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Abstract

Based on experimental traffic data obtained from German and US
highways, we propose a novel two-dimensional first-order macroscopic
traffic flow model. The goal is to reproduce a detailed description of traffic
dynamic for the real road geometry. In our approach both the dynamic
along the road and across the lanes is continuous. The closure relations,
being necessary to complete the hydrodynamic equation, are obtained by
regression on fundamental diagram data. Comparison with prediction
of one-dimensional models shows the improvement in performance of the
novel model.
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1 Introduction

The mathematical modeling of vehicular traffic flow uses different descriptions
and we refer to [9, 27, 5I] for some review papers. Besides microscopic and
cellular models there has been intense research in continuum models where
the temporal and spatial evolution of car densities is prescribed. Based on
the level of detail there are gas-kinetic or mesoscopic models (e.g., [28] 29,
30, B3], [0l 50]) and macroscopic models being fluid-dynamic models (e.g., [6]
8, [11], [19} 20, 23, 4] 36, 37, [1], [44] 48, 49, 54, 60, 62]). Among the (inviscid)
macroscopic models one typically distinguishes between first-order models based
on scalar hyperbolic equations and second-order models comprised of systems of



hyperbolic equations. The pioneering work of the first case is the Lighthill and
Whitham [44] and Richards [54] model (LWR). While a specific example of the
second case is the Aw and Rascle [6] and Zhang [62] model (ARZ). Depending
on the detailed level of description of the underlying process different models
have been employed and tested against data. In recent publications it has
been argued that the macroscopic models provide a suitable framework for the
incorporation of on-line traffic data and in particular of fundamental diagram
data [3| [7, 2I]. While microscopic models are nowadays widely used in traffic
engineering, continuum models have been studied mathematically, but very little
work has been conducted on their validation with traffic data [3, [5 [12].

So far, most of the proposed continuum models are for single lane vehicular
traffic dynamic. However, the data for fundamental diagrams is taken from in-
terstate roads with multiple lanes [T}, 2] and can be used for deriving or testing
models for real road geometry. Multi-lane models belong to this class. Typical
modeling of multi-lane traffic uses a spatially one-dimensional model (1D) of
either LWR or ARZ type for each lane. The lane-changing of cars is then mod-
eled by interaction terms (the sources on the right-hand sides of the equations)
using empirical interaction rates, see e.g. [38] 39, [40]. The interaction modeling
is typically assumed to be proportional to local density on current and desired
lane. A fluid dynamic model describing the cumulative density on all lanes is
proposed in [I4] [I5] 58], where a two-dimensional (2D) system of balance laws
is obtained by analogy with the quasi-gas-dynamic (QGD) theory. Here, the
authors model 2D dynamic assuming that vehicles move to lanes with a faster
speed or a lower density and the evolution equation for the lateral velocity is
described by the sum of the three terms proportional local density and mean
speed along the road.

A major problem of the approaches described above is to estimate from data
the interaction rate or the great number of coefficients and parameters. There-
fore, here, we propose a different approach: we treat also lanes as continuum
and postulate a dynamic orthogonal to the driving direction. The precise form
of the dynamic is established through comparisons with fundamental diagrams
obtained from trajectory data recorded on a road section of the A3 German
highway near Aschaffenburg. Thus, the experimental measurements allow us
to derive a model being able to take into account the realistic dynamic on the
real road geometry without prescribing heuristically the behavior of the flow of
vehicles.

The contribution and the organization of this paper is summarized below.

(i) Derivation and the presentation of historic fundamental diagrams data for
the dynamic of traffic across the lanes (see Section. In fact, the German
data-set provides the two-dimensional time-dependent positions of vehicles
while crossing the road section. Therefore, in addition to the classical
fundamental diagrams widely studied in the literature [4} [35, 42] and used
for deriving one-dimensional data-fitted macroscopic models [21] 22], we
can also generate diagrams for the dynamic across the lanes. Although
two-dimensional experimental traffic measuraments are already available
in the literature, this is, to our knowledge, the first time that they are
used to study the dynamic orthogonal to the movement of vehicles;

(ii) Design of a new data-fitted two-dimensional first-order model and the
analysis of its mathematical properties (see Section . The historic data



are therefore used to develop the novel macroscopic model defining the
flux functions by means of a data-fitting approach. The closures are nec-
essary to complete the macroscopic equation and taking them using the
experimental data allows to describe the real dynamic of the flow;

(iii) validation of the novel 2D macoscopic model via time-dependent trajec-
tory data and the definition of a systematic methodology to study and to
compare the predictive accuracy with respect to the 1D LWR model (see
Section .

Finally, we end the paper with a concluding part (see Section dealing
with final comments and perspectives. In particular, we briefly discuss on the
difference between the German data-set and US data, e.g. [T}, 2], since the latter
provide a naive behavior of the flow across the lanes.

2 Data-set description and fundamental diagrams

We use a set of experimental data recorded on a German highway. Precisely,
we have two-dimensional trajectory data collected on a 80 meter stretch of
the westbound direction of A3 highway near Aschaffenburg. Laser scanners
detect the two-dimensional positions (x;(t), y;(t)) of each vehicle i at time ¢ on
the road segment with a temporal resolution of 0.2 seconds for a total time
of approximately 20 minutes. During the time observation, the laser scanners
record the trajectories of 1290 vehicles and the maximum detected speed is 120
kilometer per hour which means about 2.7 seconds to travel the 80 meters. The
position z is in driving direction, the position y is across lanes.

