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Abstract

Lane changing is one of the most common maneuvers on motorways. Although, macro-
scopic traffic models are well known for their suitability to describe fast moving crowded
traffic, most of these models are generally developed in one dimensional framework, hence-
forth lane changing behavior is somehow neglected. In this paper, we propose a macroscopic
model, which accounts for lane-changing behavior on motorway, based on a two-dimensional
extension of the Aw and Rascle [4] and Zhang [19] macroscopic model for traffic flow. Under
conditions, when lane changing maneuvers are no longer possible, the model “relaxes” to the
one-dimensional Aw-Rascle-Zhang model. Following the same approach as in [3], we derive
the two-dimensional macroscopic model through scaling of time discretization of a microscopic
follow-the-leader model with driving direction. We provide a detailed analysis of the space-
time discretization of the proposed macroscopic as well as an approximation of the solution
to the associated Riemann problem. Furthermore, we illustrate some features of the proposed
model through some numerical experiments.

MSC 90B20; 35L65; 35Q91; 91B74

Keywords Traffic flow, macroscopic model, two dimensional model, second-order traffic flow
models

1 Introduction

Current macroscopic models for multi-lane traffic on motorways generally couple a multi-lane or
multi-class one-dimensional first-order model of traffic flow (LWR model) [15, 17] with some lane-
changing rules in order to capture traffic dynamics stemming from the lane-changing maneuvers [6,
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9, 11, 12, 16]. A major assumption of the LWR model is that for a given traffic density all
the drivers adopt the same velocity. However, this assumption is not always valid in practice.
Macroscopic second-order models, e.g. [4, 19], attempted to address this limitation by introducing
an additional variable, which in [8] was interpreted as an “relative” velocity of a specific (class)
of drivers. The advection of the “relative” velocity with the actual velocity enable to describe
the reaction of drivers to traffic conditions ahead of them. Therefore, second-order models can be
viewed as an extension of the LWR such that, for a given traffic density, drivers can react differently,
by adopting a wide range of speed. In [3] the derivation of the second-order macroscopic Aw-Rascle-
Zhang model [4, 19] was proposed. More recently, in [7], the “follow-the-leader” approximation
of the Aw-Rascle-Zhang model was proposed in a multi population framework with also a deep
discussion on the analytical properties of the model.

In a recent preprint, Herty and Visconti [10] used microscopic data, namely vehicle trajectories
collected on a German highway, to derive a two-dimensional first-order macroscopic model. The
current study used the same experimental microscopic data to derive a macroscopic model for
multi-lane traffic on highways based on a two-dimensional extension of the Aw-Rascle-Zhang
model [4, 19]. By revisiting the analysis proposed in [3], we show that the semi-discretization of
the two-dimensional Aw-Rascle-Zhang model can be viewed as the limit of a multi-lane “follow-
the-leader” model. These results enable the two-dimensional macroscopic model to capture traffic
dynamics due to the lane-changing behavior in spite coarse scale traffic flow description. Numerical
simulations give an evidence of the link between the two models belonging to different scales as
well as the ability of both models to reproduce classical traffic situations. We stress the fact that
here we use a classical first order finite volume scheme since we are only aimed in showing the
link between the microscopic and the macroscopic description of traffic flow. However, suitable
numerical strategies should be used to approximate the macroscopic equations and, for instance,
we refer to [5] where a scheme being able to remove the oscillations near to contact discontinuities
was proposed.

We highlight that in [1, 2] a derivation of a two-dimensional macroscopic crowd model is
derived from a microscopic one. Furthermore, in this work, we provide a detailed analysis of the
approximation of the solution to the associated Riemann problem. The main idea behind the
approximation of the solution to the two-dimensional Riemann problem was the coupling of two-
half Riemann problems in one dimension and then use the transition from one lane to another,
subject to some admissibility conditions, in order to capture the two-dimensional aspect of the
problem. We provide a detailed discussion, of the main scenarios under consideration in this study,
as well as the suitable Riemann solvers at the interfaces of the lanes which describe the lateral
dynamics caused by lane-changing maneuvers. An enjoyable feature of the proposed model is its
double-sided behavior. Under conditions, when lane-changing maneuvers are no longer possible,
e.g. the traffic is congested on adjacent lanes, the model “relaxes” to the one-dimensional Aw-
Rascle-Zhang model [4, 19], whereas in free flow conditions on adjacent lanes, the model captures
dynamics caused by car movement between adjacent lanes.

The remaining part of the paper is organized as follows. Section 2 presents a brief overview of
the one-dimensional Aw-Rascle-Zhang [4, 19] model reviewing some of its mathematical properties
relevant to the current study. In particular, we will revisit it using a different approach fro its
derivation from the microscopic “follow-the-leader” model. Section 3 and Section 4 introduce the
proposed 2D macroscopic model and outline and discuss sufficient conditions for the derivation
of the model through some scaling of the time discretization of a microscopic “follow-the-leader”
model with driving direction. A detailed analysis of the two-dimensional macroscopic model as well
as an approximation of the solution to the associated Riemann problem have also been provided
in Section 5. In Section 6, we discuss the space-time discretization of the proposed macroscopic
and we show some numerical simulations illustrating some interesting features of the proposed
model, are presented and discussed. Finally, Section 7 concludes the paper and highlighted some
directions for further research.
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2 Preliminary discussions

We start by reviewing the paper [3] in which the authors show a connection between the classical
microscopic “follow-the-leader” (FTL) model and the Aw and Rascle [4] and Zhang [19] (ARZ)
macroscopic model. More precisely, they prove that the FTL model can be viewed as semi-
discretization of the ARZ model in Lagrangian coordinates. However, here we prove the connection
between the two models using a different approach in the case of two-dimensional models.

Contrary to [3] we consider a two-dimensional FTL model first and derive the corresponding
macroscopic limiting equations using suitable coordinate transformations. In order to illustrate
the idea we briefly recall the homogeneous and conservative form of the second-order traffic flow
model [4, 19]. {

∂tρ(t, x) + ∂x(ρu)(t, x) = 0,

∂t(ρw)(t, x) + ∂x(ρuw)(t, x) = 0,
(1)

where w(t, x) = u(t, x) + P and P = P (ρ) is the so called “traffic pressure”.
The corresponding one–dimensional microscopic model is based on the following arguments.

The movement of particles is described according to ẋi = ui, where xi = xi(t) and ui = ui(t) are
the time-dependent position and speed, respectively, of vehicle i. If not specified, the quantities
are assumed at time t. In Lagrangian coordinate the particles move along with the trajectory.
The local density at time t is defined as

ρi =
∆X

xj(i) − xi
(2)

where ∆X is the typical length of a vehicle and τi = 1/ρi describes the relative distance evolving.
The index j(i) identifies the interacting vehicle for a car i. Let us assume, without loss in generality,
that cars are ordered as xi < xi+1, ∀ i. Then, under this hypothesis, we have j(i) = i+1. Therefore,
the distance between i and i+ 1 car evolves as

τi(t+ ∆t)− τi(t) =
xi+1(t+ ∆t)− xi+1(t)− (xi(t+ ∆t)− xi(t))

∆X
.

