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Abstract

Physical systems such as water and gas networks are usually operated in a state of equi-
librium and feedback control is employed to damp small perturbations over time. We
consider flow problems on networks, described by hyperbolic balance laws, and analyze
the stabilization of steady states. Sufficient conditions for exponential stability in the con-
tinuous and discretized setting are presented. Computational experiments illustrate the
theoretical findings.

1 Introduction

Hyperbolic balance laws can be used to model flow dynamics on networks. Isother-
mal Euler and shallow water equations form a 2×2 hyperbolic system to model
the temporal and spatial evolution of gas and water flow. Boundary control of
such systems is subject of current research, see e.g. [3, 5]. In particular, analytical
results have been presented in the case of gas flow [15, 2, 14, 18] and water flow
[4, 13, 16, 19, 10, 17]. The underlying tool for the study of these problems are
Lyapunov functions stabilizing the deviation from steady states in suitable norms,
e.g. L2, H2. Exponential decay of a continuous Lyapunov function under a so-called
dissipative condition has been proven in [8, 11, 6, 7]. Comparisons to other stability
concepts are presented in [9]. Stability with respect to the H2-norm gives in [7, 3]
stability of the nonlinear system.

Most analytical results do not state explicitly decay rates of the Lyapunov func-
tion and the influence of the source term is assumed to be small or in intuitive terms,
the considered balance laws are viewed as perturbations of conservation laws [8].
In practical applications however there may be a large influence of the source term.
Our main result is Corollary 1, where we present explicit decay rates for arbitrary
source terms. Recently, explicit decay rates for numerical schemes have been estab-
lished. In [1] exponential decay on a finite time horizon has been established for
conservations laws and in [20] discretizations of linear systems with positive defi-
nite and symmetric source term are considered. In Theorem 4.2 we extend those
results by presenting a discretized analogue of [9, Theorem 2.3] without source term
and [8, Theorem 2] with source term, i.e. we establish a global stabilization result
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2 Theoretical Results and Basic Notations 2

with respect to the H2-norm. First, results on Lyapunov stability for the contin-
uous case are presented. Then the discretized case is introduced and the relation
to the continuous case is discussed. Numerical experiments, based on isothermal
Euler and shallow water equations illustrate the theoretical results.

2 Theoretical Results and Basic Notations

We briefly recall results from [3] considering the stability of a steady state of a
physical system described by a system of hyperbolic differential equations given by

d
dty(t, x) + d

dxf
(
y(t, x)

)
= −S

(
y(t, x)

)
(1)

with time and space variables (t, x) ∈ [0,∞)× [0, L]. We assume a 2×2 system with
strictly hyperbolic flux function f ∈ C1(R2;R2) and source term S ∈ C1(R2;R2),
but an extension to larger systems is straightforward. To simplify notation we omit
time and space variables and abbreviate system (1) by yt + f(y)x = −S(y), which
is for smooth solutions equivalent to solving

yt +Dyf(y) yx = −S(y),

where Dyf(y) denotes the Jacobian of f(y). This system will be analyzed at a
steady state.

Definition 2.1 (Steady State). A steady state (or equilibrium) is a time-invariant
possibly space-varying solution ȳ(x) of system (1). It satisfies the system of ordinary
differential equations

0 = ȳt = f(ȳ)x + S(ȳ).

Since we are mainly interested in H2-stabilization, we assume for now ȳ ∈ H2(0, L).
Sobolev’s embedding theorem ensures a representant ȳ ∈ C1(0, L).

We first linearize the original system at steady state and than transform the cor-
responding linear system into Riemann invariants. The opposite approach – first
transforming into Riemann invariants and then linearizing – has been discussed
in [3]. Both approaches yield stability of the linearized system in Riemann coordi-
nates. Assuming small and smooth perturbations ∆y(t, x) := y(t, x) − ȳ(x) of the
steady state, the flux function and the source term is linearized by f(ȳ) +A∆y and
S(ȳ) + S̄∆y, where A and S̄ denote Jacobian at steady state. We denote by Ax
the matrix, where each entry of A(x) is differentiated with respect to x. Neglecting
higher order derivatives, the linearized balance law (1) reads

∆yt +A∆yx = −
(
S̄ +Ax

)
∆y. (2)

The matrices A(x), S̄(x) ∈ R2×2 may depend on the space variable x ∈ [0, L]. For
a given steady state ȳ we assume an initial perturbation ∆y(0, x) := ∆y0(x). Sta-
bilization aims to damp the deviation ∆y.

2.1 Riemann Invariants
For 2×2 systems with hyperbolic flux function the Jacobian A in the quasilinear
form (2) is always diagonalizable [12]. Thus there exists a diagonal matrix Λ̄ :=
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diag
{
λ̄+, λ̄−

}
, whose entries are eigenvalues of A and a matrix T , whose columns

r± are the corresponding eigenvectors, such that

A = T Λ̄T−1, Λ̄ := diag
{
λ̄+, λ̄−

}
, T :=

(
r+
∣∣∣ r−).

We introduce the assumption

λ̄−(x) < 0 < λ̄+(x), ∀ x ∈ [0, L], (3)

which holds in the case of isothermal Euler and shallow water equations as long as
the flow remains subsonic and subcritical, respectively. Again, the eigenvalues λ̄±(x)
and eigenvectors r±(x) may depend on x. We introduce the Riemann invariant

ζ :=
(
ζ+

ζ−

)
:= T−1∆y and C := T−1

(
S̄ +Ax

)
T + Λ̄T−1Tx

such that for smooth solutions equation (2) is equivalent to ζt + Λ̄ζx = −Cζ. We
prescribe linear feedback boundary conditions by a matrix Ḡ ∈ R2×2 such that the
system

ζt + Λ̄ζx = −Cζ, ζ(0, x) = T−1∆y0(x),(
ζ+(t, 0)
ζ−(t, L)

)
= Ḡ

(
ζ+(t, L)
ζ−(t, 0)

) (S̄)

is well-posed [3]. According to assumption (3) characteristics with λ̄+(x) > 0 and
λ̄−(x) < 0 are time-independent and cannot cross. Therefore a solution exists for
all t ∈ R+

0 as discussed in [12]. We will show that it is stable with respect to the
L2-norm in the sense of Definition 2.2, which is taken from [3, Sec. 3], where also
the precise definition of a L2-solution is found.

Definition 2.2 (Exponential Stability for the L2-Norm [3, Def. 3.1]). The system
(S̄) is exponentially stable for the L2-norm if there exist µ > 0 and α > 0 such that
for every ζ(0, ·) ∈ L2([0, L];R2) the L2-solution of (S̄) satisfies∥∥ζ(t, ·)

∥∥
L2([0,L];R2) ≤ αe

−µt∥∥ζ(0, ·)
∥∥
L2([0,L];R2), ∀ t ∈ R+

0 .

2.2 Higher Order Derivatives
A natural extension of exponential stability for theHd-norm is given in [3] by replac-
ing the norm L2([0, L];R2) by Hd

(
[0, L];R2). Additional compatibility conditions

must be fulfilled to ensure well-posedness of the initial-boundary value problem
(IBVP). We reduce Hd- to L2-stabilization by introducing the Riemann invariant
RT :=

(
ζ(0), . . . , ζ(d)), which contains all derivatives up to order d.

