
Efficient high-order discontinuous Galerkin
computations of low Mach number flows

Jonas Zeifang◊,  Klaus Kaiser*,†,  Andrea Beck◊, 
Jochen Schütz†  and  Claus-Dieter Munz◊

Institut für Geometrie und Praktische Mathematik 
Templergraben 55, 52062 Aachen, Germany

◊ IAG, Universität Stuttgart, Pfaenwaldring 21,D-70569 Stuttgart
* IGPM, RWTH Aachen University, Templergraben 55, D-52062 Aachen
† Faculty of Sciences, Hasselt University, Agoralaan Gebouw D, BE-350 Diepenbeek

M
 A

 Y
   

 2
 0

 1
 7

 
P 

R 
E 

P 
R 

I N
 T

   
  4

 6
 5



Efficient high-order discontinuous Galerkin
computations of low Mach number flows

Jonas Zeifang�, Klaus Kaiser∗,†, Andrea Beck�, Jochen Schütz†, Claus-Dieter Munz�
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In this work, we consider the efficient approximation of low-Mach flows by a high-order scheme.
This scheme is a coupling of a discontinuous Galerkin (DG) discretization in space and an
implicit/explicit (IMEX) discretization in time. The splitting into linear implicit and nonlinear
explicit parts relies heavily on the incompressible solution. The method has been originally
developed for a singularly perturbed ODE and applied to the isentropic Euler equations. Here,
we improve, extend and investigate the so called RS-IMEX splitting method. The resulting
scheme can cope with a broader range of Mach numbers without running into roundoff errors,
it is extended to realistic physical boundary conditions and it is shown to be highly efficient in
comparison to more standard solution techniques.
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1 Introduction

Computing solutions to singularly perturbed problems can be cumbersome and expensive due to their
multi-scale nature. However, they do often occur in physical reality. A typical example is the transition
from the compressible to the incompressible Navier-Stokes equations that constitutes a singularly perturbed
limit [27, 37, 45]. Another example are multiphase flows, in which small liquid droplets are suspended in a
gaseous phase. In such problems, the Mach number ε – the local ratio of flow speed to the speed of sound
– can vary by orders of magnitude. In particular, some parts are very close to the incompressible regime,
meaning that the Mach number is close to zero, while in other parts, ε is of the order of one. Flows of this
nature are sometimes called all-speed flows.

Besides some issues such as the high-order treatment of the ubiquitous shocks or the treatment of turbu-
lence, the efficient discretization of the ε = O(1) case is by now rather well understood, see, e.g., [43] and
the references therein. In this work, we therefore focus on the efficient discretization of the ε� 1 case as a
milestone towards all-speed schemes.

The first idea that comes to mind is to treat the low-Mach case as incompressible. In many situations
however, compressible effects matter even in the vicinity of the incompressible regime. An example is given
by the computation of transcritical droplets in a surrounding (supercritical) gas phase, where a strong
coupling of thermodynamics and hydrodynamics in the droplets occurs. This phase state is also called
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the “compressible liquid” state and of current research interest [25, 24, 40]. Other situations occur in
meteorological flows, where density gradients have to be considered but acoustic waves do not have to be
resolved [13] and situations with strong temperature gradients but low velocities, e.g. natural convection
[32]. As a consequence, we therefore stick to solution procedures for the compressible equations. The
incompressible equations will nonetheless serve as a building block in our discretization.

Computing solutions to the low-Mach equations (ε � 1) using classical discretization paradigms which
mostly rely on explicit time stepping methods leads to the unwanted encounter of having to choose an
extremely small time step size (∆t . ε∆x) to obtain a stable algorithm. Furthermore, due to the excessive
amount of numerical viscosity that is added to the approximate solution, the explicit method may yield an
incorrect solution [35]. One remedy is to use an implicit-explicit (IMEX) time stepping method [2, 26, 9]
that relies on a splitting of the flux functions into a stiff part ,which accounts for the singularity in the
problem and is treated implicitly, and a non-stiff part, which only has a mild dependency on ε, and not on
ε−1. A number of splittings have been developed over the past few years, see, e.g., [28, 8, 12, 19]. All of
those splittings have the disadvantage that it is very difficult to adapt them to other physical situations at
hand, because they are developed for a specific set of equations.

To circumvent this problem, Kaiser et al. have introduced a general splitting and have applied it to the
isentropic Euler equations in [23] that is based on the incompressible limit solution (being called reference
solution), the splitting was hence termed RS-IMEX. The RS-IMEX idea is conceptually similar to the one
introduced in [38] where the underlying problem is a singularly perturbed ODE. Related ideas have already
been published earlier in [15, 8, 17]. One of the advantages of the splitting is that its idea, at least from
a conceptual point of view, is independent from the underlying singularly perturbed problem and thereby
not specific to a fixed system of equations. Furthermore, the implicit part is always linear in the solution
variable, which usually reduces the time-to-solution tremendously, as the resulting algebraic equations are
then also linear. Those linear equations are usually solved through a Krylov-type iteration method, which
means that only matrix-vector products are needed, where the Jacobian is being frequently approximated
via finite differences. For a nonlinear operator at low ε, this can pose severe problems for the approximation
quality. However, as the implicit part of the RS-IMEX is linear, the finite differences are no approximations
but exact. In [22], the splitting has been used within a high-order IMEX discontinuous Galerkin (DG) solver
and it has been shown that the algorithm preserves the asymptotics of the problem, which means that for
ε → 0, the discrete solution converges towards a discretization of the incompressible Euler equations. The
latter is an important property as it means that no spurious effects stemming from the discretization and
polluting the solution are introduced for small Mach numbers.

