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INCOMPRESSIBLE FLUID PROBLEMS ON EMBEDDED
SURFACES: MODELING AND VARIATIONAL FORMULATIONS

THOMAS JANKUHN∗, MAXIM A. OLSHANSKII† , AND ARNOLD REUSKEN‡

Abstract. Governing equations of motion for a viscous incompressible material surface are
derived from the balance laws of continuum mechanics. The surface is treated as a time-dependent
smooth orientable manifold of codimension one in an ambient Euclidian space. We use elementary
tangential calculus to derive the governing equations in terms of exterior differential operators in
Cartesian coordinates. The resulting equations can be seen as the Navier-Stokes equations posed
on an evolving manifold. We consider a splitting of the surface Navier-Stokes system into coupled
equations for the tangential and normal motions of the material surface. We then restrict ourselves
to the case of a geometrically stationary manifold of codimension one embedded in Rn. For this case,
we present new well-posedness results for the simplified surface fluid model consisting of the surface
Stokes equations. Finally, we propose and analyze several alternative variational formulations for
these surface Stokes problem, including constrained and penalized formulations, which are convenient
for Galerkin discretization methods.

1. Introduction. Fluid equations on manifolds appear in the literature on math-
ematical modelling of emulsions, foams and biological membranes, e.g. [34, 8, 24, 29];
they are also studied as a mathematical problem of its own interest, e.g. [13, 36, 35,
3, 22, 2]. In certain applications, such as the dynamics of liquid membranes [4], one
is interested in formulations of fluid equations on evolving (time-dependent) surfaces.
Such equations are considered in several places in the literature. The authors of [4]
formulate a continuum model of fluid membranes embedded in a bulk fluid, which
includes governing equations for a two-dimensional viscous fluid moving on a curved,
time-evolving surface. The derivation of a surface strain tensor in that paper uses
techniques and notions from differential geometry (k-forms). A similar model was
derived from balance laws for mass and momentum and associated constitutive equa-
tions in [27]. The derivation and the resulting model uses intrinsic variables on a
surface. Equations for surface fluids in the context of two-phase flow are derived or
used in [7, 5, 24, 28]. In those papers the surface fluid dynamics is strongly coupled
through a no-slip condition with the bulk fluid dynamics. An energetic variational
approach was recently used in [19] to derive the dynamical system for the motion of
an incompressible viscous fluid on an evolving surface.

Computational methods and numerical analysis of these methods for fluid equa-
tions on surfaces is a relatively new field of research. Exploring the line of research
starting from the seminal paper [33], it is noted in [4] and [24] that “the equations of
motion are formulated intrinsically in a two-dimensional manifold with time-varying
metric and make extensive use of the covariant derivative and calculations in lo-
cal coordinates, which involve the coefficients of the Riemannian connection and its
derivatives. The complexity of the equations may explain why they are often written
but never solved for arbitrary surfaces.” Recent research addressing the numerical
solution of fluid equations on surfaces includes [24, 27, 26, 5, 29, 30, 28].

We discuss the two main contributions of this paper. The first one is related to
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modeling. Based on fundamental surface continuum mechanical principles treated in
[16, 23] we derive fluid equations on an evolving surface from the conservation laws of
mass and momentum for a viscous material surface embedded in an ambient contin-
uum medium. We assume that the bulk medium interacts with the fluidic membrane
through the area forces. To derive the governing equations, we use only elementary
tangential differential calculus on a manifold. As a result, the surface PDEs that
we derive are formulated in terms of differential operators in the Cartesian coordi-
nates. In particular, we avoid the use of local coordinates. Using exterior differential
operators makes the formulation more convenient for numerical purposes and facil-
itates the application of a level set method or other implicit surface representation
techniques (no local coordinates or parametrization involved) to describe the surface
evolution. The resulting equations can be seen as the Navier-Stokes equations for a
viscous incompressible 2D surface fluid posed on an evolving manifold embedded in
R3. The same equations have been derived and studied in the recent paper [19]. In
that paper, however, the derivation is based on global energy principles instead of lo-
cal conservation laws. For gaining some further insight in this rather complex surface
Navier-Stokes model, we consider a splitting of the system into coupled equations for
the tangential and normal motions of the material surface. We comment on how the
surface Navier-Stokes equations that we consider are related to other formulations of
surface fluid equations found in the literature (Remark 3.1 and Section 3.2).

The second main contribution of this paper is a derivation of well-posedness results
for a strongly simplified case. We restrict ourselves to a geometrically stationary closed
smooth manifold of codimension one, embedded in Rn. For this case, we present new
well-posedness results for the surface Stokes equations. Key ingredients in the analysis
are a surface Korn’s inequality and an inf-sup result for the Stokes bilinear form
that couples surface pressure and surface velocity. We propose and analyze several
different variational formulations of the surface Stokes problem, including constrained
and penalized formulations, which are convenient for Galerkin discretization methods.

The remainder of this paper is organized as follows. Section 2 collects necessary
preliminaries and auxiliary results. In section 3 we derive the governing equations for
the motion of a viscous material surface, the surface Navier-Stokes system. We also
consider a directional splitting of the system and discuss alternative formulations of
the surface fluid equations. In section 4 we prove a fundamental surface Korn’s in-
equality and well-posedness of a variational formulation of the surface Stokes problem.
In sections 5 and 6 we introduce alternative weak formulations of the surface Stokes
problem, which we believe are more convenient for Galerkin discretization methods
such as surface finite element methods.

2. Preliminaries. This section recalls some basics of tangential calculus for
evolving manifolds of codimension one. Several helpful auxiliary results are also
proved in this section. Consider Γ(t) ⊂ Rn, n ≥ 3, a (n − 1)-dimensional closed,
smooth, simply connected evolving manifold. We are mainly interested in n = 3, but
most of the analysis applies for general n. In the modeling part, section 3, we only
consider n = 3. The fact that the manifold is embedded in Rn plays a key role in
the derivation and formulation of the PDEs. For example, the surface differential
operators will be formulated in terms of differential operators in Euclidean space Rn,
with respect to the standard basis in Rn.

The outward pointing normal vector on Γ(t) is denoted by n = n(x, t), and
P = P(x, t) = I − nnT is the normal projector on the tangential space at x ∈ Γ(t).
First we consider Γ = Γ(t) for some fixed t and introduce spatial differential operators.
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For f : Rn → Rm, the Frechet derivative at x ∈ Rn is denoted by∇f(x) ∈ L(Rn,Rm),
the vector space of linear transformations from Rn to Rm. We often skip the argument
x in the notation below. The partial derivative is denoted by ∂if = (∇f)ei ∈ Rm,
i = 1, . . . , n. Hence (∇f)z =

∑n
j=1 ∂jfzj for z ∈ Rn. Note that for a scalar function

f , i.e m = 1, ∇f is a row vector; hence ∇T f denotes column gradient vector.
The tangential derivative (along Γ) is defined as (∇g)Pz =

∑n
j=1 ∂jg(Pz)j for

z ∈ Rn. For m = 1, i.e, f : Rn → R the corresponding i-th (covariant) partial
derivative is denoted by ∇i:

∇if =

n∑
j=1

∂jf(Pei)j , and ∇Γf :=
(
∇1f, . . . ,∇nf

)
= (∇f)P. (2.1)

We also need such covariant partial derivatives for m = n and m = n×n. For m = n
the i-th covariant partial derivative of v : Rn → Rn is defined as

∇iv =

n∑
j=1

P∂jv(Pei)j , and ∇Γv :=
(
∇1v . . .∇nv

)
= P(∇v)P. (2.2)

We shall use the notation ∇TΓf := (∇Γf)T , ∇TΓv := (∇Γv)T for the transposed vector
and matrix, and similarly for ∇Γ replaced by ∇. For m = n × n the i-th covariant
partial derivative of A : Rn → Rn×n is defined as

∇iA =

n∑
j=1

P∂jAP(Pei)j , and ∇ΓA :=
(
∇1A . . .∇nA

)
. (2.3)