The road section consists of three lanes and an outgoing ramp. However, we
only consider the stretch as if there is no ramp. In fact, the data show that the
flow on the ramp does not influence the traffic conditions, namely the amount
of traffic on the ramp is not significant. Taking into account only the three
main lanes, the road width is 12 meter. The stretch we are considering is not
straight but it has a turn with a small radius of curvature. We have taken into
account this feature when cleaning the experimental data since the curvature
could mainly falsify the data in y - direction.

As pointed out in the Introduction, in this paper we are interested in the
study of macroscopic traffic models. In other words, instead of looking at the
motion of each single vehicle, we wish to “zoom out” to a more aggregate level
by treating traffic as a fluid. Therefore, with the aim of proposing a novel data-
fitted 2D macroscopic model, from the microscopic experimental data we need
to recover the macroscopic quantities, namely the density (measured as number
of vehicles per kilometer), the flur (measured as number of vehicles per hour)
and the mean speed (measured as kilometer per hour) of the flow.

To this end, firstly, we observe that the microscopic positions (z;(t),y:(t))
of vehicles at each time are sufficient to recover the microscopic velocities of
vehicles. In particular, since the road section is relatively short, we compute
the velocity, both in x- and y-direction, of each vehicle by using a linear approx-
imation in the least squares sense of its positions, x;(¢t) and y;(t) respectively,
on the road during the time interval. In other words we assume that the vehicle
velocity is constant during the crossing of the road section and is exactly the



slope of the linear fit. Thus, we associate at each vehicle ¢ the vector of the
microscopic velocities (vF,vY).
The time-dependent microscopic positions (z;(t), y;(t)) and the microscopic
Y

velocities (v7,v;) of vehicles are used to compute the macroscopic data as we
describe in the following. Here we show the procedure in the general case but
since we are aimed to develop a two-dimensional data-fitted first-order macro-
scopic model, the derivation of macroscopic quantities, as the flux and the mean
speed, should be done for each direction, along the road (z-direction) and across
the lanes (y-direction), separately.

The macroscopic density gives information on the congestion level of the
road section. It is usually expressed in number of vehicles per unit length
(here kilometers) and therefore it ignores the concept of traffic composition.
This is not restrictive for our purpose of deriving a two-dimensional first-order
macroscopic model for traffic. The modeling of the heterogeneous composition
of vehicles is studied in multi-population models, e.g., in [I0] at the macroscopic
level and in [53],[52] at the kinetic level, where the concept of density is replaced
by the rate of occupancy. In order to compute the macroscopic density, for each

fixed time ¢ we count the number of vehicles N(t) on the road and we define

where L is the length of the road section expressed in the unit length. Then we
consider a temporal average by aggregating with respect a certain time period
T, leading to the following expression for the density

Lz
p= fZﬁ(t)-

The computation of the flux and of the mean speed is a little bit more
complex.

In our approach, we first compute the mean speed of the flow at a fixed time
t by averaging the microscopic velocities v; over the number of vehicles N(t), so

that we define
N(#)

1
u(t) = —= Vj.
oS
Using @(t) we then compute the flux at time ¢ by means of the hydrodynamic
relation

q(t) = p(t)u(t)
and, as done for the density p, we consider a temporal average by aggregating
with respect the time period T', leading to

T N(t)

1 o~ 1
QZTZQ(t):ﬁZZW

t=1 t=1 i=1

Finally, using again the hydrodynamic relation, we get the mean speed of the

flow as
_q
u=-.

p
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Figure 1: Experimental diagrams from the A3 German highway using 20 minutes
of recorded video. Top row: flux-density (left) and speed-density (right) dia-
grams in z-direction. Bottom row: flux-density (left) and speed-density (right)
diagrams in y-direction.

For a more detailed discussion on the computation of macroscopic quantities
from microscopic data, we refer to [32] [45].

The diagrams showing the relations between the vehicle density p and the
flux ¢ or the mean speed u are called fundamental diagrams or speed-density
diagrams, respectively. They represent the basic tools for the analysis of traffic
problems operating in a homogeneous steady state or equilibrium conditions.

In Figure [I] we show the diagrams resulting from the German data-set: the
top row shows the relations (p,¢*) and (p,u”), while the bottom row shows
the relations (p,¢¥) and (p,u¥). Here we indicate with ¢%, ¢¥, u® and u¥ the
flux and the mean speed in z- and y-direction, respectively. These diagrams
are computing by taking ¢ = 1 second and by aggragating the data over the
time period T" = 60 seconds. Observe that the data-set provides during the
time period several levels of congestion but we never observe bump-to-bumper
conditions. In fact, the maximum density is about 70 vehicles per kilometer.

In addition to the classical fundamental relations (p, ¢*) and (p, u*) we also
show the diagrams (p,q¥) and (p,u?). We highlight that data-sets providing
2D trajectories are already available, e.g., see [II, 2]. But the attempt of taking
into account the study of the dynamic across the lanes, and thus considering
also the data in y-direction, is, to our knowledge, a novel in the mathematical
literature on traffic flow.

The qualitative structure of such diagrams is defined by the properties of
different regimes, or phases, of traffic. For a description of the diagrams in z-



direction we refer, e.g., to [4, B35, 42]. Clearly, the diagrams in y-direction show
a different quantitative and qualitative behavior with respect to the classical
ones. Firstly, we observe that the values of the flux and of the mean speed are
about 10® smaller than the values in z-direction. This is obvious since the main
movement of vehicles is maninly along the road and thus «¥ is not dominant
with respect u”. Moreover, notice that ¢¥ and u? have positive and negative
values since across the lanes vehicles are free to travel in the two directions,
towards right and left. Precisely, we assume that positive speeds represent the
motion towards the leftmost lane, instead negative speeds represent the motion
towards the rightmost lane.