Theorem 2.3 (IBVP for Hd). Given the IBVP (S̄) with possibly space-varying dis-
tinct eigenvalues Λ̄(x) := diag

{
λ̄+(x), λ̄−(x)

}
with λ̄−(x) < 0 < λ̄+(x) and source

term C(x) ∈ R2, the Riemann invariant RT :=
(
ζ(0), . . . , ζ(d)) ∈ R2(d+1) fulfills

Rt + ΛRx = −BR, R(j)(0, x) = ∂j

∂xj
ζ(0, x),(

R+(t, 0)
R−(t, L)

)
= G

(
R+(t, L)
R−(t, 0)

) (S)
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with Λ := diag
{

Λ̄, . . . , Λ̄
}
∈ R2(d+1) and R± :=

(
R(0),±, . . . ,R(d),±)T

. For C, Λ̄
sufficiently smooth the source term is a triangular block matrix of the form

B :=


B

∗ B + Λ̄x
∗ ∗

. . .
∗ ∗ ∗ B + dΛ̄x

 , (4)

where ∗ denote non-zero entries. Then problem (S) is well-posed for the matrix

G =



G
(0)
1,1 G

(0)
1,2

. . . . . .
G

(d)
1,1 G

(d)
1,2

G
(0)
2,1 G

(0)
2,2

. . . . . .
G

(d)
2,1 G

(d)
2,2


, (5)

where G(k)
i,j denotes the i, j-th entry of the matrix

G(k) :=
(
λ̄+(0)

λ̄−(L)

)−k
Ḡ

(
λ̄+(L)

λ̄−(0)

)k
.

Proof. We prove statement (4) by induction. Let Cx := Cx(x) ∈ R2×2 denote the
matrix, where each entry of C(x) ∈ R2×2 is differentiated with respect to x. Then
for j = 1 the first derivative satisfies

0 = ∂

∂x

[
ζt + Λ̄ζx + Cζ

]
= R(1)

t + Λ̄R(1)
x +

(
C + Λ̄x

)
R(1) + CxR(0).

Let the claim hold for j − 1 with 2 ≤ j ≤ d. Then we obtain

∂

∂x

[
R(j−1)
t + Λ̄R(j−1)

x +
(
C + (j − 1)Λ̄x

)
R(j−1) +

j−2∑
i=0

α
(j−1)
i R(i)

]

= R(j)
t + Λ̄R(j)

x +
(
C + jΛ̄x

)
R(j) +

j−1∑
i=0

α
(j)
i R

(i)

for space-variant coefficient matrices α(j)
i ∈ R2×2. The claim follows by induction.

Since each entry R(j) ∈ R2 consists of one wave R(j),+ with positive character-
istic speed λ̄+ and one with negative speed, they can be reorderd to R±. Since only
the advection part causes a flux over the boundary, balance law (S) simplifies at
the boundary to

R(j),+
t (t, 0) + λ̄(j),+(0)R(j),+

x (t, 0) = 0,

R(j),−
t (t, L) + λ̄(j),−(L)R(j),−

x (t, L) = 0
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which yields for j = 1, . . . , d(
λ̄+(0)

λ̄−(L)

)(
R(j),+(t, 0)
R(j),−(t, L)

)
= −

(
R(j−1),+(t, 0)
R(j−1),−(t, L)

)
t

= −G(j−1)
(
R(j−1),+(t, L)
R(j−1),−(t, 0)

)
t

= G(j−1)
(
λ̄+(L)

λ̄−(0)

)(
R(j),+(t, L)
R(j),−(t, 0)

)
.

3 Stabilization in the Continuous Case

In this section we prove exponential stability for a set of Riemann invariants. As
basic tool we use a Lyapunov function similar to [15]. But in extension we equip the
left boundary for Riemann invariants with positive characteristic speeds by some
strictly positive weight h(j)

0 > 0 and the right boundary by h(j)
L > 0 for negative

speeds, respectively. For now, we assume that they are given, but in following
sections we show how they can be determined to ensure exponential stability. We
refer to those weights as “ghostcell-weights”.

Definition 3.1 (Lyapunov Function). For a system of Riemann invariants R ∈ Rm
we assume a positive characteristic speed λ(j)(x) > 0 for j = 1, . . . , p and λ(j)(x) < 0
for j = p+1, . . . ,m, respectively. Let constants h(j)

0 > 0 for j = 1, . . . , p and h(j)
L > 0

for j = p+ 1, . . . ,m be given. We define the diagonal matrix

W (x, µ) := diag
{
w(1)(x, µ), . . . , w(p)(x, µ), w(p+1)(x, µ), . . . , w(m)(x, µ)

}
with strictly positive entries

w(j)(x, µ) := h
(j)
0

λ(j)(x)
exp
(
− µ

∫ x

0

1
λ(j)(s)

ds
)
, j = 1, . . . , p,

w(j)(x, µ) := −h(j)
L

λ(j)(x)
exp
(
µ

∫ L

x

1
λ(j)(s)

ds
)
, j = p+ 1, . . . ,m

such that for x ∈ [0, L] and µ > 0 fixed, the weighted inner product〈
a, b
〉
W (x) := aTW (x, µ)b, ∀ a, b ∈ Rm

and the Lyapunov function

L(t) :=
L∫

0

‖R‖2W (x) dx

are well-defined. We define h(j)(x, µ) such that w(j)(x, µ) = h(j)(x,µ)
λ(j)(x) for j = 1, . . . , p

and w(j)(x, µ) = −h
(j)(x,µ)
λ(j)(x) for j = p+ 1, . . . ,m, respectively.

Next we show conditions that guarantee a specific decay rate µ > 0. The basic
idea of our proof is to ensure non-negative eigenvalues of a matrix M(x), which
we will define later. Then we deduce

〈
R,M(x)R

〉
≥ 0 for all R ∈ Rm. Note that
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this is only possible ifM(x) is symmetric. Therefore, we define for non-symmetric
weighted source terms the symmetric matrix W (x)B(x) by

B(x) := B(x) +W−1(x)BT(x)W (x)
2 such that for all R ∈ Rm it holds〈

R,B(x)R
〉
W (x)

=
〈
R, W (x)B(x) +BT(x)W (x)

2 R
〉

=
〈
R, B(x)R

〉
W (x)

,

i.e. the same weighted quadratic form is represented by B and B. In the next
theorem we state conditions that guarantee a non-increasing Lyapunov function.

Theorem 3.2 (Lyapunov Stability). Assume µ > 0 be given such that for all
x ∈ [0, L] fixed the matrix M(x, µ) := µW (x, µ) + 2W (x, µ)B(x, µ) is positive
semidefinite and the matrix M(µ) := GTHGG−HB(µ) is negative semidefinite,
where the matrix HG := diag

{
H+

0 , H
−
L

}
is defined for the given ghostcell-weights as

H+
0 := diag

{
h

(1)
0 , . . . , h

(p)
0

}
, H−L := diag

{
h

(p+1)
L , . . . , h

(m)
L

}
and HB(µ) := diag

{
H+(L, µ), H−(0, µ)

}
as

H+(L, µ) := diag
{
h(1)(L, µ), . . . , h(p)(L, µ)

}
,

H−(0, µ) := diag
{
h(p+1)(0, µ), . . . , h(m)(0, µ)

}
.