Note that from nTP = Pn = 0 we get P(∂jP)P = −P(∂jnnT +n∂jn
T )P = 0, hence

∇iP = 0, i = 1, . . . , n, i.e., ∇ΓP = 0. The covariant partial derivatives of f , v, or A
depend only on the values of these fields on Γ. For scalar functions f, g and vector
functions u,v ∈ Rn we have the following product rules:

∇Γ(fg) = g∇Γf + f∇Γg (2.4)

∇Γ(u · v) = vT∇Γu + uT∇Γv (2.5)

∇Γ(fu) = f∇Γu + Pu∇Γf. (2.6)

Besides these covariant (partial) derivatives we also need tangential divergence oper-
ators for v : Γ→ Rn and A : Γ→ Rn×n. These are defined as follows:

divΓv := tr(∇Γv) = tr(P(∇v)P) = tr(P(∇v))) = tr((∇v)P), (2.7)

divΓA :=
(

divΓ(eT1 A), . . . , divΓ(eTnA)
)T
. (2.8)

These tangential differential operators will be used in the modeling of conservation
laws in section 3. In particular, the differential operator P divΓ

(
∇Γv +∇TΓv

)
, which

is the tangential analogon of the div(∇v +∇Tv) operator in Euclidean space, plays
a key role. We derive some properties of this differential operator.

We first relate P divΓ(∇Γv) to a Laplacian. For this we introduce the space
of smooth tangential vector fields C∞T (Γ)n := {v ∈ C∞(Γ)n | Pv = v }, with
scalar product (u,v)0 =

∫
Γ

u · v ds, and the space of smooth tangential tensor fields
C∞T (Γ)n×n := {A ∈ C∞(Γ)n×n | PAP = A }, with scalar product (A,B)0 :=
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∫
Γ

tr(ABT ) ds. From the partial integration identity (see, e.g., (14.17) in [15]),∫
Γ

v · (P divΓA) ds =

∫
Γ

v · divΓA ds

= −
∫

Γ

tr(AT∇Γv) ds, v ∈ C∞T (Γ)n, A ∈ C∞T (Γ)n×n,

it follows that for L : C∞T (Γ)n×n → C∞T (Γ)n given by L(A) = P divΓ(A) we have

(L(A),v)0 = −(A,∇Γv)0 for all v ∈ C∞T (Γ)n, A ∈ C∞T (Γ)n×n.

Hence, −L is the adjoint of ∇Γ, i.e., L = −∇∗Γ. Thus we have

P divΓ(∇Γv) = L(∇Γv) = −∇∗Γ∇Γv =: ∆Γv. (2.9)

This vector Laplacian ∆Γ is the so-called Bochner Laplacian [31]. It can be extended
to a self-adjoint operator on a suitable space of vector fields on Γ.

The mapping v → P divΓ∇TΓv requires more calculations. Note that in Eu-
clidean space we have div (∇Tv)i = div (eTi ∇Tv) = div (∂iv) = ∂i(div v). Hence,
for divergence free functions v we have div∇Tv = 0. For the corresponding surface
differential operator we do not have a simple commutation relation, and the analysis
becomes more complicated. In [4, 24] this mapping is analyzed with intrinsic tools
of differential geometry. It is, however, not clear how the divergence operators used
in those papers, which are defined via differential forms, are related to the tangential
divergence operator divΓ introduced above, which is defined in Euclidean space Rn.
Lemma 2.1 below shows a representation for P divΓ∇TΓv. The proof of the lemma
is given in the Appendix and it only uses elementary tangential calculus. For a vec-
tor field v on Γ(t) we shall use throughout the paper the notion vT = Pv for the
tangential part and vN = v · n for the normal coordinate, so that

v = vT + vNn on Γ(t).

Lemma 2.1. Let H = ∇Γn ∈ Rn be the Weingarten mapping (second fundamental
form) on Γ(t) and κ := tr(H) the mean curvature. The following holds:

P divΓ∇TΓv = ∇TΓ divΓv +
(
tr(H)H−H2

)
v, ∀ v ∈ C∞T (Γ)n, (2.10)

n · divΓ∇TΓv = n · divΓ(∇Γv) = −tr(H∇Γv)

= −tr(H∇ΓvT )− vN tr(H2), ∀ v ∈ C∞(Γ)n, (2.11)

P divΓ(H) = ∇TΓκ. (2.12)

If n = 3, then (2.10) simplifies to

P divΓ∇TΓv = ∇TΓ divΓv +Kv, ∀ v ∈ C∞T (Γ)3, (2.13)

where K is the Gauss curvature, i.e. the product of the two principal curvatures.
We also need an n-dimensional manifold defined by the evolution of Γ,

S :=
⋃
t>0

Γ(t)× {t};

the (space–time) manifold S is embedded in Rn+1. We assume a flow field u : Rn →
Rn such that VΓ = u · n on S, where VΓ denotes the normal velocity of Γ. For
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a smooth f : Rn → R we consider the material derivative ḟ (the derivative along
material trajectories in the velocity field u).

ḟ =
∂f

∂t
+

n∑
i=1

∂f

∂xi
ui =

∂f

∂t
+ (∇T f) · u.

The material derivative ḟ is a tangential derivative for S, and hence it depends only
on the surface values of f on Γ(t). For a vector field v, we define v̇ componentwise,
i.e., v̇ = ∂v

∂t + (∇v)u. In Lemma 2.2 we derive some useful identities for the material
derivative of the normal vector field and normal projector on Γ.

Lemma 2.2. The following identities hold on Γ(t):

ṅ = HuT −∇TΓuN = −P(∇Tu) n, (2.14)

Ṗ = P(∇Tu)(I−P) + (I−P)(∇u)P. (2.15)

Proof. Let d(x, t) be the signed distance function to Γ(t) defined in a neighborhood
Ut of Γ(t). Define the normal extension of n and H to Ut by nT = ∇d, H = ∇2d,
and consider the closest point projection p(x, t) = x− d(x, t)n(x, t), x ∈ Ut. We then
have

∂d

∂t
(x, t) = −uN (p(x, t), t), x ∈ Ut.

Using the chain rule we get

∇[uN (p(x, t), t)] = ∇ΓuN (p(x, t), t)
(
I− d(x, t)H

)
x ∈ Ut.

Take x ∈ Γ(t), using d(x, t) = 0, p(x, t) = x and ∇d = nT , we obtain

∂nT

∂t
=

∂

∂t
∇d = ∇∂d

∂t
= −∇ΓuN , on Γ(t). (2.16)

Using this and Hn = 0 we get

ṅ =
∂n

∂t
+ (∇n)u = −∇TΓuN + HuT ,

which is the first identity in (2.14). From uT · n = 0 we get nT∇uT = −uTT∇n and
combined with the symmetry of H we get

HuT = −(∇TuT )n. (2.17)

Furthermore, we note that ∇(uNn) = n∇uN + uN∇n, hence nT∇(uNn) = ∇uN .
Using this, the result in (2.17) and PH = H we get

−∇TΓuN + HuT = −P
(
∇TuN + (∇TuT )n

)
= −P

(
∇T (uNn)n + (∇TuT )n

)
= −P(∇Tu)n,

which is the second identity in (2.14). The result in (2.15) immediately follows from
Ṗ = −ṅnT − nṅT and the second identity in (2.14).

From (2.14) we see that the vector field ṅ is always tangential to Γ(t).
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3. Modeling of material surface flows. In this section, we assume Γ(t) is
a material surface (fluidic membrane) embedded in R3 as defined in [16, 23], with
density distribution ρ(x, t). By u(x, t), x ∈ Γ(t), we denote the smooth velocity field
of the density flow on Γ, i.e. u(x, t) is the velocity of the material point x ∈ Γ(t).
The geometrical evolution of the surface is defined by the normal velocity uN , for
u(x, t) = uT +uNn. For all t ∈ [0, T ], we assume Γ(t) ⊂ R3 to be smooth, closed and
embedded in an ambient continuum medium, which exerts external (area) forces on
the material surface.

