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A TIME DEPENDENT STOKES INTERFACE PROBLEM:

WELL-POSEDNESS AND SPACE-TIME FINITE ELEMENT

DISCRETIZATION

IGOR VOULIS AND ARNOLD REUSKEN∗

Abstract. In this paper a time dependent Stokes problem that is motivated by a standard sharp
interface model for the fluid dynamics of two-phase flows is studied. This Stokes interface problem
has discontinuous density and viscosity coefficients and a pressure solution that is discontinuous
across an evolving interface. This strongly simplified two-phase Stokes equation is considered to be
a good model problem for the development and analysis of finite element discretization methods for
two-phase flow problems. In view of the unfitted finite element methods that are often used for two-
phase flow simulations, we are particularly interested in a well-posed variational formulation of this
Stokes interface problem in a Euclidean setting. Such well-posed weak formulations, which are not
known in the literature, are the main results of this paper. Different variants are considered, namely
one with suitable spaces of divergence free functions, a discrete-in-time version of it, and variants in
which the divergence free constraint in the solution space is treated by a pressure Lagrange multiplier.
The discrete-in-time variational formulation involving the pressure variable for the divergence free
constraint is a natural starting point for a space-time finite element discretization. Such a method
is introduced and results of a numerical experiment with this method are presented.

1. Introduction. Let Ω ⊂ R
d be an open bounded connected domain and I :=

(0, T ) a time interval. On the space-time cylinder Ω × I we consider the following
standard sharp interface model (in strong formulation) for the fluid dynamics of a
two-phase incompressible flow, cf. [2, 31, 20]:







ρi(
∂u

∂t
+ (u · ∇)u) = divσi + gi

divu = 0
in Ωi(t), i = 1, 2, (1.1)

[σnΓ] = −τκnΓ on Γ(t), (1.2)

[u] = 0 on Γ(t), (1.3)

VΓ = u · nΓ on Γ(t). (1.4)

Here Γ(t) = Ω1(t)∩Ω2(t) denotes the (sharp) interface, σi = −pI+µi

(
∇u+(∇u)T

)

the Newtonian stress tensor and VΓ is the normal velocity of the interface. The
density and viscosity, ρi and µi, i = 1, 2, are assumed to be constant in each phase.
The constant τ ≥ 0 is the surface tension coefficient and κ is the mean curvature of Γ,
i.e., κ(x) = divnΓ(x) for x ∈ Γ. Unknowns are the velocity u = u(x, t), the pressure
p = p(x, t) and the (evolving) interface Γ(t). To make the problem well-posed one
needs suitable initial and boundary conditions for u and Γ. Due to the coupling of
the interface dynamics and the fluid dynamics in the two bulk phases, this is a highly
nonlinear problem. There is extensive literature on existence of solutions and well-
posedness of different formulations of this problem. Most publications on these topics
study quite regular solutions (in Hölder spaces) and deal with well-posedness locally
in time or global existence of solutions close to equilibrium states (e.g., [12, 34, 13, 29,
30]). Often simplifying assumptions are used, for example, gi = 0, τ = 0 or constant
density (ρ1 = ρ2). In other studies weaker solution concepts are used, for example,
in [27, 28] the notion of renormalized solutions [14] of transport equations is used to
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derive an existence result (for τ = 0) and in [1] existence of so-called measure-valued
varifold solutions is shown (for constant density). Here we do not give an overview of
the extensive literature in this research field; for this we refer the interested reader to
the literature discussion in the recent book [31].

We are interested in the development and analysis of finite element discretization
methods for the two-phase flow problem given above. Finite element methods for this
problem class can be found in, e.g., [20, 4, 11, 6]. We are not aware of any literature in
which rigorous error analysis of such finite element methods is presented. Only very
few partial results, e.g. on discrete stability as in [4], are known. This lack of analysis
is clearly is related to the strong nonlinearity of the problem (1.1)-(1.4). We also note
that approaches and results available in the mathematical literature on existence of
solutions and well-posedness of this problem turn out not to be very useful for the
analysis of finite element discretization methods. In view of this, we introduce and
analyze a much simpler (linear) Stokes interface problem which, however, is motivated
by and closely related to the two-phase flow problem given above. We now derive this
Stokes interface problem. In almost all numerical simulation methods for (1.1)-(1.4)
one uses an iterative decoupling technique in which the interface evolution is decou-
pled from the flow problems in the subdomains. For the interface representation and
numerical propagation one can use, for example, the level set method and given an
approximation of Γ(t) for t in a (small) time interval one then discretizes the cou-
pled Navier-Stokes equations in the subdomains. These Navier-Stokes equations are
usually linearized by inserting a known approximation of the velocity in the first ar-
gument of the quadratic term (u ·∇)u. These two subproblems (interface propagation
and solution of flow problem in the subdomains) can be coupled by several different
iterative methods. This decoupling and linearization procedure motivates the follow-
ing simplifying assumptions. Firstly, we assume a given sufficiently smooth (specified
below) flow field w = w(x, t) ∈ R