The purpose of this work is to improve, extend and investigate the method introduced in [22] towards
engineering problems:

• We improve the scheme for very small Mach numbers to suffer less from roundoff errors [30]. This
is achieved through a reformulation of the method in a perturbed variable, partly following the lines
of [39]. Thereby, we alleviate the dependency of the method on ε−1 to a great extend, which is the
core source of roundoff problems.

• We extend the scheme to cope with more realistic physical settings by adding appropriate boundary
conditions ([22] work with periodic ones) and considering three-dimensions.

• We investigate the scheme with respect to runtime in the framework of a modern parallel-architecture
solver and compare it against other methods. For solving the algebraic system, we take advantage of
the linearity of the RS-IMEX in the solution process. We demonstrate the advantages of this novel
method with respect to runtime and accuracy as a function of ε for non-trivial test cases.

The paper is structured as follows. In Sec. 2 we introduce the underlying isentropic Euler equations. Sec. 3
introduces the RS-IMEX splitting for those equations, subsequently, in Sec. 4, the discontinuous Galerkin
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discretization including the IMEX time discretization is detailed. In Sec. 5, we validate the method through
a manufactured solution. Furthermore, we explain in detail how to circumvent a problem with machine
accuracy due to low Mach numbers ε. In Sec. 6 we present more involved numerical examples and discussions
concerning accuracy and efficiency in the low Mach number case. Finally, in Sec. 7 we offer conclusion and
outlook.

2 Equations

In this work we consider the isentropic Euler equations on a domain Ω ⊂ Rd. Non-dimensionalized, those
equations are given by

∂tw +∇x · F (w) = 0 with w :=

(
ρ
ρu

)
and F (w) :=

(
ρu

ρu⊗ u + 1
ε2
p(ρ) · Id

)
.

(1)

with u and ρ denoting velocity and density, respectively. The subscripts t and x denote temporal and spatial
derivatives, respectively. The reference Mach number, defined as

ε :=
u∗√

p(ρ∗)/ρ∗

with u∗ and ρ∗ reference values used in the non-dimensionalization process, is a measure for the compress-
ibility of the system. The pressure p is defined by the equation of state

p(ρ) = κργ , (2)

with γ ≥ 1 the isentropic coefficient and κ > 0 being a constant.

The eigenvalues of ∂
∂wF (w) · n are, for Ω ⊂ R3 and with c :=

√
γp
ρ being the speed of sound, given by

λ1,2 = u · n, λ3,4 = u · n± c

ε
. (3)

It is obvious that for ε� 1 (the low Mach case) those waves have extremely different speeds, i.e. wave speeds
are in O(1) and O(ε−1). In the limit ε → 0 two wave-speeds tend to infinity meaning that the associated
hyperbolic equation degenerates. This means that some information travels infinitely fast, and some at
finite speed. Besides that, one can show that under certain conditions [27], the compressible equations (1)
transform towards the incompressible Euler equations, which are given by

∂t

(
0

1

)
w(0)+∇x ·G(w(0), p(2)) = 0 and ρ(0) ≡ const,

with w(0) :=

(
ρ(0)

(ρu)(0)

)
and G(w(0), p(2)) :=

(
(ρu)(0)

(ρu)(0)⊗(ρu)(0)

ρ(0)
+ p(2) · Id

)
.

(4)

The relation between the compressible and the incompressible equations can be understood best if we assume
that every quantity of Eqn. (1) can be represented by an asymptotic expansion, e.g.,

ρ = ρ(0) + ερ(1) + ε2ρ(2) +O(ε3),

and compute the formal limit ε → 0. The incompressible equations (4) are then obtained under the
assumption of well-prepared initial and boundary conditions, see e.g., [19] for a detailed computation and [27]
for a more formal proof.
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Definition 1 (Well-prepared initial and boundary conditions). We call initial conditions well-prepared if
they possess an asymptotic expansion in positive powers of ε, and

ρ(t = 0) = const +O(ε2) and ∇x · (ρu)(t = 0) = O(ε).

We call boundary conditions well-prepared if they ensure∫
∂Ω

(ρu)|∂Ω · n = 0 and ρ|∂Ω = const +O(ε2).

For well-prepared initial conditions the corresponding incompressible state can be calculated by setting
ε = 0. Consequently, incompressible density is the constant value ρ(0) and the velocity field is u(0). To
initialize p(2) we compute

p = p(ρ(0)) + p′(ρ(0))ε
2ρ(2) +O(ε4) = p(0) + ε2p(2) +O(ε4).

After reformulation one obtains

p(2) = p′(ρ(0))ρ(2) = κγ(ρ(0))
γ−1ρ(2) =

1

ε2
κγ(ρ(0))

γ−1(ρ− ρ(0)). (5)

3 RS-IMEX

In this section, we explain the basic ideas of the RS-IMEX splitting of the isentropic Euler equations for
nearly incompressible flows, more details of the final algorithm are given in Sec. 4. Previously in Sec. 2, we
have seen that the isentropic Euler equations (1) in the low Mach regime transform to the incompressible
Euler equations (4) if ε → 0. A proper numerical method should be designed in such a way that it can
imitate this behavior, i.e. for ε → 0 the method should formally transform into a discretization of the
incompressible equations. This is the so-called asymptotic preserving property, see e.g. [21].

One way to handle this type of equations is to split the flux function F into two parts and treat one part
F̂ with an explicit and the other part F̃ with an implicit method,

∂tw +∇x ·
(
F̃ (w) + F̂ (w)

)
= 0. (6)

This technique results in IMEX time integration schemes, see e.g. [2, 26] and Sec. 4. For stability, efficiency
and accuracy it is important to find a suitable splitting. One splitting developed in the past years is the
so-called RS-IMEX, where RS stands for reference solution. This splitting fulfills the asymptotic preserving
property in the setting of low and high-order discretizations for the isentropic Euler equations [23, 22].
Furthermore, it gave promising results for different types of equations in the sense of stability [22, 46],
efficiency [23] and accuracy [23, 22].