Let γ(t) ⊂ Γ(t) be a material subdomain. For a smooth f : S → R, we shall make
use of the Leibniz rule,

d

dt

∫
γ(t)

f ds =

∫
γ(t)

(ḟ + f divΓu) ds. (3.1)

Inextensibility. We assume that the surface material is inextensible, i.e. d
dt

∫
γ(t)

1 ds =

0 must hold. The Leibniz rule yields d
dt

∫
γ(t)

divΓu ds = 0. Since γ(t) can be taken

arbitrary, we get

divΓu = 0 on Γ(t). (3.2)

Denote by κ := tr(H) = divΓn the (doubled) mean curvature. Equation (3.2) can be
rewritten as

divΓuT = −uNκ on Γ(t). (3.3)

Mass conservation. From d
dt

∫
γ(t)

ρ(x, t) ds = 0, (3.1) and (3.2) we obtain ρ̇ = 0.

Hence, if ρ|t=0 = const, then ρ is constant for all t > 0.

Momentum conservation. The conservation of linear momentum for γ(t) reads:

d

dt

∫
γ(t)

ρu ds =

∫
∂γ(t)

fν ds+

∫
γ(t)

b ds, (3.4)

where fν are the contact forces on ∂γ(t), b = b(x, t) are the area forces on γ(t), which
include both tangential and normal forces, for example, normal stresses induced by
an ambient medium and elastic bending forces.

Surface diffusion. For the modeling of the contact forces we use results from [16, 23].
In [16], Theorems 5.1 and 5.2, the “Cauchy-relation” fν = Tν, with a symmetric
tangential stress tensor T is derived (here ν = ν(x, t) denotes the normal to ∂γ(t)
that is tangential to Γ(t)). We denote this surface stress tensor by σΓ, which has the
properties σΓ = σTΓ and σΓ = PσΓP. In [16] the following (infinitesimal) surface
rate-of-strain tensor is derived:

Es(u) :=
1

2
P(∇u +∇Tu)P =

1

2
(∇Γu +∇TΓu). (3.5)

One needs a constitutive law which relates σΓ to this surface strain tensor. We
consider a “Newtonian surface fluid”, i.e., a constitutive law of the form

σΓ = −πP + C(∇Γu),
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with a scalar function π, surface pressure, and a linear mapping C. Assuming
isotropy and requiring an independence of the frame of reference leads to the so-
called Boussinesq–Scriven surface stress tensor, which can be found at several places
in the literature, e.g., [1, 7, 16, 33] :

σΓ = −πP + (λ− µ)( divΓu)P + 2µEs(u),

with an interface dilatational viscosity λ and interface shear viscosity µ > 0. We
assume λ and µ constant. Due to inextensibility the dilatational term vanishes, and
we get

σΓ = −πP + 2µEs(u).

Using the relation divΓ(πP) = ∇TΓπ − πκn, and the Stokes theorem, we obtain
the following linear momentum balance for γ(t):

d

dt

∫
γ(t)

ρu ds =

∫
γ(t)

−∇TΓπ + 2µdivΓ(Es(u)) + b + πκn ds.

For the left hand-side of this equation, the Leibniz rule (3.1) gives

d

dt

∫
γ(t)

ρu ds =

∫
γ(t)

(ρ̇u + ρu̇ + ρu divΓu) ds.

The inextensibility and mass conservation yield the simplification ρ̇u+ρu̇+ρu divΓu =
ρu̇. Hence, we finally obtain the surface Navier-Stokes equations:{

ρu̇ = −∇TΓπ + 2µdivΓ(Es(u)) + b + πκn,

divΓu = 0.
(3.6)

Clearly, the area forces b coming from the adjacent inner and outer media are
critical for the dynamics of the the material surface. For the example of an ideal
bulk fluid, one may assume normal stresses due to the pressure drop between inner
and outer phases, b = n(pint − pext), where pint − pext may depend on the surface
configuration, e.g., its interior volume. In an equilibrium with u = 0 this simplifies to
the balance of the internal pressure and surface tension forces according to Laplace’s
law. Such a balance will be more complex if there is only a shape equilibrium, i.e.,
uN = 0, but uT 6= 0, cf. (3.14) below. The area forces b may also include forces
depending on the shape of the surface, such as those due to an elastic bending energy
(Willmore energy), cf. for example, [6, 9, 18]. These forces depend on geometric
invariants and material parameters. Therefore b may (implicitly) depend on u.

The model (3.6) is also derived in [7, 19] and used in [5, 24, 20]. In [5, 20] the
interface viscous fluid flow is coupled with outer bulk fluids and for the velocity of
the material surface u =: uΓ one introduces the condition uΓ = (ubulk)|Γ, which
means that both the normal and tangential components of surface and bulk velocities
coincide. The condition for the tangential component corresponds to a “no-slip”
condition at the interface. The condition uΓ = (ubulk)|Γ, allows to eliminate uΓ (using
a momentum balance in a small bulk volume element that contains the interface) and
to deal with the surface forces (both viscous and b) through a localized force term
in the bulk Navier-Stokes equation. The surface pressure π remains and is used to
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satisfy the inextensibility condition divΓu = 0. In [24] a simplification of (3.6) for
stationary surfaces, cf. (3.13) below, is considered.

In certain cases, for example, when the inertia of the surface material dominates
over the viscous forces in the bulk, it may be more appropriate to relax the no-
slip condition uΓ = (ubulk)|Γ and assume the coupling with the ambient medium only
through the area forces b. In such a situation the surface flow can not be “eliminated”
and the system (3.6) becomes an important part of the surface–bulk fluid dynamics
model. In Section 3.1 below we take a closer look at the normal and tangential
dynamics defined by (3.6). As far as we know, in the literature the surface Navier-
Stokes equations (3.6), without coupling to bulk fluids, have only been considered for
evolving surfaces in the recent paper [19]. Results of numerical simulations of such
a model for a stationary surface, uN = 0, are presented in [24]. This special case
uN = 0 will be further addressed in section 3.1.

3.1. Directional splitting of the surface Navier-Stokes equations. The
system (3.6) determines u = uNn + uT (and thus the evolution of Γ(t)), and there
is a strong coupling between uN and uT . There is, however, a clear distinction
between the normal direction and the tangential direction (see, e.g., the difference
in the viscous forces in normal and tangential direction in (2.10) and (2.11)). In
particular, the geometric evolution of Γ(t) is completely determined by uN (which
may depend on uT ). Therefore, it is of interest to split the equation (3.6) for u into
two coupled equations for uN and uT . We project the momentum equation (3.6) onto
the tangential space and normal space, respectively.

First, we compute with the help of identities (2.14)–(2.15)

Pu̇ = u̇T − Ṗu = u̇T + (ṅ · uT )n + uN ṅ. (3.7)

Note that the last two terms on the right hand-side are orthogonal, since n · ṅ = 0.
Applying P to both sides of (3.7) and using P2 = P and Pṅ = ṅ, we also get

Pu̇ = ∂•ΓuT + uN ṅ, (3.8)

where ∂•ΓuT := Pu̇T can be interpreted as the covariant material derivative. We also
have

n · u̇ = u̇N − ṅ · u = u̇N − ṅ · uT .

We thus get the following directional splitting of the equations in (3.6):
ρu̇T = −∇TΓπ + 2µP divΓEs(u) + bT − ρ

(
(ṅ · uT )n + uN ṅ

)
,

ρu̇N = 2µn · divΓEs(u) + πκ+ bN + ρṅ · uT ,
divΓuT = −uNκ.

(3.9)

The material derivative of the tangential vector field on the left-hand side of the
first equation in (3.9), in general, is not tangential to Γ(t). Its normal component is
balanced by the term ρ(ṅ · uT )n. One can also write this equation only in tangential
terms employing the identity (3.8) instead of (3.7). This results in the tangential
momentum equation

ρ∂•ΓuT = −∇TΓπ + 2µP divΓEs(u) + bT − ρuN ṅ. (3.10)

These equations can be further rewritten using

Es(u) = Es(uT ) + uNH. (3.11)
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From this, the definition of the Bochner Laplacian and the relations in Lemma 2.1 we
get

P divΓEs(u) = P divΓEs(uT ) + P divΓ(uNH)

=
1

2
P divΓ(∇ΓuT ) +

1

2
P divΓ(∇TΓuT ) + uNP divΓ(H) + H∇TΓuN

=
1

2
∆ΓuT +

1

2
KuT +

1

2
∇TΓ divΓuT + uN∇TΓκ+ H∇TΓuN .

