictions). For any object A ∈ RI and index set S ⊂ I, we use
A|S ∈ RS as restriction. For a matrix M , let M−,i be its i-th column and Mi,− be its i-th
row. Furthermore, whenever we apply a restriction to an object or reshape it, we also use
the same notation to correspondingly modify index sets.

For example, for P = {p(i) | i = 1, . . . , |P |} and the rearrangement (·)(µ), which is
used to summarize components s = 1, . . . , µ− 1 as well as s = µ+ 1, . . . , d, let

P(µ) = {((p(i)
1 , . . . , p

(i)
µ−1), p(i)

µ , (p
(i)
µ+1, . . . , p

(i)
d )) | i = 1, . . . , |P |}.

Thereby, A|P has the same entries, however in another shape, as (A(µ))|P(µ)
. For the

selection of one slice, (·)(µ)(j), we denote

P(µ)(j) = {((p(i)
1 , . . . , p

(i)
µ−1), (p

(i)
µ+1, . . . , p

(i)
d )) | p(i)

µ = j, i = 1, . . . , |P |}. (3.2)

Likewise, the vectorization of an index set S ⊂ Rn×m is defined by vec(S) = {s1 +n(s2−
1) ∈ R | s ∈ R2}.

W.l.o.g. we can restrict our consideration to three dimensional tensors that correspond
to the left and right interface matrices as well as the respective intermediate cores (cf.
Remark 3.1):

Notation 3.3 (Reduction to three dimensions). When µ ∈ D is fixed, we will only use
the short notations
• (L, N, R) = (G<µ, Gµ, G

>µ)

• (nL, nN , nR) = (n1 · . . . · nµ−1, nµ, nµ+1 · . . . · nd)
• (γ, θ) = (σ(µ−1), σ(µ)) and (Γ, Θ) = (Σ(µ−1), Σ(µ)) = (diag(σ(µ−1)), diag(σ(µ)))

• (rγ , rθ) = (rµ−1, rµ)

• B = M(µ) and S = P(µ)

The micro-steps M(1), . . . ,M(d) of ALS for the tensor train format only change the
respective Gµ and are given by

M(µ)
r (G) := (G1, . . . , Gµ−1, G

+
µ , Gµ+1, . . . , Gd)

G+
µ := argmin

Gµ

‖τr(G)−M‖P = argmin
Ñ

‖L · Ñ ·R−B‖S (3.3)

or equivalently G+
µ (j) = argminÑ(j) ‖L · Ñ(j) ·R−B(j)‖S(j) - an equation in which only

matrices are involved. In that sense, we only need to consider three-dimensional tensors
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A = L−1(L)�N�R−1(R) with mode size (nL, nN , nR), rank (rγ , rθ) and singular values
(γ, θ). For simplicity, we redefine τr for this case via A = τr(L,N,R).

4 Stable Alternating Least Squares Micro-Steps

Our motivation is to adapt the target function of each micro-step in order to obtain a
stable methodM∗. One may construe a tensor as one test function. A micro-step of ALS
then yields a minimizer only for this specific point. It is hence a reasonable approach to
instead consider a set Vω(A) of variations ∆A along the manifold of three dimensional
TT-rank r tensors:

Vω(A) := {∆A | A+ ∆A ∈ TT (r), ‖∆A‖ ≤ ω}, r = rank(A)

Let A = τr(L,N,R) and (∆L,∆N,∆R) such that A+∆A = τr(L+ω∆L,N+ω∆N,R+
ω∆R). Then

‖∆A‖2F = ‖(L+ ω∆L)(N + ω∆N)(R+ ω∆R)− LNR‖2F
= ‖ω(∆LNR+ L∆NR+ LN∆R)‖2F +

(
O(ω2)

)2

The term ‖∆LNR + L∆NR + LN∆R‖2 can be approximated, assuming the angles
between the three summands are small1, by ‖∆LNR‖2 + ‖L∆NR‖2 + ‖LN∆R‖2.

Definition 4.1 (Variational residual function). Let ω ≥ 0, s1, s2 > 0 and B,S, L,N,R
as in Notation 3.3. We define the averaged residual function C := CB,S,L,N,R for Vω :=
Vω(L,N,R) by:

C(Ñ) :=

∫

Vω(L,N,R)

‖(L+ s1∆L)(Ñ + ∆N)(R+ s2∆R)−B‖2S d∆Ld∆N d∆R, (4.1)

with

Vω = {(∆L,∆N,∆R) | ‖∆LNR‖2 + ‖L∆NR‖2 + ‖LN∆R‖2 ≤ ω2}

where s1, s2 are scalings that only depend on the proportions of the representation, to be
specified by Lemma 5.1.

It is easy to see that ∆N does not influence the minimizer, so we omit it from now
on. It should further be noted that Vω does not depend on the unknown Ñ .

4.1 Standard Representation of a TT-Tensor

A representation G = (L,N,R) can be changed without changing the generated tensor
A = τr(G) ( [20,32]), more specifically

τr(G) = τr(G̃) ⇔ G̃ = (L̃, Ñ , R̃) = (LT−1
1 , T1NT

−1
2 , T2R) (4.2)

for two regular matrices T1 ∈ Rrγ×rγ , T2 ∈ Rrθ×rθ . Using the unique TT-singular values,
one can define a standard representation that is essentially unique (in terms of uniqueness
of the truncated matrix SVD2). For the construction, an only slightly modified TT-
SVD [28] is used.

1This is generically the case for large vectors v, w with uniformly distributed entries in (−1, 1).
2Both UΣV T and ŨΣṼ T are truncated SVDs of A if and only if there exists an orthogonal matrix w

that commutes with Σ and for which Ũ = Uw and Ṽ = V w. For any subset of pairwise distinct nonzero
singular values, the corresponding submatrix of w needs to be diagonal with entries in {−1, 1}.
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Lemma 4.2 (Standard representation). Let A ∈ RnL×nN×nR be a tensor.
There exists an essentially unique representation (with minimal ranks)

G = (L,Γ,N ,Θ,R) (4.3)

for which A = τr(L, ΓNΘ, R) as well as L Γ R(NΘR) and L(LΓN ) Θ R are (truncated)
SVDs of A({1}) and A({1,2}), respectively. This in turn implies that L and L(ΓN ) are
column orthogonal, as well as R and R(NΘ) are row orthogonal.

Proof. uniqueness:
Let there be two such representations G̃ and G. Since the left-singular vectors of A({1})

are essentially unique, we conclude L̃ = Lw1 for an orthogonal matrix w1 that commutes
with Γ. Via an SVD of A({1,2}) it follows that R̃ = wT2 R for an orthogonal matrix w2

that commutes with Θ. Furthermore L(LΓw1Ñ ) = L(L̃ΓÑ ) = L(LΓN )w2. The map

x 7→ L(LΓx) is linear and, in this case, of full rank. This implies Ñ = wT1 Nw2.
existence (constructive):

Let A = τr(L̃, Ñ , R̃) where R(Ñ) and R̃ are column orthogonal (this can always be

achieved using (4.2)). An SVD of L̃ yields L̃ = L Γ V T1 , since L Γ R(V T1 Ñ R̃) is a

truncated SVD of A({1}). A subsequent SVD of L(Γ V T1 Ñ) yields Γ V T1 Ñ = N̂ Θ V T2 ,

since L(L N̂) Θ (V T2 R̃) is a truncated SVD of A({1,2}). We can finish the proof defining

N := Γ−1 N̂ and R = V T2 R̃. Note that, by construction, L(Γ N ) is column-orthogonal.
implied orthogonality:
Using the essential uniqueness, it follows that L(Γ N ) must indeed be column-orthogonal.
By analogously constructing the extended representation from right to left we would
obtain that R(N Θ) is row-orthogonal. By uniqueness it follows again that this is always
the case.

Remark 4.3 (Conventional form of standard representation). Throughout the rest of the
article, the standard representation will mostly appear in form of a specific, conventional
representation

(L, N, R) = (L, Γ N Θ, R), (4.4)

hence with interface matrices L and R given by corresponding singular vectors.

4.2 Minimizer of the Averaged Residual Function

We define (from now on) our method as

M∗(L, N, R) = (L, argmin
Ñ

C(Ñ), R) (4.5)

with C = CB,S,L,N,R as in (4.1). Although Theorem 4.7, or more specifically the regular-
ity of Y (j) given by (4.7), later provide the uniqueness of the minimizer, we up to that

point formally use the minimization of ‖τr(L, Ñ ,R)‖F as secondary and representation
independent criterion. The special cases µ ∈ {1, d} are derived from the general case
(Remark 5.2).

Lemma 4.4 (Representation independent). The method M∗ is representation indepen-
dent.