Then the derivative of the Lyapunov function is non-increasing, i.e.
d
dtL(t) ≤ 0.

Proof. The analysis for the advection part Rt+ΛRx = 0 can be reduced to a single
Riemann invariant L(j) :=

∫
R(j)(t, x)2w(j)(x, µ) dx. For positive characteristic

speeds j = 1, . . . , p we get by using integration by parts
d
dtL

(j)(t) = −
∫ d

dx

[
R(j)(t, x)2

]
h(j)(x, µ) dx

= −
[
R(j)(t, ·)2h(j)(·, µ)

]L
0

+
∫
R(j)(t, x)2 d

dx

[
h(j)(x, µ)

]
dx

= −
[
R(j)(t, L)2h(j)(L, µ)−R(j)(t, 0)2h

(j)
0

]
− µL(j)(t).

It follows analogously for j = p+ 1, . . . ,m
d
dtL

(j)(t) =
[
R(j)(t, L)2h

(j)
L −R

(j)(t, 0)2h(j)(0, µ)
]
− µL(j)(t).

Summing up yields

d
dtL(t) ≤−

p∑
j=1

[
R(j)(t, L)2h(j)(L, µ)−R(j)(t, 0)2h

(j)
0

]
(6)

+
m∑

j=p+1

[
R(j)(t, L)2h

(j)
L −R(j)(t, 0)2h(j)(0, µ)

]
(7)

− µL(t). (8)
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The boundary terms (6) and (7) read(
R+(t, 0)
R−(t, L)

)T
HG

(
R+(t, 0)
R−(t, L)

)
−
(
R+(t, L)
R−(t, 0)

)T
HB(µ)

(
R+(t, L)
R−(t, 0)

)
=
(
R+(t, L)
R−(t, 0)

)T [
GTHGG − HB(µ)

](
R+(t, L)
R−(t, 0)

)
and are non-positive if the matrix M(µ) is negative semidefinite. The Lyapunov
function for the reaction part Rt = −BR reads

d
dtL(t) =

∫
RT
t W (x, µ)R+RTW (x, µ)Rt dx

= −
∫
RT
(
BT(x)W (x, µ) +W (x, µ)B(x)

)
R dx

= −2
∫ 〈
R,W (x, µ)B(x)R

〉
dx. (9)

Summing up (8) and (9) yields

d
dtL(t) ≤ −µ

∫ 〈
R,W (x, µ)R

〉
− 2

∫ 〈
R,W (x, µ)B(x)R

〉
dx

= −
∫ 〈
R,M(x, µ)R

〉
dx ≤ 0.

Theorem 3.2 only guarantees a non-increasing Lyapunov function. Exponential
decay and an explicit decay rate are established in the following corollary.

Corollary 1 (Exponential Stability). Assume µ > 0 be given such that the ma-
trix M(µ), defined in Theorem 3.2, is negative semidefinite and define the matrix

B̃(x, µ) := 1
2

[
W 1/2(x, µ)B(x)W−1/2(x, µ) +W−1/2(x, µ)BT(x)W 1/2(x, µ)

]
with eigenvalues d(j)(x, µ). Then the Lyapunov function decays exponentially,
i.e. L(t) ≤ e−µ̃tL(0) with rate µ̃ ≤ µ+ 2dmin(µ), where dmin(µ) := min

x,j

{
d(j)(x, µ)

}
denotes the smallest eigenvalue of B̃(x, µ). The smallest eigenvalue is estimated as

dmin(µ) ≥ −cond√W (µ) max
x∈[0,L]

{∥∥B(x)
∥∥

2

}
, cond√W (µ) := max

x∈[0,L],
i,j=1,...,m

√
w(i)(x, µ)
w(j)(x, µ)

.

Proof. The symmetric matrix B̃(x, µ) = V T(x, µ)D(x, µ)V (x, µ) is diagonalizable
by an orthogonal matrix V (x, µ). For µ̃ ≤ µ+ 2dmin(µ) the matrix

µ− µ̃+ 2B̃(x, µ) = V T(x, µ)
[
µ− µ̃+ 2D(x, µ)

]
V (x, µ)

is also diagonalizable with non-negative eigenvalues and consequently is positive
semidefinite as well as the symmetric matrix

(µ− µ̃)W (x, µ) + 2W (x, µ)B(x, µ). (10)
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The claim follows by Theorem 3.2 since we have

d
dtL(t) ≤ −µ̃L(t)−

∫ 〈
R,
(

(µ− µ̃)W (x, µ) + 2W (x, µ)B(x, µ)
)
R
〉
dx ≤ −µ̃L(t).

The spectral radius of a matrix A satisfies for any p-norm ρ{A} ≤ ‖A‖p and the
2-norm ‖A‖2 :=

√
ρ{AAT} satisfies ‖·‖2 = ‖(·)T‖2 and specifically for a diagonal

matrix with positive entries
∥∥W (x, µ)

∥∥
2 = max

j=1,...,m

{
w(j)(x, µ)

}
. Thus we get

dmin(µ) ≥ −ρ
{
B̃(x, µ)

}
≥ −

∥∥B̃(x, µ)
∥∥

2 ≥ −
∥∥W 1/2(x, µ)

∥∥
2

∥∥W−1/2(x, µ)
∥∥

2

∥∥B(x)
∥∥

2

≥ −cond√W (µ) max
x∈[0,L]

{∥∥B(x)
∥∥

2

}
.

The guaranteed decay rate µ̃ not only depends on the definiteness of the source
term but also on weights. The estimate of dmin(µ) guarantees the existence of µ > 0
that yields an exponential decay with rate µ̃ > 0 as long as the condition number
cond√W (µ) remains bounded. The analysis covers the pathological case µ̃ ≤ 0. In
this case there is no decaying Lyapunov function guaranteed. IfW (x)B(x) is positive
semidefinite or in the case of conservation laws we get the decay rate µ̃ := µ.

An estimate that is independent of µ is possible if weights are of the form
W (x, µ) := w(x, µ)1 with w(x, µ) ∈ R+ and identity matrix 1 ∈ Rm×m. Then the
guaranteed decay rate is estimated by

µ̃ ≤ µ+ 2dmin, dmin := min
x∈[0,L],
j=1,...,m

{
d(j)(x)

}
,

where d(j)(x) denote the eigenvalues of 1
2
[
B(x) +BT(x)

]
. This is seen when diago-

nalizing by an orthogonal matrix V (x) such that 1
2
[
B(x)+BT(x)

]
= V T(x)D(x)V (x).

Then the symmetric matrix (10) is diagonalizable by

w(x, µ)
[
(µ− µ̃)1 +B(x) +BT(x)

]
=
(
V (x)

√
w(x, µ)

)T[
(µ− µ̃)1 + 2D(x)

](
V (x)

√
w(x, µ)

)
,

where eigenvalues µ− µ̃+ 2d(j)(x) are non-negative for all j = 1, . . . ,m due to the
assumption µ̃ ≤ µ + 2dmin. This case is considered in [20] in a discretized setting.
Note that a not necessarily symmetric source term with positive eigenvalues does
not imply positive definiteness of the symmetric matrix BT(x) +B(x).