Definition 2 (RS-IMEX splitting). The RS-IMEX splitting is defined by

F̃ (w) = F (w(0)) + F ′(w(0))(w −w(0)) and F̂ = F (w)− F̃ (w)

for a given reference solution w(0) and F ′(w(0)) being the Jacobian of the flux

F ′(w(0)) =
∂F (w(0))

∂w(0)
.
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In general one could choose an arbitrary reference solution, but in the following we use the limit w(0) =
lim
ε→0

w, which corresponds to the solution of the incompressible equation. Applying the splitting to the

isentropic Euler equations gives the following implicit and explicit parts

F̃ =

(
ρu

−ρu(0) ⊗ u(0) + ρu⊗ u(0) + ρu(0) ⊗ u +
(p(ρ(0))+p

′(ρ(0))(ρ−ρ(0))

ε2
· Id

)

F̂ =

(
0

ρ(u− u(0))⊗ (u− u(0)) +
p(ρ)−p(ρ(0))−p′(ρ(0))(ρ−ρ(0))

ε2
· Id

)

Considering the O(ε−2) terms, one obtains one motivation for the chosen reference solution. Since ρ−ρ(0) =
O(ε) one obtains

p(ρ)− p(ρ(0))− p′(ρ(0))(ρ− ρ(0)) = O(ε2).

So, upon inserting the exact solution, there are no stiff terms remaining in the explicit part. Of course this
is only a rational that stands behind the scheme. Computing the eigenvalues of the non-stiff part explicitly,
one obtains

λ̂1,2 =
(
u− u(0)

)
· n, λ̂3 = 0 and λ̂4 = 2

(
u− u(0)

)
· n,

and indeed, these eigenvalues are O(1). Even more, upon inserting the exact solution, they would be in
O(ε) for this given choice of the reference solution. Fast waves are solely solved with the implicit method,
which is a core requirement for unconditional stability with respect to ε.

Remark 1. A similar technique has been used for the stiff collision operator of kinetic equations in [15] and
for the pressure gradient of shallow-water equations in [8, 18].

4 Discretization

4.1 High Order Discontinuous Galerkin IMEX Framework

Discontinuous Galerkin (DG) schemes have recently gained considerable interest as baseline schemes for
multiscale problems, see, e.g., [5, 3, 10, 43] and the references therein. They can be interpreted as a hybrid
finite element - finite volume formulation, where an element-wise Galerkin variational formulation is coupled
weakly to its neighbors through a numerical flux term. Each inner-element solution is approximated by a
polynomial function of given order N . Penalization of discontinuities and the locality of the basis make
DG suitable for hyperbolic problems. In addition, the compact operator with small memory and communi-
cation footprint leads to excellent parallel scaling properties and the element-based approximation enables
unstructured meshing of complex domains.

To obtain a DG discretization, we assume that the domain is separated into a finite number of independent
cells. Then we seek a piece-wise smooth function wh, i.e. it is a polynomial of maximal degree N on every
cell, which fulfills the weak discontinuous Galerkin formulation, given by

∂

∂t

∫
E

wh φ(x) dx +

∮
∂E

F ∗nφ(x) ds−
∫
E

F (wh) ·∇x φ(x) dx = 0, (7)

on every cell E for every polynomial test-function φ(x) of maximal degree N . Note that F ∗n denotes the
surface normal numerical flux function, given by F ∗n := F ∗n(wh

+,wh
−) and superscripts ± denote the values

at the grid cell interface from the neighbor and the local grid cell E, respectively.
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The current investigations are based on a particularly efficient variant of the general DG formulation (7),
namely the Discontinuous Galerkin Spectral Element method (DGSEM) proposed by [29]. In this for-
mulation, the solution w is approximated as a tensor-product of one-dimensional Lagrange interpolating
polynomials of degree N . The N + 1 Legendre-Gauss quadrature points {ξi}Ni=0 are chosen as interpolation
nodes. This collocation of interpolation and integration nodes significantly reduces the number of opera-
tions per degree of freedom. In particular, the tensor-product structure of the solution ansatz transfers to
the operator itself, avoiding element-global volume operations. Instead, the multi-d operator is constructed
of consecutive 1d-operations. One disadvantage is that this reduces the flexibility of DG with respect to
meshing, as only quadrilateral meshes can be used in order not to destroy the tensor product structure.

Details on the implementation and efficiency of the solver are given by Hindenlang et al. [20]. Extension
of the framework to include multiphase flow based on a sharp interface approach, large eddy simulation
methods and shock capturing strategies are given by [14, 16, 6, 41]. The full FLEXI framework, including
pre-and postprocessing tools, is available as open source software1.

For the extension of this solver to an implicit-explicit time discretization we consider again a splitting
as in Eqn. (6). (Note: With F̃ (w) = F (w) and F̂ (w) = 0, also a fully implicit scheme falls into this
framework.) IMEX schemes are defined by their Butcher tableaux featuring the coefficients Ã, Â, c̃ and
ĉ. In semi-discrete form the implicit-explicit Runge-Kutta time discretization for the ith stage and the nth

time step can be written as

wn,i −wn + ∆t

 i∑
j=1

Ãi,j∇x · F̃ (wn,j , tn + c̃j∆t)

+
i−1∑
j=1

Âi,j∇x · F̂ (wn,j , tn + ĉj∆t)

 = 0.