Proof. Let N+ := argminÑ C, C = CB,S,L,N,R(Ñ) and N̂+ := argminÑ Ĉ,

Ĉ = CB,S,L̂,N̂,R̂(Ñ) for representations τr(L,N,R) = τr(L̂, N̂ , R̂) as well as V̂ω =
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Vω(L̂, N̂ , R̂) and Vω = Vω(L,N,R). According to (4.2), there exist two matrices T1, T2

such that
(LT1, T

−1
1 NT2, T

−1
2 R) = (L̂, N̂ , R̂).

Hence

Ĉ(Ñ) =

∫

V̂ω

∥∥∥(L+ s1∆L̂T−1
1 )T1ÑT

−1
2 (R+ s2T2∆R̂)−B

∥∥∥
2

S
d∆L̂d∆N̂ d∆R̂,

with V̂ω =
{

(∆L̂,∆N̂ ,∆R̂) | ‖∆L̂T−1
1 NR‖2 + ‖LT−1

1 ∆N̂T2R‖2 + ‖LNT2∆R̂‖2 ≤ ω2
}

The substitution (∆L̂,∆N̂ ,∆R̂)
ι→ (∆LT1, T

−1
1 ∆NT2, T

−1
2 ∆R) introduces a constant

Jacobi Determinant |det(Jι)| for some Jι. We obtain

Ĉ(Ñ) := |det(J)|
∫

Vω

∥∥∥(L+ s1∆L) (T1ÑT
−1
2 )(R+ s2∆R)−B

∥∥∥
2

S
d∆Ld∆N d∆R

= |det(J)|C(T1ÑT
−1
2 )

The determinant is irrelevant to the minimizer and hence N̂+ = T−1
1 N+T2. This is the

same relation given for N and N̂ and therefore τr(L,N
+, R) = τr(L̂, N̂

+, R̂) (which is a
set equality if the minimizer is not assumed to be unique).

Lemma 4.5 (Integral over all variations). Let n,m ∈ N, ω ≥ 0 and H ∈ Rn×n be a
matrix as well as

V (n,m)
ω = {X ∈ Rn×m | ‖X‖F = ω}.

Then ∫

V
(n,m)
ω

XTHX dX =
ω2|V (n,m)

ω |
nm

tr(H)Im, |V (n,m)
ω | :=

∫

V
(n,m)
ω

1.

Proof. The proof mainly works with symmetry arguments. See Appendix A for details.

Corollary 4.6 (Integral over Kronecker product). Let ω1 > 0.
Further, let H ∈ R(nXnY )×(nXnY ) as well as Y ∈ RnY ×nY be matrices and

V (nX ,mX)
ω1

= {X ∈ RnX×mX | ‖X‖F = ω1}.

Then

∫

V
(nX,mX )
ω1

(X ⊗ Y )TH(X ⊗ Y ) dX =
ω2

1 |V
(nX ,mX)
ω1 |
nXmX

ImX ⊗ Y TH∗Y

for (H∗)i,j = tr(hi,j), H =
∑
i,j hi,j ⊗ eieTj , hi,j ∈ RnX×nX . For an analog V

(nY ,mY )
ω2 ,

ω2 > 0, we further have

∫∫

V
(nX,mX )
ω1

,V
(nY ,mY )
ω2

(X ⊗ Y )TH(X ⊗ Y ) dX dY =
ω2

1ω
2
2 |V

(nX ,mX)
ω1 ||V (nY ,mY )

ω2 |
nXmXnYmY

tr(H)ImXmY .

Proof. Using the splitting H =
∑
i,j hi,j ⊗ eie

T
j , hi,j ∈ RnX×nX , Lemma 4.5 can be

applied to each summand, separately for X and Y .
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We now derive the minimizer of the variational residual function (4.1). Due to Lemma
4.4, we can use the standard representation in form of Remark 4.3 for simplification. In
this case, Vω takes the convenient form

Vω(L, Γ N Θ, R) = {(∆L,∆N,∆R) | ‖∆LΓ‖2 + ‖Γ∆NΘ‖2 + ‖Θ∆R‖2 ≤ ω2}. (4.6)

Theorem 4.7 (Minimizer of the ALS averaged residual function). Let (L, Γ, N , Θ, R)
be the standard representation (4.3) for a tensor A. The minimizer N+ of the residual
function CB,S,L,ΓNΘ,R as in (4.1) is given by

N+(j) = argmin
Ñ(j)

‖L Ñ(j) R−B(j)‖2S(j)︸ ︷︷ ︸
standard ALS

+ ‖Y (j) vec(Ñ(j))‖2F︸ ︷︷ ︸
regularization

, j = 1, . . . , nN

where

Y (j) :=




√
n−1
L ζ1 R−,S(j)2

T ⊗ Γ−1

√
n−1
R ζ2 Θ−1 ⊗ LS(j)1,−√
ρ1,2ζ1,2 Θ−1 ⊗ Γ−1


 (4.7)

with S(j)i = (x
(1)
i , x

(2)
i , . . .), for S(j) = x(1), x(2), . . ., i = 1, 2. The constants ζ, ρ only

depend on the proportions of the representation and sampling set (cf. Remark 4.9) as
well as the constant scalings s1, s2.

Proof. The proof is rather technical and can be found in Appendix A.

This result may appear to be intricate. However, to calculate the minimizer is of
the same order (with near same constant) as for standard ALS, for which the matrices
LS(j)1,− ∈ Raj×rγ and R−,S(j)2 ∈ Rrθ×aj (aj = |{p | p ∈ P, pµ = j}|) are required
anyway (for further explanation, see (5.2),(5.3)). As an example, for the approximation
of a fully available tensor, Theorem 4.7 reduces to the following.

Corollary 4.8 (Filter properties). For P = I, the update is given by the so called filter

F := (I ⊗ I + ζ1 · I ⊗ Γ−2 + ζ2 ·Θ−2 ⊗ I + ζ1,2 ·Θ−2 ⊗ Γ−2)−1, (4.8)

N+ = F � (LT B RT ),

where � acts matrix wise as Hadamard product.

Proof. From P = I, it follows that R−,S(j)2 is an nL-order copy of R and LS(j)1,− is an
nR-order copy of L (cf. (4.7)). Hence Y (j) =: Y is independent of j. The minimizer
N+(j) is given by

(KTK)−1KT




vec(B(j))
0
...


 for K =




RT ⊗ L√
n−1
L ζ1 RT ⊗ Γ−1

...√
n−1
R ζ2 Θ−1 ⊗ L

...√
ζ1,2 Θ−1 ⊗ Γ−1






nL-times



nR-times

.
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The factors
√
n−1
L and

√
n−1
R vanish in KTK due to the multiple rows involving the

orthogonal matrices R and L. Furthermore, (KTK)−1 is diagonal, such that equation
can be restated using the Hadamard product.

Remark 4.9 (Specification of constants (cf. Appendix A)). Let #R := size(R), #N :=
size(N ), #L := size(L) be the sizes of the tensor components. The constants in Theorem
4.7 are given by ρ1,2 = |S(j)|n−1

L n−1
R = |S(j)|(|I|/nN )−1 and

ζ2 = ω2s2
2

#R
rθ(#L + #N + #R + 2)

,

ζ1 = ω2s2
1

#L
rγ(#L + #N + #R + 2)

,

ζ1,2 = ω4s2
1s

2
2

#R#L
rγrθ(#L + #N + #R + 2)(#L + #N + #R + 4)

.

We finish this subsection with the central theoretical statement of this paper. The
Tensor Restricted Isometry Property (e.g. [30]) does not hold for any non trivial sampling
set P  I. We however only need to work with a modified version as follows.

Definition 4.10 (Internal tensor restricted isometry property (iTRIP)). We say a rank
r tensor A = τr(L,N,R) has the internal tensor restricted isometry property for the
sampling set S, if there exist 0 ≤ c < 1 and ρ > 0 with

(1− c)‖Ã‖2F ≤ ρ‖Ã‖2S ≤ (1 + c)‖Ã‖2F

for all Ã ∈ A(L,R) := {τr(L, Ñ ,R) | Ñ arbitrary }.
Note that the constants are independent of the specific, chosen representation.

Lemma 4.11 (Likelihood of the iTRIP). Let T be the subset of 3 dimensional tensors
with rank r = (rγ , rθ). Let P be a (random) sampling that fulfills |S(j)| ≥ rγrθ for all
j = 1, . . . , nN . Then almost every A ∈ T has the iTRIP. If for one j, |S(j)| < rγrθ, then
no A ∈ T has the iTRIP.

