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Abstract

We re-derive Cockburn and Shu’s semi-discrete Discontinuous Galerkin method
[Mathematics of Computation, 52:411-435, 1989] by passing to the limit in the
classical space-time weak formulation. This leads to a new interpretation of the role
of the numerical flux function.
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1 Introduction

In the landmark papers [1], [2], and subsequently in [3] [4] [5] [6] have introduced
the Runge-Kutta Discontinuous Galerkin (RKDG) method for systems of hyperbolic
conservation laws and convection-dominated problems. Together with the ENO and
WENO schemes, the RKDG method is one of the most powerful and widely used
high-order accurate methods for compressible flows. It combines the advantages
of a shock-capturing, conservative finite volume method with a weak formulation
based on piecewise high-order polynomials. This blending is made possible since
the polynomials are in general discontinuous at the cell edges, which makes room
for numerical fluxes based on approximate Riemann solvers. The method requires
smaller time-steps than finite volume schemes, but due to its local stencil it is very
well suited for parallelization. More than 25 years after its introduction, the RKDG
method thrives with many new developments. We refer the reader to the monograph
[7], as well as the recent books [8] [9] for in-depth introductions as a wealth of further
references.

In this note, we would like to complement the standard derivation of the semi-
discrete weak solution by pointing out the role an infinitesimal version of the integral
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2 ORIGINAL DERIVATION OF THE SEMI-DISCRETE DG SCHEME 2

form of the conservation law which is needed at the interior sides of the interfaces.
For simplicity, we restrict the discussion to one spatial dimension, so

ut + f(u)x = 0 in R× (0, T ), (1.1)

where u = (u1, . . . um)t is the vector of conserved variables, and the Jacobian matrix
f ′(u) has real eigenvalues and a complete set of eigenvectors. We complete (1.1)
with initial values

u(x, 0) = u0(x) in R. (1.2)

Since classical solutions u ∈ C1(R × [0, T )) break down in finite time, one needs
to consider weak solution u ∈ BV (R × (0, T )) (see [10], [11]). For any smooth,
compactly supported test function v ∈ C1

0 (R × [0, T )) with initial values v0 the
weak solution satisfies

−
T∫

0

∫
R

(
uvt + f(u) vx

)
dxdt−

∫
R

u0v0 dx = 0. (1.3)

The RKDG method is based on a weak formulation which uses piecewise smooth
test functions and a semi-discrete limit. In the following, we will derive this directly
from (1.3).

The outline of the paper is as follows: in Section 2 we review the original deriva-
tion of the DG scheme. In Section 3 we localize the test function v to have support
in a single space-time cell. In Section 4, we pass to the semi-discrete limit in the
localized weak form. From this, we recover the original semi-discrete DG scheme
by restricting the localized, semi-discrete weak form to the piecewise polynomial
ansatz space. Section 5 concludes with a discussion of the new derivation.

2 Original derivation of the semi-discrete DG

scheme

Cockburn and Shu start their derivation of the RKDG method from the following
semi-discrete weak formulation [2, (2.7)]: Let xj := j∆x ∈ R be the cell centers
and Ij := (xj− 1

2
, xj+ 1

2
) the cells of the computational grid. Let V k

h be the space

of piecewise polynomials of degree at most k. Then the DG solution is a family of
functions uh : [0, T )→ V k

h such that for all t ∈ (0, T ) and all test functions vh ∈ V k
h ,∫

Ij

( d
dt
uh(x, t)

)
vh(x) dx+

∫
Ij

∂

∂x
f(uh(x, t)) vh(x)

)
dx = 0. (2.4)

Let v
(j)
l (x) be the Legendre polynomials over Ij , and define the degrees of freedom

of uh(·, t) by

u
(l)
j (t) :=

1

∆xl+1

∫
Ij

uh(x, t)v
(j)
l (x) dx.

Inserting this into (2.4), integrating the spatial flux by parts, and suppressing time
t gives the method of lines [2, (2.8)]

d

dt
u

(l)
j +

1

∆xl+1

(
v

(j)
l (x)f(uh(x))

)∣∣∣xj+1
2

x=x
j− 1

2

− 1

∆xl+1

∫
Ij

f(uh(x))
d

dx
v

(j)
l (x) dx = 0. (2.5)
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Note that the boundary terms resulting from the integration by parts, v
(j)
l (xj± 1

2
)

and f(uh(xj± 1
2
)), are the traces at the interior side with respect to cell Ij . But

Cockburn and Shu introduce the innocent-looking notation

fj± 1
2

:= f(uh(xj± 1
2
)), (2.6)

and then note that this is not well-defined, since uh is discontinuous at the inter-
face. Then they comment: “It is this freedom which gives us a chance to adopt the
successful finite difference non-oscillatory methodology.” Subsequently, they replace
the interface flux by an approximate Riemann-solver

fj+ 1
2

:= hj+ 1
2

:= h(uh(xj+ 1
2
−0), uh(xj+ 1

2
+0)) (2.7)

and arrive at the final semi-discrete scheme [2, (2.10)],

d

dt
u

(l)
j +

1

∆xl+1

(
v

(j)
l (x)h(x)

)∣∣∣xj+1
2

x=x
j− 1

2

− 1

∆xl+1

∫
Ij

f(uh(x))
d

dx
v

(j)
l (x) dx = 0. (2.8)

For the piecewise constant approximation (k = 0), this is the semi-discrete first order
finite volume scheme. The choice of numerical flux (2.7) is commonly described as
stabilization by adding upwind viscosity to the scheme.