(8)

A reformulation of Eqn. (8) yields

wn,i+∆tÃi,i∇x · F̃ (wn,i, tn + c̃i∆t) =

wn −∆t
i−1∑
j=1

[
Ãi,j∇x · F̃ (wn,j , tn + c̃j∆t) + Âi,j∇x · F̂ (wn,j , tn + ĉj∆t)

]
,

where the right hand side is either known from previous stages or can be computed explicitly. In the
following, this equation is abbreviated by

(Id−∆tÃi,iR̃)wn,i = b,

with R̃ denoting the spatial operator with the implicitly treated fluxes. To solve this potentially non-linear
(for a fully implicit scheme it is, for the RS-IMEX it is linear!) system, a standard root finding algorithm
such as Newton’s method can be applied. Therefore, the IMEX-Runge-Kutta scheme for the kth Newton’s
iteration reads

w(k+1) = w(k) + ∆w

∆w −∆tÃi,i
∂R̃(w(k))

∂w
∆w = −w(k) + ∆tÃi,iR̃(w(k)) + b.

(9)

For the ease of presentation, we have omitted the superscript n, i.

1 www.flexi-project.org, GNU GPL v3.0
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Eqn. (9) is a linear system for every Newton’s iteration k, which can be solved with a standard linear
solving algorithm. To minimize computational costs for calculating and storing the Jacobian, the matrix
free GMRES linear solving algorithm by Saad and Schultz [36] is applied and the Jacobian in Eqn. (9) is
approximated via a finite difference

∂R̃(w(k))

∂w
≈ R̃(w(k) + ∆FD∆w)− R̃(w(k))

∆FD
(10)

for a small ∆FD which can be calculated according to Quin et al. [34] as

∆FD =

√
eps

||∆w||2
,

with eps being the machine accuracy. As the implicit flux of the RS-IMEX splitting is linear, this finite
difference can be simplified but special care has to be taken of Dirichlet type boundary conditions. Hence,
for the RS-IMEX splitting, the Jacobian can be simplified to

∂R̃(w(k))

∂w
= R̃(∆w)− R̃(0). (11)

In our implementation, we use a standard block-Jacobian preconditioner due to the small building and
storing costs of the preconditioner. This turned out to be beneficial for a DG setup with a very large
number of processors [7].

4.2 Incompressible Solver

The RS-IMEX splitting, defined in Def. 2 requires the corresponding incompressible state. Therefore, an
incompressible solver in the discontinuous Galerkin framework is needed. We start with the incompressible
Euler equations as given in Eqn. (4) in three dimensions and reformulate them as

∂t

(
0

1

)
U+∇x · G̃(U) = 0,

for the state vector U = (p(2), u(0),1, u(0),2, u(0),3)T and with the flux

G̃(U) :=

(
u(0)

u(0) ⊗ u(0) +
p(2)

ρ(0)
· Id

)
.

Note as a reminder that p(2) denotes the hydrodynamic pressure, ρ(0) is a constant positive value and

u(0) = (u(0),1, u(0),2, u(0),3)T denotes the three dimensional velocity vector. As the divergence free condition
for the velocity field is not a time evolution equation for the hydrodynamic pressure, a numerical flux
function is required to couple the velocity and pressure field. A flux which satisfies this condition for solving
incompressible flows with a discontinuous Galerkin scheme has been proposed by Bassi et al. [4]. In order to
obtain a flux at the interfaces, artificial compressibility is added for the solution of the Riemann problem. An
iterative Godunov-type Riemann solver is used in [4] to obtain the interface fluxes. As the accuracy of the
incompressible reference solution for the RS-IMEX splitting is not crucial, we use a cheaper Lax-Friedrichs
type Riemann solver motivated by the asymptotic analysis which reads

G̃
∗

=
1

2

(
G̃(U+) + G̃(U−) + Diag

(
ρ(0)

1−γ

κγ
, 1, 1, 1

)
(U+ −U−)

)
,

with κ and γ from the equation of state (2).
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5 Validation and reformulation

In this section, we validate the code and give first impressions of its performance. Furthermore, we indicate
how to avoid problems with machine accuracy when ε is very small. As an underlying example, we use
the two dimensional smooth traveling vortex presented in [22]. For both compressible and incompressible
isentropic Euler equations, the solution is a mere transport of an initial vortex in the x1-direction with speed
0.5. The compressible solution reads

ρ(x, t) = ρ

((
x1 − 0.5t

x2

)
, 0

)
, u(x, t) = u

((
x1 − 0.5t

x2

)
, 0

)
,

for the initial conditions

ρ(x, t = 0) = 2 + (500ε)2 ·

{
0.5e

2
∆r ∆r − Ei( 2

∆r ) for r < 0.5

0 otherwise

u(x, t = 0) =

(
0.5
0

)
+ 500

(
−x2 + 0.5
x1 − 0.5

)
·

{
e

1
∆r for r < 0.5

0 otherwise

(12)

with r :=
√

(x1 − 0.5)2 + (x2 − 0.5)2, ∆r := r2 − 0.25 and the equation of state p(ρ) = κργ with κ = 0.5
and γ = 2. Ei denotes the exponential integral function

Ei(x) :=

∫ x

−∞

et

t
dt.

In our implementation we use the algorithm by Press et al. [33] for the exponential integral function. Bound-
ary conditions of the domain Ω = [0, 1]2 are chosen to be periodic. The initialization of the incompressible
pressure is obtained via Eqn. (5).

5.1 Validation

Here, we present numerical results validating the solver. As time integrators, we use the IMEX Runge-Kutta
schemes IMEX-ARS-222 and IMEX-ARS-443 by [2] as 2nd and 3rd order schemes and IMEX-ARK-4A2 from
[31] as 4th order scheme. All schemes are given with their Butcher tableau in the appendix, see Tbl. 1, 2
and 3. In the numerical results, an appropriate polynomial degree is chosen so that the overall order is the
order of the time integration scheme.