We would like to have a representation of P divΓEs(u) that does not include deriva-
tives of H or its invariants. To this end, we note that divΓuT = −uNκ implies

∇TΓ divΓuT + uN∇TΓκ = −∇TΓ (uNκ) + uN∇TΓκ = −κ∇TΓuN .

Combining this we get

2µP divΓEs(u) = µ
(
∆ΓuT +KuT −∇TΓ ( divΓuT )− 2(κP−H)∇TΓuN

)
.

Note that κP−H has the same eigenvalues and eigenvectors as H, which follows from
the relation κP−H = KH†, cf. (8.6). Thus we can rewrite (3.9) as

ρ∂•ΓuT = −∇TΓπ + µ
(
∆ΓuT +KuT −∇TΓ ( divΓuT )− 2(κP−H)∇TΓuN

)
+ bT − ρuN ṅ

ρu̇N = −µ(tr(H∇ΓuT ) + uN tr(H2)) + πκ+ bN + ρṅ · uT
divΓuT = −uNκ.

(3.12)

It is interesting to note that the first equation in (3.12) is of (quasi-)parabolic type,
while the equation for the evolution of the normal velocity involves only first order
derivatives. Furthermore, ṅ can be expressed in terms of uT and uN ,

ṅ = HuT −∇TΓuN .

Hence the derivatives in the terms ρuN ṅ and ρṅ · uT on the right-hand side of (3.9)
and (3.12) are only tangential ones (no ∂

∂t involved). From this we conclude that
given u(·, t) for t < t∗ (which determines Γ(t), t < t∗) the second equation in (3.12)
determines the dynamics of uN (·, t) at t = t∗, hence of the surface Γ(t∗), and the first
equation (3.12) determines the dynamics of uT (·, t) at t = t∗.

Remark 3.1. The model (3.9), or equivalently the one in (3.12), differs from the
fluid model on evolving surfaces derived in [4]. In the latter a tangential momentum
equation (eq. (3) in [4]) is introduced, which is similar to, but different from, the first
equation in (3.9). The model in [4] is based on a “conservation of linear momentum
tangentially to the surface”, which is not precisely specified. Our model is derived
based on a conservation of total momentum (i.e. for u, not for uT ) as in (3.4).
The “tangential” equation (1.2) in the paper [19] is the same as the one obtained by
applying the projection P to the first equation in (3.6). We just showed that this
projected equation equals (3.10) and the first equations in (3.9) and (3.12).

We next discuss two special cases.
Firstly, assume that the system evolves to an equilibrium with Γ(t) stationary, i.e.,

uN = 0. Then the equations in (3.9) reduce to the following surface incompressible
Navier-Stokes equations for the tangential velocity uT on a stationary surface Γ: ρ

(
∂uT
∂t

+ (uT · ∇Γ)uT

)
= −∇TΓπ + 2µP divΓEs(uT ) + bT

divΓuT = 0.

(3.13)
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For the derivation of the first equation in (3.13) we used (3.10), uN = 0, and

∂•ΓuT = P(
∂uT
∂t

+ (∇uT )u) = P(
∂uT
∂t

+ (∇uT )uT )

=
∂uT
∂t

+ (∇ΓuT )uT =:
∂uT
∂t

+ (uT · ∇Γ)uT .

The second equation in (3.9), or (3.12), reduces to

bN = µtr(H∇ΓuT )− πκ− ρuT ·HuT , (3.14)

which describes the reaction force bN of the surface flow uT . If there is no surface
flow, i.e., uT = 0, this reaction force is the usual surface tension πκ, with a surface
tension coefficient π.

In the second case, Γ(0) is taken equal to the plane z = 0 in R3. This is not a
closed surface, but the derivation above also applies to connected surfaces without
boundary, which may be unbounded. We consider bN = 0, uN (0) = 1. Only easily
checks that independent of uT the second equation in (3.9) is satisfied for uN (·, t) = 1,
ṅ = 0, H = 0 for all t ≥ 0. Hence, the evolving surface is given by the plane
Γ(t) = { (x, y, z) = (0, 0, t) }. The first and the third equations in (3.9) reduce to the
standard planar Navier-Stokes equations for uT .

3.2. Other formulations of the surface Navier–Stokes equations. Differ-
ent formulations of the surface Navier–Stokes equations are found in the literature.
Some of them are formally obtained by substituting Cartesian differential operators
by their geometric counterparts [36, 10] rather than from first mechanical principles.
This leads to surface formulations which are not necessarily equivalent. The diagram
below and identities (3.15) illustrate some “correspondences” between Cartesian and
surface operators, where for the surface velocities we assume uN = 0, i.e., u = uT ,

Rn−1 : −div (∇u +∇Tu)
div u=0

= −∆u = (rotT rot−∇div )u
o o o

Manifold : −P divΓ(2Es(u))︸ ︷︷ ︸ divΓu=0

6= −∆Γu︸ ︷︷ ︸ 6= −∆H
Γ u︸ ︷︷ ︸

surface Bochner Hodge
diffusion Laplacian Laplacian

Moreover, for a surface in R3 we have, cf. (2.9), (2.13) and the Weitzenböck iden-
tity [31], the following equalities for u such that divΓu = 0:

−P divΓ(2Es(u)) = −∆Γu−Ku = −∆H
Γ u− 2Ku. (3.15)

Formulations of the surface momentum equations employing the identity

−P divΓ(2Es(u)) = −∆H
Γ u− 2Ku,

with the Hodge–de Rham Laplacian −∆H
Γ can be convenient for rewriting the prob-

lem in surface stream-function – vorticity variables, see, e.g., [24]. However, such
a formulation is less convenient for the analysis of well-posedness, since the Gauss
curvature K in general does not have a fixed sign. Moreover, in a numerical approx-
imation of (3.13) one would have to approximate the Gauss curvature K based on
a “discrete” (e.g., piecewise planar) surface approximation, which is known to be a
delicate numerical issue.
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In the remainder we restrict our discussion to the formulation with the surface
rate-of-strain tensor P divΓ(Es(u)). Using (3.15) we see that the Navier-Stokes system
(3.13), which is the special case of (3.6) for a stationary surface, coincides with the
Navier-Stokes equations (on a stationary surface) considered in [35] (see [35] section
6). We note that the authors of [19] also considered equations (3.6) simplified to the
case of a stationary surface. They, however, claim to obtain a system different from
the one in [35].

If the evolution of the surface is known a priori, then uN is given, and the first
and the third equations in (3.9) or (3.12) define a closed system for uT and π. The
continuum mechanics corresponding to such a closed system is less clear to us, since the
fundamental momentum balance (3.4) used to derive the equations does not assume
any a priori constraint on uN . Nevertheless, the resulting system may be of its own
interest from a mathematical or numerical point of view.

3.3. Surface Stokes problem. The mathematical analysis of well-posedness of
a problem as in (3.9) (or (3.6)) is a largely open question. In this paper, we study
the well-posedness of a relatively simple special case, namely a Stokes problem on
a stationary surface. We assume that uN = 0 (stationary surface) and assume that
the viscous surface forces dominate and thus it is reasonable to skip the nonlinear
uT · ∇ΓuT term in the material derivative. Furthermore, we first restrict to the
equilibrium flow problem, i.e., ∂uT∂t = 0. We thus obtain the stationary surface Stokes
problem

−2µP divΓ(Es(uT )) +∇TΓπ = bT ,

divΓuT = 0.
(3.16)

One readily observes that all constant pressure fields and tangentially rigid surface
fluid motions are in the kernel of the differential operator on the left-hand side of
the equation. Integration by parts, immediately implies the necessary consistency
condition for the right-hand side of (3.16),∫

Γ

bTvT ds = 0 for all vT s.t. Es(vT ) = 0. (3.17)

In the following sections we analyze different weak formulations of this Stokes problem.
The subspace of all tangential vector fields vT on Γ satisfying Es(vT ) = 0 plays

an important role in the analysis of the surface Stokes problem. In the literature, such
fields are known as Killing vector fields, see, e.g., [32]. For a smooth two-dimensional
Riemannian manifold, Killing vector fields form a Lie Algebra, which dimension is
at most 3. For a compact smooth surface Γ embedded in R3 the dimension of the
algebra is 3 iff Γ is isometric to a 2D sphere.