3 Two-dimensional LWR-type model

One dimensional first-order macroscopic traffic models are based on the conti-
nuity equation
Op+0.(pu) =0, teRT, x€l0,L] (1)

which gives the conservation of vehicles on the road segment [0, L]. In , the
vehicle density is p(x,t), and the vehicle velocity field is u(zx,t), where x is the
position along the road, and ¢ is time.

The simplest macroscopic traffic model, the LWR [44] [54] model, is obtained
by assuming a functional relationship between p and u, i.e., u = u(p). This
turns equation into a scalar hyperbolic conservation law

dp + 9zq(p) =0, (2)

where the flux ¢ is given by the flow rate function ¢(p) = pu(p). Because the
LWR model is a closed model consisting of a single equation, it is denoted
a first-order model. The velocity function u(p) is commonly assumed to be
decreasing in p with «(pmax) = 0 for some maximal vehicle density pmax > 0.
Here, pmax is assumed to be the density in bumper-to-bumber conditions.

The strict functional relationship between p and v is called closure law and is
loosened in the so-called second-order models, which augment (1)) by an evolution
equation for the velocity field, see [0, [21].

The one-dimensional model describes the flow of vehicles in the simple
case of a single-lane road or, if the road has multiple lanes (in a given direction),
it considers these aggregated into the scalar field quantities p and u. Neverthless,
the dynamic of traffic on a multilane highway could be more complex and is
strongly influenced by the motion of vehicles across the lanes. For this reason,
we take into account the intrinsic multi-dimensional characteristic of traffic flow
by extended model to the two-dimensional first-order macroscopic model

O+ 00q” +0yq” =0, teR", ze[0,L7], y e [0,LY] (3)

where ¢° = pu” and ¢¥ = pu¥ are the fluxes in the two possible directions of the
flow and u”, u¥ are the speed along the road and the lateral speed, respectively.
The quantities L* and LY are the length and the width of the road, respectively.
Clearly, one expects that LY < L*. As in the one-dimensional model, we have
the following two closures

q"(p) = pu®(p), ¢"(p) = pu¥(p).



The velocity function u®(p) is the same speed u introduced in the one-dimensional
LWR model and thus it is obvious to assume that it has the same proper-
ties discussed previously. A heuristic description of ¢¥ and uY as function of
the density is not immediate since it depends strongly on the preference on the
drivers as well as general imposed traffic rules. It is natural to assume that
the lateral speed is u¥ = =V . for p =~ 0 and w¥ = 0 p & pmax. In fact, in
the first case vehicles would travel towards the right-most lane since the road is
free (according to the traffic rules), while in the second case they cannot change
lanes and thus travel in y-direction since the lanes are almost congested. Note
that contrary to the z-direction the speed in y-direction can be negative. In the
following section we propose a functional relation obtained from data.

We finally stress the fact that the two-dimensional model is able to take
into account the dynamic of traffic on a multilane highway but actually it is not
a multilane model. In fact, notice that equation is continuous in y. Instead
a multilane model requires to treat lanes as discrete object and, thus, to develop
a system of balance laws in which the source terms describe the mass exchange
between the lanes.

3.1 Macroscopic closures and data-fitting

For the dynamic along the road, namely in z-direction, several laws have been
considered in the literature: popular examples of flow rate functions ¢”(p) are
the Greenshields’ flux [25], in which ¢%(p) is a quadratic function, and the
Newell-Daganzo flux [I8][46], in which u”(p) is a piecewise linear function. These
different choices of functions lead to well-posed first-order models. Many closure
laws were proposed in the literature, for further discussions we refer, e.g., to the
book [56].

A natural way to derive closure laws is to construct a fitting of the exper-
imental data. Although this approach ignores the scattered behavior of data,
we expect to characterize key properties of the traffic flow (as the critical den-
sity, the maximum flow, ...). For comparisons between models using classical
closure laws and data-fitted models, see |21} 22] based on the NGSIM data-set
[1] and on the RTMC data-set [2].

We are considering the German data-set described in Section [ and we are
proposing a two-dimensional first-order macroscopic model. Then, in order to
get the closure laws to complete equation (3|) we proceed by constructing the best
fitting via a least squares fit to the data computed in Section [2] and showed in
Figure|l} The closures for the first-order macroscopic model must represent
these data via single-valued functions ¢*(p) and ¢¥(p).

Since the stagnation density pmax is not represented well via data, we pre-
scribe it as a fixed constant, given by the ratio between the number of lanes and
the typical vehicle length of 5 meters, plus 50% of additional safety distance, so

that

31
Prmax = % = 400 veh. /km.

As visible in the flux-density diagram in the top left panel of Figure [I] the
data tend to exhibit a relatively linear increasing relationship between p and
q* for low densities. In turn, for higher densities, a significant spread is visible,
i.e., a single p value corresponds to many different flow rates ¢*. For the data
in a-direction then we employ the same approach presented in [2I] and in [22]



by selecting a three-parameter family of smooth and strictly concave flow rate

curves as
Qo e po(p) = " (a+(ba) P \/1+02> ) (4)

pmax

where

a=1\/1+0p®)?, b=+/1+\1-p*), c:)\’”( d —px).
Pmax
Each flow rate function ¢g. yo e (p) in this family vanishes for p = 0 and p =
Pmax- Lhe three free parameters allow for controlling three important features
of the flux-density diagram in z-direction: the value of maximum flow rate
(mainly determined by «*), the critical density (mainly controlled by p*), and
the curvature (dominated by A*).