Proof. A tensor A = τr(L,N,R) has the iTRIP (for some valid constants) if and only if
the linear map N 7→ (LNR)S is injective, or equivalently, (RT ⊗ L)vec(S(j)),− has full
rank for each j. Due to the provided slice density of P , each matrix (RT ⊗L)vec(S(j)),−
is of size |S(j)| × rγrθ. Hence generically, it is of full rank. If |S(j)| < rγrθ, then the
matrix cannot have full rank.

Tensors themselves that do not have the iTRIP, assuming sufficient sampling, pose
just a marginal phenomenon for high dimension d (in the matrix case for example, some
columns or rows may indeed have very few samples). If the iterate is close to such a tensor,
the likelihood grows to encounter overfitting (cf. Example 1.2), but the regularization
(4.7) already compensates this.

Lemma 4.12 (Partial matrix inverse by divergent parts). For a partition3of indices
{1, . . . , n}2 = (ω1 ∪ {ω1)× (ω2 ∪ {ω2), we define Ω := ω1 × ω2 and Ωc := {ω1 × {ω2. Let
{A(k)}k, {J (k)}k ⊂ Rn×n be series of symmetric matrices, supp(J (k)) ⊂ Ω.
If limk→∞A

(k)|Ωc = A|Ωc , A|Ωc s.p.d, and σmin(J (k)|Ω)→∞, then B := limk→∞(A(k) +
J (k))−1 exists and we have B|Ωc = (A|Ωc)−1 and B|{Ωc = 0.

3The symbol { denotes the set-complement to a (by context) given set W , i.e. {s = W \ s.
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Proof. First, w.l.o.g., let Ω = {m + 1, . . . , n}2. Otherwise we can apply permutations.
Further, let B(k) := A(k) + J (k). We partition our (symmetric) matrices M for M1,1 ∈
Rm×m block-wise as

M =

(
M1,1 M1,2

MT
1,2 M2,2

)
.

Note that J
(k)
1,1 , J

(k)
1,2 ≡ 0. Since A

(k)
1,1 = B

(k)
1,1 and A1,1 = A|Ωc is s.p.d, A

(k)
1,1 is invertible

for all k > K for some K and hence limk→∞(B
(k)
1,1 )−1 = A−1

1,1. Further, σmin(B
(k)
2,2 ) >

σmin(J
(k)
2,2 ) − σmax(A

(k)
2,2) → ∞ and hence ‖(B(k)

2,2 )−1‖ → 0. Therefore, for k > K̃

and H(k) := B
(k)
1,1 − B

(k)
1,2 (B

(k)
2,2 )−1(B

(k)
1,2 )T , it is σmin(H(k)) > σmin(A1,1)/2. By block-

wise inversion of B(k), it then follows ((B(k))−1)1,1 = (H(k))−1 → (A
(k)
1,1)−1. Similarly,

((B(k))−1)|Ω → 0.

One last step remains, since we cannot allow ζ to depend on the rank r. For now,
we redefine the method M∗ to directly yield the result in Theorem 4.7 for arbitrary
constants ζ, i.e.

M∗ζ(L, N, R) := (L, N+, R). (4.9)

We explain in Section 5 and Lemma 5.1 how the scalings s1, s2 as well as ω are used to
obtain one specific M∗ζ from M∗, for which ζ is indeed independent of r. It is easy to
see that M∗ζ is (trivially) representation independent as it is defined via the essentially
unique standard representation.

Theorem 4.13 (Stability of the methodM∗ζ). Let B be the target tensor, S the sampling
set, arbitrary but fixed and M∗ζ as in (4.9).
• (ω = 0) The unregularized method (3.3) is stable for fixed rank at all points A∗ that

have the iTRIP (cf. Def. 4.10).

• (ω > 0) The regularized method M∗ζ as defined by (4.9) (for ζ1, ζ2 ≥ 0 and ζ1,2 > 0
that do not depend on r) is stable at all points A∗ (and hence also fix-rank stable).

Proof. Let A∗ be a fixed tensor with TT-ranks r∗.
1. fix-rank stability
We first show thatM∗ is stable for fixed rank. Let Ai be a sequence with rank(Ai) = r∗

and Ai → A∗. Let G∗ = (L∗,Γ∗,N ∗,Θ∗,R∗) be the standard representation of A∗ as
well as Gi correspond to Ai. We partition the indices for γ∗ and θ∗ by k and ` according
to equality of entries, such that γ∗1 = . . . = γ∗k1 > γ∗k1+1 = . . . = γ∗k2 > . . . > γ∗kK−1+1 =
. . . = γ∗kK > 0 and likewise for `1, . . . , `L. Since Ai → A∗, their singular values also
converge (e.g. [38]). We can hence conclude from [9,36] that there exist sequences of block
diagonal, orthogonal matrices Wi and Mi with block sizes k1, k2−k1, . . . , kK −kK−1 and
`1, `2 − `1, . . . , `L − `L−1, respectively, such that

‖LiWi − L∗‖F → 0 and ‖MiRi −R∗‖F → 0, (4.10)

since the standard representation includes left and right singular vectors. We have to
show that the tensors Zi = τr(Li, Ni,Ri) = τr(M∗(Li,ΓiNiΘi,Ri)) converge to the
analogously defined Z∗. For fixed j, we define for each single Gi the matrix Yi = Y (j)
from Theorem 4.7 and zi := (RTi ⊗ Li) such that

Ni(j) = argmin
Ñ(j)

∥∥∥∥
(

(zi)vec(S(j)),−
Yi

)
vec(Ñ(j))−

(
vec(B(j))|vec(S(j))

0

)∥∥∥∥ , (4.11)

vec(Zi(j)) = zi vec(Ni(j)).

15



We define the shifted matrices

zM,W
i := (Mi Ri)T ⊗ (Li Wi)

YM,W
i :=




√
νs−1ζ

(µ)
1 (Mi R−,S(j)2)T ⊗ (Γ−1

i Wi)√
νsζ

(µ)
2 (Θ−1

i MT
i )⊗ (LS(j)1,− Wi)√

νs−1,sζ
(µ)
1,2 (Θ−1

i MT
i )⊗ (Γ−1

i Wi)




Due to (4.10), it holds (zM,W
i )vec(S(j)),− → z∗vec(S(j)),−. Inserting I = (MT

i ⊗Wi)(M
T
i ⊗

Wi)
T into (4.11), we obtain

vec(Zi(j)) = zM,W
i

(
(zM,W
i )Tvec(S(j)),− (zM,W

i )vec(S(j)),− + YM,W
i

T
YM,W
i

)−1

· (zM,W
i )Tvec(S(j)),− vec(B(j))|vec(S(j)).

Since WT
i Γ∗Wi = Γ∗ for all i, it follows WT

i ΓiWi → Γ∗. Likewise MT
i ΘiMi → Θ∗ and

thereby also YM,W
i

T
YM,W
i → Y ∗T Y ∗. We treat the cases ω = 0 and ω > 0 separately:

(i) w = 0: In this case, YM,W
i = 0 = Y ∗. If the iTRIP holds for A∗, then

σmin(z∗vec(S(j)),−) > 0 and therefore

(
(zM,W
i )Tvec(S(j)),− (zM,W

i )vec(S(j)),−

)−1

→
(

(z∗)Tvec(S(j)),− (z∗)vec(S(j)),−

)−1

.

This directly yields convergence of (Zi(j))→ (Z∗(j)) since all involved factors converge.
(ii) w > 0: Here, we use that σmin(Y ∗) > 0 and σmin(z∗vec(S(j)),−) ≥ 0. We then obtain
convergence since

(
(zM,W
i )Tvec(S(j)),− (zM,W

i )vec(S(j)),− + YM,W
i

T
YM,W
i

)−1

→
(

(z∗)Tvec(S(j)),− (z∗)vec(S(j)),− + Y ∗T Y ∗
)−1

.

This proves fix-rank stability. 2. stability
Let now Ai have arbitrary ranks. Without loss of generality by consideration of a finite
amount of infinite subsequences, we can assume that rank(Ai) ≡ r for all i. Then, since
TT (r∗) is a manifold, it follows γ ≥ γ∗ and θ ≥ θ∗. We can therefore have singular values
(γi)kK+1, . . . , (γi)kK+1

→ 0 as well as (θi)`L+1, . . . , (θi)`L+1
→ 0. We expand the matrices

Wi and Mi by identities of appropriate sizes to account for the vanishing singular values:
Wi ← diag(Wi, IkK+1−kK ), Mi ← diag(Mi, I`L+1−`L). In regard of Proposition 4.12, let

Ω be the smallest cross product set, such that (YM,W
i

T
YM,W
i )|Ωc converges (which is

the set that corresponds to vanishing singular values). Then, due to the definition of

YM,W
i , σmin((YM,W

i

T
YM,W
i )|Ω)→∞. We can conclude that

((
(zM,W
i )Tvec(S(j)),− (zM,W

i )vec(S(j)),− + YM,W
i

T
YM,W
i

)−1
)
|Ωc

→
(

(z∗)Tvec(S(j)),− (z∗)vec(S(j)),− + Y ∗T Y ∗
)−1

.

and
((

(zM,W
i )Tvec(S(j)),− (zM,W

i )vec(S(j)),− + YM,W
i

T
YM,W
i

)−1
)
|{Ωc → 0.
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Because of this restriction, we in turn again get convergence to the limit (Zi(j)) →
(Z∗(j)), since all parts that correspond to vanishing singular values, also vanish within
the update. This finishes the proof.