4 Stabilization in the Discretized Case

Using a space discretization ∆x, the space interval [0, L] is divided into N cells
such that ∆xN = L with centers xi :=

(
i + 1

2
)
∆x for i = 0, . . . , N − 1 and edges

xi+ 1
2

:= i∆x for i = 0, . . . , N . Outside the domain ghostcells with centers x0 and
xN+1 are added. The discrete time steps are denoted by tk := k∆t for k ∈ N0 and
∆t > 0 such that the CFL-condition

CFL := max
x∈[0,L],
j=1,...,m

∣∣∣λ(j)(x)
∣∣∣ ∆t

∆x ≤ 1
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holds, where λ(j) are eigenvalues of (S). Cell averages at tk are approximated by

Rki :=
(
Rk,+i
Rk,−i

)
≈ 1

∆x

xi+1/2∫
xi−1/2

(
R+(tk, x)
R−(tk, x)

)
dx ∈ Rm.

The advection part can be approximated by a left and right sided upwind-scheme
and the reaction part by the explicit Euler method, i.e.

Rk+1
i = Rki −

∆t
∆xΛi

(
Rk,+i −Rk,+i−1
Rk,−i+1 −R

k,−
i

)
−∆tBiRki (11)

where Λi := diag{λ(1)
i , . . . , λ

(m)
i } contains positive characteristic speeds

λ
(j)
i := λ(j)(ξ+) with ξ+ ∈ [xi−1, xi] and negative speeds λ(j)

i := λ(j)(ξ−) with
ξ− ∈ [xi, xi+1], respectively. The discretized source term is Bi := B(xi) ∈ Rm×m
and Bi := B(xi). Boundary conditions determine ghostcell values by(

Rk,+0
Rk,−N+1

)
= G

(
Rk,+N
Rk,−1

)
.

4.1 Analysis of the Discretized Lyapunov Function
To improve the readability of the text we omit in the discretized case the dependency
on the decay rate. The continuous Lyapunov function for a single Riemann invariant
with positive constant characteristic speed λ+ is of the form

L+(t) = c

∫
R+(t, x)2e−

µ

λ+ x dx

and a straightforward discretized analogue in tk would be

Lk,+ = c

N∑
i=1

(
Rk,+i

)2
e−

µ

λ+ xi ∆x,

which is proposed in [1, 20]. There Lyapunov stability was only proven for a finite
time interval, as a blow up in derivatives occur in contrast to the continuous case.
To circumvent this problem we approximate the continuous derivative

∂

∂s
h(j)(s) = −µh

(j)

λ+ (s) by
h

(j)
i − h

(j)
i−1

∆x = −µ
h

(j)
i−1

λ
(j)
i

for j = 1, . . . , p (12)

∂

∂s
h(j)(s) = −µh

(j)

λ−
(s) by

h
(j)
i+1 − h

(j)
i

∆x = −µ
h

(j)
i+1

λ
(j)
i

for j = p+ 1, . . . ,m. (13)

The one-sided difference quotients (12) and (13) explain the choices (14) and (15)
in the next definition.

Definition 4.1 (Discretized Lyapunov Function). For a system of Riemann in-
variants Rki ∈ Rm with i = 1, . . . , N we assume a positive characteristic speed
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λ
(j)
i > 0 for j = 1, . . . , p and λ

(j)
i < 0 for j = p+ 1, . . . ,m, respectively. Let con-

stants h(j)
0 > 0 for j = 1, . . . , p and h

(j)
N+1 > 0 for j = p+ 1, . . . ,m be given. We

define the diagonal matrix

Wi := diag
{
w

(1)
i , . . . , w

(p)
i , w

(p+1)
i , . . . , w

(m)
i

}
with strictly positive entries w(j)

i = h
(j)
i−1

λ
(j)
i

for j = 1, . . . , p and w
(j)
i = −h

(j)
i+1

λ
(j)
i

for

j = p+1, . . . ,m, respectively, where h(j)
i is recursively defined by (12) and (13), i.e.

h
(j)
i := h

(j)
0

i∏
`=1

(
1−∆x µ

λ
(j)
`

)
, j = 1, . . . , p, (14)

h
(j)
i := h

(j)
N+1

i∏
`=N

(
1−∆x µ

|λ(j)
` |

)
, j = p+ 1, . . . ,m. (15)

We introduce for all i = 1, . . . , N the weighted inner product〈
a, b
〉
Wi

:= aTWib, ∀ a, b ∈ Rm (16)

and the Lyapunov function

Lk :=
N∑
i=1

∥∥Rki ∥∥2
Wi

∆x. (17)

From now on we assume a space restriction

∆x ∈ (0, λmin/µ) with λmin := min
x∈[0,L],
j=1,...,m

∣∣λ(j)(x)
∣∣ (18)

which ensures strictly positive weights Wi such that the inner product (16) and
consequently the Lyapunov function (17) are well-defined. We show a discretized
analogue of Theorem 3.2.

Theorem 4.2 (Lyapunov Stability in the Discretized Case). Assume that for all k, i
there exists θ <∞ such that∥∥∥∥(Rk,+i −Rk,+i−1

Rk,−i+1 −R
k,−
i

)∥∥∥∥
Wi

∥∥Rki ∥∥Wi
≤ θ

2
∥∥Rki ∥∥2

Wi
. (19)

Let the matrixMi := µWi + 2WiBi −∆tBT
i WiBi − θ ∆t

∆x
∥∥W−1/2

i BT
i WiΛiW−1/2

i

∥∥1
be positive semidefinite for i = 1, . . . , N and the matrix M := GTHGG − HB be
negative semidefinite, where ghostcell-weights HG for Rk,+0 and Rk,−N+1 are defined
as in Theorem 3.2, and the matrix HB := diag

{
H+

1 , H
−
N

}
by the discretizations

H+
N := diag

{
h

(1)
N , . . . , h

(p)
N

}
and H−1 := diag

{
h

(p+1)
1 , . . . , h

(m)
1

}
.

Then the discrete derivative of Lyapunov function (17) is non-increasing, i.e.

Lk+1 − Lk

∆t ≤ 0.
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Proof. The numerical scheme (11) reads in splitting form

Rk+1
i = R̃ki −∆tBiRki , R̃ki := Rki −

∆t
∆xΛi

(
Rk,+i −Rk,+i−1
Rk,−i+1 −R

k,−
i

)
,

where R̃ki is the discretization of the upwind-scheme. Again the analysis for the
advection part is reduced to a single discretized Riemann invariant

Lk,(j)upwind :=
N∑
i=1

(R̃k,(j)i )2w
(j)
i ∆x, j = 1, . . . ,m.

Due to
[
(1 − γ)α + γβ

]2 ≤ (1 − γ)α2 + γβ2 for γ ∈ [0, 1] with the definition
D(j)
i := ∆t

∆xλ
(j)
i ∈ [0, 1], we obtain for j = 1, . . . , p

(R̃k,(j)i )2 ≤ (1−D(j)
i )(Rk,(j)i )2 + D(j)

i (Rk,(j)i−1 )2.