Fig. 1 shows the convergence of the overall L2-error (top) for the incompressible solver and the RS-IMEX
splitting. Both, the incompressible solver itself and the RS-IMEX splitting which uses the incompressible
solver show the correct order of convergence. Only the 3rd order case shows an order that is slightly too
low, but this is inherent to the test case and has already been observed in [22] for under-resolved explicit
calculations. Additionally, Fig. 1 shows the convergence in density for the RS-IMEX splitting (bottom).
Here, the correct order is obtained from 2nd to 4th order and in contrary to the overall L2-error, the L2-error
in density scales with ε2. This is due to the structure of the test case and the asymptotic preserving property
of the method: The density can be expressed as ρ = const +O(ε2) which is a disturbance in ε2 added to a
constant – this can be reproduced exactly by the DG scheme due to the AP property. Momentum can be
expressed as ρu = O(1) and therefore, the error does not scale with ε.

5.2 Efficiency

In this subsection, we evaluate the efficiency of the RS-IMEX splitting in the low Mach number limit. A
desirable method has the following properties:
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Figure 1: h-convergence of 2nd, 3rd and 4th order incompressible and RS-IMEX scheme for traveling vortex
in overall L2-error (top) and L2-error in density (bottom) for different Mach number.

• It is computationally cheaper than a fully implicit scheme. We have hope that this will be the case
due to the linearity of the implicit flux F̃ .

• The scheme should - for small Mach numbers - be more efficient than a fully explicit scheme. This can
also be expected, because the RS-IMEX scheme should be stable under a time step restriction that
depends solely on ∆x, and not on ε. An explicit scheme will always have a time step restriction of
form ∆t . ε∆x due to the CFL condition.

For relatively large Mach numbers, we expect the RS-IMEX splitting scheme to be computationally more
expensive as additional equations have to be solved. The task of this section is to identify the ’sweet spot’
between an explicit and the RS-IMEX scheme.

We compare the computational effort for a fully implicit, a fully explicit and the RS-IMEX scheme in
Fig. 2. The results have been obtained on 16 cores with a temporal and spatial order of four. As time
integration scheme we used the IMEX-ARK-4A2 [31] for RS-IMEX, the implicit part of the same scheme
for the implicit method and a five-stage Runge-Kutta scheme [11] (see Tbl. 5) for the explicit part. For all
computations we start with the same grid and perform several refinements.

CFL numbers were chosen as CFL = 0.9 for the explicit scheme, CFL = 150 for the implicit scheme
and CFL = 0.5 for the RS-IMEX scheme. For the fully implicit and explicit scheme, the CFL condition
is calculated using the eigenvalues of the unsplit system (3), whereas the RS-IMEX splitting only uses the
convective eigenvalue (λ1,2 in (3)). Our computations showed that for the implicit scheme CFL = 150
is a good compromise between required time steps and required iterations per time step. (Note that the
performance of a linear solver depends heavily on ∆t, ∆x and ε.)

First of all, we can conclude from Fig. 2 that RS-IMEX computes a smaller error on the same grid
compared to the other methods (the ith dot of each graph corresponds to the same grid).

It can be seen from Fig. 2 that the computational time of the explicit and the implicit scheme scales
somehow inversely to the Mach number. Since the equation-system gets more and more stiff for ε� 1 the
computational cost of the implicit method grows faster than the explicit ones. For the RS-IMEX only a
slight increase in computational time is noticeable for a decreasing Mach number.

If the efficiency is defined as the quotient of error and computational effort, the efficiency of the ex-
plicit and implicit scheme decreases stronger than for the RS-IMEX splitting with decreasing ε due to the
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Figure 2: Comparison of computational time for 2d traveling vortex (4th oder in space and time) with respect
to overall L2 error.

aforementioned scaling.

The implicit method shows an extreme growth in computational cost and therefore for ε ≤ 10−2 the
efficiency of the implicit method becomes worse than the efficiency of the RS-IMEX method. The explicit
method reaches this sweet spot for a much smaller value of ε, i.e. for ε ≤ 10−4 since the computational
cost of the explicit method is much smaller. Note that fully implicit calculations with ε = 10−4 are not
displayed as machine accuracy issues caused by the finite difference (10) lead to an extremely strong increase
in computational time due to slow convergence.

We computed the same tests for a lower spatial order (2nd order in space and 4th order in time) and a
higher spatial order (8th order in space and 4th order in time) and obtained similar results with an earlier
(low order case) and later (higher order case) break even point. This behavior can be explained by the
worsening of an implicit high order scheme due to increasing storage requirements.

More improvements concerning efficiency are obtained if the error in density is considered, displayed in
Fig. 3. Again, the ith symbol of each line corresponds to the same mesh. Therefore, it is visible that for low
Mach numbers one obtains significantly lower errors with the RS-IMEX scheme than with the fully explicit
scheme with the same mesh. The graph shows that the RS-IMEX splitting is more efficient than the explicit
scheme for Mach numbers ε ≤ 10−3. The steepening of the ε = 10−4 RS-IMEX line is due to round off
errors, which occur due to machine precision. We take a closer look on this problem in the next subsection.

5.3 Solving in the Perturbation

It has to be noted that for very small Mach numbers, the equation becomes extremely stiff and therefore
limited machine accuracy can be a problem. Indeed, in [22] the authors observed problems with the accuracy
for the RS-IMEX discretization for small values of ε which cannot be explained by order reduction [9]. Similar
problems have been seen in Fig. 3. This observation serves as a motivation to rewrite the method similarly
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to the proceeding in [39]. The key trick is to rewrite the solution w as

w = w(0)︸︷︷︸
reference solution

+ε
(
w(1) + εw(2) +O(ε2)

)︸ ︷︷ ︸
perturbation

=: w(0) + εδw

and to observe that w(0) is already part of the algorithm and therefore known, so one only has to solve in
the perturbation δw which fulfills the equation

∂tw(0) + ε∂tδw +∇x ·
(
F̃
(
w(0) + εδw

)
+ F̂

(
w(0) + εδw

))
= 0.