Dividing by ∆t and taking the limit leads to

τ̇i =
ui+1 − ui

∆X
. (3)

We define a macroscopic velocity by ui(t) =: uL(t,Xi) where Xi = X(t, xi) is the cumulative car
mass up to car label i at time t. By definition

X(t, x) =

∫ x

ρ(t, ξ)dξ. (4)

Notice that we are assuming that time is not influenced by the transformation from the discrete
dynamics. In a discrete model with N cars we define the density around car i as ρ(t, x) =

1
∆X

∑N
k=1 δ(x−xk(t)). The total mass is then N/∆X (instead of δ distributions one could suitable

regularize). Therefore, we obtain X(t, xi) = 1
∆X

(∑i−1
l=1 1 + 1

2

)
. Since the cars are ordered as xi <

xi+1, then, for each fixed time t, the map s 7→ X(t, s) for the given density is a monotone function.
Therefore, there is a one-to-one map from i to X(t, xi). Hence, we denote by Xi = X(t, xi). Then,
we can extend the values ui to a function uL such that, at each time t, ui(t) = uL(t,Xi). We
proceed similarly for τi.

Finally, from equation (3) we obtain

∂tτ
L(t,Xi) =

uL(t,Xi+1)− uL(t,Xi)

∆X

that is a finite volume semi-discretization of the PDE

∂tτ
L − ∂XuL = 0, (5)

provided the following assumptions:
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Ansatz 1 we have one car per cell and the distance between two cell centers is precisely ∆X, i.e.
∆X is the grid space.

Ansatz 2 τL and uL are distributed as piecewise constant on each cell
[
Xi− 1

2
, Xi+ 1

2

]
.

Notice that the first assumption means that we are considering the macroscopic limit in which
the number of vehicles goes to infinity whereas the length of cars shrinks to zero. The second
assumption implies we are considering a first-order finite–volume scheme and does not pose a
serious restriction.

Now, let us to consider the equation for the acceleration in the “follow-the-leader” model
without relaxation

u̇i = Uref∆X
γ vi+1 − vi

(xi+1 − xi)γ+1
.

Let wi = ui + P (τi) where P (τi) is a function defined as

P (τi) =


Uref

γτγi
, γ > 0

−Uref ln(τi), γ = 0.

Then, straightforward computations show that ẇi = u̇i + P ′(τi)τ̇i = 0, which can represent the
second equation of the particle model. Again, we can identify wi(t) = wL(t,Xi) and thus we get

∂tw
L = 0. (6)

As proved in [3], equation (5) and equation (6) give the Lagrangian version of the ARZ
model (1). Thus, we have showed that from the microscopic FTL model is derived as a semi-
discretization of the macroscopic ARZ model in Lagrangian coordinates.

In Figure 1 we provide the same simulation proposed in [3] in order to give a numerical evidence
of the link between the two models. The blue dotted line is the initial condition for the density ρ
and the flux ρu, while the red solid line and the orange circles give the solution of the macroscopic
and of the microscopic model, respectively. We refer to [3] for further details on the simulation
parameters.

3 Derivation of a spatially two-dimensional extension of the
ARZ model

In this section we will derive the extension of the ARZ model to the case of two space dimensions.
To this end, we will introduce a generalization of the FTL model with dynamics including lane
changing and then we will use the similar arguments to Section 2 to derive the macroscopic model.

In a two-dimensional microscopic model we have to consider the evolution in time of the
positions along and also across the road section. Let xi = xi(t) and yi = yi(t) be the time-
dependent positions, then they evolve according to

ẋi = ui, ẏi = vi,

for all vehicles i = 1, . . . , N . The speed ui is supposed to be non-negative (travel in x-direction),
while vi can be either positive or negative (travel in y-direction).

In contrast to the one-dimensional case, we assume that there is no particular ordering imposed
right now, we simply label the cars. The occupied space by each car is ∆X∆Y , where ∆X and ∆Y
are the typical length and the typical width, respectively, of a vehicle. Generalizing the definition
of the one-dimensional case, the density around vehicle i becomes

ρi =
∆X∆Y(

xj(i) − xi
) ∣∣yj(i) − yi∣∣ (7)
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Figure 1: Simulation of the 1D ARZ model (red solid line) and of the 1D FTL model (orange
circles). The top panel shows the density, while the bottom panel shows the flux at initial time
(dotted line) and at final time.
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Figure 2: Different position between the test vehicle i and the interacting vehicle j(i). Left: the
y-distance is yj(i) − yi > 0. Right: the y-distance is yi − yj(i) > 0.

where the interacting vehicle is labeled by j(i). Since here we do not assume any order on the
labeling, in general j(i) 6= i + 1. The absolute value in (7) is considered in order to take into
account both the situations displayed in Figure 2, depending on the relative position of vehicle
j(i) with respect to vehicle i, and thus to guarantee the positivity of the density. Using the
coordinate system in Figure 2 we assume that a vehicle i moves towards the left side of the road
if vi > 0 and towards the right side if vi < 0.

Remark 1. Let ρ1Di and ρ2Di be the local density in the one-dimensional (see (2)) and in the
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Figure 3: Choice of the interacting car in the case vi > 0. The interacting vehicle will be car 2,
namely the nearest vehicle in the driving direction of vehicle i.

two-dimensional case (see (7)), respectively. Observe that

ρ2Di → ρ1Di , as ∆Y,
∣∣yj(i) − yi∣∣→ 0+

only if we assume that

lim
∆Y→0+

(yj(i)−yi)→0+

∆Y∣∣yj(i) − yi∣∣ = 1. (8)

The interacting vehicle j(i) is determined by the following map

i 7→ j(i) = arg min
h=1,...,N
vi sin θh>0

θh∈[−π2 ,
π
2 ]

‖Qh −Qi‖2 . (9)

This choice is motivated as follows, see also Figure 3. Assume that each test vehicle i defines a
coordinate system in which the origin is its right rear corner if vi ≥ 0 and its left rear corner if
vi < 0. We are indeed dividing the road in four areas. Let θh be the angle between the x-axis (in
the car coordinate system) and the position vector Qh of vehicle h. Then the request θh ∈

[
−π2 ,

π
2

]
allows to consider only cars being in front of vehicle i. Instead, the request vi sin θh > 0 allows
to consider only cars in the driving direction of vehicle i. Among all these vehicles we choose the
nearest one. Therefore, (9) can be rewritten as

i 7→ j(i) = arg min
h=1,...,N

vi(yh−yi)>0
xh>xi

‖Qh −Qi‖2 .
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The specific volume for car i is defined as τi := 1/ρi and thus we have

τi =

(
xj(i) − xi

) ∣∣yj(i) − yi∣∣
∆X∆Y

.