5 Results Transferred Back to a d-Dimensional Tensor

In this Section, we return to a d-dimensional tensor. In Remark 4.9, we have #R =
size(R) = rθ

∏d
i=s+1 ni, #N = size(N ) = rγnsrθ, #L = size(L) = rγ

∏s−1
i=1 ni. By

combining modes (cf. Notation 3.3), the sizes of the left as well as right side have been
drastically overrated and distorted, considering that the degrees of freedom of L = G<s
and R = G>s are given by a sum, not a product, of the degrees of freedom of the single
modes. We choose one of the few remaining options through which the method becomes
stable. We artificially set

#R ← rµ

d∑

i=µ+1

ni, #L ← rµ−1

µ−1∑

i=1

ni

using appropriate scalings s1 = s
(µ)
1 , s2 = s

(µ)
2 (differently for each mode µ). Otherwise

we will not obtain a stable micro-step. Furthermore, the near common parts of the
denominators, #R + #N + #R + 2(+2), can be incorporated into ω2, so we omit them
in the following sense:

Lemma 5.1 (Rescaled target function). The previously discussed rescaling is achieved
by choosing

(s
(µ)
1 )2 = E

∑µ−1
s=1 ns(∏µ−1

s=1 ns

)∑d
s=1 ns

, (s
(µ)
2 )2 = E

∑d
s=µ+1 ns(∏d

s=µ+1 ns

)∑d
s=1 ns

,

E = rµ

d∏

s=µ+1

ns + rµ−1nµrµ + rµ−1

µ−1∏

s=1

ns

Thereby,

ζ
(µ)
1 = ω2

∑µ−1
s=1 ns∑d
s=1 ns

, ζ
(µ)
2 = ω2

∑d
s=µ+1 ns∑d
s=1 ns

, ζ
(µ)
1,2 = ζ

(µ)
1 ζ

(µ)
2 (1 +O(E−1)). (5.1)

Proof. See appendix A.

The value E−1 is in general far below machine accuracy, such that we (from now on)
ignore the factor (1 +O(E−1)). There might be a more suitable realization of this result
and it should be remarked that the exact scalings are not important for the validity of
Theorem 4.13. In this context, for fixed µ, the matrices LS(j)1,− ∈ Raj×rγ and R−,S(j)2 ∈
Rrθ×aj , aj = |{p | p ∈ P, pµ = j}| = |P(µ)(j)| (cf. (3.2)), are given by

(
LS(j)1,−

)
`,− = G1(p

(i`)
1 ) · . . . · Gµ−1(p

(i`)
µ−1), (5.2)

(
R−,S(j)2

)
−,` = Gµ+1(p

(i`)
µ+1) · . . . · Gd(p(i`)

d ), ` = 1, . . . , aj , p
(i`) ∈ P(µ)(j), (5.3)

for a representation G for which L = G<s and R = G>s.
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Remark 5.2 (Case µ = 1, d). For µ = 1, d in Theorem 4.7, the same formula can be

used by formally setting G<1 = L = 1, G>d = R = 1 and ζ
(1)
2 = 0, ζ

(d)
1 = 0, ζ

(1),(d)
1,2 = 0,

respectively.

Since all micro-steps M∗ are stable, we call this regularized ALS method stable -
hence the name SALSA (Stable ALS Approximation). We summarize in Algorithm 1
one full left sweep µ = 1→ d of SALSA for some fixed rank r. Note that the algorithm
remains with the same order of computational complexity O(dr4|P |), and near same
constants. The simpler matrix case (d = 2) is carried out in Algorithm 2.

Algorithm 1 SALSA Sweep

set σ0 ≡ σd ≡ 1
Require: limits σ

(µ)

min, parameter ω, initial guess A = τr(G) for which R(G2), . . . ,R(Gd)

are row-orthogonal and data points M |P
for µ = 1, . . . , d do

compute the SVD UΣ(µ)V T := L(Gµ) and update σ(µ)

update Gµ+1 := V TGµ+1 and Gµ via L(Gµ) = UΣ(µ)

set ζ
(µ)
1 , ζ

(µ)
2 , ζ

(µ)
1,2 as defined by (5.1)

for j = 1, . . . , nµ do
compute the update Nµ(j) from the least squares problem given by Theorem 4.7
for L = G<s, R = G>s (cf. Remark 5.2)

end for
if µ 6= 1 then

compute the SVD U Σ̃V T := R(N)

update N via R(N) := U diag({max(σ̃i, σ
(µ−1)

min ) | i = 1, . . . , rµ}) V T
end if
if µ 6= d then

compute the SVD U Σ̃V T := L(N)

update σ
(µ)
i := max(σ̃i, σ

(µ)

min), i = 1, . . . , rµ
update N via L(N) := U
set Gµ+1 := Σ(µ)V TGµ+1

end if
update Gµ := N

end for

6 Semi Implicit and Non Uniform Rank Adaption

The stabiliy of SALSA is used to establish an in principle simple rank adaption. For a
more detailed analysis and motivation, we refer to Appendix B. We capture the magnitude
of regularization caused by the individual singular vectors σ(µ):

Definition 6.1 (Minimal filter values). Define the entries of F (µ) ∈ (0, 1)rµ via

F
(µ)
i := max(F (µ)

1,i ,F
(µ+1)
i,1 ), (6.1)

where F (0) = F (d) := 0 and F (µ) (for each µ) is defined in Corollary 4.8.

This magnitude is then used to define certain thresholds for all singular values.

Definition 6.2 (Virtual ranks and virtual singular values). Let 0 < Fvirt < Fstab < 1

be fixed. A singular value σ
(µ)
i is called virtual, if F

(µ)
i < Fvirt and denoted stabilized
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Algorithm 2 Stable Matrix Completion

Require: limit σmin, parameter ω, initial guess A = XY T ∈ Rn1×n2 such that Y
contains the right singular vectors of A and data points M |P
for i = 1, . . . , n1 update

X := argmin
X̃i,−

‖X̃i,−Y
T −Mi,−‖2Pi,− +

|Pi,−|
n2

ω2n1

n1 + n2
‖X̃i,−Σ−1‖2F (5.4)

compute the SVD UΣV T := X and update σi := max(σ̃i, σmin), i = 1, . . . , r
set X := U and Y T := ΣV TY T

for i = 1, . . . , n2 update

Y−,i := argmin
Ỹ−,i

‖XỸ T−,i −M−,i‖2P−,i
+
|P−,i|
n1

ω2n2

n1 + n2
‖Σ−1Ỹ T−,i‖2F (5.5)

compute the SVD UΣV T := Y and update σi := max(σ̃i, σmin), i = 1, . . . , r
set X := XUΣ and Y T := V T

(with respect to Fstab) if F
(µ)
i > Fstab. The virtual rank of A = τr(G) is given by its

exact rank r = r(A), while the stabilized rank only includes the stabilized singular values.

The trick is to overestimate all ranks by 1 and to gradually decrease ω (as well as the

singular value limit). During several iterations, each last singular value σ
(µ)
rµ just equals

σ
(µ)

min (cf. Algorithm 3). It does thereby only marginally influence the optimization,
which is why we use the term virtual. However, at a certain point, the according singular
values exceed the minimum and then stabilize. Each time this happens and certain
criteria hold, the technical rank is increased by 1 (by adding a virtual singular value
using random terms). Vice versa, a rank is cut if the stabilized rank is by 2 lower than
the virtual rank. The rest of this subsection will deal with remaining details.

Definition 6.3 (Control set). For a given index set P , we define P2 ⊂ P as control set.
This set may be chosen randomly or specifically distributed as well. The actual set used
for the optimization is replaced by P ← P \ P2 (keeping the same symbol).

It is not easy to give a general criterion when to terminate the algorithm. Often, an
estimate for an upper limit to all ranks provides an efficient criterion. We here measure
the improvement between rank increases, but there might be more suitable approaches.