In the following, we present an alternative derivation of (2.8) which follows
directly from the classical form of the weak solution (1.3), instead of using (2.4) –
(2.7).

3 Localizing the weak formulation

In this section we localize the weak formulation (1.3). Let v ∈ C1
0 (R × [0, T )) be

any test function, and let

Inj := Ij × (tn, tn+1) = (xj− 1
2
, xj+ 1

2
)× (tn, tn+1) (3.9)

be a space-time cell. Given ε� ∆t, define the interior of the cell by

Inj,ε := {(x, t) ∈ Inj | dist
(
(x, t), ∂Inj

)
> ε}. (3.10)

Let vε := v ? κε be a localization of the test function such that

vε(x, t) =

{
v(x, t), if (x, t) ∈ Inj,ε
0, if (x, t) /∈ Inj .

(3.11)

Suppose now that u ∈ BV (R× (0, T )) is a weak solution of (1.1). By (1.3),

0 = −
∫∫

R×(0,T ))

(
u ∂tvε + f(u) ∂xvε

)
dxdt

= −
∫∫

Inj,ε

(
u ∂tv + f(u) ∂xv

)
dxdt

−
∫∫

Inj \Inj,ε

(
u ∂tvε + f(u) ∂xvε

)
dxdt (3.12)
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As ε→ 0, the first integral clearly converges to

−
∫∫

R×(0,T ))

(
u ∂tv + f(u) ∂xv

)
dxdt.

We claim that the second integral converges to

∫
Ij

ûnj (x, t)v(x, t)|tn+1

t=tn dx+

tn+1∫
tn

∫
∂Inj

f(ûnj (x, t)) v(x, t) · n(x) dxdt, (3.13)

where n(x) is the outside unit normal of Ij and

ûnj : ∂Inj → Rm (3.14)

is the interior trace of u on the boundary of the space-time cell Inj . For instance,

tn+ε∫
tn

∫
Inj

u ∂tvε dxdt

=

∫
Inj

ûnj (x, tn)

tn+ε∫
tn

∂tvε dtdx+

∫
Inj

tn+ε∫
tn

(u(x, t)− ûnj (x, tn))∂tvε dtdx

=: Bε + Cε. (3.15)

Since vε(x, t
n) ≡ 0,

lim
ε→0

Bε = lim
ε→0

∫
Inj

ûnj (x)(vε(x, t
n + ε)− vε(x, tn))dx =

∫
Inj

ûnj (x)v(x, tn)dx, (3.16)

so Bε converges to the corresponding term in (3.15). The term Cε vanishes in the
limit, since u is of bounded variation:

lim
ε→0
|Cε| ≤

∫
Inj

(
max

tn≤t≤tn+ε
|u(x, t)− ûnj (x, tn)|

tn+ε∫
tn

|∂tvε(x, t)| dt
)
dx = 0. (3.17)

Hence we have proven the following theorem:

Theorem 3.1 (localized weak solution). Suppose that u ∈ BV (R × (0, T )) is a
weak solution of (1.1) and that v ∈ C1

0 (R× [0, T )) is a test function. Then for any
space-time cell K := (a, b) × (tn, tn+1) and the corresponding interior trace ûK on
the boundary of K, we have

0 = −
tn+1∫
tn

b∫
a

(
u ∂tv + f(u) ∂xv

)
dxdt

+

b∫
a

ûK(x, t)v(x, t)|tn+1

t=tn dx

+

tn+1∫
tn

f(ûK(x, t)) v(x, t)|bx=a dt. (3.18)

As a side remark, we note that that the theorem may be used to motivate a
space-time DG method by choosing (a, b) to be a computational cell, and space-
time polynomials for u and v.
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4 Semi-discrete limit

For simplicity of notation, we set tn = 0, tn+1 = ∆t, and xL := xj− 1
2

and xR :=

xj+ 1
2
. We consider piecewise smooth weak solutions u(x, t) such that u(x, 0) is

smooth in (xL, xR). In order to pass to the semi-discrete limit in the localized
weak formulation (3.18), we choose a piecewise smooth test functions v(x) which is
independent of time. Let ρ(A) be the spectral radius of an m ×m-matrix A, and
let

s := max
R×(0,∆t)

ρ(f ′(U)) (4.19)

be the maximal propagation speed of the weak solution. We suppose that s∆t �
∆x. To highlight the role of the interior fluxes f(ûK), which correspond to the
boundary fluxes in (2.5), we introduce the interior points

yL := xL + s∆t, yR := xR − s∆t. (4.20)

Note that u(x, t) is smooth at yL/R. We apply (3.18) with (a, b) = (yL, yR). Dividing
by ∆t we obtain