From elementary geometry we obtain as in the one-dimensional case

τi(t+ ∆t)− τi(t) =

(
xj(i) − xi

) ∣∣yj(i) − yi∣∣ (t+ ∆t)

∆X∆Y
−
(
xj(i) − xi

) ∣∣yj(i) − yi∣∣ (t)
∆X∆Y

.

Now, we add and subtract
(xj(i)−xi)(t)|yj(i)−yi|(t+∆t)

∆X∆Y , and send ∆t to zero to obtain the final
dynamics

τ̇i =

(
uj(i) − ui

) ∣∣yj(i) − yi∣∣
∆X∆Y

+

(
vj(i) − vi

) ∣∣yj(i) − yi∣∣ (xj(i) − xi)
∆Y∆X

(
yj(i) − yi

) . (10)

As in the one-dimensional case, we wish to identify τi with a function out of the discrete
dynamics in order to find the corresponding conservation law. Then, we introduce

X =

∫ x

ρ(t, ξ, η̄)dξ, Y =

∫ y

ρ(t, ξ̄, η)dη

for some values η̄, ξ̄. They are the cumulative car mass up to car label i in x-direction (and
projected on y = η̄) and in y-direction (and projected on x = ξ̄), respectively.

Again, we would like to relate the label of the car to a corresponding mass. The discrete
measure corresponding to N cars is now

ρ(t, x, y) =
1

∆X∆Y

N∑
i=1

δ(x− xi(t))δ(y − yi(t))

with total mass N/∆X/∆Y.
In order to obtain the one-to-one relation between the label i and the pair of indices (k, `)

corresponding to the cumulative masses Xk and Y`, we proceed as follows. We view the cars as
points in the 2D domain. Now, we fix an arbitrary value η̄ in y-direction and project all cars
towards this line, i.e., from (xi, yi) to (xi, η̄). Then, the projected density is given by

ρ(t, x, η̄) =
1

∆X∆Y

N∑
i=1

δ(x− xi(t)).

Then, computing X on the projected density gives

X(t, xi, η̄) =
1

∆X∆Y

 ∑
h|xh∈(−∞,xi]

1 +
1

2

 =
1

∆X∆Y

(
k +

1

2

)

for some k.
Similarly, we fix ξ̄ in x direction and project all cars towards this line, i.e., from (xi, yi) to

(ξ̄, yi). We obtain

Y (t, ξ̄, yi) =
1

∆X∆Y

 ∑
h|xh∈(−∞,yi]

1 +
1

2

 =
1

∆X∆Y

(
`+

1

2

)

for some `.
Note that k and ` may well be different according to the position of the vehicles. Moreover,

for each fixed time t, the definition does not depend on the choice of η̄ and ξ̄.
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Again, in the projected densities, the maps s 7→ X(t, s, y) and s 7→ Y (t, x, s) are monotone
functions. Hence, for those quantities at least for short time there is a one-to-one correspondence
between car i and the pair (k, `), respectively. Therefore, we can identify

τi = τL(t,Xk, Y`)

and similarly for the speeds

ui = uL(t,Xk, Y`), vi = vL(t,Xk, Y`).

Since we are interested in the limit for many cars it is natural to assume that there are enough
cars in the neighboring cells. We therefore assume:

Ansatz j(i) 7→ (k + 1, `+ 1) if vi ≥ 0 and j(i) 7→ (k + 1, `− 1) if vi < 0.

Now, observe that, since X and Y are monotone we can write

xi = X−1

(
1

∆X∆Y

(
k +

1

2

))
, yi = Y −1

(
1

∆X∆Y

(
`+

1

2

))
.

Assume that vi is positive, then we obtain that

yj(i) − yi = Y −1

(
1

∆X∆Y

(
`+ 1 +

1

2

))
− Y −1

(
1

∆X∆Y

(
`+

1

2

))
= ∆Y

by straightforward computation using the fact that the map Y is locally invertible.
Similar computations hold for the case vi < 0 and in the x-direction. Therefore, equation (10)

writes as

τ̇i =

(
uj(i) − ui

)
∆X

+

(
vj(i) − vi

) ∣∣yj(i) − yi∣∣
∆Y

(
yj(i) − yi

) . (11)

Now, we show that (11) can be seen as a suitable semi-discretization in space of (12).

∂tτ
L − ∂XuL − ∂Y vL = 0. (12)

We consider a uniform cartesian grid

Ωk,` =
[
Xk− 1

2
, Xk+ 1

2

]
×
[
Y`− 1

2
, Y`+ 1

2

]
in which Xk+ 1

2
= Xk + ∆X and Y`+ 1

2
= Y` + ∆X and we define the volume average

τLk,`(t) =
1

∆X∆Y

∫∫
Ωk,`

τL(t, ξ, η)dξdη.

Integrating the conservation law over each control volume and dividing by the volume of Ωk,` we
obtain the finite volume formulation of (12)

d

dt
τLk,` =

1

∆X∆Y

∫ Y
`+1

2

Y
`− 1

2

(
uL(t,Xk+ 1

2
, η)− uL(t,Xk− 1

2
, η)
)
dη

+
1

∆X∆Y

∫ X
k+1

2

X
k− 1

2

(
vL(t, ξ, Y`+ 1

2
)− vL(t, ξ, Y`− 1

2
)
)
dξ.

(13)

We consider a first-order finite–volume scheme. This implies that τL, uL and vL are given as
piecewise constant on each of the above patches. In this interpretation the mass of the car is
uniformly distributed on the path ∆X ×∆Y and thus, for the specific volume we have

τLk,`(t) = τL(t,Xk, Y`).

8



Since the velocity along the road is non-negative, then for the first term in the right-hand side
of (13) an Upwind flux would be appropriate and in this case uL(t,Xk+ 1

2
, η) ≈ uL(t,Xk+1, η).

Then, we write
1

∆X∆Y

∫ Y
`+1

2

Y
`− 1

2

(
uL(t,Xk+1, η)− uL(t,Xk, η)

)
dη.

Since uL is constant on the patch, we evaluate it at any point η ∈
[
Y`− 1

2
, Y`+ 1

2

]
. We choose to

evaluate now at different points in Y direction, so that we finally get for the first term in the
right-hand side of (13)

1

∆X

(
uL(t,Xk+1, Y`+1)− uL(t,Xk, Y`)

)
For the second term in the right-hand side of (13) we notice that the speed across the lanes

can be either positive or negative. We again use an Upwind flux. However, if the velocity is
positive then the approximation vL(t, ξ, Y`+ 1

2
) ≈ vL(t, η, Y`+1) is still appropriate. In contrast, if

the velocity is negative we take vL(t, ξ, Y`+ 1
2
) ≈ vL(t, η, Y`). Thus, we obtain

1

∆X∆Y

∫ X
k+1

2

X
k− 1

2

(
vL(t, ξ, Y`+1)− vL(t, ξ, Y`)

)
dξ, if vL(t,Xk, Y`) ≥ 0

1

∆X∆Y

∫ X
k+1

2

X
k− 1

2

(
vL(t, ξ, Y`)− vL(t, ξ, Y`−1)

)
dξ, if vL(t,Xk, Y`) < 0.

