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STREAM FUNCTION FORMULATION OF SURFACE STOKES
EQUATIONS

ARNOLD REUSKEN∗

Abstract. In this paper we present a derivation of the surface Helmholtz decomposition, discuss
its relation to the surface Hodge decomposition, and derive a well-posed stream function formulation
of a class of surface Stokes problems. We consider a C2 connected (not necessarily simply connected)
oriented hypersurface Γ ⊂ R3 without boundary. The surface gradient, divergence, curl and Laplace
operators are defined in terms of the standard differential operators of the ambient Euclidean space
R3. These representations are very convenient for the implementation of numerical methods for
surface partial differential equations. We introduce surface H( divΓ) and H( curlΓ) spaces and derive
useful properties of these spaces. A main result of the paper is the derivation of the Helmholtz
decomposition, in terms of these surface differential operators, based on elementary differential cal-
culus. As a corollary of this decomposition we obtain that for a simply connected surface, to every
tangential divergence free velocity field there corresponds a unique scalar stream function. Using this
result the variational form of the surface Stokes equation can be reformulated as a well-posed vari-
ational formulation of a fourth order equation for the stream function. The latter can be rewritten
as two coupled second order equations, which form the basis for a finite element discretization. A
particular finite element method is explained and results of a numerical experiment with this method
are presented.

Key words. surface Stokes, surface Helmholtz decomposition, stream function formulation

1. Introduction. In the literature on modeling of emulsions, foams or biological
membranes mathematical models describing fluidic surfaces or fluidic interfaces occur;
cf., e.g., [40, 41, 4, 7, 34, 33]. Typically such models consist of surface (Navier-)Stokes
equations. These equations are also studied as an interesting mathematical problem in
its own right in, e.g., [14, 44, 43, 3, 26, 2, 23]. Recently there has been a strong increase
in research on numerical simulation methods for surface (Navier-)Stokes equations,
e.g., [29, 5, 36, 35, 37, 16, 22, 30]. By far most of these and other papers on numerical
methods for surface flow problems treat the (Navier-)Stokes equations in the primitive
velocity and pressure variables. In the paper [29] the Navier-Stokes equations on a
stationary smooth closed surface in stream function formulation are treated. We are
not aware of any other literature in which surface (Navier-)Stokes equations in stream
function formulation are studied.

In Euclidean space, the stream function formulation of (Navier-)Stokes is well-
known and thoroughly studied, e.g., [17, 32] and the references therein. In numerical
simulations of three-dimensional problems this formulation is not often used due to
substantial disadvantages. For two-dimensional problems this formulation reduces to
a fourth order biharmonic equation for the scalar stream function. This formulation
has been used in numerical simulations, although it has certain disadvantages related
to boundary conditions and regularity ([17, 32]).

In the fields of applications mentioned above, one often deals with smooth simply
connected surfaces without boundary. In such a setting there usually are no difficulties
related to regularity or boundary conditions and the stream function formulation may
be a very attractive alternative to the formulation in primitive variables, as already
indicated in [29]. This is the main motivation for the study presented in this paper.
We present a detailed analysis of the stream function formulation for a certain class
of surface Stokes equations. It is clear that such a stream function formulation should
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be based on a Helmholtz decomposition of L2(Γ) (where Γ denotes the surface). This
decomposition can be interpreted as a variant of the Hodge-decomposition from the
field of differential forms. It turns out that for this surface Helmholtz decomposition
and the corresponding stream function formulation of the Stokes problem only some
partial results are available in the literature. For example, in [8] a Helmholtz decom-
position for the case that Γ is a simply connected Lipschitz polyhedron is studied and
in [29] a stream function formulation is derived in the setting of differential forms.

In this paper we present a complete derivation of the surface Helmholtz decompo-
sition, discuss its relation to the surface Hodge decomposition, and derive a well-posed
stream function formulation of a class of surface Stokes problems. We consider a C2

connected (not necessarily simply connected) oriented hypersurface Γ ⊂ R3 without
boundary. We introduce the natural surface gradient, divergence, curl and Laplace
operators, represented in terms of the standard differential operators of the ambient
Euclidean space R3. These representations, which may differ from the (intrinsic) ones
used in differential geometry, are very convenient for the implementation of numerical
methods for surface PDEs. Similar representations for surface differential operators
are also used in e.g., [21, 20, 16, 30, 37]. We introduce suitable surface H( divΓ)
and H( curlΓ) spaces and derive useful properties of these spaces. A main result of
the paper is the derivation of the Helmholtz decomposition (Theorem 4.2), in terms
of these surface differential operators, based on elementary differential calculus. In
particular, we do not use the calculus of differential forms. However, we do point out
the relation between the Helmholtz decomposition and a Hodge decomposition known
from the field of differential forms. As a corollary of this Helmholtz decomposition
we obtain that for a simply connected surface, to every tangential divergence free
velocity field there corresponds a unique scalar stream function. Using this result the
variational form of the Stokes equation can be reformulated as a well-posed varia-
tional formulation of a fourth order equation for the stream function. The latter can
be rewritten as two coupled second order equations, which form the basis for a finite
element discretization.

The remainder of the paper is organized as follows. In Section 2 we introduce sur-
face differential operators and derive useful relations between these operators. Surface
Sobolev spaces, in particular H( divΓ) and H( curlΓ), are introduced in Section 3 and
some basic properties of these spaces are derived. In Section 4 the surface Helmholtz
decomposition is presented and a few corollaries, e.g., a Friedrichs type inequality for
tangential velocity vectors, are treated. Furthermore it is explained how the Helmholtz
decomposition relates to a certain Hodge decomposition. In Section 5, for the case
of a simply connected surface Γ, a class of surface Stokes problems is discussed and
a reformulation in terms of a well-posed problem for the stream function is treated.
Finally, in Section 6 we present results of a numerical experiment for a finite element
discretization of the stream function formulation.

2. Surface differential operators. In this section we introduce surface differ-
ential operators for smooth (C1(Γ)) functions and derive properties for these opera-
tors. We consider a sufficiently smooth closed connected compact surface Γ ⊂ R3. In
this paper we do not try to derive results under minimal smoothness conditions for
the surface Γ. We introduce the following assumption, which is sufficient (but not
necessary) for our analysis.

Assumption 2.1. In the remainder of the paper we assume that Γ is a C2

connected compact oriented hypersurface in R3 without boundary.

There are different ways for introducing tangential and covariant derivatives for scalar,
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vector or matrix valued functions defined on Γ. In differential geometry one uses the
notion of covariant derivative, which is intrinsic for a Riemannian surface, i.e., one
does not use the embedding of a surface in an ambient space [11, 24]. A related
more general concept of derivatives is introduced in exterior calculus via the exterior
derivative of differential forms, cf. [1]. We will comment further on this in Section 4.1.
In this paper we represent differential operators on Γ by making explicit use of the
embedding Eulerian space R3. The motivation for this comes from numerical analysis.
In recent papers on numerical methods for surface PDEs it has been shown that the
formulation of surface PDEs in terms of these differential operators is very convenient
for numerical simulation, e.g., the review paper [13] for scalar surface PDEs and
[21, 36, 37, 29, 30, 38] for surface (Navier-)Stokes equations. In particular in the
setting of surface Stokes equations the ∇Γ, divΓ and curlΓ differential operators
introduced below play a key role. We summarize some basic properties of these
operators and derive a relation ((2.14) below) that relates the surface curlΓ curlΓ
differential operator to surface vector Laplacians, cf. Remark 2.1. The analysis is
elementary, using basic tensor analysis.

The outward pointing unit normal and the signed distance function are denoted
by n and d, respectively. On a sufficiently small neighborhood U of Γ the closest point
projection is given by p(x) = x − d(x)n(x). We also use the orthogonal projection
P(x) = I−n(x)n(x)T , x ∈ Γ. The tangential derivative of a scalar function φ ∈ C1(Γ)
and of a vector function u ∈ C1(Γ)3 are, for x ∈ Γ, defined by

∇Γφ(x) = ∇(φ ◦ p)(x) = P(x)∇φe(x), (2.1)

∇Γu(x) =

(
∂(u ◦ p)(x)

∂x1

∂(u ◦ p)(x)

∂x2

∂(u ◦ p)(x)

∂x2

)
P(x)

= P(x)∇ue(x)P(x), (2.2)

where φe, ue denote some smooth extension of φ and u on the neighborhood U , and

∇ue is the Jacobian, (∇ue)i,j =
∂ue

i

∂xj
, 1 ≤ i, j ≤ 3. In the remainder we delete the

argument x ∈ Γ. If the vector function u is tangential, i.e., n · u = 0 on Γ, then
∇Γu coincides with the covariant derivative. We also need the tangential divergence
operators corresponding to ∇Γ. In analogy to the definitions used for vector and
matrix valued functions in Euclidean space R3 we introduce

divΓu := tr(∇Γu), divΓA :=

 divΓ(eT1 A)
divΓ(eT2 A)
divΓ(eT3 A)

 , A ∈ C1(Γ)3×3, (2.3)

where ei, i = 1, 2, 3, are the standard basis vectors in R3. We recall well-known partial
integration identities. For this we introduce the space of tangential vector functions
Cmt (Γ)3 := {u ∈ Cm(Γ)3 | n · u = 0 on Γ }. The following relations hold:∫

Γ

divΓuφds = −
∫

Γ

u · ∇Γφds for all u ∈ C1
t (Γ)3, φ ∈ C1(Γ), (2.4)∫

Γ

( divΓA) · u ds

= −
∫

Γ

tr(AT∇Γu) ds for all u ∈ C1(Γ)3, A ∈ C1(Γ)3×3 with PAP = A. (2.5)

The relation (2.4) can be found at many places in the literature, e.g. [13]. The result
in (2.5) can easily be derived using a componentwise application of (2.4). Hence the
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∇Γ and divΓ operator have the usual relation ∇Γ = −divTΓ in the sense (2.4), (2.5).
We also need an appropriate surface curl operator. In analogy to the 2D curl operator
curl2D := (∇× u) · e3 it is given by

curlΓu := (∇Γ × ue) · n, u ∈ C1(Γ)3. (2.6)

The following useful identity holds; a proof is given in the Appendix:

curlΓu = divΓ(u× n), u ∈ C1(Γ)3. (2.7)

As adjoint of this surface curl operator we have the vector-curl operator defined by

curlΓφ := n×∇Γφ, φ ∈ C1(Γ). (2.8)

Using (2.4) and the vector product rule a · (b× c) = (c× a) · b we get∫
Γ

curlΓuφds =

∫
Γ

divΓ(u× n)φds = −
∫

Γ

(u× n) · ∇Γφds

= −
∫

Γ

(n×∇Γφ) · u ds = −
∫

Γ

u · curlΓφds.