In the setting of the isentropic Euler equations ∂tw(0) can be identified by the corresponding incompressible
equations. Therefore, we can replace it by the flux function G(w(0), p(2)) given in Eqn. (4). This results in

∂tδw +
1

ε
∇x ·

(
F̃
(
w(0) + εδw

)
−G(w(0), p(2)) + F̂

(
w(0) + εδw

))
= 0,

where G is added to the stiff part of the equation, i.e. handled with an implicit method, but does not
change the implicit matrix, since the values are given. Computing the eigenvalues of the explicit part and
using δ(ρu) = ρ(0)δu + uδρ+ εδρδu yields

λ̂1,2 = ε(δu · n), λ̂3 = 0 and λ̂4 = 2ε(δu · n).

Consequently, the explicit part has eigenvalues in O(ε) and the resulting method is supposed to show similar
stability properties with an improved accuracy because many of the O(ε−1) terms drop out.

However, not all the terms cancel directly. One remaining term in the explicit flux is

1

ε2

(
p(ρ(0) + εδρ)− p(ρ(0))− p′(ρ(0))εδρ

)
.

Using a Taylor expansion for p gives

p(ρ(0) + εδρ) = p(ρ(0)) + εp′(ρ(0))δρ+ ε2p′′(ρ(0))δρ
2 +O(ε3δρ3),
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and therefore the terms read

1

ε2

(
p(ρ(0) + εδρ)− p(ρ(0))− p′(ρ(0))εδρ

)
= p′′(ρ(0))δρ

2 +O(εδρ3) ≈ p′′(ρ(0))δρ
2.

We can therefore substitute the expression on the left-hand side by the one on the right-hand side, we
call this proceeding approximate pressure. Note that - in general - this introduces an additional error in
O(εδρ3) to the equation, but in our setting δρ = O(ε) and therefore the error would be in O(ε4). For the
low-Mach case, this can safely be assume to be negligibly small. Note furthermore that for γ = 2 this does
not introduce an additional error.

In Fig. 4 results are presented for a very small ε. Spatial and temporal accuracy is set to fourth order,
i.e., we are using N = 3 and the IMEX-ARK-4A2 scheme. We show errors for the ’straightforward’
RS-IMEX discretization, for solving in the perturbation only and for solving in the perturbation with an
approximated pressure. Note that for the high order vortex example the approximated pressure is an exact
reformulation since γ = 2. Fig. 4 shows that due to the reformulation the problems caused by machine
accuracy are tremendously reduced. All computations have been done with an exact reference solution to
neglect influences due to an inaccurate incompressible solver.

6 Numerical results

In this section, we present numerical results for test cases which are more physically motivated than the one
considered in the previous subsection. We start with a two-dimensional flow over a cylinder and subsequently,
we investigate the three-dimensional inviscid Taylor-Green vortex.

6.1 Flow over a Cylinder

This test case demonstrates the ability to use different boundary conditions in our implementation and
illustrates the importance of the asymptotic preserving property. We compute the two-dimensional, inviscid
flow over a cylinder at low Mach numbers. We apply Euler wall boundary conditions on the surface of
the cylinder and Dirichlet type boundary conditions at all other boundaries of the domain. We use a
uniform two-dimensional state w∞ = (ρ∞, u1,∞, u2,∞)T = (1.0, 1.0, 0)T (in non-dimensional quantities) as
initialization and for the Dirichlet boundaries. Again, the equation of state p(ρ) = κργ with κ = 0.5 and
γ = 2 has been utilized. In the low Mach number limit, the exact solution is given by a potential flow
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field [1]. One measure of solution quality is the pressure coefficient Cp. It can be computed in two ways,
once via the equation of state

CEOS
p =

1

ε2

p− p∞
1
2ρ∞‖u∞‖

2
2

=
1

ε2

κ(ργ − ργ∞)
1
2ρ∞‖u∞‖

2
2

, (13)

and once via Bernoulli’s hypothesis for an incompressible, inviscid flow [1]

CBernoulli
p =

1

ε2

p− p∞
1
2ρ∞‖u∞‖

2
2

= 1− ρ‖u‖22
ρ∞‖u∞‖22

. (14)

For an incompressible, inviscid flow the result of Eqn. (13) should coincide with the results of Eqn. (14),
and therefore should hold

CEOS
p = CBernoulli

p = 1− 4 sin2(θ),

with θ being the angular coordinate of the cylinder’s polar coordinates ranging from 0 to 2π [1]. Hence,
the maximum of the pressure coefficient is Cp = 1 at the stagnation points and the minimum Cp = −3 is
reached at the positions with maximum velocity on the top and bottom.

Rieper [35] showed that an explicit scheme with an HLL-type Riemann solver reproduces the wrong
pressure distribution in the low Mach number limit, as it adds too much numerical viscosity. Therefore, the
explicit scheme converges to creeping flow where the dynamic pressure is several orders of magnitudes too
high. In contrast, an asymptotic preserving scheme would reproduce the potential flow correctly. This is
given since we can show for a method which is asymptotic preserving that also on the discrete level

ρh = ρ(0) +O(ε2)

holds. Note that in this case ρ(0) = ρ∞. Therefore using a Taylor expansion in equation (13) we obtain

CEOS
p =

1

ε2

κO(ε2)
1
2ρ∞‖u∞‖

2
2

= O(1).

If the method is not asymptotic preserving, the difference in the pressure might be in O(ε) or worse, and
therefore the pressure coefficient CEOS

p becomes O(ε−1) or worse. This only affects the pressure coefficient
computed via the equation of state, which is therefore an important measure of asymptotic quality of the
method.