Since also vL is constant on the patch, we can evaluate it at any point ξ ∈
[
Xk− 1

2
, Xk+ 1

2

]
. We

choose to evaluate at different points in X direction, so that we can finally obtain
1

∆Y

(
vL(t,Xk+1, Y`+1)− vL(t,Xk, Y`)

)
, if vL(t,Xk, Y`) ≥ 0

1

∆Y

(
vL(t,Xk, Y`)− vL(t,Xk−1, Y`−1)

)
, if vL(t,Xk, Y`) < 0.

Putting together all the terms, from (13) we have

d

dt
τLk,` =

1

∆X

(
uLk+1,`+1(t)− uLk,`(t)

)
+

v+

∆Y

(
vLk+1,`+1(t)− vLk,`(t)

)
+

v−

∆Y

(
vLk,`(t)− vLk−1,`−1(t)

)
where v+ = max

(
0,
|vLk,`(t)|
vLk,`(t)

)
and v− = min

(
0,
|vLk,`(t)|
vLk,`(t)

)
. Thus, we (11) is a first-order finite

volume semi-discretization of the conservation law (12).
Now, we study what happens for the acceleration. Actually, since a two-dimensional FTL

model has not already been introduced in literature, we do not have the evolution equation for
the acceleration in the two-dimensional case at hand. Thus, we first need to derive the equations
for u̇i and v̇i.

We define two quantities

wi = ui + P1(τi), σi = vi + P2(τi),

which can be seen as desired speeds of vehicle i in the x- and in the y-direction, respectively. The
quantities P1 and P2 play the role of the “traffic pressure” and they are functions of the local
density. However, observe that P1 and P2 should be homogeneous to a velocity a for this reason
we take P1 6= P2 assuming that there are two different reference velocities in the two different
directions of the flow. We define

P1(τi) =


Uref

γ1τ
γ1
i

, if γ1 > 0

−Uref ln(τi), if γ1 > 0

, P2(τi) =


Vref

γ2τ
γ2
i

, if γ2 > 0

−Vref ln(τi), if γ2 > 0

(14)
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and as in the one-dimensional model without relaxation we require that the desired speeds are
constant during the time evolution, that is

ẇi = σ̇i = 0.

We therefore obtain
u̇i = −τ̇iP ′1(τi), v̇i = −τ̇iP ′2(τi)

and computing the derivative of P1 and P2 with respect to τi we can finally get the equation for
the evolution of the microscopic accelerations

u̇i = C1

(
uj(i) − ui(

xj(i) − xi
)

∆Aγ1
+

vj(i) − vi(
yj(i) − yi

)
∆Aγ1

)

v̇i = C2

(
uj(i) − ui(

xj(i) − xi
)

∆Aγ2
+

vj(i) − vi(
yj(i) − yi

)
∆Aγ2

)

where

C1 = Uref∆X
γ1∆Y γ1 , C2 = Vref∆X

γ2∆Y γ2 , ∆A =
(
xj(i) − xi

) ∣∣yj(i) − yi∣∣ .
Remark 2. Notice that the above equations for the microscopic accelerations are consistent to

u̇i = Uref∆X
γ1

uj(i) − ui(
xj(i) − xi

)γ1+1

v̇i = 0

which are the acceleration equations in the one-dimensional case in the limit Vref → 0 and under
hypothesis (8).

Remark 3. In the macroscopic limit, i.e. when the number of cars increases whereas xj(i)−xi =

∆X and
∣∣yj(i) − yi∣∣ = ∆Y , we simply get

u̇i = Uref

(
uj(i) − ui(
xj(i) − xi

) +
vj(i) − vi(
yj(i) − yi

))

v̇i = Vref

(
uj(i) − ui(
xj(i) − xi

) +
vj(i) − vi(
yj(i) − yi

))

Finally, the two-dimensional “follow-the-leader” microscopic model is

ẋi = ui,

ẏi = vi,

u̇i = C1

(
uj(i) − ui(

xj(i) − xi
)

∆Aγ1
+

vj(i) − vi(
yj(i) − yi

)
∆Aγ1

)
,

v̇i = C2

(
uj(i) − ui(

xj(i) − xi
)

∆Aγ2
+

vj(i) − vi(
yj(i) − yi

)
∆Aγ2

) (15)

which can be, altogether, rewritten in the form

τ̇i =

(
uj(i) − ui

)
∆X

+

(
vj(i) − vi

) ∣∣yj(i) − yi∣∣
∆Y

(
yj(i) − yi

) ,

ẇi = 0,

σ̇i = 0.

(16)
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Figure 4: Left: comparison between the real trajectories provided by experimental data in [10] and
the computed trajectories using the two-dimensional microscopic model (15). Right: evolution of
the 2-norm error in time for each car.

We have already seen that the equation for the time evolution of the specific volume (the
first in (16)) is first-order finite volume semi-discretization of the conservation law in Lagrangian
coordinates (12). Since there exists a one-to-one map i 7→ (k, `) we may extend the values wi and
σi to two functions wL(t,X, Y ) and σL(t,X, Y ) such that

wi(t) = wL(t,Xk, Y`), σi(t) = σL(t,Xk, Y`)

where wL and σL are defined as

wL(t,X, Y ) = uL(t,X, Y ) + P1

(
τL(t,X, Y )

)
, σL(t,X, Y ) = vL(t,X, Y ) + P2

(
τL(t,X, Y )

)
.

Assuming a first-order scheme and thus assuming that wL and σL are constant on the grid, ẇi = 0
and σ̇i = 0 can be obviously viewed as semi-discretization of

∂tw
L = 0, ∂tσ

L = 0.

Finally, the above equation and (12) define the system of macroscopic equations in Lagrangian
coordinates writes as

∂tτ
L = ∂Xu

L + ∂Y v
L, ∂tw

L = 0, , ∂tσ
L = 0. (17)

Remark 4 (Validation of the 2D particle model). In [10] we used the experimental data provided
from a German highway in order to derive a two-dimensional first-order macroscopic model. The
microscopic trajectories of vehicles were used to compute macroscopic quantities related to traffic
flow and consequently fundamental diagrams. These latter were used to define a closure for the
macroscopic equation. Here, we use the same microscopic data introduced in [10] to validate the
two-dimensional microscopic model (15). To this end, we fix an initial time and using experimental
data we get the initial positions and speeds of vehicles on the road. We compute the interacting
vehicle for each car using (9) and then we evolve the trajectories using (15). The right-most
vehicle in x-direction is used as ghost car and its trajectory is updated at each time using the
real trajectory. In the left panel of Figure 4 we show the real trajectories (red line) provided by
experimental data and the computed trajectories with the 2D microscopic model (black symbols),
after 2 seconds. In the right panel of Figure 4 we show the error between the real and the computed
trajectory for each car, using the 2-norm distance.