Hence,∫
Γ

curlΓuφds = −
∫

Γ

u · curlΓφds, for u ∈ C1
t (Γ)3, φ ∈ C1(Γ), (2.9)

and thus indeed curlΓ = − curlTΓ holds.
In the following lemma we collect some relations. The relations (i)-(iii) are ele-

mentary. The result in (iv), however, requires a longer analysis. We comment on the
result (iv) in Remark 2.1

Lemma 2.1. The following relations hold on Γ, for all φ ∈ C2(Γ), u ∈ C2
t (Γ)3,

with K = K(x) the Gauss curvature on Γ:

(i) divΓ( curlΓφ) = 0 (2.10)

(ii) curlΓ(∇Γφ) = 0 (2.11)

(iii) curlΓ( curlΓφ) = divΓ(∇Γφ) = ∆Γφ (2.12)

(iv) curlΓ( curlΓu) = P divΓ(∇Γu−∇ΓuT ) (2.13)

= P divΓ(∇Γu)−∇Γ( divΓu)−Ku. (2.14)

Proof. From the definitions it follows that divΓ( curlΓφ) = divΓ(n × ∇Γφ) =
− curlΓ(∇Γφ). In the Appendix we derive

divΓ(n×∇Γφ) = 0. (2.15)

From this the results in (2.10), (2.11) follow. The result in (2.12) follows from ele-
mentary properties of the vector product:

curlΓ( curlΓφ) = curlΓ(n×∇Γφ) = divΓ((n×∇Γφ)× n) = divΓ(∇Γφ) = ∆Γφ.

The proof of (2.13) requires a longer tedious, but elementary, derivation that is given
in the Appendix. In [22], Lemma 2.1, the identity P divΓ(∇ΓuT ) = ∇Γ( divΓu) +Ku
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is derived. This yields the result (2.14).

Note that in (2.13), (2.14) we use the surface divergence applied to a matrix. As a
simple consequence of (2.13)-(2.14) we formulate the following identity that will be
used in the derivation of the stream formulation of the surface Stokes problem. If
u ∈ C2

t (Γ)3 satisfies divΓu = 0 then the relation

P divΓ

(
∇Γu +∇ΓuT

)
= curlΓ( curlΓu) + 2Ku (2.16)

holds.
Remark 2.1. The relations (2.13), (2.14) are key identities for the reformulation

of Stokes equations in stream function formulation. We are not aware of a rigorous
proof of these relations in the literature. In [29] similar relations for surface curl oper-
ators defined via k-forms are discussed. Note that in our setting we define all surface
differential operators through the Euclidean differential operators in the embedding
space R3 (avoiding k-forms) and the proofs of (2.13), (2.14) are based on elementary
tensor analysis. We briefly discuss how the identities (2.13), (2.14) are related to
well-known ones in Euclidean space R2. If Γ ⊂ R2 the definitions (2.6), (2.8) yield for
u = (u1, u2):

curl2Du =
∂u2

∂x
− ∂u1

∂y
, curl2Dφ =

(
− ∂φ

∂y
,
∂φ

∂x

)T
.

Note that these are the standard curl definitions, apart from a sign change in curl2D.
A basic identity found at many places in the literature ([17]) is the following:

curl2D( curl2Du) = ∆u−∇(div u). (2.17)

Using ∆u = div (∇u), ∇div u = div (∇uT ) this can be rewritten as

curl2D( curl2Du) = div (∇u−∇uT ). (2.18)

We see that the latter relation has exactly the same form as the surface identity (2.13),
whereas in the generalization of (2.17) to its surface variant (2.14) an additional cur-
vature term Ku enters. Finally we note that the relation (2.14) is closely related to
the so-called Weitzenböck identity from differential geometry, cf. (4.11).

We finally recall two Stokes type identities on a connected Lipschitz subdomain
γ ⊂ Γ. The outward pointing unit normal to ∂γ that is tangential to Γ is denoted by
ν. The induced vector tangential to both ∂γ and Γ is denoted by τ := n × ν. The
following Stokes relations hold:∫

γ

divΓu ds =

∫
∂γ

u · ν ds, for u ∈ C1
t (Γ)3, (2.19)∫

γ

curlΓu ds =

∫
∂γ

u · τ ds, for u ∈ C1
t (Γ)3. (2.20)

The identity (2.19) is the fundamental Stokes result (e.g., [13]). The result in (2.20)
easily follows from (2.19) and the vector-product rule also used above:∫
γ

curlΓu ds =

∫
γ

divΓ(u×n) ds =

∫
∂γ

(u×n) ·ν ds =

∫
∂γ

(n×ν) ·u ds =

∫
∂γ

τ ·u ds.
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3. Surface Sobolev spaces. In this section we recall and derive basic properties
of surface Sobolev spaces. We will introduce H( divΓ) and H( curlΓ) spaces and give
some properties of these spaces, which are direct analogons of well-known properties
of these spaces in Euclidean R2 and R3. These properties are useful in the analysis of
the Helmholtz decomposition in section 4.

The Sobolev space of L2(Γ) functions for which all first weak tangential derivatives
are in L2(Γ) can be defined by local charts as in section 4.2 in [46] and is denoted
by H1(Γ). Its dual is denoted by H−1(Γ). Using the smoothness assumption on Γ it
can be shown [Theorem 4.3 in [46]] that the space of smooth functions D := C2(Γ) is

dense in H1(Γ). The space H1(Γ) can also be characterized by H1(Γ) = D‖·‖1 , where
the norm ‖ · ‖1 and corresponding scalar product are given by (φ, ψ)1 := (φ, ψ)L2(Γ) +
(∇Γφ,∇Γψ)L2(Γ) and ‖φ‖21 = (φ, φ)1. The space of smooth vector functions on Γ
which are tangential to the surface (hence, contained in the tangent bundle) is denoted
by

D3
t := {u ∈ D3 | n · u = 0 on Γ }.

We introduce the spaces of vector tangential functions

L2
t (Γ) := {u ∈ L2(Γ)3 | n · u = 0 a.e. on Γ },

H1
t (Γ) := {u ∈ H1(Γ)3 | n · u = 0 a.e. on Γ }.

From the density of D in L2(Γ) and H1(Γ) it follows that D3
t is dense in both L2

t (Γ)

and H1
t . A natural norm on the latter space is ‖u‖21 =

∑3
i=1 ‖ui‖21 = ‖u‖2L2(Γ) +∑3

i=1 ‖∇Γui‖2L2(Γ). Instead of this norm we will use another equivalent one, which is
more convenient in our analysis. We derive this alternative norm. Note that

3∑
i=1

‖∇Γui‖2L2(Γ) ∼ ‖∇uP‖2L2(Γ) =

∫
Γ

‖∇u(s)P(s)‖ ds,

where ‖ · ‖ is the matrix 2-norm ‖A‖ := ρ(ATA)
1
2 . For u that satisfies n · u = 0 on

Γ we get (recall u = ue), with H := ∇Γn = ∇n the symmetric Weingarten mapping,
the relation n · ∇u = −u ·H. Hence,

P∇uP = ∇uP− nn · ∇uP = ∇uP + nu ·HP = ∇uP + nu ·H.

Using ‖H‖L∞(Γ) ≤ c we obtain the norm equivalence

‖u‖21 ∼ ‖u‖2H1 := ‖u‖2L2(Γ) + ‖∇Γu‖2L2(Γ)

= ‖u‖2L2(Γ) +

∫
Γ

‖∇Γu‖2 ds, u ∈ H1
t (Γ),

(3.1)

with ∇Γ the covariant derivative ∇Γu = P∇uP, cf. (2.2). In the remainder we use
this norm ‖ · ‖H1 on H1

t (Γ).
Remark 3.1. In [21] the Poincare inequality

‖u‖2L2(Γ) ≤ c‖∇Γu‖2L2(Γ) for all u ∈ H1
t

is derived. Hence one could delete the part ‖ · ‖2L2(Γ) in the norm ‖ · ‖2H1 , but we will
not do so.
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The operators ∇Γ and curlΓ defined in (2.1), (2.8) are continuously extended to
operators H1(Γ) → L2

t (Γ). The operators divΓ, curlΓ are extended to operators
L2
t (Γ) → H−1(Γ) as adjoints of ∇Γ and curlΓ, respectively, cf. (2.4), (2.9). In

particular we have the following duality pairings:

〈divΓu, φ〉 := −
∫

Γ

u · ∇Γφds for all φ ∈ H1(Γ),u ∈ L2
t (Γ), (3.2)

〈 curlΓu, φ〉 := −
∫

Γ

u · curlΓφds for all φ ∈ H1(Γ),u ∈ L2
t (Γ). (3.3)

Due to the density of smooth functions in H1
t (Γ) the identities in (2.4), (2.5), (2.9),

(2.19) and (2.20) also hold with C1(Γ) and C1
t (Γ)3 replaced by the surface Sobolev

spaces H1(Γ) and H1
t (Γ). The right hand side boundary integrals in (2.19) and (2.20)

are then defined via the well-defined trace operator in H1(Γ).
We introduce the spaces

H( divΓ) = {u ∈ L2
t (Γ) | divΓu ∈ L2(Γ) }, ‖u‖2H( divΓ) = ‖u‖2L2(Γ) + ‖ divΓu‖2L2(Γ),

H( curlΓ) = {u ∈ L2
t (Γ) | curlΓu ∈ L2(Γ) }, ‖u‖2H( curlΓ) = ‖u‖2L2(Γ) + ‖ curlΓu‖2L2(Γ),

X(Γ) = H( divΓ) ∩H( curlΓ), ‖u‖2X = ‖u‖2L2(Γ) + ‖divΓu‖2L2(Γ) + ‖ curlΓu‖2L2(Γ).

These spaces are Hilbert spaces. We will need density of smooth functions in X(Γ).
For this we derive the following Lemma, cf. Theorems 2.4 and 2.10 in [17] for the
Euclidean variant of these results. The proof given below is along the same lines as
the proofs for the Euclidean case given in [17].

Lemma 3.1. The space D3
t is dense in H( divΓ), H( curlΓ) and X(Γ).