4. A well-posed variational surface Stokes equation. Assume that Γ is a
closed sufficiently smooth manifold. We introduce the space V := H1(Γ)n, with norm

‖u‖21 :=

∫
Γ

‖u(s)‖22 + ‖∇ue(s)‖22 ds, (4.1)

where ‖ · ‖2 denotes the vector and matrix 2-norm. Here ue denotes the constant
extension along normals of u : Γ → Rn. We have ∇ue = ∇(u ◦ p) = ∇ueP, where p
is the closest point projection onto Γ, hence only tangential derivatives are included
in this H1-norm. We define the spaces

VT := {u ∈ V | u · n = 0 }, E := {u ∈ VT | Es(u) = 0 }. (4.2)
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Note that E is a closed subspace of VT and dim(E) ≤ 3. We use an orthogonal
decomposition VT = V 0

T ⊕E with the Hilbert space V 0
T = E⊥‖·‖1 (hence V 0

T ∼ VT /E).
We also need the factor space L2

0(Γ) := { p ∈ L2(Γ) |
∫

Γ
p dx = 0 } ∼ L2(Γ)/R. We

introduce the bilinear forms

a(u,v) := 2µ

∫
Γ

Es(u) : Es(v) ds = 2µ

∫
Γ

tr
(
Es(u)Es(v)

)
ds, u,v ∈ V, (4.3)

b(u, p) := −
∫

Γ

p divΓu ds, u ∈ V, p ∈ L2(Γ). (4.4)

We take f ∈ V ′, such that f(vT ) = 0 for all vT ∈ E, and consider the following
variational Stokes problem: determine (uT , p) ∈ V 0

T × L2
0(Γ) such that

a(uT ,vT ) + b(vT , p) = f(vT ) for all vT ∈ VT ,
b(uT , q) = 0 for all q ∈ L2(Γ).

(4.5)

This weak formulation is consistent to the strong one in (3.16) for f(vT ) = (bT ,vT )0.
Note that Es(vT ) = 0 implies tr(∇ΓvT ) = 0 and thus divΓvT = 0, hence, b(vT , p) = 0
for all vT ∈ E. From this it follows that the first equation in (4.5) is always satisfied
for all vT ∈ E, hence it is not relevant whether we use VT or V 0

T as space of test
functions. For the analysis of well-posedness a surface Korn’s inequality is a crucial
ingredient. Although there are results in the literature on Korn’s type equalities on
surfaces, e.g. [11, 21], these are related to surface models of thin shells, such as
Koiter’s model, which contain derivatives in the direction of the normal displacement.
In the literature we did not find a result of the type given in (4.6) below, and therefore
we include a proof.

Lemma 4.1. Assume Γ is C2 smooth. There exists cK > 0 such that

‖Es(u)‖L2(Γ) ≥ cK‖u‖1 for all u ∈ V 0
T . (4.6)

Proof. Let u = uT ∈ V 0
T be given. Throughout this proof, the extension ue is

also denoted by u. Since ∇ue = ∇u includes only tangential derivatives we introduce
the notation

∇Pu := (∇u)P = ∇ue

for the tangential derivative. Furthermore, the symmetric part of the tangential
derivative tensor is denoted by es(u) := 1

2 (∇Pu+∇TPu). Below we derive the following
inequality:

‖u‖L2(Γ) + ‖es(u)‖L2(Γ) ≥ c‖u‖1 for all u ∈ VT . (4.7)

Recall (2.17), Hu = −(∇Tu)n. Using this and P = I−nnT we get∇TΓu = P∇TuP =
P∇Tu−P(∇Tu)nnT = ∇TPu + HunT , and thus we get the identity

Es(u) = es(u) +
1

2

(
H unT + nuTH

)
.

Since the surface is C2-smooth this equality implies ‖es(u)‖L2(Γ) ≤ ‖Es(u)‖L2(Γ) +
c‖u‖L2(Γ), and combining this with (4.7) yields

‖u‖L2(Γ) + ‖Es(u)‖L2(Γ) ≥ c‖u‖1 for all u ∈ VT , (4.8)
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with some c > 0. We now apply the Petree-Tartar Lemma, e.g. Lemma A.38 in [14]
to Es ∈ L(V 0

T , L
2(Γ)3×3), which is injective, and the compact embedding id : V 0

T →
L2(Γ)3. Application of this lemma yields the desired result.

It remains to proof the inequality (4.7). We use a local parametrization of Γ and
a standard Korn’s inequality in Euclidean space.

Let ω ⊂ Rn−1 be a bounded open connected domain and Φ : ω → Γ a local
parametrization of Γ; {ξ1, . . . , ξn−1} denotes the Cartesian basis in Rn−1. Partial

derivatives of Φ(ξ) = Φ(ξ1, . . . , ξn−1) are denoted by aα(ξ) := ∂Φ(ξ)
∂ξα

∈ Rn, α =
1, . . . , n − 1. Below we often skip the argument ξ ∈ ω. Greek indices always range
from 1 to n− 1, and roman indices from 1 to n. We furthermore define an := n. The
dual basis (or contravariant basis) is given by aβ such that Paβ = aβ and aβ · aα = 0
for α 6= β and aβ · aβ = 1. Furthermore an := an. Note that Paα = aα, Paα = aα,
Pan = Pan = 0. A given vector function u : Γ→ Rn is pulled back to ω as follows:

~u = (~u1, . . . , ~un−1) : ω → Rn−1, ~uα := (u ◦ Φ) · aα.

Note that u ◦Φ = ~uαaα (Einstein summation convention). We also use the standard
notation ~uα,β := ∂~uα

∂ξβ
. Note that (aλ · aα),β = 0 and thus aλ · aα,β = −aλ,β · aα holds.

Using this we get

~uα,β = aα · ∇(u ◦ Φ)ξβ + (u ◦ Φ) · aα,β = aα · (∇u ◦ Φ)aβ + (~uλa
λ) · aα,β

= aα · (∇Pu ◦ Φ)aβ + ~uλ(aλ · aα,β) = aα · (∇Pu ◦ Φ)aβ − ~uλaλ,β · aα.

Now note that for ξ ∈ ω and x := Φ(ξ) we have

∇P (aλ ◦ Φ−1(x))aβ(ξ) = ∇(aλ ◦ Φ−1(x))aβ(ξ) = ∇aλ(ξ)∇Φ−1(x)aβ(ξ)

= ∇aλ(ξ) [∇Φ(ξ)]
−1

aβ(ξ) = ∇aλ(ξ)ξβ =
∂aλ(ξ)

∂ξβ
= aλ,β(ξ).

Using this in the relation above we obtain

~uα,β(ξ) = aα(ξ) ·
(
∇Pu(x)− ~uλ(ξ)∇P (aλ ◦Φ−1)(x)

)
aβ(ξ), ξ ∈ ω, x = Φ(ξ). (4.9)

The symmetric part of the Jacobian in Rn−1 is denoted by E(~u)αβ = 1
2

(
~uα,β +~uβ,α

)
.