Fig. 5 shows the results of a calculation with 1,646 elements and a polynomial degree of N = 2 using
an explicit Lax-Friedrichs Riemann solver on the one hand and the RS-IMEX splitting on the other. The
Mach number is set to ε = 10−5. If the pressure coefficient is evaluated via Eqn. (14), meaning it is mainly
influenced by the velocity distribution (upper row in Fig. 5), both schemes are able to predict potential flow.
A different behavior is observed if the dynamic pressure is evaluated via the equation of state (lower row).
Whereas the explicit scheme shows the flow pattern of a creeping flow and a pressure coefficient several
orders of magnitude too high, the RS-IMEX scheme is able to reproduce the potential flow. This illustrates
the asymptotic preserving property of the scheme. A further validation of the RS-IMEX splitting can be
seen in Fig. 6 where the Cp distribution on the upper surface of the cylinder evaluated with the equation of
state and with Bernoulli’s hypothesis is compared with the solution for potential flow.

6.2 Taylor-Green Vortex

The Taylor-Green vortex introduced in [42] is originally a three-dimensional, incompressible viscous test case
to study the transition to turbulence and its decay. For non-viscous equation systems such as the isentropic
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Euler equations it can be used to investigate the amount of dissipation added by a numerical scheme. The
standard incompressible initial conditions are given by

ρ(0) = 1

u(0)(x, t = 0) = V0

 cos(x1) cos(x2) cos(x3)
− cos(x1) sin(x2) cos(x3)

0


p(2)(x, t = 0) =

ρ(0)V
2

0

16
(cos(2x1) + cos(2x2))(cos(2x3) + 2),

where V0 denotes a constant initial velocity which is chosen to be V0 = 1; x1, x2 and x3 denote the spatial
coordinates of the periodic box Ω = [0, 2π]3. We adapt the initialization for the compressible isentropic Euler
equations according to Eqn. (5) to obtain a consistent initial dataset for the incompressible initialization

ρ(x, t = 0) = ρ(0) + ε2V
2

0 ρ(0)
2−γ

16γκ
(cos(2x1) + cos(2x2)) (cos(2x3) + 2),

u(x, t = 0) = V0

 cos(x1) cos(x2) cos(x3)
− cos(x1) sin(x2) cos(x3)

0

 ,

with p = κργ , κ = 0.5 and γ = 2. All calculations were conducted on a regular grid with 163 elements
and a polynomial degree of N = 3. For the temporal discretization, the third order IMEX-ARS-443 scheme
by Ascher et al. [2] is used. Again, a fully implicit method is obtained if only the implicit Butcher table
is considered. The explicit calculations were made with a standard three stage third order Runge-Kutta
scheme [44] (see Tbl. 4). We consider the isosurfaces of the velocity field to compare the results of the
RS-IMEX splitting with the explicit scheme in a qualitative manner. Fig. 7 exemplary shows the velocity
field at a Mach number of ε = 10−4 for two different times t. In the top row, the solutions of both the
explicit and the RS-IMEX scheme are identical. For consistent schemes, this is to be expected, since at this
early (pre-transition) state, the chosen discretization is sufficient to completely resolve the occurring scales.
This notion is also supported in Fig 8, where the kinetic energy, defined as

Ekin,comp =
ε2

2
ρ‖u‖22,

is preserved at t = 3s for both schemes. The kinetic energy can be used as a benchmark of numerical
dissipation properties of a scheme for inviscid flows. In the bottom row of Fig. 7, the solutions for t = 7s
are shown. Here, clear qualitative differences exist and the kinetic energy is no longer conserved, which
can be attributed to the different numerical dissipation mechanisms at work in both schemes. Calculations
with other Mach numbers showed analogous results and can be seen as a further validation of the RS-IMEX
scheme.

Comparisons of the dissipation rate the compressible kinetic energy as a measure of quality, displayed in
Fig. 8, confirm that explicit and RS-IMEX method behave similarly in this setting. Differences are due to
the slightly different numerical dissipation added by the Riemann solvers. Concluding, we see that the RS-
IMEX splitting is able to reproduce a complex three dimensional physical behavior such as the Taylor-Green
vortex.

Focusing on the question of efficiency, the required time for calculations with different discretization
methods for several Mach numbers are displayed in Fig. 9. Computational effort increases with decreasing
Mach number for the explicit scheme as the time step decreases accordingly. A strong increase of compu-
tational effort for the fully implicit scheme is noticeable as the stiffness of the equation system increases.
For ”high” Mach numbers, more computational time is needed for the RS-IMEX scheme as an additional
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partial differential equation has to be approximated. But, only a slight increase in computational effort for
decreasing Mach number is observed as the stiffness is hidden in the linear system instead of the non-linear
system as for a fully implicit discretization. This constitutes obviously a huge advantage of the RS-IMEX
splitting compared to a fully implicit scheme. Whereas the stiffness of the fully implicit scheme is increased
in the non-linear system, the Jacobian in Eqn. (9) has to be approximated via the finite difference (10).
The approximation of the Jacobian with the finite difference gets worse for an increasing stiffness of the
equation system, and therefore, computational time strongly increases for the fully implicit scheme. Using
the RS-IMEX splitting the Jacobian can be calculated exactly with Eqn. (11). Hence, an increasing stiffness
only slightly increases the computational effort. Consequently, large savings concerning computational costs
can be obtained by using the RS-IMEX splitting for very low Mach numbers ε < 10−3 compared to the
explicit scheme and ε < 10−1 compared to the implicit scheme.

7 Conclusion and Outlook

The efficient and accurate numerical solution of physical phenomena that belong to the class of singularly
perturbed problems is still an area of active research. These problems can be seen as a special case of
multi-scale problems, in which large differences in scale with regards to the average state occur in a spatially
confined region of the solution. This becomes especially challenging when high accuracy in the limit is
sought, i.e. the discretization should obey the underlying asymptotic properties of the equation.

In this work, we have taken steps towards the development of an efficient high order DG scheme for
all-speed flows at an engineering scale. Starting from the novel operator splitting technique RS-IMEX for
the isentropic Euler equations proposed in [23], we have re-formulated the discrete equations to significantly
extend the Mach number range of the scheme without the occurrence of machine accuracy problems and
demonstrated its capability to prevent a stall in convergence.