Proof. The proof is based on the following elementary result:

A subspace M0 of a Banach space M is dense in M iff

every element of M ′ that vanishes on M0 also vanishes on M.
(3.4)

We first consider M = H( divΓ). We apply (3.4) with M0 = D3
t . Take L ∈ H( divΓ)′

with Lv = 0 for all v ∈ D3
t . There exists a unique ` ∈ H( divΓ) such that

(`,v)L2(Γ) + ( divΓ`, divΓv)L2(Γ) = Lv for all v ∈ H( divΓ). (3.5)

From Lv = 0 for all v ∈ D3
t it follows that

(`,v)L2(Γ) = −( divΓ`, divΓv)L2(Γ) for all v ∈ D3
t . (3.6)

Define D̂ := C3(Γ) and note that D̂ is dense in H2(Γ) (Theorem 4.3 in [46]). Take
arbitrary φ ∈ D̂ and v := ∇Γφ ∈ D3

t in (3.6). We then get

(`,∇Γφ)L2(Γ) = −( divΓ`,∆Γφ)L2(Γ) for all φ ∈ D̂.

Using ` ∈ H( divΓ) and (3.2) it follows that

( divΓ`, φ−∆Γφ)L2(Γ) = 0 for all φ ∈ D̂.

Let (wn)n∈N ⊂ H2(Γ) be the eigensystem of the Laplace-Beltrami operator ∆Γ, with
eigenvalues λn ≥ 0 such that −∆Γwn = λnwn. Using the density of D̂ in H2(Γ) it
follows that

( divΓ`, wn −∆Γwn)L2(Γ) = (1 + λn)( divΓ`, wn)L2(Γ) = 0 for all n ∈ N.
7



From the density of (wn)n∈N in L2(Γ) it follows that divΓ` = 0 a.e. on Γ. Using this
in (3.6) we obtain (`,v)L2(Γ) = 0 for all v ∈ D3

t and due to the density of D3
t in L2

t (Γ)
this implies ` = 0 a.e. on Γ. Hence L vanishes on H( divΓ). This proves the density
of D3

t in H( divΓ). With very similar arguments the density of D3
t in H( curlΓ) can

be shown. In that case we have ` ∈ H( curlΓ) such that

(`,v)L2(Γ) + ( curlΓ`, curlΓv)L2(Γ) = Lv for all v ∈ H( curlΓ), (3.7)

and

(`,v)L2(Γ) = −( curlΓ`, curlΓv)L2(Γ) for all v ∈ D3
t . (3.8)

For φ ∈ D̂ we now take v := curlΓφ ∈ D3
t , and using (2.12) we then get

(`, curlΓφ)L2(Γ) = −( curlΓ`,∆Γφ)L2(Γ) for all φ ∈ D̂.

With the same arguments as above we can conclude curlΓ` = 0 a.e. on Γ and with
(3.8) we get ` = 0 a.e. on Γ. Hence, L vanishes on H( curlΓ).

The density of D3
t in the intersection X(Γ) can also be shown by using (3.4) as

follows. Take L ∈ X(Γ)′ with Lv = 0 for all v ∈ D3
t . There exists a unique ` ∈ X(Γ)

such that Lv = (`,v)X for all v ∈ X(Γ) and

(`,v)L2(Γ) = −( divΓ`, divΓv)L2(Γ) − ( curlΓ`, curlΓv)L2(Γ) for all v ∈ D3
t . (3.9)

Take φ ∈ D̂ and v := ∇Γφ ∈ D3
t , hence curlΓv = 0. We then get (`,∇Γφ)L2(Γ) =

−( divΓ`,∆Γφ)L2(Γ) and with the arguments used above we conclude divΓ` = 0
a.e. on Γ. We can also take v := curlΓφ ∈ D3

t , hence divΓv = 0. We then get
(`, curlΓφ)L2(Γ) = −( curlΓ`,∆Γφ)L2(Γ) and from this we obtain curlΓ` = 0 a.e. on
Γ. Using divΓ` = 0 and curlΓ` = 0 a.e. on Γ in (3.9) we obtain (`,v)L2(Γ) = 0 for all
v ∈ D3

t and with a density argument we conclude ` = 0, hence L vanishes on X(Γ).

We now show that the spaces X(Γ) and H1
t (Γ) are isomorphic.

Theorem 3.2. There are constants c1, c2 such that

‖u‖X ≤ c1‖u‖H1 ≤ c2‖u‖X for all u ∈ X(Γ) (3.10)

holds. Hence X(Γ) w H1
t (Γ) holds.

Proof. The first estimate in (3.10) follows directly from the definition of the
spaces. It suffices to prove the second inequality for the dense subspace D3

t . Take
u ∈ D3

t . Using (2.4), (2.5), (2.9) and (2.14) we get∫
Γ

divΓu divΓu ds+

∫
Γ

curlΓu curlΓu ds (3.11)

= −
∫

Γ

[
∇Γ( divΓu) + curlΓ( curlΓu)

]
· u ds

= −
∫

Γ

[
P divΓ(∇Γu)−Ku

]
· u ds

=

∫
Γ

tr
(
(∇Γu)T∇Γu

)
+Ku · u ds. (3.12)

Using this one gets ‖u‖2H1 ≤ c(‖u‖2L2(Γ) + ‖divΓu‖2L2(Γ) + ‖ curlΓu‖2L2(Γ)) and thus

the second estimate in (3.10).
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Remark 3.2. The result in Theorem 3.2 is a surface analogon of the result in
Lemma 2.5 in [17]. In the latter the property H1

0 (Ω)N w H0(div ; Ω) ∩ H0(curl; Ω)
for a bounded Lipschitz domain Ω ⊂ RN is derived.

4. Helmholtz decomposition. In this section we derive a surface Helmholtz
decomposition which states that every u ∈ Lt(Γ) can be uniquely decomposed as the
sum of the tangential gradient of a scalar potential, the vector surface curl of a stream
function and a tangential harmonic field. We will show that if Γ is simply connected
the harmonic field term in the decomposition must be zero. The analysis is based on
elementary differential calculus and functional analysis. Concerning the latter, the
main ingredients that we use are the Peetre-Tartar and Lax-Milgram lemmas.

We define the space of harmonic fields:

H = { u ∈ L2
t (Γ) | divΓu = 0 and curlΓu = 0 }, (4.1)

This is a closed subspace of L2
t (Γ). Furthermore, H ⊂ X(Γ) holds.

Lemma 4.1. The space of harmonic fields has finite dimension: dim(H) <∞.
Proof. We apply a version of the Peetre-Tartar Lemma [42], which we briefly

recall. Let E1, E2, E3 be Banach spaces, A : E1 → E2 linear and bounded, and
B : E1 → E3 linear, bounded and compact. Furthermore ‖v‖E1 w ‖Av‖E2 + ‖Bv‖E3

for all v ∈ E1. Then kerA is finite dimensional. We apply this with E1 = X(Γ), E2 =
L2(Γ)2, E3 = L2(Γ)3, Au = ( curlΓu, divΓu)T , B = id. From the compactness of the
embedding H1(Γ) ↪→ L2(Γ) (Theorem 7.10 in [46]) it follows that id : X(Γ)→ L2(Γ)3

is compact. From the definitions of the norms we get ‖u‖2X = ‖Au‖2L2(Γ) + ‖u‖2L2(Γ).
Application of the Peetre-Tartar Lemma yields the desired result.

Theorem 4.2 (Surface Helmholtz decomposition). For every u ∈ L2
t (Γ) there

exist unique ψ, φ ∈ H1
∗ (Γ) := {φ ∈ H1(Γ) |

∫
Γ
φds = 0 } and ξ ∈ H such that

u = ∇Γψ + curlΓφ+ ξ. (4.2)

The range spaces ∇Γ(H1
∗ (Γ)) and curlΓ(H1

∗ (Γ)) are closed in L2
t (Γ) and the direct

sum

L2
t (Γ) = ∇Γ(H1

∗ (Γ))⊕ curlΓ(H1
∗ (Γ))⊕H (4.3)

is L2-orthogonal.
Proof. Take u ∈ L2

t (Γ). Define b(ψ, ξ) :=
∫

Γ
∇Γψ · ∇Γξ ds. This bilinear form is

continuous and elliptic on H1
∗ (Γ). Hence, there exists a (unique) ψ∗ ∈ H1

∗ (Γ) such
that

b(ψ∗, ξ) =

∫
Γ

u · ∇Γξ ds for all ξ ∈ H1
∗ (Γ).

Define w := u − ∇Γψ
∗ ∈ L2

t (Γ). By construction we have divΓw = 0 in H−1(Γ),
hence w ∈ H( divΓ).

Define b̃(φ, ξ) :=
∫

Γ
curlΓφ · curlΓξ ds. Using (2.12) it follows that b̃(φ, ξ) =

b(φ, ξ) for all φ, ξ ∈ H1(Γ) and thus also b̃(·, ·) is continuous and elliptic on H1
∗ (Γ).

There exists a (unique) φ∗ ∈ H1
∗ (Γ) such that

b̃(φ∗, ξ) =

∫
Γ

w · curlΓξ ds for all ξ ∈ H1
∗ (Γ).
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By construction we have curlΓ(w − curlΓφ
∗) = 0 in H−1(Γ), hence w − curlΓφ

∗ ∈
H( curlΓ). Note that

〈divΓ curlΓφ, ξ〉 = −
∫

Γ

curlΓφ · ∇Γξ ds = 0 for all φ, ξ ∈ H1(Γ). (4.4)

Define ξ := u − ∇Γψ
∗ − curlΓφ

∗ = w − curlΓφ
∗. Using (4.4) we obtain divΓξ =

divΓw = 0 in H−1(Γ). We also have curlΓξ = 0 in H−1(Γ). Thus ξ ∈ H.
Hence we have a representation of u as in (4.2). From the Poincare inequality
‖ψ‖1 ≤ c‖∇Γψ‖L2(Γ) for all ψ ∈ H1

∗ (Γ) is follows that the range space ∇Γ(H1
∗ (Γ))

is closed in L2
t (Γ) and that ∇Γ : H1

∗ (Γ) → L2
t (Γ) is injective. From this and

‖ curlΓφ‖L2(Γ) = ‖∇Γφ‖L2(Γ) is follows that the range space curlΓ(H1
∗ (Γ)) is closed

in L2
t (Γ) and that curlΓ : H1

∗ (Γ) → L2
t (Γ) is injective. The orthogonality of the

decomposition in (4.3) easily follows from (4.4). The uniqueness of ψ, φ and ξ in (4.2)
follows from the orthogonality property and the injectivity of ∇Γ and curlΓ.