Thus we get (we skip the arguments again):

E(~u)αβ = aα ·
(
es(u)− ~uλes(aλ ◦ Φ−1)

)
aβ . (4.10)

From this we get, using the C2 smoothness of the manifold:

‖E(~u)(ξ)‖2 ≤ c(‖es(u)(x)‖2 + ‖~u(ξ)‖2) ≤ c(‖es(u)(x)‖2 + ‖u(x)‖2), (4.11)

for ξ ∈ ω, x = Φ(ξ). Now we derive a bound for ‖∇Pu(x)‖2 in terms of ‖∇~u(ξ)‖2.
Let ei be the standard basis in Rn. Note that ei = (ei ·al)al. Using this, (∇Pu)n = 0
and (4.9) we get (we skip the arguments ξ and x):

ej · ∇Puei = (ei · al)(ej · am)am∇Pu al

= (ei · aβ)(ej · aα)aα · ∇Pu aβ + (ei · aβ)(ej · n)n · ∇Pu aβ

= (ei · aβ)(ej · aα)
(
~ua,β + ~uλaα · ∇P (aλ ◦ Φ−1)aβ

)
+ (ei · aβ)(ej · n)n · ∇Pu aβ .
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Note that

n · ∇Pu aβ = n · (∇u)Paβ = n · (∇u)aβ = (∇T )un · aβ = −Hu · aβ = −u ·Haβ .

Using this in the relation above and using the smoothness of Γ then yields

‖∇Pu(x)‖2 ≤ c
(
‖∇~u(ξ)‖2 + ‖~u(ξ)‖2 + ‖u(x)‖2) ≤ c

(
‖∇~u(ξ)‖2 + ‖~u(ξ)‖2), (4.12)

for ξ ∈ ω, x = Φ(ξ). For ω ⊂ Rn−1 we have the Korn inequality∫
ω

(‖E(~u)‖22 + ‖~u‖22) dξ ≥ cK
∫
ω

‖∇~u‖22 dξ, (4.13)

with cK = cK(ω) > 0. Since Γ is compact, there is a finite number of maps Φi : ωi →
Φi(ωi) ⊂ Γ, i = 1, . . . , N , which form a parametrization of Γ. Using the results in
(4.12), (4.13) and (4.11) we then get

‖u‖21 =

∫
Γ

‖∇Pu(x)‖22 + ‖u(x)‖22 dx ≤ N max
1≤i≤N

∫
Φi(ωi)

‖∇Pu(x)‖22 + ‖u(x)‖22 dx

≤ c
∫
ωi

(‖∇~u(ξ)‖22 + ‖~u(ξ)‖22)|det(∇Φi)| dξ

≤ c
∫
ωi

‖E(~u)(ξ)‖22 + ‖~u(ξ)‖22|det(∇Φi)| dξ

≤ c
∫

Φi(ωi)

‖es(u)(x)‖22 + ‖u(x)‖22 dx ≤ c
∫

Γ

‖es(u)(x)‖22 + ‖u(x)‖22 dx,

from which the inequality in (4.7) easily follows.

Korn’s inequality implies ellipticity of the bilinear form a(·, ·) on V 0
T . In the next

lemma we treat the second main ingredient needed for well-posedness of the Stokes
saddle point problem, namely an inf-sup property of b(·, ·).

Lemma 4.2. The following inf-sup estimate holds:

inf
p∈L2

0(Γ)
sup

vT∈V 0
T

b(vT , p)

‖vT ‖1
≥ c > 0. (4.14)

Proof. Take p ∈ L2
0(Γ). Let φ ∈ H1(Γ) ∩ L2

0(Γ) be the solution of

∆Γφ = p on Γ.

For φ we have the regularity estimate ‖φ‖H2(Γ) ≤ c‖p‖L2 . Take vT := −∇TΓφ ∈ VT ,
and the orthogonal decomposition vT = v0

T + ṽ, with v0
T ∈ V 0

T , ṽ ∈ E. We have
‖v0

T ‖1 ≤ ‖vT ‖1 ≤ c‖φ‖H2(Γ) ≤ c‖p‖L2 . Furthermore, Es(ṽ) = 0 implies div Γṽ = 0
and thus b(v0

T , p) = b(vT , p). Using this we get

b(v0
T , p)

‖v0
T ‖1

=
b(vT , p)

‖v0
T ‖1

=

∫
Γ

∆Γφ p ds

‖v0
T ‖1

=
‖p‖2L2

‖v0
T ‖1
≥ c‖p‖L2 , (4.15)

which completes the proof.

Theorem 4.3. The weak formulation (4.5) is well-posed.
Proof. Note that ‖Es(u)‖L2 ≤ ‖∇ue‖L2 and ‖ divΓu‖L2 ≤ n‖∇Γu‖L2 = n‖∇ue‖L2

hold. From this it follows that the bilinear forms a(·, ·) and b(·, ·) are continuous on
VT × VT and VT × L2

0(Γ), respectively. Ellipticity of a(·, ·) follows from Lemma 4.1
and the inf-sup property of b(·, ·) is derived in Lemma 4.2.
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5. A well-posed variational Stokes problem with Lagrange multiplier.
In the formulation (4.5) the velocity uT is tangential to the surface. For Galerkin
discretization methods, such as a finite element method, this may be less convenient,
cf. Remark 6.2. In this section we consider a variational formulation in a space, which
does not contain the restriction n · u = 0. The latter constraint is treated using a
Lagrange multiplier.

We recall the notation u = uT + uNn for u ∈ V and we define the following
Hilbert space:

V∗ := {u ∈ L2(Γ)n : uT ∈ VT , uN ∈ L2(Γ) }, with ‖u‖2V∗ := ‖uT ‖21 + ‖uN‖2L2(Γ).

Note that V∗ ∼ VT ⊕ L2(Γ) and E ⊂ VT ⊂ V∗ is a closed subspace of V∗. Thus the
space V 0

∗ := E⊥V∗ ∼ V 0
T ⊕ L2(Γ) is a Hilbert space. We introduce the bilinear form

b̃(u, {p, λ}) = −
∫

Γ

divΓuT p ds+

∫
Γ

λuN ds = b(uT , p) + (λ, uN )L2(Γ).

on V∗ ×
(
L2

0(Γ)× L2(Γ)
)
. Based on the identity (3.11) we introduce (with an abuse

of notation, cf. (4.3)) the bilinear form

a(u,v) := 2µ

∫
Γ

tr
(
(Es(uT ) + uNH)(Es(vT ) + vNH)

)
ds, u,v ∈ V∗. (5.1)

In this bilinear form we need H1(Γ) smoothness of the tangential component uT
and only L2(Γ) smoothness of the normal component uN . If the latter component
has also H1(Γ) smoothness, then from (3.11) we get

a(u,v) = 2µ

∫
Γ

tr
(
Es(u)Es(v)

)
ds, for u,v ∈ V. (5.2)

The bilinear form a(·, ·) is continuous:

a(u,v) ≤ c‖u‖V∗‖v‖V∗ ∀ u,v ∈ V∗.

For f ∈ V ′∗ such that f(vT ) = 0 for all vT ∈ E, we consider the modified Stokes
weak formulation: Determine (u, {p, λ}) ∈ V 0

∗ ×
(
L2

0(Γ)× L2(Γ)
)

such that

a(u,v) + b̃(v, {p, λ}) = f(v) for all v ∈ V 0
∗ ,

b̃(u, {q, ν}) = 0 for all {q, ν} ∈ L2
0(Γ)× L2(Γ).

(5.3)

One easily checks that this weak formulation is consistent to the strong one in (3.16).
Below in Remark 5.1 we explain that the test space V 0

∗ in the first equation in (5.3)
can be replaced by V∗.

Theorem 5.1. The problem (5.3) is well-posed. Furthermore, its unique solution
satisfies u · n = 0.

Proof. The bilinear forms a(·, ·) and b̃(·, {·, ·}) are continuous on V∗ × V∗ and
V∗×

(
L2

0(Γ)× L2(Γ)
)
, respectively. It is not clear whether a(·, ·) is elliptic on V 0

∗ . For
well-posedness, however, it is sufficient to have ellipticity of this bilinear form on the
kernel of b̃(·, {·, ·}):

K := {u ∈ V 0
∗ | b̃(u, {p, λ}) = 0 for all {p, λ} ∈ L2

0(Γ)× L2(Γ) }.
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Note that

K ⊂ K0 := {u ∈ V 0
∗ | b̃(u, {0, λ}) = 0 for all λ ∈ L2(Γ) } = {u ∈ V 0

∗ | uN = 0 }.