Then the time derivative of the discretized Lyapunov function satisfies

Lk+1,(j)
upwind − Lk,(j)

∆t =
N∑
i=1

1
∆t

[
(R̃k,(j)i )2 − (Rk,(j)i )2

] h
(j)
i−1

λ
(j)
i

∆x

≤ −
N∑
i=1

D(j)
i

∆t

[
(Rk,(j)i )2 − (Rk,(j)i−1 )2

] h(j)
i−1

λ
(j)
i

∆x

= −
N∑
i=1

[
(Rk,(j)i )2 − (Rk,(j)i−1 )2

]
h

(j)
i−1

= −
[
(Rk,(j)N )2h+

N − (Rk,(j)0 )2h
(j)
0

]
+

N∑
i=1

(Rk,(j)i )2h
(j)
i − h

(j)
i−1

∆x ∆x

= −
[
(Rk,(j)N )2h

(j)
N − (Rk,(j)0 )2h

(j)
0

]
−µLk,(j).

With similar calculations for j = p+ 1, . . . ,m we obtain altogether

Lk+1
upwind − Lk

∆t ≤−
p∑
j=1

[(
Rk,(j)N

)2
h

(j)
N −

(
Rk,(j)0

)2
h

(j)
0

]
(20)

+
m∑

j=p+1

[(
Rk,(j)N+1

)2
h

(j)
N+1 −

(
Rk,(j)1

)2
h

(j)
1

]
(21)

− µLk. (22)

Analogously to the continuous case boundary terms (20) and (21) are non-positive
if M is negative semidefinite. Assumption (19) yields∣∣∣〈Rki − R̃ki , BiRki 〉

Wi

∣∣∣ = ∆t
∆x

∣∣∣∣〈BT
i WiΛi

(
Rk,+i −Rk,+i−1
Rk,−i+1 −R

k,−
i

)
,Rki

〉∣∣∣∣
≤ θ

2
∆t
∆x
∥∥W−1/2

i BT
i WiΛiW−1/2

i

∥∥∥∥Rki ∥∥2
Wi
. (23)
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Using Rk+1
i = R̃ki −∆tBiRki we obtain for

Lk+1 =
N∑
i=1

[∥∥R̃ki ∥∥2
Wi
− 2∆t

〈
R̃ki , BiRki

〉
Wi

+ ∆t2
∥∥BiRki ∥∥2

Wi

]
∆x,

estimates (22), (23) and due to the positive semidefiniteness ofMi

Lk+1 − Lk

∆t =
Lk+1

upwind − Lk

∆t

−
N∑
i=1

[〈
Rki ,

(
2Bi −∆tBT

i Bi
)
Rki
〉
Wi

+ 2
〈
Rki − R̃ki , BiRki

〉
Wi

]
∆x

≤−
N∑
i=1

〈
Rki ,MiRki

〉
∆x ≤ 0.

We establish an exponential decaying Lyapunov function similar to Corollary 1.

Corollary 2 (Exponential Stability in the Discretized Case). We define the matrix
M̃i(µ̃) := (µ− µ̃)Wi + 2WiBi −∆tBT

i WiBi − θ ∆t
∆x
∥∥W−1/2

i BT
i WiΛiW−1/2

i

∥∥1. Un-
der the assumptions of Theorem 4.2 the Lyapunov function decays exponentially in
the following sense:

Lk ≤ e−µ̃k∆tL0 for µ̃ ≤ inf
{
µ̄ > 0

∣∣∣ M̃i(µ̄) is positive semidefinite for all i
}

Proof. ForMi(µ̃) positive semidefinite the discretized derivative is estimated by

Lk+1 − Lk

∆t ≤ −µ̃Lk −
N∑
i=1

〈
Rki ,M̃i(µ̃)Rki

〉
∆x ≤ −µ̃Lk.

The claim follows from

Lk ≤ (1−∆tµ̃)Lk−1 ≤ (1−∆tµ̃)kL0 ≤ e−µ̃k∆tL0.

We end this section by discussing the assumptions of Theorem 4.2. Assump-
tion (19) is a restriction on the spatial discretization. For the given CFL-condition
and given θ > 0 it is satisfied for ∆x > 0 small enough, since for sufficiently smooth
solutions the left-hand sides scales as O(∆x). Since the ratio ∆t

∆x is fixed the influ-
ence of the term θ ∆t

∆x
∥∥W−1/2

i BT
i WiΛiW−1/2

i

∥∥ is of order O(θ). Therefore, in the
formal limit we do not have an additional restriction compared with Theorem 3.2.
Note that we have to account for the steady stateRki = 0, therefore assumption (19)
does not simplify to ∥∥∥∥(R+,k

i −R+,k
i−1

R−,ki+1 −R
−,k
i

)∥∥∥∥
Wi

≤ θ

2
∥∥Rki ∥∥Wi

.

The matrix Mi consists of the sum of two positive semidefinite matrices and
two negative semidefinite matrices. The terms µWi + 2WiBi are in accordance to
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Theorem 3.2 and the term θ ∆t
∆x
∥∥W−1/2

i BT
i WiΛiW−1/2

i

∥∥ has been discussed. But
the symmetric and negative semidefinite term −∆tBT

i WiBi makes the positive def-
initeness assumption ofMi stronger, since the additional term introduces a restric-
tion on the time step ∆t. In the case of a positive semidefinite source term Bi
this restriction coincides with the stability region of the explicit Euler method,
i.e. ∆t max

i=1,...,N
|ρ(Bi)| ∈ [0, 2].

To show this we assume that Bi is positive semidefinite for all i = 1, . . . , N . Then
it holds for all eigenvectors vi ∈ Rm with eigenvalues δi ∈ R+

0 such that Bivi = δivi:〈
vi,WiBivi

〉
=
〈
vi, δivi

〉
Wi

= δi‖vi‖2Wi
,〈

vi, B
T
i WiBivi

〉
=
〈
Bivi, Bivi

〉
Wi

= δ2
i ‖vi‖2Wi

The stability region of the explicit Euler method yields for the guaranteed decay
rate µ̃ := µ− θ ∆t

∆x
∥∥W−1/2

i BT
i WiΛiW−1/2

i

∥∥W−1
i and for all eigenvectors〈

vi,M̃i(µ̃)vi
〉

= 2
〈
vi,WiBivi

〉
−∆t

〈
vi, B

T
i WiBivi

〉
=
(
2−∆tδi

)
δi‖vi‖2Wi

≥ 0.

To sum up we observe the guaranteed decay rate in the discretized case is slightly
smaller than in the continuous case, because Corollary 2 yields an exponential decay
for µ̃ < µ, where discretization in space and time makes the guaranteed rate smaller.
Furthermore, we note that eigenvalues of Bi do not coincide with those of Bi, only
in the sense

〈
vi,Bivi

〉
Wi

=
〈
vi, Bivi

〉
Wi

=
〈
vi, δivi

〉
Wi

. As in the continuous case
our analysis covers the pathological case µ̃ ≤ 0.

5 Suitable Boundary Conditions for Exponential Decay

Due to [8, 9] exponential stability is ensured if the matrix G, which describes feed-
back boundary conditions, satisfies a dissipative condition. The following theorem
is proven based on the norm

ρ1(G) := inf
D∈D

{∥∥DGD−1∥∥},
where D denotes the set of realm×m diagonal matrices with strictly positive entries.

Theorem 5.1 (Dissipative Condition [8, Th. 2]). If ρ1
(
G
)
< 1, there exists ε > 0

such that, if
∥∥G∥∥ < ε, then the IBVP (S) is exponentially stable in the sense of

Definition 2.2.