For the formulation of the Stokes problem in rotation formulation, treated in sec-
tion 5, it is essential that there are no nontrivial harmonic fields, i.e., dim(H) = 0.
This result holds provided the surface Γ is simply connected and can be derived using
elementary calculus. This derivation is given in Lemma 4.3 below. If Γ is not simply
connected but has a genus > 1, then dim(H) > 0 and dim(H) can be directly related
to the genus, cf. Remark 4.2.

Lemma 4.3. Assume that Γ is simply connected. Then dim(H) = 0 holds.
Proof. Take u ∈ H. Hence u ∈ L2

t (Γ), divΓu = 0, curlΓu = 0. This implies
u ∈ X(Γ) and due to (3.10) we get u ∈ H1

t (Γ). From elliptic regularity theory as in e.g.
[28] it follows that, provided Γ is sufficiently smooth, we have u ∈ C(Γ)3. To make this
more precise we note the following. We have u ∈ H iff D(u) := ( divΓu, divΓu)L2(Γ) +
( curlΓu, curlΓu)L2(Γ) = 0. This Dirichlet integral D(u) corresponds to the Hodge
Laplacian, cf. (4.10) below, which is an elliptic operator. This ellipticity can also be
concluded from the relation (3.12). From elliptic regularity theory, e.g., the result (vi)
on page 296 in [28], it follows that if Γ has Hölder smoothness Ckµ (k ∈ N, 0 < µ ≤ 1)

then the harmonic fields u ∈ H have Hölder smoothness u ∈ Ck−1
µ (componentwise).

Using assumption 2.1 we conclude that u ∈ C(Γ)3.
For a (piecewise) regular parametrized differentiable curve (cf. [11]) α : [a, b] ⊂

R→ Γ we denote the line integral of a function f : im(α)→ R by∫
α

f ds :=

∫ b

a

f(α(t))‖α′(t)‖ dt.

A parametrized curve g(t) on Γ is called a geodesic if the covariant derivative of the
vector field g′(t) along im(g) equals zero. The latter property is equivalent to the
condition that g′′(t) is orthogonal to Γ. We take an arbitrary fixed point x0 on Γ.
From the Hopf-Rinow theorem (cf. [11]) it follows that for all x ∈ Γ, x 6= x0, there
exists a minimal (i.e., length minimizing) geodesic, which is denoted by gx(t). This
gx may be non-unique. For the given u ∈ H (note that u ∈ C(Γ)3) we define

ψ(x) :=

∫
gx

u · g′x
‖g′x‖

ds for x ∈ Γ, x 6= x0, ψ(x0) := 0. (4.5)

We now show that this definition of ψ does not depend on the particular choice of
gx. A generic situation with two different minimal geodesics gx and g̃x is sketched in
Fig. 4.1.
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a

Fig. 4.1: Multiple minimal geodesics (left). Tangential derivative (right).

Due to the essential assumption that Γ is simply connected, the domain γ enclosed
by the curves gA and g̃A is contained in Γ. Using the same notation τ = n×ν for the

(oriented) tangential vector on ∂γ as in (2.20) we have
g′A
‖g′A‖

= ±τ , where the sign

depends on the orientation of Γ. Without loss of generality we can assume the “+”

sign. We then also have
g̃′A
‖g̃′A‖

= −τ on im(g̃A). Using this and∫
∂γ

u · τ ds =

∫
γ

curlΓu ds = 0

we get ∫
gA

u · g′A
‖g′A‖

ds =

∫
g̃A

u · g̃′A
‖g̃′A‖

ds.

The same argument can be applied for the minimal geodesics connecting A and x,
cf. Fig. 4.1. Hence, the definition of ψ in (4.5) does not depend on the choice of the
minimal geodesic gx.

We now consider the tangential derivative of ψ at x ∈ Γ. We assume x 6= x0.
Let gx be a minimal geodesic connecting x0 and x, and t1 the parameter value such
that gx(t1) = x. Define w := g′x(t1). Take a ∈ TxΓ (tangential plane at x), a 6= 0.
We assume that a and w are linearly independent, cf. Fig. 4.1. Let α be the unique
geodesic with α(0) = x, α′(0) = a, cf., e.g., Chapter 7 in [45]. For ε > 0 sufficiently
small the geodesics gx and gα(ε) do not intersect. Using (2.20), curlΓu = 0 and γ̃ ⊂ Γ
(cf. Fig. 4.1 for notation) we have

∫
∂γ̃

u · τ ds = 0 and thus we get

∇Γψ(x) · a = lim
ε↓0

ψ(α(ε))− ψ(x)

ε

= lim
ε↓0

1

ε

[ ∫
g(α(ε))

u ·
g′α(ε)

‖g′α(ε)‖
ds−

∫
gx

u · g′x
‖g′x‖

ds
]

= lim
ε↓0

1

ε

∫
α(ε)

u · α′

‖α′‖
ds = lim

ε↓0

1

ε

∫ ε

0

u(α(t)) · α′(t) dt = u(x) · a.

Hence ∇Γψ(x) · a = u(x) · a if a and w are not linearly dependent. With very
similar arguments one can show that the same identity holds if a and w are linearly
dependent. We conclude that ∇Γψ(x) = u(x) for all x 6= x0. One may check that the
arguments above also apply for x = x0 (i.e., ψ(x) = 0). Hence, ∇Γψ = u on Γ.
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From divΓu = 0 we then obtain ∆Γψ = 0 on Γ. Hence, ψ must be a constant on
Γ. Consequently ∇Γψ = u = 0 on Γ, which completes the proof.

We finally formulate two corollaries.
Corollary 4.4. Let Γ be simply connected. For the operators curlΓ, divΓ :

L2
t (Γ)→ H−1(Γ) and curlΓ, ∇Γ : H1(Γ)→ L2

t (Γ) the following holds:

ker( divΓ) = im( curlΓ), (4.6)

ker( curlΓ) = im(∇Γ). (4.7)

Proof. We consider (4.6). Take u ∈ L2
t (Γ) and its Helmholtz decomposition

u = ∇Γψ + curlΓφ, with unique ψ, φ ∈ H1
∗ (Γ). Now note (cf. (4.4))

divΓu = 0 ⇔ (u,∇Γξ)L2(Γ) = 0 for all ξ ∈ H1(Γ)

⇔ (∇Γψ + curlΓφ,∇Γξ)L2(Γ) = 0 for all ξ ∈ H1(Γ)

⇔ (∇Γψ,∇Γξ)L2(Γ) = 0 for all ξ ∈ H1(Γ)

⇔ ψ = 0

⇔ u ∈ im( curlΓ).

The result in (4.7) follows with similar arguments or by noting that curlΓ, ∇Γ are
(minus) the adjoints of curlΓ and divΓ, respectively.

Corollary 4.5 (Friedrichs inequality). Assume that Γ is simply connected.
There exists a constant c such that

‖u‖2H1 ≤ c
(
‖ divΓu‖2L2(Γ) + ‖ curlΓu‖2L2(Γ)

)
for all u ∈ H1

t (Γ).

Proof. We use the Helmholtz decomposition as in (4.2) with ξ = 0, i.e, u =
∇Γψ + curlΓφ and ‖u‖2L2(Γ) = ‖∇Γψ‖2L2(Γ) + ‖ curlΓφ‖2L2(Γ). Using this, the result

(4.7) and the Friedrichs inequality in H1
∗ (Γ) we get

‖∇Γψ‖2L2(Γ) =

∫
Γ

u · ∇Γψ ds−
∫

Γ

curlΓφ · ∇Γψ ds = −
∫

Γ

divΓuψ ds

≤ ‖divΓu‖L2(Γ)‖ψ‖L2(Γ) ≤ c‖ divΓu‖L2(Γ)‖∇Γψ‖L2(Γ).

Hence, ‖∇Γψ‖L2(Γ) ≤ c‖ divΓu‖L2(Γ) holds. With similar arguments one obtains
‖ curlΓφ‖L2(Γ) ≤ c‖ curlΓu‖L2(Γ). Thus we get

‖u‖L2(Γ) ≤ c
(
‖ divΓu‖L2(Γ) + ‖ curlΓu‖L2(Γ)

)
,

and combining this with the upper bound in (3.10) yields the result.
Remark 4.1. We relate some of the results derived in this section to well-

known fundamental results for the Euclidean case, i.e., for a bounded Lipschitz domain
Ω ⊂ RN . If Γ is simply connected then the Helmholtz decomposition (4.2) (with
ξ = 0) implies the following: a function u ∈ L2

t (Γ) satisfies curlΓu = 0 on Γ iff there
exists a unique ψ ∈ H1

∗ (Γ) such that u = ∇Γψ. This is the analogon of the result in
[17] Theorem 2.9. From Corollary 4.4 we obtain:

L2
t (Γ) = ker( divΓ)⊕ ker( divΓ)⊥ = ker( divΓ)⊕ im(∇Γ) = ker( divΓ)⊕ ker( curlΓ),
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which is the analogon of L2(Ω)N = H ⊕ H⊥ (page 29 in [17]) and Corollary 2.9 in
[17]. The Euclidean variant of the Friedrichs inequality in Corollary 4.5 is discussed
in Remark 3.5 in [17]. In Theorem 3.1 [17] the following fundamental result is derived
(where Γi, 0 ≤ i ≤ p, are the boundary components of the possibly multiply connected
domain Ω ⊂ R2): a function v ∈ L2(Ω)2 satisfies [ div v = 0 and 〈v · n〉Γi

= 0, 0 ≤
i ≤ p ] iff [ there exists a stream function φ ∈ H1(Ω) such that v = curlφ ]. An anal-
ogous result in our setting follows from the Helmoltz decomposition in Theorem 4.2:
[ divΓu = 0 and u ⊥ H ] iff [ there exists a stream function φ ∈ H1

∗ (Γ) such that
u = curlΓφ ]. Note that in case of a simply connected domain Ω (i.e., p = 0) and a
simply connected Gamma the condition 〈v · n〉Γ0

= 0 follows from div v = 0 (and
thus can be deleted) and u ⊥ H is automatically satisfied due to H = {0}. Finally
we note that different versions of the Helmholtz decomposition (in Euclidean space)
exist. One version is given in Theorem 3.2 in [17]. This version and a comparison
with various variants is given in [10]. The surface Helmholtz decompostion in Theo-
rem 4.2 is the analogon of the following Euclidean version given in Theorem 13 in [10]:
L2(Ω)2 = X0⊕W0⊕R, with X0 = {∇ψ | ψ ∈ H1

0 (Ω) }, W0 = { curlφ | φ ∈ H1
0 (Ω) }

and R = {v ∈ L2(Ω)2 | div v = 0 and curl v = 0 }.