Remark 6.4 (Blocking rank increases). For every previously taken value k, let Ĝ(k) be
the representation given immediately before the k-th rank increase. Set

RX(k + 1) := ‖τr(Ĝ(k))−M‖X , X ∈ {P, P2}.

Define βX =
∣∣∣1− ‖τr(G)−M‖X

RX(
∑d−1
i=1 ri−(d−1))

∣∣∣ for the current representation G.

As long as
∑d−1
i=1 ri ≥ 2(d−1) and one of the following criteria is fulfilled, rank increases

are blocked:
• βP < βmin

• βP2
< βmin (cf. Definition 6.3)

•
∑d
s=1 rs−1rsnµ −

∑d
i=1 r

2
µ > |P |/1.2 (degrees of freedom too high)
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Definition 6.5 (Unblocked ranks). We define

U =

{
∅ if rank increases are blocked (cf. Remark 6.4)

{s ∈ {2, . . . , d} | rµ + 1 ≤ min(nsrs−1, ns+1rs+1, rlim)} otherwise

where rlim ∈ N is a given, technical limit to any rank.

Remark 6.6 (Decline of ω). Let G(iter) be the representation after iteration number
iter = 1, 2, . . .. Define

γiX :=
ResX(G(i))

ResX(G(i−1))
, i = iter− 4 . . . iter, X ∈ {P, P2}

the arithmetic mean of the last 5 residual reduction factors for the sampling and control
residual. We say ω is minimal, if there exists a stabilized rank equal to rlim or if U = {}
(Definition 6.5) and all ranks are stabilized with respect to F̃stab for a fixed Fstab < F̃stab
that is close to, yet less than 1. The parameter is regulated as follows: Initialize ω̃ = ω0.
After each iteration iter, if
• ω is not minimal and if either

– the singular spectrum does not currently change too much and

– γiP < γ∗ or γiP2
< γ∗

or

– ResP (G(iter)) > ResP (G(iter−1))
then ω̃ is decreased by a constant factor of fω. Set then ω = ω̃‖τr(G(iter))‖I .

Remark 6.7 (Changing ranks). The µ-th rank is increased if the following conditions
hold:
• µ ∈ U (Definition 6.5)

• ω̃ has been decreased in the previous iteration

• σ(µ)
rµ is stabilized

The representation is then expanded randomly, such that for the new singular value holds

σ
(µ)
rµ+1 = σ

(µ)

min and all other singular values remain equal.

If, in contrast, at any time σ
(µ)
rµ−1 is virtual (and hence σ

(µ)
rµ as well), the rank is decreased

by 1 and the tensor truncated.

By this kind of rank adaption, only virtual singular values are ever introduced or
removed. This is to be understood as the main idea behind SALSA. The exact rank is
not relevant anymore within the optimization, only the magnitude of ω compared to the
singular values matters.

Remark 6.8 (Termination). Let i∗ = argminiResP2
(G(i)) and fP2

> 1 be fixed. If one
of the following criteria holds, then the algorithm terminates.
• ω is minimal (Remark 6.6) (convergence)

• iter > 10 and ResP2 > fP2 · ResP2(Gi
∗
) (Definition 6.3) (divergence)

As final result, Gi
∗

is chosen (it may be cut to its stabilized rank).

It remains to substitute the replenishment term in (2.3) in order to prevent virtual
singular values from quickly converging to zero. Otherwise, they become essentially
invisible to the algorithm and are not be picked up in subsequent steps.

Definition 6.9 (Singular value limit). The lower limit to the singular values is defined
as fixpoint of

σ
(µ)

min 7→
1

∑d
µ=1 nµ

(1− F (µ)

min(σ
(µ)

min)) Resest (6.2)
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where F
(µ)

min(σ
(µ)

min) is defined the same way as F (µ) (see (6.1), (4.8)), but assuming that

all last singular values equal the minimal σ
(µ)

min. The value Resest > 0 is a pessimistic
estimator for the full residual,

Resest := (
√
|I|/|P2|ResP2

)3/2 (
√
|I|/|P |ResP )−1/2.

In practice, it is sufficient to perform a damped fixpoint iteration parallel to the decreases

of ω̃ to obtain σ
(µ)

min. Furthermore, the decrease of ω̃ is accelerated if F
(µ)

virt is much lower.

6.1 The SALSA Algorithm

We summarize the previous results in Algorithm 3. For the technical realizations, we
refer to Section 7 and for the explicit choices of tuning parameters, see Subsection 7.3.
The Matlab implementation (as well as all programs necessary to produce the results in
Section 7) can further be found under www.igpm.rwth-aachen.de/personen/kraemer.
The order of computational complexity does not exceed O(dr4#P ), where r = maxµ rµ.
Note that the computational complexity per sweep can actually be lower, since not all
ranks are kept equal, but some are lower than others.

Algorithm 3 SALSA Algorithm

Require: P ⊂ I, M |P (and parameters)
initialize G s.t. τr(G) ≡ const, |P |‖τr(G)‖2F = |I|‖M |P ‖2P for r ≡ 1 and ω̃ = 1/2
split off a small control set P2 ⊂ P (Definition 6.3)
proceed one or a few ordinary ALS sweeps (Algorithm 1 for ω ≡ 0)
for iter = 1, 2, . . . do

ONCE: after a few iterations, introduce virtual ranks (⇒ r ≡ 2)
proceed SALSA sweep∗ (Algorithm 1)
∗: decrease ω̃ if progress low (Remark 6.6 applies)
if ∗: a singular value becomes stabilized/virtual (Remark 6.7 applies) then

increase/decrease the virtual rank
end if
if final breaking criteria apply (Remark 6.8) then

terminate algorithm
end if

end for

7 Numerical Experiments

We consider the following two algorithms:
• standard ALS (Algorithm 1 for ω ≡ 0)

• SALSA (Algorithm 3)
We explain how ranks are adapted for ALS in Section 7.1, give details for data acquisition
and measurements in Section 7.2 as well as tuning parameters in Section 7.3. We analyze
the results in the latter Section 7.8.
For each test, we give a (too large) upper bound rlim for the maximal rank of the
iterates. We like to emphasize that, in contrast to rank adaption itself, such a bound
can subsequently be increased if this might yield improvements - since this does only
pose a one dimensional problem. Such a limit is not obligatory, but in specific cases the
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necessarily coarse criteria in Remark 6.4 only hold for very large rank, such that the
algorithms would use up a lot of time without changing the results. For simplicity, we
use a common mode size n = n1 = . . . , nd.

7.1 Rank Adaption for Standard ALS

Since ALS itself is not rank adaptive, the (so far) most promising approach, that is greedy
rank adaption, is chosen. When the progress stagnates, the algorithm searches for the

highest (new) singular value σ
(µ)
+ which any of the rank increases may yield. These values

are estimated as follows. Let µ be fixed and G be a representation for which G<µ−1 is
column-orthogonal and G>µ is row-orthogonal. Further, let

T := (G<µ−1)T ((M − τr(G))|P )(µ−1,µ) (G>µ)T ,

αiµ−1,iµ = argmin
α̃iµ−1,iµ

‖G<µ−1 (Gµ−1(iµ−1) ·Gµ(iµ)

+ α̃iµ−1,iµT (iµ−1, iµ)) G>µ −M(µ−1,µ)‖P(µ−1,µ)(iµ−1,iµ).

We define the core H(·, ·), H(iµ−1, iµ) = αiµ−1,iµT (iµ−1, iµ) ∈ Rrµ−2×rµ and stack its

entries to form the matrix H ∈ Rrµ−2nµ−1×rµnµ . Then σ
(µ)
+ := ‖H‖2, the largest singular

value of H. This approach is very similar to two-fold DMRG micro-steps as defined in [19],

but a bit more regularized. The corresponding rank µ = argminµ̃ σ
(µ̃)
+ is increased by 1,

using a rank 1 approximation of H. Basically the same termination criteria as for SALSA
are used, although some criteria that are based on ω are replaced as well as possible.
No rank decreases are proceeded since this involves tremendous difficulties, of which the
most important one is the sheer incapability to decide when and which rank actually to
decrease.

7.2 Data Acquisition and Measurements

Sampling: In order to obtain a sufficient sampling for each slice of M , we generate the
set P in a quasi-random way as follows: For each direction µ = 1, . . . , d and each index
iµ ∈ Iµ we pick Csf ·r2

P indices i1, . . . , iµ−1, iµ+1, . . . , id at random (uniformly). This gives
in total |P | . Csf ·dnr2

P samples (excluding duplicate samples). The rank rP is artificial,
such that Csf can be interpreted as sampling factor. After all, the degrees of freedom of
a TT-tensor of common rank r is slightly less than dnr2. As a verification set C, we use a
set of the same cardinality as P that is generated in the same way. Order of optimization:
Instead of the sweep we gave before (µ = 1, . . . , d) for simplicity, we alternate between
two sweeps (µ = 1, . . . , h, µ = d, . . . , h, h = bd/2c) to enhance symmetry. Averaging:
With 〈·〉ar we denote the arithmetic mean and by 〈·〉geo the geometric mean which we
use for logarithmic scales.