The RS-IMEX splitting has been implemented in an existing high-order DGSEM framework. The in-
compressible reference solution is solved by an artificial-compressibility type scheme, which couples the
velocity and pressure field through a numerical flux function and thereby introduces a hyperbolic equation
for the pressure. Numerical results have shown the efficiency of the method also in the context of realistic
three-dimensional applications.

Since the RS-IMEX is conceptually independent from the underlying equations, its naive application
to other systems is straightforward. However, it is not a priori clear whether this splitting guarantees
hyperbolicity of the explicit part. Current research efforts are underway to answer this question and to
explore the possibilities of extending the splitting to the full Euler equations. Furthermore, the application
of the splitting to multiphase flows is of current interest.
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9 Appendix

For the purpose of completeness, we list the Runge-Kutta schemes we have used throughout this paper, see
Tbl. 1, 2, 3, 4 and 5. The left tableaux of the IMEX-Runge-Kutta schemes denote the Butcher tableaux of

the part treated implicitly (̃·), the right Butcher tableaux correspond to the explicit part (̂·).

0 0 0 0 0 0 0 0
γ 0 γ 0 γ γ 0 0
1 0 1− γ γ 1 δ 1-δ 0

0 1− γ γ δ 1-δ 0

Table 1: 2nd order scheme IMEX-ARS-222 [2] with γ = 2−
√

2
2 ≈ 0.293 and δ = 1− 1

2γ ≈ −0.707.

0 0 0 0 0 0 0 0 0 0 0 0
1/2 0 1/2 0 0 0 1/2 1/2 0 0 0 0
2/3 0 1/6 1/2 0 0 2/3 11/18 1/18 0 0 0
1/2 0 -1/2 1/2 1/2 0 1/2 5/6 -5/6 1/2 0 0
1 0 3/2 -3/2 1/2 1/2 1 1/4 7/4 3/4 -7/4 0

0 3/2 -3/2 1/2 1/2 1/4 7/4 3/4 -7/4 0

Table 2: 3rd order scheme IMEX-ARS-443 [2]

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1/3 -1/6 1/2 0 0 0 0 0 1/3 1/3 0 0 0 0 0 0
1/3 1/6 -1/3 1/2 0 0 0 0 1/3 1/6 1/6 0 0 0 0 0
1/2 3/8 -3/8 0 1/2 0 0 0 1/2 1/8 0 3/8 0 0 0 0
1/2 1/8 0 3/8 -1/2 1/2 0 0 1/2 1/8 0 3/8 0 0 0 0
1 -1/2 0 3 -3 1 1/2 0 1 1/2 0 -3/2 0 2 0 0
1 1/6 0 0 0 2/3 -1/2 2/3 1 1/6 0 0 0 2/3 1/6 0

1/6 0 0 0 2/3 -1/2 2/3 1/6 0 0 0 2/3 1/6 0

Table 3: 4th order scheme IMEX-ARK-4A2 [31]

The explicit schemes are given in the 2N -storage form [11] for the coefficients Ai, Bi and ci.
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[8] G. Bispen, K.R. Arun, M. Lukáčová-Medvid’ová, and S. Noelle. IMEX large time step finite volume
methods for low Froude number shallow water flows. Communications in Computational Physics,
16:307–347, 2014.

[9] S. Boscarino. Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems.
SIAM Journal on Numerical Analysis, 45:1600–1621, 2007.

[10] A. Buffa, T. J. R. Hughes, and G. Sangalli. Analysis of a multiscale discontinuous Galerkin method for
convection-diffusion problems. SIAM Journal on Numerical Analysis, 44(4):1420–1440, 2006.

[11] M.H. Carpenter and C.A. Kennedy. Fourth-order 2N -storage Runge-Kutta schemes. Technical report,
NASA Langley Research Center, 1994.

[12] P. Degond and M. Tang. All speed scheme for the low Mach number limit of the isentropic Euler
equation. Communications in Computational Physics, 10:1–31, 2011.

[13] D. R. Durran. A physically motivated approach for filtering acoustic waves from the equations governing
compressible stratified flow. Journal of Fluid Mechanics, 601:365–379, 2008.

[14] S. Fechter and C.-D. Munz. A discontinuous Galerkin-based sharp-interface method to simulate three-
dimensional compressible two-phase flow. International Journal for Numerical Methods in Fluids,
78(7):413–435, 2015.

17



[15] F. Filbet and S. Jin. A class of asymptotic-preserving schemes for kinetic equations and related problems
with stiff sources. Journal of Computational Physics, 229(20):7625–7648, 2010.

[16] D. Flad, A. Beck, and C.-D. Munz. Simulation of underresolved turbulent flows by adaptive filter-
ing using the high order discontinuous Galerkin spectral element method. Journal of Computational
Physics, 313:1–12, 2016.

[17] F. X. Giraldo and M. Restelli. High-order semi-implicit time-integrators for a triangular discontinu-
ous Galerkin oceanic shallow water model. International Journal for Numerical Methods in Fluids,
63(9):1077–1102, 2010.
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Figure 5: Isolines and colors of pressure coefficient Cp calculated via Bernoulli’s hypothesis (upper) and via

the equation of state (lower) for 3rd order explicit scheme (left) and RS-IMEX splitting (right) at
ε = 10−5.
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Figure 6: Distribution of CEOS
p and CBernoulli

p for 3rd order RS-IMEX splitting at ε = 10−5 calculated with

the equation of state or Bernoulli’s equation in comparison with potential flow
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Figure 7: Isosurfaces of velocity magnitude at a physical time of t = 3s (top) and t = 7s (bottom) for explicit
(left) and RS-IMEX scheme (right) at ε = 10−4.
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