In case of the y-direction a significant spread of the data is visible also
at lower densities and they show both positive and negative values since the
motion is allowed in two directions: towards the left-most and the right-most
lane. Moreover, we observe only u¥ < 0 for p = 0, proving the fact that vehicles
tend to travel towards the right-most lane in the free-flow regime. To take
into account these features we have to propose a different flow rate curve with
respect to . Precisely, in this case we choose a simple two-parameter family
of smooth functions as follows

ﬁaw0ﬂ=cﬂp<l—(piﬁ)ﬁ>- 5)

Each flow rate function qu’py (p) in this family vanishes for p = ppax. The
two free parameters allow for controlling the speed in the free-flow regime (de-
termined by «¥) and the shape of the of the curve due to the data (mainly
controlled by pY).

Remark 1. Clearly, a more complex flow rate curve may be postulated.
The simple choice (b)) is justified by the behavior of the y-diagrams provided by
the A8 German highway which do not give information on how the data behave
for higher density values. In fact, the only realistic a priori assumption for the
congested regime is that u¥ = 0.

From the three- and the two-parameter family of flow rate curves (equations
and , respectively), the closures ¢* and ¢ are selected in such a way they
are the closest, in a least-squares sense, to the experimental data points (p;, qj ),
and (pj,qy), respectively. Thus we solve

min
a®, AT, p®

07— % e pe (0| in [|g¥ — g% ()| - (6)

ay7py

The minimization problems @ are solved numerically by using the Matlab
solver fmincon which finds the minimum of constrained nonlinear functions.
For the German data-set the solver provides the following values for the free
parameters

e " = 252.6686, \* = 0.1033 and p* = 80.8620;
e oY = —0.6056 and pY = 0.3712.
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Figure 2: Data-fitting of the experimental diagrams. Top row: functions ap-
proximating the flux-density (left) and speed-density (right) diagrams in z-
direction. Bottom row: functions approximating flux-density (left) and speed-
density (right) diagrams in y-direction.

In Figure 2| the red curves represent the least-squares fits to the given data
points computed in Section These functions are used to close the two-
dimensional first-order macroscopic model and to validate the model in the
next section.

The mathematical properties of the proposed flux in y are similar to clas-
sical LWR, type models. Therefore, a detailed discussion is skipped. For the
numerical scheme below we remark that the conservation law with choice
is strictly hyperbolic. Moreover, the optimal parameters o and pY lead to
a single inflection point function of the flux function and therefore conservation
law still give rise to only simple waves (either shock or rarefaction waves)
also in y-direction.

4 Numerical simulations

In this section we study the predictive accuracy of the 2D LWR-type model
with respect to measurement data. In particular, we show that model is
more accurate than its 1D version in which we choose as closure the flow
rate function @

To this end, we firstly present the scheme used to numerically solve model
(3). Then, we specify how continuous field quantities are constructed from the
trajectory data, following the approach described in [21] and [22] for 1D data-



fitted models.

4.1 Numerical scheme

In the following, we simply describe the numerical scheme for solving the two-
dimensional model . For the one-dimensional one , the same numerical
scheme is used, clearly neglecting the computation of transport term in y.

In order to approximate the solution p of , we use the dimensional splitting
method or method of fractional steps, [43, [59]. We split into

Ip(t, z,y) + 024" (p) = 0, (7a)
Ap(t,z,y) + 0yq”(p) = 0

and for each problem we apply a finite volume approximation. To this end
we divide the spatial domain Q = [0, L*] x [0, LY] into N* x NV cells Q;; =
(Ti—1/as Tigrp) X (Yj—1/2s Yjr2), = 1,... ,N*®, j =1,..., NY, such that U; jQ;; =
Qand 241, — Ti_1 = AT, Yjprn — Yj—1 = Ay. Thus [Q;5] = Az x Ay.

We consider a semidiscrete finite volume scheme and denote by

_ 1
pi;(t) = |Qw|/ﬂ p(t, z,y)dzdy

the cell average of the exact solution in the cell €;; at time ¢ and U;;(t) its
numerical approximation. By integrating each equation over ;;, dividing
by |€2;;], using the midpoint rule and finally a s-stage Strong Stability Preserving
Runge-Kutta method (SSPRK) with Butcher’s tableau (A, b) and time step At,
we get the fully discrete scheme

= o At () () : .
UU:UU—EZ@ (Fz‘+1/2,j_Fi—1/27j)’ i=1..N
k=1

U?flzﬁf,_ﬁibi(a*(’“ — g ) j=1,...,NV.

i,j+1/2 h,j—1/2

giving the approximation of the solutions at time t"*! = Ti;; + (n + 1)At,

where Ti,;; is the initial time. Notice that in the x-sweeps we start with the cell
—n

averages U;; at time ¢" and solve N one-dimensional problems with j fixed

updating U?j to U;. In the y-sweeps we then use the U:j values as data for

solving the N* problems with ¢ fixed, which results in UZ—H. Here,

(k’) _ 7(k)7+ 7(](:)17 *(k?) _ 7*(k)’+ 7*("‘)77
Fivipg =7 (U i+1/2,50 U i+1/m‘) G =9 (Uzuw/za v m‘+1/2)

are the numerical fluxes approximating ¢ (p(t, z;41/,,y;)) and ¢¥ (p(t, x4, yj41/5)),
respectively. We consider F and G as local Lax-Friedrichs fluxes. The recon-
struction of the interface values is done using a piecewise linear reconstruction
in each direction. To guarantee the nonoscillatory nature of the reconstruction,
we apply a nonlinear limiter for the computation of the slopes and here we use
the minmod slope limiter. For further details we refer, e.g., to [26, 61]. From

10



the spatial reconstruction the stage values of the cell averages are evolved by

k—1
U(k) T At F(g) F(()
iy T Vi EZ‘W i+1/2,5 T Tim1/2,
=1

k—1

—x(k) ==k At (0 *(0

Uz’j = Uij — 7Ay ape (Gi,(jj-lh — Gi,(jll/2> .
(=1

As Runge-Kutta scheme we take the Heun’s method [31] with a time step At sat-
isfying the CFL condition [16]. For the numerical solution of the one-dimensional
LWR model we consider the natural one-dimensional version of the second-
order finite volume scheme presented above.