7.3 Implementation Details and Tuning Parameters

All tests were done using a (pure) Matlab implementation, so the time performances
should be evaluated carefully. Section 6 involves several parameters and relations to
enable a full understanding of the black box algorithm. These have been chosen equally
for all experiments with respect to best results, not speed, and could be relaxed for easier
problems (or in practice for first trials) to reduce timing considerably. It shall hence
be mentioned in advance that the number of iterations for the regularized algorithms
is in general much higher. Straightening the tolerances for ALS (hence allowing more
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iterations) however, does not lead to notable improvements, or even the opposite.
The parameters are given by: γ∗ = 10−3, fω = 1.1, Fvirt := 0.33, Fstab := 0.99,

F̃stab := 0.999, βmin := 0.02, fP2
:= 2.5, |P2|/|P | = 1/20. The specific choices are

heuristic (based on experience), but likewise recommendable for other problems. We
observed that any reasonable values near these work as well, the more so for larger
sampling sets. The performance is in that sense not based on how close the parameters
are to some unknown optimal choices. We also refer to the implementation for all details.

7.4 Approximation of a Tensor with Near Uniform Singular Spectrum

At first, we consider the completion of the following tensor:

D(i1, . . . , id) :=

(
1 +

d−1∑

µ=1

iµ
iµ+1

)−1

, iµ = 1, . . . , nµ, µ = 1, . . . , d

This tensor is not low rank, but has well ordered modes and uniformly exponentially
decaying singular values. It can therefore very well be approximated with uniform ranks.
For a black box, rank adaptive algorithm however, this is not trivial to recognize. The
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Figure 3: (d = 6, 9, 15, rP = 6, rlim = 10, n = 12, 20, Csf = 2, 4, 6) Plotted are, for varying dimension
and mode size, the averaged relative residuals 〈RC/‖MC‖〉geo and accordant standard deviations as
functions of the sampling size |P | as result of 20 trials, for ALS (black) and SALSA (blue, filled symbols).

results are plotted in Figure 3 (see Appendix C for Table 1).
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7.5 Approximation of Three Generic Tensors with non Uniform Singular
Spectrum

We want to demonstrate how different results can be through proper rank adaption,
considering the following three generic tensors:

f (1)(i1, . . . , i8) :=
i1
4

cos(i3 − i8) +
i2

2

i1 + i6 + i7
+ i5

3 sin(i6 + i3)

f (2)(i1, . . . , i7) :=

(
i4

i2 + i6
+ i1 + i3 − i5 − i7

)2

, iµ = 1, . . . , nµ, µ = 1, . . . , d

f (3)(i1, . . . , i11) :=

√
i3 + i2 +

1

10
(i8 + i7 + i4 + i5 + i9) +

1

20
(i11 + i1 − i10 − i6)2;

In contrast to the tensor in Section 7.4, the modes are not (and hardly can be) ordered
in accordance with the TT format. A different ordering may of course yield other results,
but we cannot assume to find a better ordering if the approximation fails in the general
case. The results are plotted in Figure 4 (see Appendix C for Table 2).
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Figure 4: (d1 = 8, d2 = 7, d3 = 11, rP = 6, rlim = 10, n = 8, Csf = 2, 4, 6) Plotted are, for the tensors

f (1) (left), f (2) (middle) and f (3) (right), the averaged relative residuals 〈RC/‖MC‖〉geo and accordant
standard deviations as functions of the sampling size |P | as result of 20 trials, for ALS (black) and
SALSA (blue, filled symbols).

7.6 Recovery of Random Tensors with Exact Low Rank

We next consider the recovery of quasi-random tensors with exact low ranks. Although
this in practice will never occur, it is a very neutral test4. Here it is required to set
βmin = 0. The ranks are generated randomly, but it is ensured that 〈r〉ar ≥ 2/3k and
max(r) ≤ k for some bound k ∈ N.
Each of these is generated via a TT representation A = τr(G) where we assign to each
entry of each block G1, . . . , Gd a uniformly distributed random value in [−0.5, 0.5]. Sub-
sequently, the singular values Σ(1), . . . ,Σ(d−1) are forced to take uniformly distributed
random values in [0, 1] (up to scaling). This is achieved by successive replacements of the

4Note that in some papers, uniform distributions on [0, 1] are used such that all entries of the target
tensor are positive, causing each first singular value to be huge compared to all following ones. This
leads to a tremendous simplification of the completion problem. There is no indication yet that the
sampling required for the completion of a random tensor is in general close to O(nrlog(n)) as in the
matrix case [7].
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current values in G.
As results, we plot the number of successful recoveries (RC/‖MC‖ < 10−5) for different
mode sizes n (each single tuple uniform), dimensions d and maximal ranks k of the target
tensor (Figures 5, 6).
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Figure 5: (d = 5, 6, 7, rP = 6, rlim = 9, n = 8, 12, 16, 20, Csf = 2, 4, 8, 16, 32, 64) Displayed as 20
shades of blue (black (0) to white (all 20)) are the number of successful reconstructions for random
tensors with maximal rank k = 6 for ALS and SALSA
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Figure 6: (d = 5, 6, 7, rP = 8, rlim = 11, n = 12, 16, 20, Csf = 2, 4, 8, 16, 32, 64) Displayed as 20 shades
of blue (black (0) to white (all 20)) are the number of successful reconstructions for random tensors with
maximal rank k = 8 for ALS and SALSA

7.7 Recovery of the Rank Adaption Test Tensor

Last but not least, we consider the recovery of tensors as in Example 1.5, for which
Q1, Q4, Q5 and Q6 are generated quasi-randomly for each trial. For an explanation of
the results in Figure 7, we refer to Section 7.6.
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Figure 7: (d = 6, rP = 2k, rlim = 2k + 3, n = 12, 20, Csf = 2, 4, 8, 16, 32, 64) Displayed as 20 shades
of blue (black (0) to white (all 20)) are the number of successful reconstructions for the rank adaption
test tensor with rank (1, k, k, k, 1, 2k, 1) for ALS and SALSA
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7.8 Analysis of Results

SALSA is superior in nearly all observed cases. For tensors which could as well be
approximated with uniform ranks, the differences are marginal, but SALSA yields better
results (the timing however is worse). The two generic functions show that the residuals
can be multiple orders of magnitude better, and although the functions were chosen quite
randomly, we do not want to over-interprete these specific results. Finally, for the more
neutral test of random tensor recovery, the required sampling seems to be overall 4 to 8
times lower. For the rank adaption test tensor, the performance of SALSA becomes even
better for larger rank k (this is due to the larger total sampling), while greedy ALS runs
into the predicted trouble. As mentioned before, the tuning parameters of SALSA could
be relaxed to better keep up with the speed of ALS in case of larger sampling.

8 Conclusions

In this article, we have demonstrated that the most successful completion algorithms
do not behave continuously with rank changes and that existing rank adaption methods
suffer from this.
In order to correct this, as proven for SALSA, we suggested a regularization motivated
by averaged micro-steps in order to uncouple the optimization of a discrete, technical
rank. While the exact derivation and implementation of SALSA is presumably improv-
able, we take the notable numerical results as indication that stability (under truncation)
is a worthwhile property. Briefly said, SALSA can crack harder problems by investing
an advanced amount of time. Let it be mentioned that, although we focused on tensor
completion (with possibly small sampling sets), the derivations given in this paper allow
for a straightforward generalization to arbitrary semi-elliptic problems.
The computational complexity remains the same and it poses an open question whether
it can be reduced. Furthermore, it may be possible to adapt the presented ideas to man-
ifold based method.
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9 Appendix A (Proofs)

Construction of the tensor in Example 1.5::D
We define a representation G for A = τr(G) via left and right unfoldings by

L(G1) := Q1,

G2(i2) = G3(i3) := Ik, 1 ≤ i2 ≤ n2, 1 ≤ i3 ≤ n3,

R(G4) := QT4 ,

L(G5) := Q5,

R(G6) := Σ5Q
T
6

for (column-) orthogonal matrices Q1 ∈ Rn1×r1 , Q4 ∈ Rn4r4×r3 , Q5 ∈ Rr4n5×r5 Q6 ∈
Rn6×r5 and (σ5)i ∝ β−i, β > 1. This tensor has exactly the properties postulated in the
example.