0 = − 1

∆t

∆t∫
0

yR∫
yL

f(u(x, t)) ∂xv(x) dxdt+

∫ yR

yL

û(x,∆t)− û(x, 0)

∆t
v(x) dx

+
1

∆t

∆t∫
0

(
f(u(yR, t)) v(yR)− f(u(yL, t)) v(yL)

)
dt (4.21)

= − 1

∆t

∆t∫
0

yR∫
yL

f(u(x, t)) ∂xv(x) dxdt+

∫ yR

yL

û(x,∆t)− û(x, 0)

∆t
v(x) dx

+
v(xR)

∆t

∆t∫
0

f(u(yR, t) dt−
v(xL)

∆t

∆t∫
0

f(u(yL, t)) dt+O(∆t). (4.22)

Now we consider the infinitesimal cells KL := (xL, yL)× (0,∆t) respectively KR :=
(yR, xR) × (0,∆t) which are of size O(∆t2). Since u is a weak solution, it satisfies
the integral relations

0 =

yL∫
xL

u(x, t)|∆t
t=0 dx+

∆t∫
0

f(u(x, t)) |yLxL
dt, (4.23)

0 =

xR∫
yR

u(x, t)|∆t
t=0 dx+

∆t∫
0

f(u(x, t)) |xR
yR
dt. (4.24)
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Using (4.23) and (4.24) in (4.21) yields

0 = − 1

∆t

∆t∫
0

yR∫
yL

f(u(x, t)) ∂xv(x) dxdt+

∫ yR

yL

û(x,∆t)− û(x, 0)

∆t
v(x) dx

+
v(xR)

∆t

{ ∆t∫
0

f(u(xR, t) dt+

xR∫
yR

u(x, t)|∆t
t=0 dx

}

− v(xL)

∆t

{ ∆t∫
0

f(u(xL, t)) dt−
yL∫

xL

u(x, t)|∆t
t=0 dx

}
+O(∆t)

= − 1

∆t

∆t∫
0

yR∫
yL

f(u(x, t)) ∂xv(x) dxdt+

∫ xR

xL

û(x,∆t)− û(x, 0)

∆t
v(x) dx

+
v(xR)

∆t

∆t∫
0

f(u(xR, t) dt−
v(xL)

∆t

∆t∫
0

f(u(xL, t)) dt+O(∆t), (4.25)

where

u(xL, t) = u(xj− 1
2
, t) = wRiem(0;u(xj− 1

2
− 0, 0), u(xj− 1

2
−+0, 0) (4.26)

u(xR, t) = u(xj+ 1
2
, t) = wRiem(0;u(xj+ 1

2
− 0, 0), u(xj+ 1

2
−+0, 0) (4.27)

are the solutions of the Riemann problem at the interfaces. Now we pass to the
limit in ∆t and obtain the semi-discrete weak formulation:

Theorem 4.1. Any piecewise smooth space-time weak solution according to (1.3)
of a system of hyperbolic conservation laws satisfies the semi-discrete limit

0 =
d

dt

∫ x
j+1

2

x
j− 1

2

u(x, 0)v(x) dx−

x
j+1

2∫
x
j− 1

2

f(u(x, 0)) ∂xv(x) dxdt

+ v(x)f(u(x, 0))|
x
j+1

2
x
j− 1

2

(4.28)

for all test functions v ∈ C1([xj− 1
2
, xj+ 1

2
]), where u(xj± 1

2
, 0) are the exact solutions

of the Riemann problem (4.26), (4.27).

Remark 4.2. (i) We recover Cockburn and Shu’s semi-discrete DG scheme (2.8)
by choosing piecewise polynomials u(·, 0) and v in (4.28).

(ii) The flux function f(u(xj± 1
2
, 0)) in (4.28) is Godunov’s flux. It is usually

replaced by an approximate Riemann solver, see [2], [9].
(iii) The semi-discrete scheme (2.8) has also been derived using a smooth solution

together with piecewise smooth test functions, and finally replacing the fluxes across
the interfaces by an approximate Riemann solver, see for instance [9, Chapter 8.2.2].

(iv) We would like to recall that the space-time weak formulation of conserva-
tion laws, when applied to piecewise smooth solutions, implies the Rankine-Hugoniot
condition. This in turn implies that the space-time flux is continuous across the dis-
continuities. For stationary shocks, the spatial flux is constant, which gives unique-
ness in (2.6). For non-stationary shocks, a piece of information is missing. In the
present derivation, we recover this information by the integral relations (4.23) and
(4.24). All derivations coincide once a conservative numerical has been introduced.
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5 Conclusion

We have re-derived Cockburn and Shu’s semi-discrete discontinuous Galerkin scheme
for systems of hyperbolic conservation laws by localizing the space-time weak formu-
lation and passing to the semi-discrete limit. A crucial ingredient is an infinitesimal
version of the integral form of the conservation law, which we use to the interior
of the cell interfaces. This highlights that the conservative numerical flux function
(i.e. the approximate Riemann solver) is not primarily a convenient stabilization.
Rather, it is a necessary ingredient for the consistency of the scheme with the weak
solution.
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