For our purposes, a second-order scheme is sufficient. Clearly, more accurate
methods can be considered and in this case high-order spatial reconstructions
[I'7, 57] combined with high-order Runge-Kutta schemes should be employed.

4.2 Treatment of experimental data

The numerical implementation of the macroscopic traffic models and ,
require the knowledge of continuously in space initial data. Since we are aimed to
compare the predictive accuracy of the two models against the data-set described
in Section [2] here we specify how continuous field quantities can be constructed
from trajectory data. In particular, we follow the same approach used in [21]
and [22]. The same idea is applied for computing the reference data in order to
compare the model predictions.

From the German data-set we have the two-dimensional trajectories of ve-
hicles (x;(t),y:(t)), with a temporal resolution 0.2 seconds, that is essentially
continuous in time. However, at each time, the vehicle positions are discrete.
In order to incorporate this data as initial condition into the continuous models
and , we must generate a function p(t, x,y), for t = Tinit, that is defined
everywhere on the road segment. This approach also allows to compare the
model accuracy against the experimental data, constructing at a certain final
time the continuous function p(¢,z,y) from the discrete positions of vehicles
with ¢t = Tg,.

The construction of density functions from discrete samples is a statistic
problem. We employ a kernel density estimation (KDE) approach, with a fixed
Gaussian kernel. The specific KDE approach used here is described in [22]
for the case of traffic models and it is called the Parzen-Rosenblatt window
method [47, 55]: Assume that at time ¢ we have the positions of vehicles on the
road. This data are interpreted as a finite sample of some (unknown) density
function. The goal is to reconstruct a kernel density estimator from the discrete
information that is close to. At each time instant ¢, KDE starts with a two-
dimensional comb function

N(t)

0(1;7 y) = Z 5(3j - xi(t)’y - yi(ﬂ)

where & (z —z;(t),y —yi(t)) == 6 (. —z;(t)) ®(y — vi(t)) is the two-dimensional
Dirac delta function. Thus the function ¢ accounts for the positions of vehicles
on the road at time ¢. Clearly, ¢ cannot be used as initial condition of numerical

11



simulations but we need to define its smoothed version. To this end, we consider
a two-dimensional Gaussian kernel

1
omhihy

and we define the density function at time ¢ as

_1( = )2_
A

()"

[N

K(l‘,y) =

N(#)

p(tw,y)=/§2K($—£,y—n)6(€,n)d§dn= > K(z—ait),y —wi(t). (8)

=1

Here h* and hY are the bandwidths in - and y-direction respectively. Although
there are several works dealing with the optimal choice of the bandwidth in the
KDE approach, e.g., see [13] [34], here we take the same value already used in
21, 22] but computed for a 80 x 12 meter road. Therefore, the kernel widths
are chosen as h* = 4 meter and hY = 0.6 meter.

Finally, we note that the road section is 80 meters and therefore vehicles
travel from the initial point to the exiting one in about 2.7 seconds, at the
maximum speed.

4.3 Validation of the model

In the following, we validate the presented two-dimensional first-order macro-
scopic model by comparing the evolution of the model with the corresponding
measured trajectories. Also, we compare the predictive accuracy of the model
with respect to its one-dimensional version .

The deviation between predicted and real traffic states quantifies the model
error. Thus we choose the spatial discretization sufficiently fine, namely Az =
Ay = 0.5 meter.

In order to quantify the deviation of the model predictions from the real data,
we proceed as follows. Firstly, we compute the continuous density that defines
the starting condition at a fixed initial time Ti,;; as in . Then, we numerically
evolve the density profile up to a final time Tg, > Tin;¢ using the numerical
scheme defined in Section and applied to the model . The numerical
simulation gives the data output U (Tg,). The continuous reference solution at
time Tgy is constructed from the real data by means of the density estimation

defined in (8). From this function we obtain discrete values T (Thn), and
we finally compute the prediction error as

——exact

E (Thn) = Hﬁ(Tﬁn) — T (Thn) (9)

LY(R)

Predictive accuracy against trajectory data We study the predictive
accuracy of the 2D model with respect to the trajectory data provided by
the data. In the first test we simply study the accuracy of the model without
possible spurious errors included by the treatment of boundary data. We choose
an initial time Ti,;; and using the kernel density estimation approach we compute
the density profile. Then we evolve it up to a final time Ty, such that Tg, —
Tinit = 0.5 seconds, in order to guarantee that the simulation is not influenced
by outgoing boundary conditions. Finally, we compute the difference between
the simulated profile and the real density profile at final time, normalizing with
respect to the maximum value, c.f. Figure 3| and in Figure
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Figure 3: Top-left: initial density profile at time Ti,;; = 407.4 seconds. Top-
right: simulated density profile after 0.5 seconds. Bottom-left: real density
profile at final time. Bottom-right: difference between the simulated and the
real density profiles.