4 From Lagrangian to Eulerian coordinates

Macroscopic equations (17) are written with respect to the “mass” coordinates (or Lagrangian) X
and Y where the variables X(t, x, y) and Y (t, x, y) denote the total mass of vehicles up to point x

11



and up to point y, for y = y and x = x fixed, respectively.
We reformulate the model in Eulerian coordinates x and y by setting t(T,X, Y ) = T and

x(t,X, Ȳ ) =

∫ X

τL(t, ξ, Ȳ )dξ, y(t, X̄, Y ) =

∫ Y

τL(t, X̄, η)dη.

From this definition and using the continuity equation in Lagrangian coordinates we obtain

∂Xx = ∂Y y = τL, ∂tx = uL, ∂ty = vL, ∂Y x = ∂Xy = 0.

The Jacobian of the coordinate transformation is given by

J =
∂(T,X, Y )

∂(t, x, y)
=

 1 0 0

uL τL 0

vL 0 τL

 .
and therefore the continuity equation in Lagrangian coordinates (12) yields the corresponding
equation in Eulerian variables

∂τ

∂t
+ u

∂τ

∂x
+ v

∂τ

∂y
= τ

∂u

∂x
+ τ

∂v

∂y
.

Recalling that τ = 1/ρ we get
∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
= 0. (18)

For the momentum equation, we discuss the case ∂tw
L = 0 with the other equation being

similar. From
∂tu

L + P ′1(ρL)∂tρ
L = 0.

we compute

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
− ρ2P ′1(ρ)

∂u

∂x
− ρ2P ′1(ρ)

∂v

∂y
= 0.

and therefore we finally obtain in conservative form

∂ρw

∂t
+
∂ρuw

∂x
+
∂ρvw

∂y
= 0. (19)

Finally, the system of macroscopic equations in Eulerian coordinates writes as

∂tρ+ ∂x(ρu) + ∂y(ρv) = 0,

∂t(ρw) + ∂x(ρuw) + ∂y(ρvw) = 0,

∂t(ρσ) + ∂x(ρuσ) + ∂y(ρvσ) = 0.

(20)

We end the section with the following remarks on the 2D ARZ-type model (20).

Remark 5. If v = Vref = 0 we recover the one-dimensional ARZ model (1).
If we substitute the continuity equation in the two equations for the speeds we get

∂tw + u∂xw + v∂yw = 0

∂tσ + u∂xσ + v∂yσ = 0

which are transport equations for w and σ.
Recall that w = u + P1(ρ) and σ = v + P2(ρ). Let w = c1 and σ = c2 be constants. Then the

system of three equations reduces to

∂tρ+ ∂x (ρ(c1 − P1(ρ))) + ∂y (ρ(c2 − P2(ρ))) .

12



Assuming γ1 = 1 and taking c1 = Uref we obtain the Greenshields’ law for the x direction

u = Uref(1− ρ).

Changing the values of c1 or γ1 will let to obtain several diagrams, as already studied in [18].
For the y direction instead we have

v = c2 − P2(ρ) = c2 −
Vref
γ2

ργ2 ,

where Vref < 0 is the reference velocity in y and it is negative as compared by data. Also in this
case if c2 = Vref and γ2 = 1 we get a linear function such that v = Vref for ρ = 0 and v = 0 for
ρ = 1. Actually, as done in our previous paper, the parameters c2 and γ2 can be chosen to fit the
data and they allow to obtain different diagrams, shifted from the naive one if we modify c2, or
with a different shape if we modify γ2.

5 Properties of the two-dimensional ARZ model

For simplicity of the following discussion we consider the following non-conservative form of the
2D Aw-Rascle model:

∂tρ+ ∂x(ρu) + ∂y(ρv) = 0, (21)

(∂t + u∂x + v∂y)(u+ P1(ρ) = 0, (22)

(∂t + u∂x + v∂y)(v + P2(ρ)) = 0. (23)

Using the continuity equation (21) in equations (22)-(23), the system is written in in matrix
notations with U = (ρ, u, v)T

∂tU +A(U)∂xU +B(U)∂yU = 0, (24)

where

A(U) =

u ρ 0
0 u− ρP ′1(ρ) 0
0 v −ρP ′1(ρ)

 and B(U) =

v 0 ρ
0 −ρP ′2(ρ) u
0 0 v − ρP ′2(ρ)


A system of the form (24) is said to be hyperbolic if for any ξ = (ξ1, ξ2) ∈ R2 the matrix

C(U, ξ) = ξ1A+ ξ2B is diagonalizable [13]. This is the case here and the eigenvalues of the matrix
C(U, ξ) are

λ1 = −(ξ1ρP
′
1(ρ) + ξ2ρP

′
2(ρ)) ≤ λ2 = ξ1(u− ρP ′1(ρ)) + ξ2(v − ρP ′2(ρ)) ≤ λ3 = ξ1u+ ξ2v.

The eigenvalues of C(U, ξ) for |ξ| = 1 correspond to the wave speeds and the their corresponding
eigenvectors are respectively

r1 =

 −(u+v)
v(P ′1(ρ)+P ′2(ρ))

u/v
1

 , r2 =

 0
−1
1

 , and r3 =

1
0
0

 .

Remark 6. Observe that, as in the classical Aw-Rascle-Zhang model [4, 19], the system is not
hyperbolic in presence of a vacuum state, i.e. if ρ = 0.

The second and third eigenvalues, λ2 and λ3, are linearly degenerate since∇λ2·r1 = ∇λ3·r2 = 0
(here ∇ := (∂ρ, ∂u, ∂v)). For the first eigenvalue, we have

∇λ1 · r1 =
[P ′1(ρ) + P ′2(ρ) + ρ(P ′′1 (ρ) + P ′′2 (ρ))](u+ v)

v(P ′1(ρ) + P ′2(ρ))
.
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Clearly, there exist (ρ, u, v) ∈ R∗+ × R∗+ × R∗+ such that ∇λ1 · r1 6= 0. Therefore λ1 is not
linearly degenerate. For the other fields to be genuinely nonlinear we need to show ∇λ1 · r1 6= 0
for all (ρ, u, v) 6= (0, 0, 0). This condition is fulfilled provided that the functions P1(ρ) and P2(ρ)
fulfill

∂ρ(ρP
′
1(ρ)) 6= ∂ρ(ρP

′
2(ρ)).