We state a similar criterion for source terms with possibly large operator norm.
To obtain the corresponding result in the discretized case we assume the space
restriction (18), i.e. ∆x ∈ (0, λmin/µ) for λmin := min

x∈[0,L],
j=1,...,m

∣∣λ(j)(x)
∣∣, and we define

ρµ,∆x(G,D) :=
(

1−∆x µ

λmin

)−N/2∥∥DGD−1∥∥
2,

ρµ(G,D) := eµ
L

2λmin
∥∥DGD−1∥∥

2.

Theorem 5.2 (Discretized Dissipative Boundary Condition). Let a decay rate
µ > 0, discretization ∆x ∈ (0, λmin/µ) be given and assume ρµ,∆x(G,D) ≤ 1 for
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some D ∈ D. Then the matrix M(µ) := GTHGG −HB(µ) is negative semidefinite
for HG := D2 and HB(µ) := HGΠ2(µ), where Π2(µ) :=

∏N
i=1 diag

{
Λ+
i (µ),Λ−i (µ)

}
is defined by

Λ+(µ) := diag
{

1−∆x µ

λ
(1)
i

, . . . , 1−∆x µ

λ
(p)
i

}
,

Λ−(µ) := diag
{

1−∆x µ

|λ(p+1)
i |

, . . . , 1−∆x µ

|λ(m)
i |

}
.

Proof. According to Definition 4.1 the weights at ghostcells HG are related to HB(µ)
by HB(µ) = HGΠ2(µ). Defining DB(µ) := DΠ(µ) the boundary matrix reads

M(µ) := GTHGG−HB(µ) = GTD2G−D2
B(µ).

The inverse Π−1(µ) exists for ∆x < λmin/µ. Since the ‖·‖2-norm of a matrix B
satisfies ‖B‖22 = ρ

{
BTB

}
, the inverse is estimated by

∥∥∥Π−1(µ)
∥∥∥2

2
≤

N∏
i=1

∥∥∥diag{Λ+
i (µ),Λ−i (µ)

}−1/2∥∥∥2

2
=

N∏
i=1

ρ
{
diag

{
Λ+
i (µ),Λ−i (µ)

}−1}
≤
(

1−∆x µ

λmin

)−N
.

Then the assumption ρµ,∆x(G,D) ≤ 1 implies that the matrix M(µ) is negative
semidefinite:

1 ≥ ρµ,∆x(G,D) ≥
∥∥Π−1(µ)

∥∥
2

∥∥DGD−1∥∥
2 ≥

∥∥DGD−1Π−1(µ)
∥∥

2

= ρ

{(
DGD−1

B (µ)
)T(
DGD−1

B (µ)
)}1/2

⇔
(
DGD−1

B (µ)
)T(
DGD−1

B (µ)
)
− 1 negative semidefinite

⇔ GTD2G − D2
B(µ) negative semidefinite

In practical applications decay rate and boundary conditions are prescribed and
weights of a Lyapunov function can be determined by the minimization problem

D := argmin
D̃∈D

{∥∥D̃GD̃−1∥∥
2

}
.

The set D may be restricted for technical reasons. Furthermore, the minimum must
neither be unique nor actually exist as long as ρµ,∆x(G,D) ≤ 1 holds. Of course, the
minimization problem must be solvable, which in the discretized case is a slightly
stronger assumption. In the limit ∆x→ 0 the assumption tends to the continuous
case. To see this, we assume that D is the infimum, i.e. ρ1(G) =

∥∥DGD−1
∥∥. Then

the norm ρµ,∆x(·,D) is an approximation of ρµ(·,D) = exp
(
µ L

2λmin

)
ρ1(·) > ρ1(·).

More precisely, there is convergence from above, i.e. ρµ,∆x(·,D)↘ ρµ(·,D)↘ ρ1(·)
for ∆x, µ→ 0.
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To sum up the decay of the Lyapunov function is split into two parts. Firstly,
there is a decay in the interior of the interval (0, L) which is described in Theorem 3.2
and Corollary 1 and that is higher for a larger decay rate µ. Secondly, dissipative
boundary conditions cause a decay which is smaller for a larger decay rate µ. This
means that both parts are coupled. But we balance the decay in the interior by
appropriate boundary conditions.

6 Numerical Results

6.1 Isothermal Euler Equations
As a first example we consider isothermal Euler equations, defined by(

ρ
q

)
t

+
(

q
q2

ρ + a2ρ

)
x

= −
(

0
f
D
q|q|
2ρ

)
,

where ρ(t, x) is the density of the gas, q(t, x) the mass flux in the pipe, f a friction
factor, D the diameter of the pipe and a is the speed of sound. In a steady state
there is no variation of the momentum q̄ = m and we will assume w.l.g. m ≥ 0.
The steady state is determined by the initial value problem(

m2

ρ̄
+ a2ρ̄

)
x

+ f

D

m2

2ρ̄ = 0

⇔ a2ρ̄2(x)− 2m2 ln
(
ρ̄(x)

)
= a2ρ̄2

0 − 2m2 ln
(
ρ̄0
)
− f

D
m2x

with ρ̄0 := ρ̄(0) > 0. Linearization at steady state gives

A =
(

0 1
a2 −

(
q̄
ρ̄

)2 2 q̄ρ̄

)
, S̄ = f

D

q̄

ρ̄

(
0 0
− 1

2
q̄
ρ̄ 1

)
.

Assuming a subsonic flow with
∣∣q̄/ρ̄∣∣ < a the Jacobian A is diagonalizable with

characteristic speeds λ± = q̄/ρ̄± a satisfying λ− < 0 < λ+.
According to [15] stationary states exist as smooth solutions only on a finite

space interval, until a critical length is reached. There, a blow-up in the derivatives
occurs. The density at steady state is decreasing, i.e. ρ̄x < 0 and consequently
eigenvalues are increasing as λ±x = −mρ̄−2ρ̄x > 0. Characteristics do not cross and
a stable solution exists on unbounded time domains. This is related to [18].

Numerical Results

We begin the analysis with periodic boundary conditions stated in Riemann coor-
dinates, i.e. a simple loop such that there are no dissipative boundary conditions,
and the system is only stabilized by the source term. In the context of system
(S) the boundary matrix G simplifies to the identity. Furthermore, we consider
the pathological case µ := 0. For all simulations we use a unit time and space
interval with CFL = 1 and the parameters a = 1, f

D = 1. Steady state is deter-
mined by (ρ̄0,m) := (3, 0.2) and initial perturbations in Riemann coordinates are
ζ±(0, x) := cos(2πx). The continuous and discretized Lyapunov functions are nor-
malized such that L(0) = 1. The upwind-scheme let us expect a linear convergence,
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which is indeed observed in Figure 1 and Table 1, where the logarithm (causing
negative values) of the error

L̂1
x :=

N∑
i=1

m∑
j=1

∣∣∣R(j),ref
i −R(j)

i

∣∣∣∆x
in t = 1 is shown together with the empirical order of convergence (EOC). The
reference solutionRref is calculated on a refined grid with ∆x = 2−12 and is summed
up on the corresponding coarser grid, which causes no additional error for finite
volume methods.