Using Lemma 4.1 it follows that

a(u,u) = a(uT ,uT ) ≥ 2µc2K‖uT ‖21 = 2µc2K‖u‖2V∗ for all u ∈ K0, (5.4)

and thus we have ellipticity of a(·, ·) on the kernel of b̃(·, {·, ·}). It remains to check
the inf-sup condition for b̃(·, {·, ·}). Take {p, λ} ∈ L2

0(Γ)×L2(Γ). Take v0
T ∈ V 0

T such
that

b(v0
T , p)

‖v0
T ‖1

≥ c‖p‖L2

holds, with c > 0, cf. Lemma 4.2. Take v := v0
T + λn ∈ V 0

∗ , hence ‖v‖2V∗ =
‖v0

T ‖21 + ‖λ‖2L2(Γ). We get:

b̃(v, {p, λ}) = b(v0
T , p) + ‖λ‖2L2 ≥ c‖p‖L2‖v0

T ‖1 + ‖λ‖2L2

≥ c
(
‖p‖2L2 + ‖λ‖2L2

) 1
2 ‖v‖V∗ .

Hence, the required inf-sup property holds, from which the well-posedness result fol-
lows. If in the second equation in (5.3) we take q = 0 and ν ∈ L2(Γ) arbitrary, it
follows that for the solution u we have uN = 0, i.e., u · n = 0 holds.

Remark 5.1. If in the first equation in (5.3) we take vN = 0, vT ∈ E, it
follows from Es(vT ) = 0, b̃(v, {p, λ}) = b(vT , p) = 0, f(v) = f(vT ) = 0 that the first
equation in (5.3) is satisfied for all vT ∈ E, hence the test space V 0

∗ can be replaced
by V∗ (which is convenient in a Galerkin method).

For the unique solution u we have uN = 0, and taking vN = 0, ν = 0 it follows
that if f(v) = f(vT ) then (uT , p) coincides with the unique solution of (4.5). In
this sense, the problem (5.3) for (u, {p, λ}) ∈ V 0

∗ ×
(
L2

0(Γ)× L2(Γ)
)

is a consistent
generalization of the problem (4.5) for (uT , p) ∈ V 0

T × L2
0(Γ).

6. Well-posed augmented variational formulations. Another way to relax
the tangential constraint in the test and trial spaces is to augment the weak formula-
tion (4.5) with a normal term such that the augmented bilinear form defines an inner
product in V∗. The augmentation can be done for the bilinear form a(·, ·) used in
(4.5) as well as for the one used in (5.3). Given an augmentation parameter τ ≥ 0,
we define

aτ (u,v) := 2µ

∫
Γ

Es(uT ) : Es(vT ) ds+ τ

∫
Γ

uNvN ds

= a(uT ,vT ) + τ(uN , vN )L2(Γ),

âτ (u,v) := 2µ

∫
Γ

Es(u) : Es(v) ds+ τ

∫
Γ

uNvN ds

= a(u,v) + τ(uN , vN )L2(Γ),

(6.1)

for u,v ∈ V∗. We consider, for τ > 0, the following two problems: determine (u, p) ∈
V 0
∗ × L2

0(Γ) such that

(a)

{
aτ (u,v) + b(vT , p) = f(vT ),

b(uT , q) = 0,
or (b)

{
âτ (u,v) + b(vT , p) = f(vT ),

b(uT , q) = 0,
(6.2)
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for all v ∈ V∗, q ∈ L2(Γ). Well-posedness of these formulations is given in the following
theorem.

Theorem 6.1. The problem (6.2)(a) is well-posed. The problem (6.2)(b) is well-
posed for sufficiently large τ > 0. In (6.2)(b) we take τ > 0 sufficiently large such
that this problem is well-posed. The unique solution u of (6.2)(a) satisfies u · n = 0
and uT coincides with the unique solution of (4.5). For the tangential part ûT of û,
the unique solution of (6.2)(b), the following estimate holds

‖ûT − uT ‖1 ≤ C τ−
1
2 ‖f‖V ′ , (6.3)

where C depends only on Γ.
Proof. Note that due to Korn’s inequality in Lemma 4.1 we have

aτ (u,u) ≥ 2µc2K‖uT ‖21 + τ‖uN‖2L2 ≥ min{2µc2K , τ}‖u‖2V∗ .

Hence for any τ > 0, aτ (u,v) defines a scalar product on V∗. We already discussed
in section 5 that the bilinear form âτ (u,v) is well-defined on V∗ due to the identity
(3.11). If τ is sufficiently large, for example, τ > ‖H‖L∞(Γ), then âτ (u,v) also defines
a scalar product on V∗. The inf-sup property for b(·, ·) on V 0

∗ × L2
0(Γ) immediately

follows from the one on V 0
T ×L2

0(Γ), i.e., (4.14). Hence we obtain the well-posedness of
both problems. It easy to check that u = uT , with uT the solution of (4.5), solves the
augmented problem in (6.2)(a). Denote by û, p̂ the solution of (6.2)(b). By testing
the weak formulation with v = û, q = p, and applying Korn’s inequality we obtain
the estimate for the normal part of û,

‖ûN‖L2(Γ) ≤ Cτ−
1
2 ‖f‖V ′ .

For arbitrary vT ∈ VT we have thanks to (3.11), (4.5) and (6.2),

aτ (ûT − uT ,vT ) = −2µ

∫
Γ

ûNH : Es(vT )ds+ b(vT , p− p̂)

≤ C‖ûN‖L2(Γ)‖vT ‖1 + b(vT , p− p̂) ≤ Cτ−
1
2 ‖f‖V ′‖vT ‖1 + b(vT , p− p̂).

Taking vT = ûT −uT the pressure term vanishes and using Korn’s inequality for the
left-hand side leads to (6.3).

The well-posedness statements in the theorem above still hold if f(vT ) is replaced
by f(v), with f ∈ V ′∗ . We close this section with a few remarks.

Remark 6.1. We briefly address properties of the different variational formu-
lations (4.5), (5.3) and (6.2) that we consider relevant for discretization by Galerkin
methods such as fitted or unfitted finite element methods for PDEs posed on sur-
faces [12, 25]. In such finite element methods one ususally approximates a smooth
surface Γ by a triangulated Lipschitz surface Γh. The normal vector field nh to such a
surface is no longer continuous. Enforcing strongly the tangential condition u ·nh = 0
for the numerical solution can be inconvenient if standard H1(Γ)3-conforming finite
elements are used. Formulations (5.3) and (6.2) allow to enforce the tangential condi-
tion weakly and occur to us more suitable for numerical purposes. In (5.3) one needs a
suitable finite element space for the Lagrange multiplier λ. This is avoided in (6.2), but
that formulation requires a suitable value for the penalty parameter τ . Note that the
formulations in (5.3) and (6.2)(a) are consistent with (4.5), in particular the solution
u ∈ V 0

∗ has the property u·n = 0. The problem in (6.2)(b) is not consistent. However,
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compared to (6.2)(a) the formulation in (6.2)(b) has the attractive property that one
has to approximate ∇Γu = P∇uP instead of ∇ΓuT = P∇uTP = P∇(Pu)P. Hence,
in (6.2)(b) differentiation of P is avoided. A finite element discretization for a vector
surface Laplace problem (instead of Stokes) based on an augmented formulation very
similar to the one in (6.2)(b) has been studied in the recent paper [17]. Finally note
that b(u, p) = −

∫
Γ
p divΓuT ds = −

∫
Γ
p divΓ(Pu) ds, used in both (5.3) and (6.2), re-

quires a differentiation of P. If in the finite element method we have p = ph ∈ H1(Γ)
we can use b(u, p) =

∫
Γ

uT∇Γp ds and thus avoid this differentiation. be considered.