Lemma 4.5:

Proof. Let V = V +
i ∪ V

−
i , V

+/−
i := {X ∈ Rn×m | Xi1 ≥/< 0, ‖X‖F = ω}. We can split

the integral and simplify

Y := (

∫

V +
i

+

∫

V −
i

)XTHX dX =

∫

V +
i

(X<i,− | Xi,− | X>i,−)TH(X<i,− | Xi,− | X>i,−)

+ (X<i,− | −Xi,− | X>i,−)TH(X<i,− | −Xi,−, | X>i,−) dX

Hence, for i 6= j,

Yij =

∫

V +
i

XT
i,−HXj,− + (−Xi,−)THXj,− dX = 0.

It follows that the matrix Y is diagonal and must therefore, considering permutations
P , s.t. V = PV , be a multiple of Im. Now, let H + HT = QTDQ be an eigenvalue
decomposition. Then tr(D) = 2tr(H) and since Q is orthogonal, we have

2tr(Y ) =

∫

V

tr(XTDX) dX =

n∑

i=1

∫

V

tr(XT
i,−diXi,−) dX =

n∑

i=1

di

∫

V

Xi,−X
T
i,− dX

Further, due to symmetry

n

∫

V

Xj,−X
T
j,− dX =

∫

V

n∑

i=1

Xi,−X
T
i,− dX =

∫

V

tr(XTX) dX

for any j. Thereby

tr(Y ) =
1

2n

n∑

i=1

di

∫

V

tr(XTX) dX =
tr(H)

n

∫

V

tr(XTX) dX = ω2 tr(H)

n
|V |.

This then gives the result.
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Theorem 4.7:

Proof. We omit the scalings s1, s2 for simplicity since they only have to be carried along
the lines. We search for N+ := argminÑ CB,S,L,ΓNΘ,N (Ñ). Substituting

(∆L,∆N,∆R)→ (∆LΓ−1,Γ−1∆NΘ−1,Θ−1∆R)

we can (up to a constant factor) restate C as

CB,S,R,ΓNΘ,L(Ñ) ∝
∫

Vω
‖(L+ ∆LΓ−1)Ñ(R+ Θ−1∆R)−B‖2S d∆Ld∆Nd∆R,

Vω = {(∆L,∆N ,∆R) | ‖∆L‖2 + ‖∆N‖2 + ‖∆R‖2 ≤ ω2}. (9.1)

Each of the independent matrices of the minimizing core is restated as

N+(j) = argmin
Ñ(j)

∫

Vω
‖((R+ Θ−1∆R)T ⊗K (L+ ∆LΓ−1)) vec(Ñ(j)) (9.2)

− vec(B(j))‖2vec(S(j)) d∆Ld∆Nd∆R (9.3)

Let j be arbitrary but fixed from now on. For any x, it is ‖x‖vec(S(j)) = ‖H(j)x‖F =

xTH(j)x for a diagonal, square matrix H(j) ∈ R|I|/nN×|I|/nN with
H(j)(s),(s) = δs∈S(j) (hence H(j)2 = H(j)). Using the normal equation, we obtain
N+(j) = Y −1b, where

Y =

∫

Vω
(R+ Θ−1∆R)⊗K (L+ ∆LΓ−1)T

H(j) (R+ Θ−1∆R)T ⊗K (L+ ∆LΓ−1) d∆Ld∆Nd∆R

and

b =

(∫

Vω
(R+ Θ−1∆R)⊗K (L+ ∆LΓ−1)T

)

H(j) vec(B(j)) d∆Ld∆Nd∆R.

In both Y and b, any perturbation that appears only one-sided vanishes due to sym-

metry of Vω. Hence b = |Vω| (RT ⊗K L)vec(S(j)),−
T

vec(B(j))vec(S(j)) and for dδ :=
d∆Ld∆Nd∆R

Y =

∫

Vω
(RT ⊗K L)T H(j) (RT ⊗K L) dδ

+

∫

Vω
(RT ⊗K ∆LΓ−1)T H(j) (RT ⊗K ∆LΓ−1) dδ

+

∫

Vω
(∆RTΘ−1 ⊗K L)T H(j) (∆RTΘ−1 ⊗K L) dδ

+

∫

Vω
(∆RTΘ−1 ⊗K ∆LΓ−1)T H(j) (∆RTΘ−1 ⊗K ∆LΓ−1) dδ

Now, let ` = #R, n = #N , k = #L. Since V is a version of the (` + n + k)-sphere, we
can use the following integration formula: Let f : Rn+m → Rk be a sufficiently smooth
function and Sv−1

ω be the v-sphere of radius ω. Then

∫

Sn+m−1
ω

f(xn, xm) dx =

∫ π/2

0

ω

∫

Sn−1
ω sin(u)

∫

Sm−1
ω cos(u)

f(xn, xm) dxm dxn du.
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We use it twice and thereby split the integral. For a function f we then obtain

∫

V
f dδ =

∫ ω

λ=0

∫

Sn+`+k−1
λ

f dδdλ =

∫ ω

λ=0

λ

∫ π/2

g=0

∫

Sn−1
λ sin(g)

∫

S`+k−1
λ cos(g)

f dδdgdλ =

∫ ω

λ=0

λ

∫ π/2

g=0

∫

Sn−1
λ sin(g)

λ cos(g)

∫ π/2

u=0

∫

S`−1
λ cos(g) sin(u)

∫

Sk−1
λ cos(g) cos(u)

fd∆Ld∆Rdud∆Ndgdλ

If f is independent of ∆N , this then simplifies to

=

∫ ω

λ=0

λ2

∫ π/2

g=0

|Sn−1
λ sin(g)| cos(g)

∫ π/2

u=0

∫

S`−1
λ cos(g) sin(u)

∫

Sk−1
λ cos(g) cos(u)

fd∆Ld∆Rdudgdλ

We further use the identity (where the function Γ(·) is not to be confused with the given
diagonal matrix Γ)

∫ π/2

0

cos(x)p sin(x)q dx =
Γ((p+ 1)/2) Γ((q + 1)/2)

2Γ((p+ q + 2)/2)
=: ν(p, q)

We apply these and Corollary 4.6 for different f = (X ⊗K Y )TH(j)(X ⊗K Y ). For
δ1, δ2 ∈ {0, 1} we set X as RT (δ1 = 0) or ∆RTΘ−1 (δ1 = 1) and analogously Y as L
(δ2 = 0) or ∆LΓ−1 (δ2 = 1). For the summands Y (0, 0) +Y (1, 0) +Y (0, 1) +Y (1, 1) = Y
this then yields

Y (δ1, δ2) =

∫ ω

λ=0

λ2

∫ π/2

g=0

cos(g)
2πn/2(λ sin(g))n−1

Γ(n/2)
∫ π/2

u=0

2π`/2(λ cos(g) sin(u))`−1

Γ(`/2)

(
λ2 cos(g)2 sin(u)2

)δ1

2πk/2(λ cos(g) cos(u))k−1

Γ(k/2)

(
λ2 cos(g)2 cos(u)2

)δ2
dudgdλ · CH(δ1, δ2)

= c ·
∫ ω

λ=0

λn+`+k−1+2δ1+2δ2dλ

·
∫ π/2

g=0

cos(g)`+k−1+2δ1+2δ2 sin(g)n−1dg

·
∫ π/2

u=0

cos(u)k−1+2δ2 sin(u)`−1+2δ1du · CH(δ1, δ2)

= c
ωn+`+k+2δ1+2δ2

n+ `+ k + 2δ1 + 2δ2
ν(`+ k − 1 + 2δ1 + 2δ2, n− 1) ν(k − 1 + 2δ2, `− 1 + 2δ1) CH(δ1, δ2)

for c = 8π(n+k+`)/2

Γ(n/2)Γ(`/2)Γ(k/2) . The constant matrices CH are given by

CH(0, 0) = K(0, 0)T K(0, 0), K(0, 0) = (RT ⊗K L)vec(S(j)),−

nLrθCH(1, 0) = K(1, 0)T K(1, 0), K(1, 0) = R−,S(j)2
T ⊗K Γ−1

nRrγCH(0, 1) = K(0, 1)T K(0, 1), K(0, 1) = Θ−1 ⊗K LS(j)1,−

|S(j)|−1nLnRrγrθCH(1, 1) = K(1, 1)T K(1, 1), K(1, 1) = Θ−1 ⊗K Γ−1
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Furthermore, it is |Vω| = cω
n+`+k

n+`+k ν(` + k − 1, n − 1) ν(k − 1, ` − 1). Factoring out this

base volume in Y = |Vω|Ỹ by using properties of the Γ function, one derives:

Ỹ (0, 0) = CH(0, 0), Ỹ (1, 0) = ζ1CH(1, 0), Ỹ (0, 1) = ζ2CH(0, 1), Ỹ (1, 1) = ζ1,2CH(1, 1),

where the constants s1 and s2 have been added again. Restating the result again as a
least squares problem finishes the proof.