The above condition is satisfied as long as the reference velocities Uref and Vref , introduced in
(14), are different. Since λ1 is genuinely nonlinear, for Uref 6= Vref , then the associated waves are
either shocks or rarefaction waves.

The Riemann invariants, in the sense of Lax [14], associated with the eigenvalues λ1, λ2 and
λ3 are respectively:

z1 = u+ v + P1(ρ) + P2(ρ), z2 = u+ v, z3 = u.

5.1 An overview of the Riemann problem associated to the system

The main idea behind the approximation of the solution to the two-dimensional Riemann problem
was the coupling of two-half Riemann problems in one dimension and then use the transition from
one lane to another, subject to some admissibility conditions. In this section, we provide a detailed
discussion, of the main scenarios under consideration in this study, as well as the suitable Riemann
solvers at the interfaces of the lanes in order to capture the two-dimensional aspect of the problem.
Following this approach, the solution to the system (21)-(23) consists of either a wave of the first
family (1-shock or 1-rarefaction) or a wave of the second family (2-contact discontinuity). The
properties of these two families of waves can be summarized as follows.

First characteristic field: A wave of the first family is generated when a state on left, denoted
Ul = (ρl, ul, vl), is connect to a state on the right, denotes Ur = (ρr, ur, vr), through the same
Riemann invariant curve associated with the eigenvalue λ1, i.e. z1(Ul) = z1(Ur). Therefore, we
have

ul + vl + P1(ρl) + P2(ρl) = ur + vr + P1(ρr) + P2(ρr). (25)

We can distinguish the following scenarios:

• if ul + vl > ur + vr, then this wave (of the first family) is a 1-shock i.e. a jump discontinuity,
traveling with the speed

s =
ρr(ur + vr)− ρl(ul + vl)

ρr − ρl
. (26)

• if ul + vl < ur + vr, then this wave (of the first family) is a 1-rarefaction, i.e. a continuous

solution of the form (ρ, u, v)(ξ) (with ξ = f(x,y)
t ), given byρ′(ξ)u′(ξ)

v′(ξ)

 =
r1(U(ξ))

∇λ1(U(ξ)) · r1(U(ξ))
, if λ1(Ul) ≤ ξ ≤ λ1(Ur), (27)

whereas

(ρ, u, v)(ξ) =

{
(ρl, ul, vl) for ξ < λ1(Ul),

(ρr, ur, vr) for ξ > λ1(Ur).

Second characteristic field: A wave of the second family i.e. a 2-contact discontinuity is
generated when

z2(Ul) = z2(Ur) =⇒ ul + vl = ur + vr.

In this case, the contact discontinuity between a state on the left, Ul = (ρl, ul, vl), and a state on
the right, Ur = (ρr, ur, vr), travels with a speed η = ul + vl = ur + vr.
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Third characteristic field: A wave of the third family i.e. a 3-contact discontinuity is generated
when

z3(Ul) = z3(Ur) =⇒ ul = ur.

In this case, the contact discontinuity between a state on the left, Ul = (ρl, ul, vl), and a state on
the right, Ur = (ρr, ur, vr), travels with a speed η = ul = ur.

5.2 Solution to the Riemann problem associated with the system (21)-
(23)

This section describes the solutions to the Riemann problem for the system (21)-(23), by combining
the previously described elementary. Let Ul = (ρl, ul, vl) and Ur = (ρr, ur, vr) be the initial data
on the left and on the right, respectively. The solutions to the system (21)-(23) for these initial
data consist of the following cases.

Case 1. If σl = vl + P2(ρl) = σr = vr + P2(ρr) = 0, then the model bowls down to the one-
dimensional Aw-Rascle model i.e. the initial data reduced to Ul = (ρl, ul) and Ur = (ρr, ur).
Therefore, the state on the left Ul = (ρl, ul) is connect to an intermediate state U? = (ρ?, u?)
through a wave of the first family, i.e. either a 1-shock wave if ul > ur (which corresponds to
braking) or a 1-rarefaction wave if ul < ur (which corresponds to an acceleration). Then, the
intermediate state U? is connected to the state on the right Ur = (ρr, ur) through a wave of
the second family, i.e. a 2-contact discontinuity. Therefore, an admissible intermediate state,
U? = (ρ?, u?), is defined such that:

u? = ur and ρ? = P−1
1 (ul + u? + P1(ρl)).

Case 2. If σl = vl + P2(ρl) = σr = vr + P2(ρr) > 0, then we have the following admissible
scenarios:

• If vl = σl − P2(ρl) > 0 (lane changing possibility), then the state on the left Ul = (ρl, ul, vl)
is connected to an intermediate state on the left, U?l = (ρ?l , u

?
l , v

?
l ), through a wave of the

first family, i.e. either a 1-shock (if ul > ur) or a rarefaction wave (if ul < ur). Then, the
intermediate state U?l is connected to a vacuum state through a wave of the second family,
i.e. a 2-contact discontinuity. Therefore, an admissible intermediate state, U?l = (ρ?l , u

?
l , v

?
l ),

is defined such that: 
ul + P1(ρl) = u?l + P1(ρ?l ),

vl + P2(ρl) = v?l + P2(ρ?l ),

u?l = ul + vl.

The vacuum state, is then connected to an intermediate state on the right, U?r = (ρ?r , u
?
r , v

?
r ),

through a wave of the first family, i.e. either a 1-shock (if u?l > u?r) or a 1-rarefaction
wave (if u?l < u?r). Then, the intermediate state, U?r , is connected to the state on the
right, Ur = (ρr, ur, vr), through a wave of the third family, i.e. a 3-contact discontinuity.
Therefore, an admissible intermediate state, U?r = (ρ?r , u

?
r , v

?
r ), is defined such that:

u?l + P1(ρ?l ) = u?r + P1(ρ?r),

v?l + P2(ρ?l ) = v?r + P2(ρ?r),

u?r = ur.

• If vl = σl−P2(ρl) = 0 (no lane changing possibility), then the state on the left Ul = (ρl, ul, vl)
is connected to an intermediate state on the left, U?l = (ρ?l , u

?
l , v

?
l ), through a 1-rarefaction

wave. Then, the intermediate state U?l is connected to a vacuum state through a wave
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Figure 5: Illustration of the solutions to the Riemann problem associated with the system (21)-
(23).

of the second family, i.e. a 2-contact discontinuity, and an admissible intermediate state,
U?l = (ρ?l , u

?
l , v

?
l ), is defined such that:

ul + P1(ρl) = u?l + P1(ρ?l ),

P2(ρl) = v?l + P2(ρ?l ),

u?l = ul.