Remark 6.2. The formal extension of the weak formulations in (4.5), (5.3) and
(6.2) to the Navier-Stokes equations (3.13) on stationary surfaces is straightforward,
but not studied in this paper.

7. Conclusions and outlook. Based on surface mass and momentum conser-
vation laws we derived the surface Navier-Stokes equations (3.6), which can be found
in several other papers in the literature. All differential operators used are defined in
terms of first (partial) derivatives in the outer Euclidean space R3. Relations to formu-
lations presented in the setting of differential geometry (e.g., Bochner and Hodge-de
Rham Laplacians) are briefly addressed. Well-posedness results of several variational
formulations of a Stokes problem on a stationary surface are presented. For this a
surface Korn’s inequality and an inf-sup property for the Stokes bilinear form b(·, ·)
are derived.

In a forthcoming paper we will present results of numerical experiments with
finite element methods applied to the different variational formulations of the Stokes
problem. Furthermore, we plan to develop error analyses for these finite element
discretization methods. Clearly, there are many other related topics that can be
addressed in future research. For example, an extension of the well-posedness analysis
presented in this paper to the case of a Stokes problem on an evolving surface, the
extension from Stokes to an Oseen or Navier-Stokes equation on a stationary (or even
evolving) surface, or an analysis of a coupled surface-bulk flow problem. Related
to the latter we note that first results on well-posedness of such a coupled problem
have recently been presented in [20]. Furthermore, a further study and validation of
such surface Navier-Stokes equations (coupled with bulk fluids) based on numerical
simulations is an open research field.
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8. Appendix. We give an elementary proof of the results given in Lemma 2.1.
For this it is very convenient to introduce a tensor notation and the Einstein sum-
mation convention for the differential operators ∇i (covariant partial derivative) and
divΓ (surface divergence). For a scalar function f we have, cf. (2.1):

∇if = ∂kfPki = Pik∂kf.

(scalar entries of the matrix P are denoted Pij). For the vector function u : Rn → Rn
we have, cf. (2.2):

∇iuj := (∇iu)j = (∇Γu)ji = Pjl∂kulPki = Pik∂kulPlj ,

and for matrix valued functions we get, cf. (2.3):

∇iAsl := (∇iA)sl = Psm∂kAmnPnlPki = Pik∂kAmnPmsPnl.

For the divergence operators we have the representations:

divΓu = (∇Γu)ii = Pik∂kulPli = Plk∂kul

( divΓA)i = divΓ(eTi A) = Plk∂kAil.

Below, functions u ∈ C2(Γ)n are always extended to a neighborhood of Γ by taking
constant values along the normal n.

Lemma 8.1. The following identities hold:

(P divΓ∇TΓu)i = ∇k(∇Γu)ki =: ∇k∇iuk (8.1)

∇i( divΓu) = ∇i(∇Γu)kk =: ∇i∇kuk. (8.2)

Proof. We use the representations introduced above and thus get

(P divΓ∇TΓu)i = Pis divΓ(∇TΓu)s = PisPlk∂k(∇Γu)ls. (8.3)

Furthermore,

∇k(∇Γu)ki = Pkr∂r(∇Γu)lsPsiPlk = PisPlr∂r(∇Γu)ls,

and comparing this with (8.3) proves the result in (8.1). Note that using Plknk =
Pmsnm = 0 (where nj denotes the j-th component of the normal vector n) we get

(∇Γu)km∂rPmk = −Pms∂sulPlk
(
(∂rnm)nk + nm(∂rnk)

)
= 0.

Using this we get

∇i(∇Γu)kk = Pir∂r(∇Γu)nmPmkPnk = Pir∂r(∇Γu)nmPmn = Pir∂r
(
(∇Γu)nmPmn

)
= Pir∂r(Pmk∂kulPlnPmn) = Pir∂r(Pmk∂kulPlm)

= Pir∂r(Plk∂kul) = Pir∂r( divΓu) = ∇i( divΓu), (8.4)

and thus the identity (8.2) holds.

We now derive a result for the commutator ∇k∇iuk −∇i∇kuk.
Lemma 8.2. Let H = ∇n be the Weingarten mapping. Then for u ∈ C2(Γ)n

with Pu = u the identity

∇k∇iuk −∇i∇kuk =
(
(tr(H)H−H2)u

)
i
, i = 1, . . . , n,
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holds.
Proof. By definition we have

∇k∇iuk = Pkr∂r(∇Γu)nmPmiPnk = ∂r(Pms∂sulPln)PmiPnr.

We use the product rule, Hrl = ∂rnl, ∂rPms = −∂r(nmns) = −Hrmns − Hrsnm,
Pminm = 0, and thus obtain

∇k∇iuk =
(
∂rPms∂sulPln + Pms∂r∂sulPln + Pms∂sul∂rPln

)
PmiPnr

= −Hrmns∂sulPlrPmi + PisPlr∂s∂rul −Hrnnl∂sulPisPnr.

We also have, cf. (8.4),

∇i∇kuk = Pir∂r(Plk∂kul) = Pir∂rPlk∂kul + PirPlk∂r∂kul

= −Pir(Hrlnk +Hrknl)∂kul + PirPlk∂r∂kul.

Hence, for the difference we get

∇k∇iuk −∇i∇kuk
= Hrlnk∂kulPir −Hrmns∂sulPlrPmi +Hrknl∂kulPir −Hrnnl∂sulPisPnr.

Using Pu = u we get

Hrmns∂sulPlrPmi = Hrmns∂s(Plrul)Pmi −Hrmnsul∂sPlrPmi

= Hmrns∂surPim −Hrmns∂sPlrPmiul.

Furthermore, using Hn = 0, we get

Hrmns∂sPlrPmiul = −Hrmns(Hslnr +Hsrnl)Pmiul = 0.

Combining these results we get

∇k∇iuk −∇i∇kuk = Hrknl∂kulPir −Hrnnl∂sulPisPnr.

Using nTu = 0 (in a neighborhood of Γ) we get ∂k(nlul) = 0 and in combination with
HP = PH = H we get

Hrknl∂kulPir = −Hrk∂knlPirul = −HrkHklPirul

= −HikHklul = −(H2)ilul = −(H2u)i.

Finally note that

Hrnnl∂sulPisPnr = −Hrn∂snlPisPnrul = −HrnHslPisPnrul

= −HrrHilul = −tr(H)(Hu)i.

Combining these results completes the proof.

By combining the results of Lemma 8.1 and Lemma 8.2 we have proved the result
(2.10). Let A be an n × n matrix with PA = AP = A, hence An = ATn = 0. We
then have

n · divΓA = ni( divΓA)i = niPlk∂kAil = Plk∂k(niAil)− Plk∂kniAil
= −PlkHkiAil = −HliAil = −(HA)ll = −tr(HA),
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and combining this with tr(HA) = tr(ATH) = tr(HAT ) one obtains the result in
(2.11). The result in (2.12) follows from (we use Hn = 0, nTH = 0):

(P divΓ(H))i = PijPlk∂kHjl = PijPlk∂k∂jnl = PijPlk∂j∂knl = PijPlk∂jHkl

= Pij∂j(PlkHkl)− Pij(∂jPlk)Hkl

= Pij∂jHll + Pij
(
(∂jnl)nk + (∂jnk)nl

)
Hkl = Pij∂jκ = (∇Γκ)i.

Lemma 8.3. For n = 3 the identity

tr(H)H−H2 = KP,

with K the Gauss curvature, holds.
Proof. We apply the Cayley-Hamilton theorem to the linear mapping PHP =

H : range(P)→ range(P). Note that dim(range(P)) = 2. This yields

H2 − tr(H)H + det(H)P = 0, (8.5)

and using det(H) = K we obtain the desired result.

The result in (2.13) follows from (2.10) and Lemma 8.3. As a corollary of (8.5) we
obtain for n = 3 the identity

κP−H = KH†, (8.6)

where H† is the generalized inverse of H. Note that KH† has the same eigenvalues
and eigenvectors as H, but the eigenpairs are not the same.
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