4 5 6 7 8 9

-5

0

5

10

1

1

Fig. 1: log2 of L̂1
x-error for Riemann invariants

L̂1
x-error EOC

∆x d = 0 d = 1 d = 2 d = 3 d = 4 d = 0 d = 1 d = 2 d = 3 d = 4
2−4 0.52 3.61 24.11 146.27 953.65
2−5 0.27 1.87 12.46 75.48 492.38 0.95 0.95 0.95 0.95 0.95
2−6 0.13 0.94 6.27 37.97 247.28 0.99 0.99 0.99 0.99 0.99
2−7 0.07 0.46 3.11 18.80 121.91 1.01 1.01 1.01 1.01 1.02
2−8 0.03 0.23 1.51 9.12 58.63 1.04 1.04 1.04 1.04 1.06
2−9 0.02 0.11 0.70 4.26 26.98 1.10 1.10 1.10 1.10 1.12

Tab. 1: L̂1
x-error and EOC for Riemann invariants

Next we focus on Lyapunov functions with respect to the L2, H1, . . . ,H4 norm,
illustrated in Figure 2. Due to friction effects we observe a decay in the Lyapunov
function. However, close to t = 0.25, 0.75 the Lyapunov functions stay almost con-
stant, which hints that estimates are sharp.

Table 2 shows discretization errors and corresponding EOCs. For the Lyapunov
function there is no theoretical linear convergence anymore. Therefore we show
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Fig. 2: Lyapunov functions for a simple loop

additionally an approximation of the L2- and L∞-error

Lpt :=
( 1∫

0

∣∣∣Lref(t)− L(∆x)(t)
∣∣∣p dt)1/p

, L∞t := max
t∈[0,1]

∣∣∣Lref(t)− L(∆x)(t)
∣∣∣,

where the reference value Lref is again calculated on a refined grid with ∆x = 2−12

and the coarser approximation is linearly interpolated on the refined grid. Integrals
are approximated by the trapezoidal rule.

We observe the rate of convergence of the upwind-scheme is inherited to corre-
sponding Lyapunov functions. We refer the interested reader to [20], where this is
only observed for CFL = 0.75.

Compressor Stations

Since friction makes the pressure decrease along pipes, compressors are used to
amplify pressure, as illustrated in Figure 3 for a pipeline with two compressors.
Like in [15, 14] compressors are modelled by assuming conservation of mass and by
applying a compressor power u(t) ≥ 0, i.e.

qin(t, L) = qout(t, 0) and u(t) = qout(t, 0)
[(

ρout(t, 0)
ρin(t, L)

)κ
− 1
]
, (24)

where the superindices “in” and “out” stand in the case u ≥ 0 for the left-sided
and right-sided pipe of the corresponding compressor. The specific heat ratio κ
depends on the considered gas, we use κ = 0.5. Additional boundary conditions
are needed to close the system. So we assume a given steady state in the left
and right end. Compressor powers u1, u2 are determined by the steady state and
affect boundary conditions. An interesting question is how to set power to obtain
dissipative boundary conditions. An analytical answer is given in [15] for a finite
time horizon. In extension to [15], Figure 3 shows a stability domain for compressor
power {

(u1, u2) ∈ R+
0

∣∣∣ ρµ,∆x(G,D) ≤ 1 for some D
}
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L1
t -error EOC

∆x d = 0 d = 1 d = 2 d = 3 d = 4 d = 0 d = 1 d = 2 d = 3 d = 4
2−4 6.90 7.08 7.08 7.08 7.00
2−5 3.61 3.70 3.70 3.70 3.63 0.93 0.93 0.93 0.93 0.95
2−6 1.84 1.88 1.88 1.88 1.81 0.98 0.98 0.98 0.98 1.00
2−7 0.91 0.94 0.94 0.94 0.87 1.01 1.01 1.01 1.01 1.06
2−8 0.45 0.46 0.46 0.46 0.39 1.04 1.04 1.04 1.04 1.17
2−9 0.21 0.21 0.21 0.21 0.14 1.10 1.10 1.10 1.10 1.42

L2
t -error EOC

∆x d = 0 d = 1 d = 2 d = 3 d = 4 d = 0 d = 1 d = 2 d = 3 d = 4
2−4 7.90 8.04 8.04 8.04 7.96
2−5 4.15 4.23 4.23 4.23 4.15 0.93 0.93 0.93 0.93 0.94
2−6 2.12 2.16 2.16 2.16 2.08 0.97 0.97 0.97 0.97 1.00
2−7 1.06 1.08 1.08 1.07 1.00 1.00 1.00 1.00 1.00 1.06
2−8 0.51 0.52 0.52 0.52 0.44 1.04 1.04 1.04 1.04 1.16
2−9 0.24 0.25 0.25 0.25 0.17 1.09 1.09 1.09 1.09 1.42

L∞t -error EOC
∆x d = 0 d = 1 d = 2 d = 3 d = 4 d = 0 d = 1 d = 2 d = 3 d = 4
2−4 13.90 13.92 13.92 13.91 13.78
2−5 7.41 7.43 7.43 7.42 7.29 0.91 0.91 0.91 0.91 0.92
2−6 3.79 3.79 3.79 3.79 3.66 0.97 0.97 0.97 0.97 0.99
2−7 1.87 1.87 1.87 1.87 1.74 1.02 1.02 1.02 1.02 1.07
2−8 0.89 0.90 0.90 0.90 0.77 1.06 1.06 1.06 1.06 1.19
2−9 0.42 0.42 0.42 0.42 0.29 1.09 1.09 1.09 1.09 1.40

Tab. 2: L1
t -, L2

t -, L∞t - error and EOC for Lyapunov functions, units in 0.01
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that guarantees a dissipativity condition for µ := 1 and thus yields stability for un-
bounded time intervals. We have used the matlab function fmincon to approximate
the minimum min

D∈D

{
ρµ,∆x(G,D)

}
on the z-axis.

compressor compressor

energy u1 energy u2

Fig. 3: Pipeline with two compressors and stability domain for L2-norm

For this simulation we have obtained the linear boundary conditions
∆ρ(2)(t, 0)
∆ρ(3)(t, 0)
∆q(1)(t, L)
∆q(2)(t, L)

 =


c̄
(1)
1 c̄

(1)
2

c̄
(2)
1 c̄

(2)
2

1
1




∆ρ(1)(t, L)
∆ρ(2)(t, L)
∆q(2)(t, 0)
∆q(3)(t, 0)


by linearizing the nonlinear energy equation (24)

ρout(t, 0) = ρin(t, L)
(

u

qout(t, 0) + 1
)1/κ

≈ ρ̄out(0) + (c̄1, c̄2)
(

∆ρin(t, L)
∆qout(t, 0)

)
for some coefficients c̄i. The superindices (j) denote the j-th pipe and the j-th
compressor, respectively. Recall that at the left and right end additional bound-
ary conditions are needed to close the system, in our simulations ∆ρ(1)(t, 0) = 0
and ∆q(3)(t, L) = 0. The transformation into Riemann invariants is given by the
following theorem.