4.1. Relation to Hodge decomposition. As is known from the literature,
the Helmholtz decomposition can be seen as a special case of the much more general
Hodge decomposition, which is derived in the framework of differential forms. In this
section we derive and discuss some relevant relations between the surface differential
operators and the Helmholtz decomposition introduced above and analogous notions
and results known in the field of differential forms. The discussion on this topic is not
essential for the results derived in Sections 5-6.

We make use of the exposition given in the Appendix of [9]. The presentation in
this reference is very useful for us, because it emphasizes relevant relations between
operators from differential geometry and the surface differential operators introduced
above. We only outline a few results that are relevant for the discussion here. In
particular we give results for the case of a 2-dimensional surface without boundary
embedded in R3. We use the notation from [9] (Appendix, Sect. 6.2). For precise
definitions and more detailed explanations we refer to [9]. The tangent and cotangent
bundles are denoted by TΓ = ∪x∈ΓTxΓ and T ∗Γ = ∪x∈ΓT

∗
xΓ. In the domain of

a local coordinate system (x1, x2) (corresponding to a local parametrization) basis
vectors of the tangent space TxΓ at x ∈ Γ are denoted by (∂x1)x, (∂x

2)x and the
associated dual basis of T ∗xΓ is denoted by (dx1)x, (dx

2)x. The metric is defined by
the Euclidean scalar product in R3, i.e., the first fundamental form g : Γ→ T ∗Γ×T ∗Γ
is gx(v,w) = 〈v,w〉, for x ∈ Γ, v,w ∈ TxΓ and 〈·, ·〉 the Euclidean scalar product
in R3. The operator representation of the bilinear form gx(·, ·) is denoted by Gx,
i.e., Gx : TxΓ → T ∗xΓ is defined by Gx(v)(w) = gx(v,w) = 〈v,w〉. For the 1-form
Gx(v) ∈ T ∗xΓ the notation ωv is used (note that the dependence on x is dropped in

the notation). The area 2-form associated to g is given by vg := ±dx1 ∧ dx2|det g| 12
(sign depending on the orientation of Γ). Functions on Γ are called 0-forms. On the
spaces of 0- and 1-forms we introduce the scalar products

(f, h) =

∫
Γ

fh dΓ f, h ∈ L2(Γ), (ω, η) =

∫
Γ

ωx(G−1
x ηx) dΓ ω, η ∈ T ∗Γ,

where dΓ is the surface measure induced by g. An analogous scalar product is used
on the space of 2-forms. The space L2

r(Γ) (r = 0, 1, 2) is the closure of the space of
smooth differential r-forms (note that L2

0(Γ) = L2(Γ)). The Hodge transformation,
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denoted by ∗, maps r-forms to (2 − r)-forms (r = 0, 1, 2) and is an isometry ∗ :
L2
r(Γ) → L2

2−r(Γ). Note that ∗vg = 1, ∗1 = vg. The exterior derivative, which maps
an r-form to an (r + 1)-form (r = 0, 1) is denoted by d. For a smooth function f (in

the local coordinate system (x1, x2)) we have df =
∑2
i=1

∂f
∂xi dx

i and for a 1-form ω =∑2
i=1 ωidx

i, with coefficient functions ωi, we have dω =
∑2
i,j=1

∂ωi

∂xi dx
i ∧ dxj . For an

r-form ω (r = 1, 2) the codifferential δω is an (r−1)-form defined by δω = −∗d astω.
The operator δ is the adjoint of d:

(df, α) = (f, δα) for 0-forms f , 1-forms α. (4.8)

There are basic relations between d, δ (applied to differential forms) and the differ-
ential operators defined in section 2, which we now discuss. For a smooth function f
we define ∇Γf := G−1df ; one easily checks that ∇Γf is the same as the tangential
gradient defined in (2.1). Further canonical definitions are (with a tangential vector
field u ∈ TΓ):

divΓu := −δωu, curlΓu := ∗dωu, curlΓf := −G−1δ(fvg). (4.9)

From this one can derive the relations (cf. [9]):

dωu = ( curlΓu)vg, δ(fvg) = −ω curlΓf .

For the divΓ operator defined in (4.9) we obtain, using (4.8), for arbitrary (smooth)
functions f :∫

Γ

divΓu f dΓ = −(δωu, f) = −(ωu, df) = −
∫

Γ

ωu(G−1df) dΓ

= −
∫

Γ

ωu(∇Γf) dΓ = −
∫

Γ

〈u,∇Γf〉 dΓ,

and comparing this with (2.4) it follows that this operator divΓ is the same as the one
defined in (2.3) (namely minus the adjoint of ∇Γ). With similar basic arguments (cf.
[9]) one can derive for the curlΓ and curlΓ operators defined in (4.9) the relations

curlΓu = divΓ(u× n), curlΓf = n×∇Γf,

hence these operators are the same as the ones defined in (2.7), (2.8). The Hodge
Laplacian is defined by ∆H := −(dδ + δd) and maps r-forms to r-forms (r = 0, 1, 2).
For r = 0 we have

∆Hf = −δdf = −δ(G∇Γf) = −δ(ω∇Γf ) = divΓ∇Γf = ∆Γf.

Application to a 1-form yields:

∆Hωu = −(dδ + δd)ωu = d( divΓu)− δ( curlΓu vg)

= G(∇Γ divΓu) + ω curlΓ curlΓu) = G
(
(∇Γ divΓ + curlΓ curlΓ)u

)
.

Hence, the corresponding Hodge Laplacian for vector fields is given by

∆̃H := G−1∆HG = ∇Γ divΓ + curlΓ curlΓ. (4.10)

From (2.14) we obtain the identity

∆̃Hu = P divΓ(∇Γu)−Ku = ∆Bu−Ku, (4.11)
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where ∆B := P divΓ∇Γ is the so-called Bochner Laplacian. The relation (4.11) cor-
responds to the so-called Weitzenböck identity in differential geometry, which relates
the Bochner Laplacian to the Hodge Laplacian. Note that in the definition of the
Bochner Laplacian the divergence operator divΓ applied to a matrix valued function
as defined in (2.3) is used, which has no natural analogon in the setting of differential
forms.

We summarize the Hodge decomposition for the special case of r-forms on a the
two-dimensional surface Γ and then relate it to the Helmholtz decomposition derived
in Theorem 4.2. Define

H(d,Γ) := { f ∈ L2
0(Γ) | df ∈ L2

1(Γ) }
H(δ,Γ) := { v ∈ L2

2(Γ) | δv ∈ L2
1(Γ) }

H1(Γ) := {ω ∈ H1
1 (Γ) | dω = 0 and δω = 0 } (4.12)

(where H1
1 (Γ) is a Sobolev space of 1-forms). The space H1(Γ) in (4.12) is called the

space of 1-harmonics. The Hodge decomposition is described in the following theorem
(theorems 12, 13 in Appendix of [9]).

Theorem 4.6. The spaces im d := dH(d,Γ) and im δ := δH(δ,Γ) are closed sub-
spaces of L2

1(Γ), dim(H1(Γ)) <∞ holds, and there is an L2-orthogonal decomposition

L2
1(Γ) = im d⊕ im δ ⊕H1(Γ). (4.13)

For ω ∈ L2
1(Γ) consider a decomposition

ω = df + δv + α,with f ∈ H(d,Γ), v ∈ H(δ,Γ), α ∈ H1(Γ). (4.14)

Then α is uniquely determined, but f and v are in general not unique. For f and v
one can take f = δω0, v = dω0, where ω0 is the unique solution of the variational
formulation of the elliptic problem −∆Hω0 = ω − α in the Sobolev space V1 := {ω ∈
H1

1 (Γ) | ω is L2-orthogonal to H1(Γ) }.
The decomposition in (4.13) can be directly related to the Helmholtz decomposi-

tion in (4.3). Take a decomposition of u ∈ L2
t (Γ) as in (4.2) and note that

u = ∇Γψ + curlΓφ+ ξ iff ωu = G∇Γψ +G curlΓφ+Gξ

iff ωu = dψ − δ(φvg) + ωξ,

and [ divΓξ = 0 and curlΓξ = 0] iff [δωξ = 0 and dωξ]. This shows the correspondence

of the decompositions. Note that in (4.2) we have uniqueness of the functions ψ, φ,
which in general does not hold in (4.14).

In the setting of differential forms an important result concerning dim(H1(Γ)) can
be derived. For this we recall the definition of the first de Rham cohomology group. A
1-form ω is called closed if dω = 0 and it is called exact if ω ∈ im d. The first de Rham
cohomology group H1

dR(Γ) consists of the set of (smooth) closed 1-forms modulo the
exact ones. From the Hodge decomposition it easily follows that H1

dR(Γ) ∼= H1(Γ).
The dimension of the first de Rham cohomology group is called the first Betti number
b1(Γ) := dim(H1

dR(Γ)). Extensive analysis and results for the de Rham cohomology
are available, cf. e.g. [6, 25]. For example, H1

dR(Γ) and thus also b1(Γ) are homotopy
invariant.

Remark 4.2. The Betti number depends only on the topology of the surface.
For arbitrary connected closed orientable surfaces Γ the value of the corresponding
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first Betti number b1(Γ) is known. An interesting relation is (for two-dimensional
connected closed orientable surfaces) b1(Γ) = 2 − χΓ = 2g, where χΓ is the Euler
characteristic and g the genus of Γ. The classification theorem of such surfaces, cf.
e.g. [15], yields that Γ is homeomorphic to either a sphere or an n-torus (connected
sum of n tori, having n holes). If Γ is simply connected, e.g. a sphere, then b1(Γ) = 0
holds (which also follows from Lemma 4.3). If Γ is the n-torus then b1(Γ) = 2n.