Clearly, the boundary data are important for computing long time simula-
tions. To this end, we extrapolate the incoming and the outgoing boundary
data by artificially extending the trajectory data in computational cells outside
the domain. In Figure |5| we study the predictive accuracy of the 2D model
for 15 seconds taking into account the boundary data. We choose different time
periods for the simulations in Figure [3] and in Figure @] The error is computed
every 0.5 seconds on the whole domain using the 1-norm error, see equation @D

Comparison between the 1D and the 2D model. We compare now the
2D model with respect its 1D version in order to estimate the benefit
of a refined model compared with a commonly used averaged one-dimensional
model.

We select different initial conditions, characterized by different densities on
the road. Then, we evolve the initial density profiles up to different final times
Tin = 1/2% seconds, with i = 0,1,2,3. In Figure |§| we compare the errors
(the 1-norm error as in ([9))) produced by the two macroscopic models (red
data) and (blue data). The results show that the 2D model produces smaller
errors and therefore it can results in more realistic evolution of traffic conditions.
This is mainly due to the fact that, for the 1D model , the kernel density
estimation as well as the definition of the prediction error is done following
the same approach of [2I]. Hence, we project the x positions on the same
y coordinate and this may result in an overestimation of the density. The
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Figure 4: Top-left: initial density profile at time Ti,;; = 870.9 seconds. Top-
right: simulated density profile after 0.5 seconds. Bottom-left: real density
profile at final time. Bottom-right: difference between the simulated and the
real density profiles.
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Figure 5: Left: 15 seconds of simulation between 400 —415 seconds, showing the
1-norm error each 0.5 seconds (the top panel). Right: 15 seconds of simulation
between 863 — 878 seconds, showing the 1-norm error each 0.5 seconds (the top
panel). The mid and the bottom panels show the variation of density in the
time intervals and on the whole recorded time period, respectively.

projected point of view, we could have two or more vehicles being near each
other leading to, in the kernel density estimation approach, higher values of
density traveling thus with a lower speed. But in the realistic data vehicles
could be distant due to different y positions.
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Figure 6: Error plots comparing the predictive accuracy of the 1D model (red
data) and of the 2D model (blue data). Each panel refers to different initial
density profiles computed by using the kernel density estimation approach. On
the z-axis we show the percentage of the traveling time with respect to the total
time to cover the road section at the maximum speed.

Dependence on the fitting parameters. We study the dependence of the
presented results on the choice of the fitting parameters, those being crucial in
the derivation. In particular, we are interested in the magnitude of the error
changes due to the variation of the parameters defining the closure in y-direction,
see equation .

We consider the same initial conditions as studied in Figure |3| and in Fig-
ure [ In both cases we consider 20 values of the fitting parameters o and
p¥ sampled from the intervals a¥ = [ad, (14 5%), ¥, (1 —5%)] and p¥ =
[Pépi (1 —5%), pp (1 + 5%)], respectively. Then, we evolve the density profile
with the 2D model for 0.5 seconds and for each of the 400 pairs (a¥, pY).
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Figure 7: Relative error between Eqv pv and Eagp“pgpt (Thyn) for each pair of
possible parameters in the vectors a¥ and pY.

Finally, we compute the errors Equ pv at final time as in (9). We recall that
the error for the optimal pair (af,,ph,.) is Eagpt’pgpt (Tan) = 0.1540 for the
time period 407.4 — 407.9 and E,y v (Thn) = 0.0660 for the time period
870.9 — 871.4. Notice that the different parameters do not modify the errors
strongly and therefore the presented procedure is robust against those varia-
tions. In order to quantify this consideration, in Figure [7] we show the relative

difference between Eov pv and Eai’pupgpc (Tan). We observe that the maximum

differences are of order 10~% and 102 and therefore of the order of the numerical
scheme.

5 Conclusions and Outlook

In this paper we proposed a two-dimensional scalar macroscopic model to de-
scribe traffic flow on multi-lane roads. Therefore, the equation generalizes the
one-dimensional LWR model. We prescribed the closure laws describing the
two flux functions by using a data-fitting technique with respect to experimen-
tal measurements on a German highway.

Since laser sensors provide the two-dimensional trajectory of vehicles, we
recovered also the fundamental diagram for traffic behavior across lanes. To
our knowledge, this the first time that the resulting behavior of the flow across
lanes is taken into account. This is possible thanks to the particular traffic rules
on European highways which lead to a non-naive dynamic in the orthogonal
direction to the movement of vehicles. In fact, if we consider experimental
data on US highway, where there is no obligation to overtake on left lanes, the
resulting behavior across lanes is naive. For instance, see Figure [§| in which
we show the fundamental and speed-density diagrams in y-direction computed
from NGSIM data on US101 [I]. The mean dynamic of the flow seems to suggest
q¢¥ = 0 and therefore the 2D model reduces to the 1D LWR-type model .

On the German data-set, numerical examples show the validity of the macro-
scopic modeling when comparing with experiments. In particular, the numerical
comparison with trajectory data shows that the two-dimensional scalar model al-
ready outperforms a corresponding lane-averaged one-dimensional model. From
an application point of view, in future works we plan to investigate now the ef-
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Figure 8: Experimental diagrams in y-direction resulting from the US101 high-
way and using 15 minutes of recorded data (07:50 - 08:05 a.m.). The macro-
scopic quantities are obtained by aggregating each 100 meter sections and every
1 second. Left panel: flux-density diagram. Right: speed-density diagram.

fect of regulations on lane reduction using the two-dimensional setting as well
as higher-order models. In fact, it is expected that as in [2I] the additional
degree of freedom in the modeling allows for a better adjustment of the mod-
els to data. Further, we plan to study a two-dimensional kinetic model which
allows to understand the underlying microscopic dynamic leading to the differ-
ent macroscopic behavior across lanes resulting from the German and the US
data-sets.