Lemma 5.1:

Proof. First,

ζ
(µ)
1 = ω2s2

1

∏µ−1
s=1 ns
E

= ω2

∑µ−1
s=1 ns∑d
s=1 ns

,

with an analog result for ζ
(µ)
2 . For the mixed term, we have

ζ
(µ)
1,2 = ζ

(µ)
1 ζ

(µ)
2

E

E + 2
= ζ

(µ)
1 ζ

(µ)
2 (1− 2

E + 2
).

10 Appendix B (Behavior of the SALSA Filter)

We investigate the behavior of the filter F as defined by (4.8) and its relevance for SALSA
in order to motivate Definitions 6.1, 6.2 and 6.9. Throughout this section, we assume
that the sampling is such that the minimizer in Theorem 4.7 is basically equal to

N+ = F � (LT B RT ), (10.1)

which at last holds for P = I (cf. Corollary 4.8). Since ζ1ζ2 = ζ1,2 (cf. (5.1)), we can
rewrite

N+ = Dζ1(Γ) (LT B RT ) Dζ2(Θ)

Dc(Σ) := (I + cΣ−2)−1.

We are interested in the fixpoints of this update, i.e. we postulate N+ = Γ N Θ. Then,
since R(N Θ) is row-orthogonal (cf. Lemma 4.2), it holds

Dζ1(Γ) Z = Γ, (10.2)

Z = R((LT B RT ) Dζ2(Θ)) R(N Θ)T ,

where Z =: diag(σ(Z)) is necessarily a diagonal matrix (certainly, an analogous argument
holds for Θ as well). The focus of our analysis is hence on the fixpoints of the function
dσ(Z),c : σ 7→ (1 + cσ−2)−1σ(Z), because (10.2) can only hold if dσ(Z),ζ1(γi) = γi for all

i. For each pair (σ(Z), c), the only attractive fixpoint (if existent) is given by fstab =
1
2σ

(Z) + 1
2

√
(σ(Z))2 − 4c and the repelling one by frep = 1

2σ
(Z) − 1

2

√
(σ(Z))2 − 4c. At

the point where fstab = frep, it holds σ = c = 1
2σ

(Z). The minimal value which the
term (1 + cσ−2)−1 can hence take in any attractive fixpoint, is F = 1/2. This behavior
is shown in Figure 8. The relation to the filter is given by

Fi,1 = (Dζ1(Γ))i,i · (Dζ2(Θ))1,1︸ ︷︷ ︸
≈1

.
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Figure 8: Left: Plotted are the fixpoints (continuous for attractive, dashed for repelling ones, in teal) of
dσ(Z),c for one fixed c with repect to σ(Z). Within the hatched area, singular values rise until they reach

the upper boundary. A lower limit to the singular values is indicated as dotted, magenta line. Right:
Different values of c are considered. The turning point σ = c = 1

2
σ(Z) corresponds to a filter value of

1/2.

A (stabilized) singular value corresponds to some attractive fixpoint of dσ(Z),c. Therefore
it necessarily holds (Dζ1(Γ))i,i > 0.5. In practice, the value Fstab should be chosen
larger, as well as Fvirt lower, not only to reduce the computational cost, but also to
avoid premature reactions within the optimization. Since the singular values Γ take part
in another, neighboring micro-step as well, the accordant value is also taken into account
(cf. 4.8).
It is now easy to understand why a lower limit to all singular values is required. As
displayed in Figure 8 (left), for any fixed σ(Z), a singular value σ must be above a certain
threshold (that corresponds to the repelling fixpoint) to be increased by an accordant
micro-step. So we cannot allow it to converge to zero.
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11 Appendix C (Experimential Data)

Following are the precise values for Figures 3 and 4:

n = 12 ALS SALSA
d Csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar

6
2 6.3e-04(1.9) 8.4e-05(2.5) 90(31) 3.1e-04(1.1) 2.1e-05(1.9) 391(78)
4 2.2e-04(1.8) 6.5e-05(2.3) 78(17) 1.3e-04(1.2) 2.8e-05(1.3) 615(62)
6 1.4e-04(1.1) 5.5e-05(1.1) 86(7) 8.8e-05(1.1) 3.2e-05(1.1) 892(52)

9
2 7.5e-04(2.2) 2.3e-04(4.2) 145(71) 1.7e-04(1.1) 1.1e-05(1.6) 1031(146)
4 8.0e-05(1.1) 2.0e-05(1.1) 306(30) 4.0e-05(1.1) 9.8e-06(1.1) 2370(201)
6 6.5e-05(1.1) 2.5e-05(1.2) 295(12) 3.1e-05(1.1) 1.2e-05(1.0) 3291(423)

15
2 6.6e-04(1.5) 3.3e-04(2.3) 444(261) 5.6e-04(1.6) 1.7e-04(3.0) 2132(633)
4 3.2e-05(1.1) 6.9e-06(1.1) 1219(60) 3.2e-05(1.3) 5.1e-06(1.4) 11498(1886)
6 2.7e-05(1.1) 8.7e-06(1.1) 1575(78) 1.1e-05(1.4) 3.4e-06(1.3) 20186(4826)

n = 20 ALS SALSA
d Csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar

6
2 3.8e-03(1.1) 1.8e-03(1.1) 79(40) 9.2e-04(1.2) 6.6e-05(2.3) 632(141)
4 5.5e-04(1.2) 1.7e-04(1.2) 155(46) 3.7e-04(1.2) 5.3e-05(1.2) 918(136)
6 4.6e-04(1.3) 1.5e-04(1.5) 224(69) 2.9e-04(1.2) 6.7e-05(1.1) 1271(129)

9
2 2.6e-03(1.0) 1.4e-03(1.1) 170(72) 5.3e-04(1.1) 3.2e-05(1.2) 1334(266)
4 2.9e-04(1.1) 1.0e-04(1.1) 363(31) 2.4e-04(1.1) 4.5e-05(1.3) 3119(629)
6 2.0e-04(1.1) 7.7e-05(1.2) 677(123) 1.3e-04(1.1) 4.4e-05(1.1) 5104(1302)

15
2 1.6e-03(1.0) 8.6e-04(1.0) 638(217) 1.7e-03(1.1) 7.1e-04(1.2) 3152(491)
4 1.1e-04(1.1) 2.4e-05(1.2) 1994(144) 1.1e-04(1.1) 1.9e-05(1.1) 15622(2465)
6 8.2e-05(1.0) 2.8e-05(1.1) 2929(91) 4.9e-05(1.5) 1.6e-05(1.4) 32167(9352)

Table 1: Results for Subsection 7.4 (with arithmetic and geometric variances in brackets) using a (pure)
Matlab implementation

d = 8, n = 8 ALS SALSA
Csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar

2 6.7e-03(3.3) 3.2e-03(6.2) 82(59) 2.4e-04(10.0) 9.3e-06(36.5) 498(179)
4 4.2e-03(1.2) 3.8e-03(1.3) 38(22) 1.1e-05(3.8) 1.7e-07(15.4) 1276(523)
6 3.8e-03(1.2) 3.6e-03(1.2) 40(25) 2.1e-06(4.6) 4.9e-08(11.7) 2278(967)

d = 7, n = 8 ALS SALSA
Csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar

2 1.4e-01(6.4) 3.1e-02(8.9) 76(98) 1.9e-03(2.4) 3.0e-05(3.5) 403(93)
4 6.5e-04(39.5) 2.2e-04(63.8) 99(59) 2.9e-05(1.5) 6.9e-06(1.0) 954(627)
6 6.9e-05(23.3) 4.2e-05(26.8) 84(32) 1.5e-05(1.1) 8.2e-06(1.0) 659(45)

d = 11, n = 8 ALS SALSA
Csf 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar 〈RC/‖MC‖〉geo 〈RP /‖MP ‖〉geo 〈time〉ar

2 4.2e-02(1.7) 3.8e-02(2.3) 52(43) 2.0e-03(6.4) 4.6e-04(16.8) 759(493)
4 3.1e-02(3.4) 2.3e-02(6.6) 110(134) 6.4e-05(1.3) 9.7e-06(1.6) 2527(752)
6 3.4e-02(4.3) 3.0e-02(6.2) 99(152) 3.8e-05(1.4) 7.5e-06(1.8) 4657(1162)

Table 2: Results for Subsection 7.5 (with arithmetic and geometric variances brackets) using a (pure)
Matlab implementation
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