5. Surface Stokes problem in stream function formulation. In this section
we consider a stationary surface Stokes problem. This problem will be reformulated
in an equivalent stream function formulation. Well-posedness of the latter formula-
tion will be discussed. As already noted above, cf. (4.11), different surface vector
Laplacians are used in the literature. For the Stokes problem studied in this paper we
use a Laplacian that is motivated by the modeling of surface fluids, studied in e.g.,
[19, 5, 23, 22, 27]. In these models the following surface rate-of-strain tensor [19] is
used:

Es(u) :=
1

2
P(∇u +∇uT )P =

1

2
(∇Γu +∇ΓuT ). (5.1)

For a given force vector f ∈ L2(Γ)3, with f · n = 0 we consider the surface Stokes
problem: Find the fluid velocity tangential vector field u : Γ → R3, with u · n = 0,
and the surface fluid pressure p such that

−P divΓ(Es(u)) +∇Γp = f on Γ, (5.2)

divΓu = 0 on Γ. (5.3)

From problem (5.2)-(5.3) one readily observes the following: the pressure field is
defined up a hydrostatic mode and all tangentially rigid surface fluid motions, i.e.
satisfying Es(u) = 0, are in the kernel of the differential operators on the left hand
side of eq. (5.2). Integration by parts implies a consistency condition for the right
hand side of eq. (5.2):∫

Γ

f · v ds = 0 for all smooth tangential vector fields v s.t. Es(v) = 0. (5.4)

This condition is necessary for the well-posedness of problem (5.2)-(5.3). In the lit-
erature a tangential vector field v defined on a surface and satisfying Es(v) = 0 is
known as a Killing vector field [39]. For a smooth two-dimensional Riemannian man-
ifold, Killing vector fields form a Lie algebra of dimension at most 3. The subspace
of all the Killing vector fields on Γ plays an important role in the analysis of problem
(5.2)-(5.3).

For the weak formulation of problem (5.2)-(5.3), we use the spaces H1
t (Γ) and

L2
0(Γ) := { p ∈ L2(Γ) |

∫
Γ
p ds = 0 }. We also define the space of Killing vector fields

E := {u ∈ H1
t (Γ) | Es(u) = 0 }. (5.5)

Note that E is a closed subspace of H1
t (Γ) and dim(E) ≤ 3.

Consider the bilinear forms (with A : B = tr
(
ABT

)
for A,B ∈ R3×3)

a(u,v) :=

∫
Γ

Es(u) : Es(v) ds, u,v ∈ H1
t (Γ), (5.6)

b(v, p) := −
∫

Γ

p divΓv ds, v ∈ H1
t (Γ), p ∈ L2(Γ). (5.7)
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The weak (variational) formulation of the surface Stokes problem (5.2)-(5.3) reads:
Determine (u, p) ∈ H1

t (Γ)/E × L2
0(Γ) such that

a(u,v) + b(v, p) = (f ,v)L2(Γ) for all v ∈ H1
t (Γ)/E,

b(u, q) = 0 for all q ∈ L2(Γ).
(5.8)

The following surface Korn inequality and inf-sup property were derived in [22].
Lemma 5.1. Assume Γ is C2 smooth and compact. There exist cK > 0 and

c0 > 0 such that

‖Es(v)‖L2(Γ) ≥ cK‖v‖1 for all v ∈ H1
t (Γ)/E, (5.9)

and

sup
v∈H1

t (Γ)/E

b(v, p)

‖v‖1
≥ c0‖p‖L2(Γ) for all p ∈ L2

0(Γ). (5.10)

Both bilinear forms a(·, ·) and b(·, ·) are also continuous. Therefore problem (5.8)
is well-posed, and its unique solution is further denoted by {u∗, p∗}.

We now introduce a stream function formulation. For this we need the following
key assumption.

Assumption 5.1. In the remainder we assume that Γ is simply connected.

Lemma 5.2. The following relation holds for all φ, ψ ∈ H2(Γ):

a( curlΓφ, curlΓψ) =

∫
Γ

Es( curlΓφ) : Es( curlΓψ) ds

=

∫
Γ

1

2
∆Γφ∆Γψ −K∇Γφ · ∇Γψ ds =: ã(φ, ψ).

(5.11)

Proof. Since smooth functions are dense in H2(Γ) it suffices to prove the relation
for smooth functions φ, ψ. Using partial integration and the identities in (2.5), (2.16),
(2.12) we obtain∫

Γ

Es( curlΓφ) : Es( curlΓψ) ds

=

∫
Γ

tr
(
Es( curlΓφ)(∇Γ curlΓψ)

)
ds = −

∫
Γ

P divΓ

(
Es( curlΓφ)

)
· curlΓψ ds

= −1

2

∫
Γ

[
curlΓ( curlΓ( curlΓφ)) + 2K curlΓφ

]
· curlΓψ ds

=
1

2

∫
Γ

( curlΓ curlΓφ)( curlΓ curlΓψ)− 2K curlΓφ · curlΓψ ds

=

∫
Γ

1

2
∆Γφ∆Γψ −K∇Γφ · ∇Γψ ds,

which proves the desired result.

We introduce some further notation for stream function spaces:

H2
∗ (Γ) := H2(Γ) ∩H1

∗ (Γ), Ẽ := {ψ ∈ H2
∗ (Γ) | ã(ψ,ψ) = 0 }

H1
t,div := {u ∈ H1

t (Γ) | divΓu = 0 }.
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Lemma 5.3. The following holds:

curlΓ : H2
∗ (Γ)→ H1

t,div is an homeomorphism, (5.12)

curlΓ : Ẽ → E is an homeomorphism. (5.13)

Proof. Take ψ ∈ H2
∗ (Γ). From curlΓψ = 0 is follows that curlΓ( curlΓψ) =

∆Γψ = 0 on Γ. Hence, ψ is a constant function on Γ. Using
∫

Γ
ψ ds = 0 it follows

that ψ equals the zero function. Thus curlΓ is injective on H2
∗ (Γ), hence also on

Ẽ ⊂ H2
∗ (Γ). Take u ∈ H1

t,div. From the Helmholtz decomposition it follows that

there exist (unique) ψ, φ ∈ H1
∗ (Γ) such that u = ∇Γψ + curlΓφ. From divΓu = 0 it

follows that ψ = 0. Hence, u = curlΓφ = n × ∇Γφ, which implies n × u = −∇Γφ.
From u ∈ H1

t (Γ) it follows that φ ∈ H2(Γ). Hence we have surjectivity and curlΓ :
H2
∗ (Γ) → H1

t,div is an isomorphism. From ‖ curlΓφ‖1 ≤ c‖φ‖H2(Γ) it follows that
this isomorphism is bounded and using the open mapping theorem it follows that the
mapping is an homeomorphism. Using a( curlΓφ, curlΓφ) = ã(φ, φ) one easily checks
that curlΓ(Ẽ) = E.

The unique solution u∗ of the weak formulation (5.8) is also the unique solution of
the following problem: determine u ∈ H1

t,div/E such that

a(u,v) = (f ,v)L2(Γ) for all v ∈ H1
t,div/E. (5.14)

Theorem 5.4. Let u∗ ∈ H1
t,div/E be the unique solution of (5.8) (or (5.14))

and φ∗ ∈ H1
∗ (Γ) the unique stream function such that u∗ = curlΓφ

∗. This φ∗ is the
unique solution of the following problem: determine φ ∈ H2

∗ (Γ)/Ẽ such that

ã(φ, ψ) = (f , curlΓψ)L2(Γ) for all ψ ∈ H2
∗ (Γ)/Ẽ. (5.15)

Furthermore, if Γ is C3, the estimate

‖φ∗‖H3(Γ) ≤ c‖f‖L2(Γ) (5.16)

holds, with a constant c independent of f ∈ L2
t (Γ).

Proof. The mapping curlΓ : H2
∗ (Γ)/Ẽ → H1

t,div/E is an isomorphism. This
implies

a(u∗,v) = (f ,v)L2(Γ) for all v ∈ H1
t,div/E

iff

a( curlΓφ
∗, curlΓψ) = (f , curlΓψ)L2(Γ) for all ψ ∈ H2

∗ (Γ)/Ẽ

iff

ã(φ, ψ) = (f , curlΓψ)L2(Γ) for all ψ ∈ H2
∗ (Γ)/Ẽ.

Due to n× u∗ = −∇Γφ
∗ and the H2-regularity of (5.14) we have

‖φ∗‖H3(Γ) ≤ c‖∇Γφ
∗‖H2(Γ) = c‖n× u∗‖H2(Γ) ≤ c‖f‖L2(Γ),

with a constant c independent of f .

For the discretization of the problem in stream function formulation it is convenient
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to reformulate the fourth order problem (5.15) as a coupled system of two second
order problems. This reformulation is given in the following lemma.

Lemma 5.5. Consider the following problem: determine φ ∈ H1
∗ (Γ)/Ẽ, ξ ∈

H1(Γ) such that∫
Γ

1

2
∇Γξ · ∇Γψ +K∇Γφ · ∇Γψ ds = −(f , curlΓψ)L2(Γ) ∀ ψ ∈ H1

∗ (Γ)/Ẽ (5.17)∫
Γ

∇Γφ · ∇Γη + ξη ds = 0 ∀ η ∈ H1(Γ). (5.18)

We assume that Γ is C3. This problem has a unique solution given by φ̂ = φ∗, ξ̂ =
∆Γφ

∗, with φ∗ the unique solution of (5.15).

Proof. Let φ∗ the unique solution of (5.15) and define φ̂ := φ∗, ξ̂ := ∆Γφ
∗. Note

that due to (5.16) we have ξ̂ ∈ H1(Γ). From ξ̂ = ∆Γφ
∗ = ∆Γφ̂ it follows that the

pair (φ̂, ξ̂) satisfies (5.18). From ã(φ∗, ψ) = (f , curlΓψ)L2(Γ) for all ψ ∈ H2
∗ (Γ)/Ẽ,

partial integration and a density argument it follows that the pair (φ̂, ξ̂) also satisfies

(5.17). We now prove uniqueness. Let (φ̂1, ξ̂1), (φ̂2, ξ̂2) be two solution pairs and

define eφ := φ̂1 − φ̂2 ∈ H1
∗ (Γ)/Ẽ, eξ := ξ̂1 − ξ̂2 ∈ H1(Γ). From (5.18) and H2-

regularity of the Laplace-Beltrami equation we get ∆Γeφ = eξ and eφ ∈ H2
∗ (Γ). From

(5.17) we obtain∫
Γ

1

2
∇Γeξ · ∇Γψ +K∇Γeφ · ∇Γψ ds = 0 ∀ ψ ∈ H1

∗ (Γ)/Ẽ,

and thus ∫
Γ

−1

2
∆Γeφ∆Γψ +K∇Γeφ · ∇Γψ ds = 0 ∀ ψ ∈ H2

∗ (Γ)/Ẽ.

Taking ψ = eφ this implies ã(eφ, eφ) = 0. From the definition of the kernel space Ẽ
it follows that eφ = 0 must hold. Hence, also eξ = 0.