Theorem 6.1 (Transform from Physical into Riemann Coordinates). Define the
set of densities ρ :=

(
ρ(1), . . . , ρ(n)) and mass fluxes q :=

(
q(1), . . . , q(n)), where n

denotes the number of coupled pipes, and assume boundary conditions of the form(
∆ρ(t, 0)
∆q(t, L)

)
= K

(
∆ρ(t, L)
∆q(t, 0)

)
, K :=

(
k1,1 k1,2
k2,1 k2,2

)
(25)

with ki,j ∈ Rn×n and an existing inverse k−1
2,2. Then the matrix Ḡ ∈ R2n×2n for (S̄)

is given by the n×n block matrices

g1,1 := −q1,1 + g1,2g
−1
2,2g2,1, g1,2 := −q1,2g2,2,

g2,1 := g2,2q2,1, g2,2 := −q−1
2,2,

where 1 ∈ Rn×n denotes the identity matrix and qi,j ∈ Rn×n the blocks of

Q := T−1(0)K−1
1 K2T (L) with

K1 :=
(
−1 k1,2

k2,2

)
, K2 :=

(
k1,1
k2,1 −1

)
.
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Proof. With the definitions y := (ρ, q)T and O := diag{0, . . . , 0} ∈ Rn×n boundary
conditions (25) read(

O
O

)
=
(
1

O

)
∆y(t, 0) +

(
O

1

)
∆y(t, L)

−K

[(
O

1

)
∆y(t, 0) +

(
1

O

)
∆y(t, L)

]
,

which is by assumption equivalent to

∆y(t, 0) = −K−1
1 K2 ∆y(t, L)

⇔ T (0)ζ(t, 0) = −K−1
1 K2T (L) ζ(t, L)

⇔ ζ(t, 0) = −T−1(0)K−1
1 K2T (L)︸ ︷︷ ︸

=Q

ζ(t, L).

We define the matrices

A :=
(
−1 g1,2

g2,2

)
, B :=

(
g1,1
g2,1 −1

)
,

where the inverse A−1 exists, since q−1
2,2 exists by assumption. Similar calculations

for Riemann coordinates show

ζ(t, 0) = −A−1Bζ(t, L).

The ansatz A−1B
!= Q yields the claim.

6.2 Shallow Water Equations
As second example we consider the shallow water equations with conserved quan-
tities height h and momentum hu. Since we do not consider shocks, we use the
equivalent formulation with respect to velocity u.(

h
u

)
t

+
(

hu
1
2u

2 + gh

)
x

= −g
(

0
C u2

h − SB

)
,

where g denotes the gravitational constant, C describes friction and SB := −Bx the
slope of the possibly space-varying bottom topography B(x). To obtain a subcritical
flow we assume Froud’s number Fr := |u|/

√
gh < 1 such that the Jacobian of the

flux function

A =
(
ū h̄
g ū

)
, S̄ = gC

(
0 0

−
(
ū
h̄

)2 2 ū
h̄

)

is diagonalizable with distinct eigenvalues λ± = ū ±
√
gh̄. The momentum in a

steady state is again constant, i.e. h̄ū = m. Exponential stability in L2-norm for
a cascade of n pools is investigated analytically in [10, 3], where the simple model
SB := Cū2/h̄ is assumed. Then each constant pair (h̄, ū) yields a steady state. Our
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analysis may be viewed as an extension to a non-monotone bottom topography.
More generally, a steady state is characterized by the ODE

0 =
(1

2 ū
2 + gh̄

)
x

+ g
(
C
ū2

h̄
− SB

)
= h̄x

(
− m2

h̄3
+ g
)

+ g
(
C
m2

h̄3
− SB

)
.

Note that in the last equation it holds

−m
2

h̄3
+ g = − ū

2

h̄
+ g > 0 for Fr < 1,

so the ODE does not degenerate. We assume the bottom topography

SB := s1 + Cs2 with s1 :=
(

1− ū2

gh̄

)
h̄x, s2 := ū2

h̄
,

which gives immediately a steady state. For the simple model SB := Cū2/h̄ eigen-
values are constant and space-varying for a non-monotone bottom topography. A
subcritical flow ensures in both cases distinct eigenvalues λ̄− < 0 < λ̄+, which im-
plies again an existing solution on unbounded time intervals [12].

Numerical Results
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Fig. 4: Lyapunov functions for a simple loop for reference solution with steady state
h̄(x) := 3 and h̄(x) := 3 + 10−3 cos(2πx)

In most of the literature stability analysis is restricted to boundary conditions,
see e.g. [3]. In extension we highlight the influence of source terms by compar-
ing a constant height h̄(x) := 3 with perturbations h̄(x) := 3 + 10−p cos(2πx) for
p = 1, . . . , 4 and m = 0.2, ∆x = 2−12, g = 1, C = 1. We assume µ = 0.25 with
dissipative boundary conditions G := diag

{
0.9, . . . , 0.9

}
such that assumptions of

Theorem 5.2 are fulfilled.
Figure 4 shows on the left side decaying Lyapunov functions for a steady state

with constant height and momentum and on the right for a perturbed height with
non-constant bottom slope. In contrast Figure 5 shows under the same setting an
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Estimated rate
constant p = 4 p = 3 p = 2 p = 1

d = 0 0.2499 0.2498 0.2485 0.2254 −0.1563
d = 1 0.2499 0.2495 0.2420 0.0374 −2.2991
d = 2 0.2499 0.2458 0.1288 −1.3167 −15.8406

Guaranteed rate
constant p = 4 p = 3 p = 2 p = 1

d = 0 0.2499 0.2498 0.2487 0.2279 −0.1154
d = 1 0.2499 0.2495 0.2428 0.0591 −2.0424
d = 2 0.2499 0.2463 0.1412 −1.1566 −14.2202

Observed rate
constant p = 4 p = 3 p = 2 p = 1

d = 0 0.2572 0.2572 0.2572 0.2537 0.1343
d = 1 0.3461 0.3459 0.3416 0.2126 −1.3244
d = 2 0.2632 0.2615 0.2089 −0.6659 −10.7687

Tab. 3: Estimated decay rate µe (top), guaranteed rate µg (middle) and observed
rate µo (bottom) for µ := 0.25 and reference solution with constant and
perturbed steady states

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.9
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1.1

1.2

1.3
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Fig. 5: Non-decaying Lyapunov functions for a simple loop for reference solution
with steady state h̄(x) := 3 + 0.1 cos(2πx)
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unstable steady state. More specifically, Table 3 shows the in Corollary 1 guaranteed
decay rate with estimated smallest eigenvalue and the observed rate, namely:

• guaranteed rate: µg := µ+ 2dmin(µ)

• estimated rate: µe := µ− cond√W (µ) max
x∈[0,L]

{∥∥B(x)
∥∥

2

}
• observed rate: µo := min

t∈[0,T ]

{
− 1
t

ln
(Lref(t)
Lref(0)

)}
We see that stability is only guaranteed if the perturbations are small enough, as

for µg < 0 exponential stability is not guaranteed by Corollary 1. The case p = 1,
where stability is not guaranteed and which is gray shaded in Table 3, is shown
in Figure 5. Furthermore, the estimated decay rate seems as a good lower bound
and the observed rate is indeed larger than the guaranteed rate, i.e. µe ≤ µg ≤ µo.
This is because Corollary 1 takes only the smallest eigenvalue into account whereas
positive eigenvalues make Lyapunov functions decrease further.

7 Summary

Exponential Lyapunov stability with explicit decay rate has been proven by a the-
oretical and numerical analysis. We have shown how weights can be set to ensure
exponential stability. Results are generalized to stability with respect to higher
Sobolev norms. Influence of source terms has been investigated and stability on
unbounded time domains has been established.
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