Acknowledgment

This work has been supported by HE5386/13-15 and DAAD MIUR project.
We also thank the ISAC institute at RWTH Aachen, Prof. M. Oeser, MSc. A.
Fazekas and MSc. F. Hennecke for kindly providing the trajectory data.

References

[1] Federal Highway Administration UsS Department of
Transportation. Next Generation Simulation (NGSIM).
http://ops.thwa.dot.gov /trafficanalysistools/ngsim.htm.

[2] Minnesota Department of Transportation. mn/DOT Traffic Data.
http://data.dot.state.mn.us/datatools.

[3] Mobile millennium project: http://traffic.berkeley.edu.

[4] 75 Years of the Fundamental Diagram for Traffic Flow Theory: Green-
shields Symposium, 2011. Transportation Research Board, Circular E-
C149.

[5] S. Amin et al. Mobile century — Using GPS mobile phones as traffic
sensors: A field experiment. In 15th World Congress on Intelligent Trans-
portation Systems, New York, Nov. 2008.

17



[6]

[7]

[9]

[10]

[11]

[16]

[17]

[18]

A. Aw and M. Rascle. Resurrection of “second order” models of traffic
flow. SIAM J. Appl. Math., 60(3):916-938 (electronic), 2000.

A. M. Bayen and C. G. Claudel. Lax-Hopf based incorporation of internal
boundary conditions into Hamilton-Jacobi equation. Part I: Theory. IEEE
Trans. Automat. Contr., 55(5):1142-1157, 2010.

A. M. Bayen and C. G. Claudel. Convex formulations of data assimila-
tion problems for a class of Hamilton-Jacobi equations. SIAM J. Control
Optim., 49(2):383-402, 2011.

N. Bellomo and C. Dogbé. On the modeling of traffic and crowds: A survey
of models, speculations, and perspectives. SIAM Rev., 53:409-463, 2011.

S. Benzoni-Gavage and R. M. Colombo. An n-populations model for traffic
flow. European J. Appl. Math., 14(5):587-612, 2003.

F. Berthelin, P. Degond, M. Delitala, and M. Rascle. A model for the forma-
tion and evolution of traffic jams. Arch. Ration. Mech. Anal., 187:185-220,
2008.

S. Blandin, G. Bretti, A. Cutolo, and B. Piccoli. Numerical simulations of
traffic data via fluid dynamic approach. Appl. Math. Comput., 210(2):441—
454, 20009.

R. Cao, A. Cuevas, and W. G. Manteiga. A comparative study of sev-
eral smoothing methods in density estimation. Comput. Stat. Data. An.,
17(2):153-176, 1994.

B. N. Chetverushkin, N. G. Churbanova, I. R. Furmanov, and M. A.
Trapeznikova. 2D micro- and macroscopic models for simulation of het-
erogeneous traffic flows. In J. C. F. Pereira and Adélia Sequeira, editors,
Proceedings of the ECCOMAS CFD 2010, V European Conference on Com-
putational Fluid Dynamics, Lisbon, Portugal, 2010.

B. N. Chetverushkin, N. G. Churbanova, A.B. Sukhinova, and M.A.
Trapeznikova. Congested traffic simulation based on a 2D hydrodynam-
ical model. In B.A. Schrefler and U. Perego, editors, Proceedings of 8th
World Congress on Computational Mechanics and 5th European Congress
on Computational Methods in Applied Science and Engineering, WCCMS8
& ECCOMAS 2008, Barcelona, Spain, 2008.

R. Courant, K O. Friedrichs, and H. Lewy. Uber die partiellen dif-
ferenzengleichungen der mathematischen physik. Mathematische Annalen,
100(1):32-74, 1928.

I. Cravero, G. Puppo, M. Semplice, and G. Visconti. CWENO: uni-
formly accurate reconstructions for balance laws. Math. Comp. In press.
arXiv:1607.07319.

C. F. Daganzo. The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory. Transportation
Research Part B, 28(4):269-287, 1994.

18



[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

C. F. Daganzo. Requiem for second order fluid approximations of traffic
flow. Transp. Res. B, 29B:277-286, 1995.

C. F. Daganzo. In traffic flow, cellular automata = kinematic waves.
Transp. Res. B, 40:396-403, 2006.

S. Fan, M. Herty, and B. Seibold. Comparative model accuracy of a
data-fitted generalized Aw-Rascle-Zhang model. Netw. Heterog. Media.,
9(2):239-268, 2014.

S. Fan and B. Seibold. A comparison of data-fitted first order traffic models
and their second order generalizations via trajectory and sensor data. ArXiv
e-prints, August 2012.

M. Garavello and B. Piccoli. Traffic flow on networks, volume 1 of AIMS
Series on Applied Mathematics. American Institute of Mathematical Sci-
ences (AIMS), Springfield, MO, 2006. Conservation laws models.

P. Goatin. The Aw—Rascle vehicular traffic flow model with phase transi-
tions. Math. Comput. Modeling, 44(3):287-303, 2006.

B. D. Greenshields. A study of traffic capacity. Proc. Highway Res., 14:448—
477, 1935.

A. Harten. High resolution schemes for hyperbolic conservation laws. J.
Comp. Phys., 49:357-393, 1983.

D. Helbing. Traffic and related self-driven many-particle systems. Reviews
of Modern Physics, 73:1067-1141, 2001.

R. Herman and I. Prigogine. Kinetic theory of vehicular traffic. Elsevier,
New York, 1971.

M. Herty and R. Illner. Analytical and numerical investigations of refined
macroscopic traffic flow models. Kinet. Relat. Models, 3(2):311-333, 2010.