Remark 5.1. From the definition of the kernel space E and the compatibility
assumption (5.4) it follows that the test space H1

t,div/E in (5.14) can be replaced by

the larger space H1
t,div. Using this one may check that the test space H2

∗ (Γ)/Ẽ in

(5.15) can be replaced by the larger space H2
∗ (Γ) and that the test space H1

∗ (Γ)/Ẽ
in (5.17) can be replaced by the larger space H1

∗ (Γ) and even by the space H1(Γ).
These larger test spaces are more convenient for a finite element discretization.

Remark 5.2. In view of the finite element discretization introduced in section 6
we derive another characterization of the kernel Ẽ = {φ ∈ H2

∗ (Γ) | ã(φ, φ) = 0 }, which
allows a more feasible representation of the trial space H1

∗ (Γ)/Ẽ used in Lemma 5.5.
Let P∗ denote the orthogonal projection on 1⊥L2 , i.e., P∗φ = φ− 1

|Γ|
∫

Γ
φds. We then

have H1
∗ (Γ) = P∗(H

1(Γ)) and, using ã(φ, φ) = ã(P∗φ, P∗φ), we get Ẽ = P∗(Ê) with
Ê := {φ ∈ H2(Γ) | ã(φ, φ) = 0 }. Note that 1 ∈ Ê. Let PÊ be the L2-projection on

Ê. Consider a (L2-orthogonal) direct sum H1(Γ) = Ê ⊕ (I − PÊ)H1(Γ). We then
have

H1
∗ (Γ)/Ẽ w P∗(I − PÊ)H1(Γ) = (I − PÊ)H1(Γ), (5.19)

where in the last equality we used 1 ∈ Ê. Using the relation (5.11) we obtain Ê =
{φ ∈ H2(Γ) | ã(φ, ψ) = 0 for all ψ ∈ H2(Γ) }. Using similar arguments as in the

19



proof of Lemma 5.5 one can then show that φ ∈ Ê iff there exists ξ ∈ H1(Γ) such
that the pair (φ, ξ) ∈ H1(Γ)2 is a solution of:∫

Γ

1

2
∇Γξ · ∇Γψ +K∇Γφ · ∇Γψ ds = 0 ∀ ψ ∈ H1(Γ)∫

Γ

∇Γφ · ∇Γη + ξη ds = 0 ∀ η ∈ H1(Γ).

(5.20)

Based on the two remarks above we propose the following reformulation of the
coupled problem described in Lemma 5.5.
1. Let Ê be the finite dimensional space spanned by the φ component of the solutions
of the coupled homogeneous problem (5.20).
2. Solve the coupled problem: Determine φ, ξ ∈ H1(Γ) such that∫

Γ

1

2
∇Γξ · ∇Γψ +K∇Γφ · ∇Γψ ds = −(f , curlΓψ)L2(Γ) ∀ ψ ∈ H1(Γ) (5.21)∫

Γ

∇Γφ · ∇Γη + ξη ds = 0 ∀ η ∈ H1(Γ). (5.22)

A solution is denoted by φ̃, ξ̃.
3. The unique solution φ∗ as in Lemma 5.5 is given by φ∗ = (I − PÊ)φ̃. This is the
solution for the quotient space (I − PÊ)H1(Γ), cf. (5.19).

Remark 5.3. From the discussion above we see that, if the space of Killing fields
as dimension > 0, this causes some technical difficulties. This is not due to the use
of the stream function formulation of the Stokes problem. Very similar difficulties
arise if the Stokes problem in the (u, p) variables is considered. In a time-dependent
(Navier-)Stokes problem these difficulties vanish. In one time step of an implicit time
discretization one has to solve a generalized stationary Stokes problem with an addi-
tional zero order term. The spatial operator (in the space of divergence free velocities)
then is of the form −P divΓ(Es(·)) + cI with a strictly positive constant c (inverse
proportional to the time step). This operator has a zero kernel.

Remark 5.4. For the (very) special case of a constant curvature K (i.e., a
sphere), the coupled system (5.21)-(5.22), can be decoupled by eliminating φ from
(5.21) using (5.22) (and similarly for (5.20)).

6. Finite element discretization and numerical experiment. For the dis-
cretization of the stream function formulation we apply a Galerkin finite element
method to the three-step variational formulation described above. In this paper we
only present one particular Galerkin approach and show results of a numerical exper-
iment with this finite element method. We neither present an error analysis of the
finite element method nor a comparison with other methods. A detailed study of dif-
ferent finite element discretizations, including error analysis and an accurate method
for reconstruction of u = curlΓφ from the finite element approximation of the stream
function φ, will be treated in a forthcoming paper.

One good option for the discretization of the scalar surface PDEs (5.21)-(5.22)
is the SFEM developed by Dziuk and Elliott, cf. e.g. [12, 13]. This method is used
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for the discretization of a stream function formulation in [29]. We use another ap-
proach, namely the trace finite element approach (TraceFEM) [31]. We use the latter
method because of the availability of software in our group that provides an easy im-
plementation of a TraceFE discretization of (5.21)-(5.22). We briefly describe the
method.

Let Ω ⊂ R3 be a fixed polygonal domain that strictly contains Γ. We consider
a family of shape regular tetrahedral triangulations {Th}h>0 of Ω. The surface Γ is
approximated by a piecewise planar approximation as follows. We assume that Γ is
the zero level of a level set function φ (not necessarily a signed distance function). Let
Ih be the piecewise linear nodal interpolation operator on Th. We define Γh := {x ∈
Ω | (Ihφ)(x) = 0 }. The subset of tetrahedra that have a nonzero intersection with Γh
is collected in the set denoted by T Γ

h . On T Γ
h we use a standard finite element space

of continuous functions that are piecewise linear. This so-called outer finite element
space is denoted by Vh. The nodal basis functions in Vh are denoted by {φhi }1≤i≤m.
The finite element isomorphism that maps coefficients to functions is denoted by
Jh : Rm → Vh, Jhx =

∑m
i=1 xiφ

h
i . The trace finite element space is obtained by

simply taking traces of functions in Vh, i.e., V Γ
h := { (φh)|Γh

| φh ∈ Vh } ⊂ H1(Γh).
The discretization of (5.21)-(5.22) is as follows: determine φh, ξh ∈ V Γ

h such that∫
Γh

1

2
∇Γh

ξh · ∇Γh
ψh +Kh∇Γh

φh · ∇Γh
ψh ds = −(fe, curlΓh

ψh)L2(Γh) ∀ ψh ∈ V Γ
h

(6.1)∫
Γh

∇Γh
φh · ∇Γh

ηh + ξhηh ds = 0 ∀ ηh ∈ V Γ
h . (6.2)

Here fe denotes an extension of f and Kh an approximation of the Gauss curvature
K.

We introduce mass and stiffness matrices for the matrix-vector representation of
the discrete problem. Define, for 1 ≤ i, j,≤ m:

Mij =

∫
Γh

φhi φ
h
j ds, Aij =

∫
Γh

∇Γh
φhi · ∇Γh

φhj ds, AKij =

∫
Γh

Kh∇Γh
φhi · ∇Γh

φhj ds.

The matrix-vector problem corresponding to (6.1)-(6.2) is of the form

Ay = c, with A =

(
2AK A
A M

)
. (6.3)

Note that M, A are symmetric positive semidefinite and AK , A are in general only
symmetric. The matrix A is (close to) singular due to the fact that the constant
function and the kernel space Ẽ are not factored out. For the TraceFEM there is a
further issue related to poor conditioning of A resulting from the fact that the traces
of the outer nodal basis functions in general do not form a (well-conditioned) basis of
the trace finite element space. This difficulty can be solved by using an appropriate
stabilization, e.g. [18]. Here we want to keep the method as simple as possible and
therefore do not consider any stabilization.

The discretization of the coupled system of second order problems described in
Lemma 5.5 is based on the three-step procedure given above:
1. For computing an approximation Êh of the space Ê we proceed as follows. We
determine the (at most) 5 eigenvalues of A with smallest absolute value and determine
(heuristically) how many of these are “close to zero”, in the sense that we expect
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these eigenvalues to converge to zero if h ↓ 0. Let this number be p, 1 ≤ p ≤ 4, and
v(j) ∈ R2m, 1 ≤ j ≤ p, the corresponding (orthogonal) eigenvectors. We restrict to
the first m entries in these vectors (corresponding to the first block row in (6.3)), and
the resulting vectors are denoted by w(j) ∈ Rm, 1 ≤ j ≤ p. The corresponding finite

element functions φ
(j)
h := Jhw

(j) span the space Êh. We determine an L2-orthogonal

basis of Êh.
2. We determine a solution y = (y1,y2), y1,y2 ∈ Rm of the (singular but consistent)
linear system (6.3).
3. Using the orthogonal basis in Êh, we determine φh = (I − PÊh

)(Jhy1), which is
the finite element approximation of the solution φ∗.

Numerical experiment.
We consider an ellipsoid Γ ⊂ Ω := [−2, 2]3 given by

Γ := {x ∈ R3 : x2
1 + x2

2 + (
x3

1.5
)2 = 1}

Using MAPLE the Gauss curvature of Γ can be determined:

K = 5.0625 · 2.25x2
1 + 2.25x2

2 + x2
3

(5.0625x2
1 + 5.0625x2

2 + x2
3)2

.

We choose a smooth function

φsol(x1, x2, x3) := x2
2 + sin(x1x3) + x1x2x3.

This function has a nonzero intersection with the kernel space Ê, i.e., φsol 6= (I −
PÊ)φsol. Using MAPLE we determine the corresponding scalar function − 1

2∆2
Γφ

sol−
divΓ(K∇Γφ

sol) which is used as right hand side function curlΓf in (5.21), (6.1).
For the discretizatizon we use a tetrahedral triangulation of Ω constructed by

starting from a uniform subdivision of Ω into 8 tetrahedra and then applying uniform
refinement. The mesh size on refinement level ` is denoted by h`. The surface approx-
imation Γh and the trace finite element space are constructed as explained above. We
follow the procedure with steps 1-3 outlined above. The 5 smallest eigenvalues of the
matrix A are given in Table 6.1.

λ1 λ2 λ3 λ4 λ5

` = 1 −1.9 · 10−16 2.9 · 10−3 −1.2 · 10−2 −1.4 · 10−2 −4.2 · 10−2

` = 2 −9.9 · 10−18 3.7 · 10−4 −2.4 · 10−3 −2.5 · 10−3 −3.5 · 10−3

` = 3 −5.1 · 10−18 2.7 · 10−5 −3.5 · 10−4 −3.5 · 10−4 −3.5 · 10−4

k = 4 −1.7 · 10−17 1.7 · 10−6 −1.2 · 10−4 −1.2 · 10−4 −1.2 · 10−4

` = 5 −3.9 · 10−18 1.1 · 10−7 −1.6 · 10−5 −1.6 · 10−5 −1.6 · 10−5

Table 6.1: Smallest eigenvalues of the matrix A.