The vacuum state, is then connected to an intermediate state on the right, U?r = (ρ?r , u
?
r , v

?
r ),

through a either a 1-shock or a 1-rarefaction wave; whereas the intermediate state, U?r , is
connected to the state on the right, Ur = (ρr, ur, vr), through a 3-contact discontinuity. An
admissible intermediate state, U?r = (ρ?r , u

?
r , v

?
r ), is therefore defined such that:

u?l + P1(ρ?l ) = u?r + P1(ρ?r),

v?l + P2(ρ?l ) = v?r + P2(ρ?r),

u?r = ur.

6 Numerical simulations

In Section 3 we have derived the two-dimensional ARZ-type model (20) starting from the two-
dimensional FTL-type model (15). This proves the connection between the microscopic model
and a a semi-discretization of the macroscopic continuum model in Lagrangian coordinates.

Here, we wish to give also a numerical evidence of the connection between the two models. To
this end, in this section, we will show the simulations provided by a first-order in time approxima-
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tion of the particle model (15) and by a first-order finite volume scheme of the Eulerian version
of the macroscopic model (20).

6.1 Description of the schemes

Microscopic model For the microscopic model (15) we use the explicit Euler scheme in time,
so that we obtain the following fully-discretized equations for the update of the positions and of
the speeds at time tn+1

xn+1
i = xni + ∆t uni ,

yn+1
i = yni + ∆t vni ,

un+1
i = uni + ∆t C1

 unj(i) − u
n
i(

xnj(i) − x
n
i

)
∆Aγ1,n

+
vnj(i) − v

n
i(

ynj(i) − y
n
i

)
∆Aγ1,n

 ,

vn+1
i = vni + ∆t C2

 unj(i) − u
n
i(

xnj(i) − x
n
i

)
∆Aγ2,n

+
vnj(i) − v

n
i(

ynj(i) − y
n
i

)
∆Aγ2,n

 ,

where ∆t is the time-step. The choice of the initial conditions as well as the computation of the
interacting vehicles will be discussed later.

Macroscopic model For the macroscopic model in Eulerian coordinates (20) we consider a
classical first-order finite volume approximation. We divide the domain (x, y) ∈ [ax, bx]× [ay, by]
into Nx ×Ny cells

Iij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2], i = 1, . . . , Nx, j = 1, . . . , Ny

where xi+1/2 − xi−1/2 = ∆x, yj+1/2 − yj−1/2 = ∆y and the mid-points are xi, i = 1, . . . , Nx, and
yj , j = 1, . . . , Ny. The length and the width of the road are Lx := bx − ax and Ly := by − ay,
respectively. Let us to denote by

ρij(t) =
1

∆x∆y

∫∫
Iij

ρ(t, x, y)dxdy, ρwij(t) =
1

∆x∆y

∫∫
Iij

(ρw)(t, x, y)dxdy,

ρσij(t) =
1

∆x∆y

∫∫
Iij

(ρσ)(t, x, y)dxdy

the cell averages of the exact solution of the system (20) at time t. Moreover, in order to abbreviate
the notation, we define q := (ρ, ρw, ρσ) and we denote by Qij(t) the vector of the numerical
approximation of the cell-averages qij(t) := (ρij(t), ρwij(t), ρσij(t)). Then, system (20) can be
then rewritten as

∂tq(t, x, y) + ∂xf(q(t, x, y)) + ∂yg(q(t, x, y)) = 0, (28)

where

f(q) =

 ρu
ρuw
ρuσ

 , g(q) =

 ρv
ρvw
ρvσ

 .

By integrating equation (28) over a generic cell Iij of the grid, dividing by ∆x∆y and fi-
nally using the explicit Euler scheme with time-step ∆t we get the fully-discrete scheme for the
approximation of the solution at time tn+1 = tn + ∆t

Q
n+1

ij = Q
n

ij −
∆t

∆x

[
Fi+1/2,j − Fi−1/2,j

]
− ∆t

∆y

[
Gi,j+1/2 −Gi,j−1/2

]
. (29)
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where

Fi+1/2,j = F
(
q(tn, x−i+1/2, yj), q(t

n, x+
i+1/2, yj)

)
≈ f(q(tn, xi+1/2, yj))

Gi,j+1/2 = G
(
q(tn, xi, y

−
j+1/2), q(tn, xi, y

+
j+1/2)

)
≈ g(q(tn, xi, yj+1/2))

are the numerical fluxes defined by F and G, being approximate Riemann solvers (in the following
the local Lax-Friedrichs). We observe that in order to compute the numerical flux, we need the
knowledge of the solution in the mid points of the four boundaries of a cell Iij . If we use a
first-order scheme then

q(t, x−i+1/2, yj) ≈ Q
n

ij , q(t, x+
i+1/2, yj) ≈ Q

n

i+1,j ,

q(t, xi, y
−
j+1/2) ≈ Qnij , q(t, xi, y

+
j+1/2) ≈ Qni,j+1.

In the next section we will show that using scheme (29) will lead to the same results provided
by the above discretized particle model with a large number of vehicles.

6.2 Examples

In the following we propose three numerical simulations. In the first one, we compare the mi-
croscopic model and the above first-order scheme for the macroscopic model using a basic test
problem, which generalize in two dimensions the problem proposed in [3] and recalled in Section
2. Then, we propose two simulations regarding the macroscopic model only, in order to show that
it is able to reproduce typical situations in traffic flow.

In all cases, we consider

[0, 1] = 1 km, Ly = 0.012, ρmax = 1, Uref = 1, Vref = 0.009, γ1 = γ2 = 1.

Connection between Micro and Macro models. Here, we will numerically show that for
∆t, ∆X and ∆Y tending to 0 one obtains an approximation of the two-dimensional system (20)
in Eulerian coordinates. From the particle point of view this means that the number of vehicles
should increase in order to get the desired approximation of the macroscopic equations.

From the macroscopic point of view we consider a Riemann Problem given by the following
initial conditions

ρ(0, x, y) = 0.05, u(0, x, y) =

{
0.8, x ≥ 0

0.05 x < 0
v(0, x, y) =

{
−0.001, y ≥ Ly/2
0.001 y < Ly/2

,

which define four states with discontinuity located along x = 0 and y = Ly/2. In other words,
we are assuming that all vehicles in the left part of the road are traveling towards the right part,
while vehicles in the right part are traveling towards the left part. We denote the four states by
NE (north-east), NW (north-west), SW (south-west) and SE (south-east). Thus, we have

ρNE = ρNW = ρSE = ρSW = 0.05,

(ρu)NE = (ρu)SE = 0.04, (ρu)NW = (ρu)SW = 0.0025,

(ρv)NE = (ρv)NW = −5× 10−5, (ρv)SE = (ρv)SW = 5× 10−5.