M. Herty and L. Pareschi. Fokker-Planck asymptotics for traffic flow mod-
els. Kinet. Relat. Models, 3(1):165-179, 2010.

K. Heun. Neue Methoden zur approximativen Integration der Differential-
gleichungen einer unabhangigen veranderlichen. Z. Math. Phys, 45:23-38,
1900.

S. P. Hoogendoorn, Faculty of Civil Engineering Delft University of Tech-
nology, and Geosciences. Traffic Flow Theory and Simulation: CT4821.
TU Delft, 2007.

R. Illner, A. Klar, and T. Materne. Vlasov-Fokker-Planck models for mul-
tilane traffic flow. Commun. Math. Sci., 1(1):1-12, 2003.

M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth
selection for density estimation. J. Am. Statist. Assoc., 91(433):401-407,
1996.

B. S. Kerner. The Physics of Traffic. Understanding Complex Systems.
Springer, Berlin, 2004.

19



[36]

[37]

[38]

[49]

[50]

[51]

B. S. Kerner and P. Konh&user. Cluster effect in initially homogeneous
traffic flow. Phys. Rev. E, 48:R2335-R2338, 1993.

B. S. Kerner and P. Konh&user. Structure and parameters of clusters in
traffic flow. Phys. Rev. E, 50:54-83, 1994.

A. Klar and R. Wegener. A hierarchy of models for multilane vehicular
traffic. I. Modeling. SIAM J. Appl. Math., 59(3):983-1001 (electronic),
1999.

A. Klar and R. Wegener. A hierarchy of models for multilane vehicular
traffic. II. Numerical investigations. SIAM J. Appl. Math., 59(3):1002-1011
(electronic), 1999.

A. Klar and R Wegener. Kinetic derivation of macroscopic anticipation
models for vehicular traffic. STAM J. Appl. Math., 60(5):1749-1766 (elec-
tronic), 2000.

J. P. Lebacque. Les modeles macroscopiques du traffic. Annales des Ponts.,
67:24-45, 1993.

W. Leutzbach. Introduction to the Theory of Traffic Flow. Springer, New
York, 1988.

R. J. LeVeque. Finite- Volume Methods for Hyperbolic Problems. Cambridge
University Press, 2002.

M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory
of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A.,
229:317-345, 1955.

S. Maerivoet and B. De Moor. Traffic flow theory. Technical Report 05-154,
Katholieke Universiteit Leuven, 2005.

G. F. Newell. A simplified theory of kinematic waves in highway traffic II:
Queueing at freeway bottlenecks. Transp. Res. B, 27:289-303, 1993.

E. Parzen. On estimation of a probability density function and mode. Ann.
Math. Statist., 33:1065-1076, 1962.

H. J. Payne. Models of freeway traffic and control. Simulation Council,
1971.

H. J. Payne. FREFLO: A macroscopic simulation model for freeway traffic.
Transportation Research Record, 722:68-77, 1979.

W. F. Phillips. A kinetic model for traffic flow with continuum implications.
Transportation Planning and Technology, 5:31-138, 1979.

B. Piccoli and A. Tosin. Vehicular traffic: A review of continuum mathe-
matical models. In R. A. Meyers, editor, Encyclopedia of Complexity and
Systems Science, volume 22, pages 9727-9749. Springer, New York, 2009.

G. Puppo, M. Semplice, A. Tosin, and G. Visconti. Fundamental diagrams
in traffic flow: the case of heterogeneous kinetic models. Commun. Math.
Sci., 14(3):643-669, 2016.

20



[53]

G. Puppo, M. Semplice, A. Tosin, and G. Visconti. Analysis of a multi-
population kinetic model for traffic flow. Commun. Math. Sci., 15(2):379—
412, 2017.

P. I. Richards. Shock waves on the highway. Operations Res., 4:42-51,
1956.

M. Rosenblatt. Remarks on some nonparametric estimates of a density
function. Ann. Math. Statist., 27:832-837, 1956.

M. Rosini. Macroscopic models for vehicular flows and crowd dynamics:
theory and applications. Springer, Basel, Switzerland, 2013.

C. W. Shu. High Order Weighted Essentially Nonoscillatory Schemes for
Convection Dominated Problems. SIAM REVIEW, 51(1):82-126, 2009.

A.B. Sukhinova, M.A. Trapeznikova, B. N. Chetverushkin, and N. G. Chur-
banova. Two-Dimensional Macroscopic Model of Traffic Flows. Mathemat-
ical Models and Computer Simulations, 1(6):669-676, 2009.

E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer, Berlin, 2009.

R. T. Underwood. Speed, Volume, and Density Relationships: Quality and
Theory of Traffic Flow. Technical report, Yale Bureau of Highway Traffic,
1961.

B. van Leer. Towards the ultimate conservative difference scheme III.
Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comp. Phys., 23(3):263-275, 1977.

H. M. Zhang. A non-equilibrium traffic model devoid of gas-like behavior.
Transport. Res. B-Meth., 36:275-290, 2002.

21



	IGPM466-Deckblatt
	IGPM466-Original
	Introduction
	Data-set description and fundamental diagrams
	Two-dimensional LWR-type model
	Macroscopic closures and data-fitting

	Numerical simulations
	Numerical scheme
	Treatment of experimental data
	Validation of the model

	Conclusions and Outlook