The eigenvalue λ1 is zero within machine accuracy (corresponds to the constant
function). We observe a large gap between λ2 and the eigenvalues λi, i ≥ 3. We expect
that this eigenvalue approximates a zero eigenvalue of the continuous problem, and
based on this we take p = 2 and Êh the two-dimensional space as explained in step 2

above. The kernel function φ
(2)
h corresponding to λ2 is illustrated in Figure 6.1. We

note that also the eigenvalues λi, i = 3, 4, 5, are quite small (for increasing refinement
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level). This is due to the fact that in the trace finite element method we did not
use any stabilization, which leads to very poor conditioning of the stiffness matrix.
We solve the linear system (6.3) using a preconditioned MINRES method (with only
diagonal preconditioning). The resulting solution is then projected, as explained in
step 3 above, to eliminate the kernel components, resulting in the finite element
approximation φh, shown in Figure 6.1.

Fig. 6.1: Color graphs of kernel function φ
(2)
h (left) and discrete solution φh (right).

In the solution φsol we factor out the kernel (approximation), i.e. we determine
φ∗h := (I−PÊh

)φsol. The errors in the approximation φh ≈ φ∗h are shown in Table 6.2.
We observe the optimal orders of convergence.

` ‖φh − φ∗h‖L2(Γh) EOC |φh − ψ∗h|H1(Γh) EOC
1 6.63 · 10−1 3.27 · 100

2 2.04 · 10−1 1.70 1.57 · 100 1.06
3 5.81 · 10−2 1.81 7.62 · 10−1 1.04
4 1.50 · 10−2 1.95 3.80 · 10−1 1.00
5 3.67 · 10−3 2.03 1.90 · 10−1 1.00

Table 6.2: Discretization errors

7. Appendix. In this section we derive the results (2.7), (2.15) and (2.13). The
proofs are based on elementary tensor calculus. We use standard tensor notation and
the Einstein summation convention (always over i = 1, 2, 3, for repeated indices i).
For a scalar function φ we have, cf. (2.1):

(∇Γφ)i = Pik∂kφ.

(scalar entries of the matrix P are denoted Pij). For the vector function u : R3 → R3

we have, cf. (2.2), (2.3):

(∇Γu)ij = Pik∂lukPlj , divΓu = (∇Γu)ii = Pik∂kulPli = Plk∂kul,
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and for the matrix divergence operator (2.3) we have the representation:

( divΓA)i = divΓ(eTi A) = Plk∂kAil. (7.1)

For manipulations of vector products it is convenient to use the three-dimensional
Levi-Civita symbol (also called permutation tensor):

εijk :=


+ 1 if (ijk) is an even permutation of (1 2 3)

− 1 if (ijk) is an odd permutation of (1 2 3)

0 otherwise.

This tensor is antisymmetric, e.g., εijk = −εjik for all i, j, k. For vectors a,b ∈ R3 we
have (a× b)k = εijkaibj , k = 1, 2, 3. We will also use the relation

εjkiεnml = δjnδkmδil−δjnδklδim−δjmδknδil+δjmδklδin+δjlδknδim−δjlδkmδin, (7.2)

with δij the Kronecker symbol, i.e., δii = 1, and zero otherwise. We will often use the
following relations, with the symmetric Weingarten mapping denoted by H = ∇n,
which satisfies PH = H = HP, Hn = 0, and the notation ∂k = ∂xk

for the k-th
partial derivative in R3:

Piknk = 0, Hiknk = 0, ∂kPij = −niHkj − njHki. (7.3)

We first derive the identity (2.7). Note that

(∇Γ × u) · n = εijlPik∂kujnl. (7.4)

We also have

divΓ(u× u) = Pik∂k(u× n)i = Pik∂k(εjliujnl) = εjliPik∂k(ujnl)

= εjliPik∂kujnl + εjliPikujHkl. (7.5)

For the last term we get εjliPikujHkl = εjliujHil. Using the antisymmetry propery of
the Levi-Civita symbol and the symmetry of H we get εjliHil = −εjilHli = −εjliHil,
hence, εjliujHil = 0, i.e., the last term in (7.5) vanishes. Using the permutation
properties of the Levi-Civita symbol we get εjli = εijl and using this in (7.5) and
comparing with (7.4) yields the relation (2.7).

We derive the result (2.15). Using the representations and relations introduced
above we get

divΓ(n×∇Γφ) = Plk∂k(n×∇Γφ)l = Plk∂k(εijlniPjr∂rφ)

= εijlPlk
(
HkiPjr∂rφ+ ni∂kPjr∂rφ+ niPjr∂k∂rφ

)
= εijl

(
HliPjr∂rφ− ninjHlr∂rφ− ninrHlj∂rφ+ niPlkPjr∂k∂rφ

)
.

Using the antisymmetry propery of the Levi-Civita symbol and the symmetry of H we
get εijlHli = 0, hence εijlHliPjr∂rφ = 0. The other three terms can be treated simi-
larly, since ninj is symmetric w.r.t. (ij), Hlj is symmetric w.r.t. (jl) and PlkPjr∂k∂rφ
is symmetric w.r.t. (jl). From this it follows that divΓ(n×∇Γφ) = 0.

The proof of (2.13) requires a more tedious derivation. From the definitions and
representations given above we get, using εnmlHln = 0 (due to antisymmetry),

curlΓu = divΓ(u× n) = −Plr∂r(n× u)l = −Plr∂r(εnmlnnum)

= −εnmlPlr(Hrnum + nn∂rum) = −εnmlHlnum − εnmlPlrnn∂rum
= −εnmlPlrnn∂rum.
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Using this we obtain

( curlΓ( curlΓu))i = (n×∇Γ( curlΓu))i = εjkinj(∇Γ curlΓu)k = εjkinjPks∂s( curlΓu)

= −εjkinjPks∂s(εnmlPlrnn∂rum) = −εjkiεnmlnjPks∂s(Plrnn∂rum)

We now use the identity (7.2), which results in 6 nonzero terms, namely for (nml) ∈
{ (jki), (jik), (kji), (ijk), (kij), (ikj) } with a corresponding sign as in (7.2). This
yields

( curlΓ( curlΓu))i = −njPks∂s(Pirnj∂ruk) + njPks∂s(Pkrnj∂rui)

+ njPks∂s(Pirnk∂ruj)− njPks∂s(Pksni∂ruj)
− njPks∂s(Pjrnk∂rui) + njPks∂s(Pjrni∂ruk)

=: (1) + (2) + (3) + (4) + (5) + (6).

(7.6)

We now analyze these 6 terms. We start with the fifth one. Using Pn = 0 we get

(5) = −njPks∂s(Pjrnk∂rui) = −njPksPjrHsk∂rui = 0. (7.7)

For the third term we get

(3) = njPks∂s(Pirnk∂ruj) = njPksPirHsk∂ruj = njHssPir∂ruj . (7.8)

We take the first and sixth term together:

(1) + (6) = njPks∂s

(
(Pjrni − Pirnj)∂ruk

)
= njPks∂s(Pjrni − Pirnj)∂ruk − PksPir∂s∂ruk.

Now note (we use (7.3)):

njPks∂s(Pjrni − Pirnj) = Pks∂s

(
nj(Pjrni − Pirnj)

)
− PksHsj(Pjrni − Pirnj)

= −Pks∂sPir − PksHsrni

= Pks(niHsr + nrHsi)− PksHsrni = nrHki.

Hence,

(1) + (6) = nrHki∂ruk − PksPir∂s∂ruk. (7.9)

Finally we combine the second and fourth term. We use Pks∂sPkr = ∂sPsr = −nrHss,
nrnj∂ruj = 0 (which follows from ∂r(njuj) = 0 and nrHrj = 0) and nr∂rui =
nr∂r(Pkiuk) = nrPki∂ruk, and then get:

(2) + (4) = njPks∂s

(
Pkr(nj∂rui − ni∂ruj)

)
= −njnrHss(nj∂rui − ni∂ruj) + njPsr∂s(nj∂rui − ni∂ruj)

= −nrHss∂rui + njPsr

(
Hsj∂rui + nj∂s∂rui −Hsi∂ruj − ni∂s∂ruj

)
= −nrHssPki∂ruk + Psr∂s∂rui − njHri∂ruj − ninjPsr∂s∂ruj .

Note that −ninjPsr∂s∂ruj = PijPsr∂s∂ruj − Psr∂s∂rui. Hence we get

(2) + (4) = −nrHssPki∂ruk − nkHri∂ruk + PijPsr∂s∂ruj . (7.10)
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Substition of the results in (7.7)-(7.10) in (7.6) yields:

( curlΓ( curlΓu))i = nkHssPir∂ruk + nrHki∂ruk − PksPir∂s∂ruk
− nrHssPki∂ruk − nkHri∂ruk + PikPsr∂s∂ruk

=
[
nrHik − nkHir +Hss(nkPir − nrPik)

]
∂ruk

+ (PikPsr − PirPsk)∂s∂ruk.

(7.11)

We now consider the expression on the right hand side in (2.13). Note that

(∇Γu−∇ΓuT )nm = PnkPrm∂ruk − PmkPrn∂ruk = (PmrPkn − PnrPkm)∂ruk

Using (7.1) we get (P divΓA)i = PinPms∂sAnm and thus(
P divΓ(∇Γu−∇ΓuT )

)
i

= PinPms∂s
(
(PmrPkn − PnrPkm)∂ruk

)
= PinPms(PmrPkn − PnrPkm)∂s∂ruk + PinPms∂s(PmrPkn − PnrPkm)∂ruk

= (PikPsr − PirPsk)∂s∂ruk + PinPms∂s(PmrPkn − PnrPkm)∂ruk.

We also have

PinPms∂s(PmrPkn − PnrPkm)

= PinPms
[
(−nmHsr − nrHsm)Pkn + (−nkHsn − nnHsk)Pmr

+ (nnHsr + nrHsn)Pkm + (nkHsm + nmHsk)Pnr
]

= −nrHssPik − nkHir + nrHik + nkHssPir

Combination of the above two results yields(
P divΓ(∇Γu−∇ΓuT )

)
i

= (PikPsr − PirPsk)∂s∂ruk

+
[
nrHik − nkHir +Hss(nkPir − nrPik)

]
∂ruk

and comparing this with (7.11) completes the proof of (2.13).
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