The discretization size is chosen as ∆x = ∆X = 1
200 and ∆y = ∆Y = Ly

32 . From the particle
point of view, since the density is constant and equal to 0.05, this leads to to 320 cars per kilometer.
The initial conditions for the particle model are assigned as follows. We focus on the simplest case
in which Ny = 4 and we use two indices for labeling the microscopic states of vehicles: the first
counts the vehicles, while the second takes into account the “lane”. We choose to put the same
number of vehicles in each of the four lanes and then:
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1. firstly, we choose the initial position of the first vehicle belonging to lane 1 and lane 3, so
that

x1,1(0) = x1,3(0) = ax,

and we compute the position at initial time of the first vehicle in lane 2 in such a way the
density (7) is equal to 0.05. Thus

x1,2(0) = x1,1 +
∆X∆Y

0.05 |y1,2 − y1,1|
= x1,3 +

∆X∆Y

0.05 |y1,2 − y1,3|
.

The initial position of the first vehicle in lane 4 is finally chosen as x1,4(0) = x1,2(0).

2. Let d = x1,2 − x1,1, then all the positions at initial time are

xi,j(0) = xi−1,j(0) + 2 d, i = 2, . . . , j = 1, 2, 3, 4.

3. The initial speeds in x-direction are

ui,j(0) =

{
0.05 if xi,j(0) <= 0,

0.8 if xi,j(0) > 0.

4. Finally, the initial speed in y-direction are

vi,j(0) =

{
0.001 if j = 1, 2,

−0.001 if j = 3, 4.

The above artificial initial conditions for the particle model are induced by the fact that vehicles
in the right half part of the road travel with positive lateral speeds, while vehicles in the left half
part of the road travel with negative lateral speeds. Thus, it is quite natural assume that vehicles
in the first lane interact with vehicles in the second lane, as well as vehicle in the third lane. While
vehicles in the second and the fourth lane interact with vehicles in the third lane.

This situation is depicted in Figure 6 for the case of four lanes and it can be easily generalized
to the case of an arbitrary number of lanes. Dots and squares represent the vehicles on the road.
More precisely, the red cars are in the first and second lane, traveling with a positive lateral speed
(i.e., towards the left part of the road). Instead, the blue cars are in the third and fourth lane,
traveling with a negative lateral speed (i.e., towards the left part of the road). The squares and
the dots identify the vehicles having speed 0.05 and 0.8 in x-direction, respectively. The arrows
show, for each car, the interacting vehicle. The empty black circle is the “ghost” car, i.e. the
boundary condition, which is necessary to compute the microscopic states of the last cars in lane 2
and 4. The positions and the speeds of the ghost car are updated at each time using the positions
and the speeds of the last car in the same lane, i.e. the third one.

In Figure 7 we show the density and the fluxes profiles at Tfin = 0.1 provided by the macroscopic
model. The time step is chosen according to the CFL condition. We consider a small final time in
order to guarantee that, in the particle model, vehicles remain in their part of the domain given
at initial time. At each time step the density around each car is computed again using equation
(7) and for each car the interacting vehicle is chosen by (9). The values of the density around
each car and of the fluxes provided by the particle model are showed with red ∗-symbols. We
notice that the microscopic and the macroscopic model seems to produce the same profiles at final
time. Moreover, the density has the same decrease in the center of the road as observed in the 1D
simulation, see Figure 1. This happens because the initial condition in x is similar to that given
in Section 2. Finally, we observe that the density tends to 0 in the left-most and in the right-most
part of the road because of the initial condition on the lateral velocity which assumes that the
flow is going towards the center part of the road.

The following two examples regard only the macroscopic model with the aim of showing that
it reproduces typical traffic flow situations, as an overtaking scenario.
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Figure 6: Initial condition for the particle model.

Going to the left. First, we propose the case of an overtaking to the left. Thus, using the
same label introduced in the previous paragraph, we consider the following initial condition for
the density and the speeds:

ρNE = 0.05, ρNW = ρSE = 0.4, ρSW = 0.6,

uNE = uNW = 0.8, uSW = 0.65, uSE = 0.35,

vNE = vNW = vSE = 0, vSW = 0.04.

In other words we are taking into account an initial situation in which the flow in the SW
region of the road is higher than the flow in the SE region. In a simple one-dimensional model
we expect to have a backward propagating shock since vehicles cannot go in the SE region freely.
Using a two-dimensional model, instead, we can observe the overtaking: vehicles in the SW region
go in the NE region in order to avoid the slow mass ahead. The initial lateral speed in the SW
zone is chosen positive in order to speed up the overtaking.

In Figure 8 we show the density and the flux profiles provided by the 2D ARZ-type model at
time T = 0.5 (top row), T = 1 (center row) and T = 1.5 (bottom row).

Going to the right. Finally, we study an opposite scenario in which the overtaking is to the
right. we consider the following initial condition for the density and the speeds:

ρNE = 0.9, ρNW = 0.7, ρSE = ρSW = 0.05,

uNE = 0.1, uNW = 0.7, uSW = uSE = 1,

vNE = vNW = vSE = vSW = 0.

Now, vehicles in the NW region would travel towards the SE region in order to overtake the
slower mass in the NE zone. However, notice that, in contrast to the previous example, the lateral
speed is zero everywhere. In fact, we wish to show that the overtaking takes place also if the
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Figure 7: Density ρ (top-left), flux ρu (top-right) and flux ρv (bottom-center) profiles at time
Tfin = 0.1 provided by the two-dimensional second-order macroscopic model (20). The red ∗-
symbols shows the values of the density around each car and of the fluxes provided by the two-
dimensional microscopic model (15).

initial lateral speed is zero. The macroscopic equations force the lateral speed of vehicle being in
the NW region to become negative and thus cars can overtake and travel in the right part of the
road.

In Figure 9 we show the density and the flux profiles provided by the 2D ARZ-type model at
time T = 0.5 (top row), T = 1 (center row) and T = 1.5 (bottom row).

7 Concluding remarks

This paper introduced a 2D extension of the Aw-Rascle-Zhang [4, 19] second order model of traffic
flow. The proposed model is rather simplistic and it can be viewed as a preliminary step towards
multi-lane traffic modeling using 2D second order models. Nonetheless, it enables to capture
traffic dynamics caused by lane changing maneuvers and it complies with the desirable anisotropic
feature of vehicular traffic flow since the the maximum speed of the vehicles never exceeds the
wave speed.

Hence, the proposed model opens many perspectives for future research toward several di-
rections. In order to calibrate and test thoroughly the model enough real data on the traffic
macroscopic variables are required. We plan in future work to address this issue again and hope
to provide a rigorous validation of the model. Furthermore, the introduction of stochastic features
in the lane-changing occurrence, derived from real data, is worth investigating. Finally, a more
detailed study on the analytical properties of the model could be provided.
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Figure 8: Density ρ (left column), flux ρu (center column) and flux ρv (right column) profiles
provided by the two-dimensional second-order macroscopic model (20) at time Tfin = 0.5 (top
row), Tfin = 1 (center row) and Tfin = 1.5 (bottom row).
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