d on Q := Ω × I, with divw = 0 on Q, which
transports the interface. Instead of the interface dynamics condition VΓ = u · nΓ we
impose VΓ = w·nΓ. This implies that the interface evolution is completely determined
by w and the Navier-Stokes flow problem in the two subdomains Ωi(t) is decoupled
from the interface dynamics. Secondly, we use a linearization of the Navier-Stokes
equation in which (u ·∇)u is replaced by (w ·∇)u. Thus we obtain a time dependent
(generalized) Stokes problem (also called Oseen problem) in each of the subdomains,
with coupling conditions as in (1.2)-(1.3). We introduce the usual notation for the
material derivative along the flow field w:

v̇ :=
∂v

∂t
+w · ∇v.

We also introduce the piecewise constant functions ρ, µ with ρ(x, t) := ρi, µ(x, t) := µi

in Ωi(t) and the deformation tensor D(u) := ∇u + (∇u)T . Thus we obtain the
following much simpler linear problem: determine u and p such that

{

ρu̇− div(µD(u)) +∇p = gi

divu = 0
in Ωi(t), i = 1, 2, (1.5)

[(−pI+ µD(u))nΓ] = −τκnΓ on Γ(t), (1.6)

[u] = 0 on Γ(t), (1.7)

combined with suitable initial and boundary conditions for u. We restrict to homo-
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geneous Dirichlet boundary and initial conditions for u:

u(x, t) = 0 for (x, t) ∈
(
∂Ω× I

)
∪
(
Ω× {0}

)
.

Both for the analysis and numerical simulations it is very convenient to reformulate
this simplified model in a one-fluid Stokes interface model that combines the flow
equations in the subdomains (1.5) and the interface conditions (1.6)-(1.7). We con-
sider this Stokes interface problem to be an interesting and relevant subproblem for
the numerical simulation of the full two-phase flow problem (1.1)-(1.4). For example, a
finite element method that is stable and accurate for this Stokes interface problem can
be expected to be an efficient discretization for the Navier-Stokes flow equations (with
small Reynold’s numbers) in the full two-phase flow problem. The main contribution
of this paper is the derivation of a well-posed space-time variational formulation of
this Stokes interface model and, based on this, a (Galerkin) space-time finite element
discretization.

We mention a few relevant properties of the interface Stokes problem (1.5)-(1.7).
The discontinuity of the coefficients ρi, µi across the interface and the interface force
induced by the surface tension in (1.6) lead, even if the data is otherwise smooth,
to a discontinuity in the pressure p and to a discontinuity in the derivative of the
velocity u on the space-time interface S, cf. [31]. Hence, we have to deal with moving
discontinuities. Typically the interface is not constant in time and thus we do not
have a tensor product structure. These properties make this interface Stokes problem
significantly more difficult to solve numerically than a standard time-dependent Stokes
equation. Even for this strongly simplified problem we are not aware of any rigorous
(sharp) error bounds for finite element discretization methods.

As a first step towards such an error analysis we need a suitable well-posed varia-
tional formulation. Concerning this we distinguish two different approaches. Firstly,
the formulation and corresponding analysis is based on Lagrangian techniques, in
which a suitable (coordinate) transformation is used to transform the given prob-
lem into one with a tensor product structure (i.e., a stationary interface). Such an
approach is used in e.g. [31] (various parabolic two-phase problems) or [32] (free
boundary Stokes problem). Such Lagrangian formulations are useful in the context of
ALE (arbitrary Lagrangian Eulerian) discretizations and fitted finite elements. For a
class of parabolic interface problems error bounds for fitted finite finite element meth-
ods have been derived in the literature, e.g. [10]. Alternatively, one can consider a
formulation and analysis in an Eulerian setting (no coordinate transformations). Such
formulations, which are standard for one-phase (Navier-)Stokes equations ([15, 36, 38])
are better suited for unfitted finite element techniques. If in the original two-phase
flow problem an interface capturing method such as the very popular level set method
is used, this very often leads to the application of unfitted finite element discretiza-
tion methods for the flow problem (meaning that the triangulations are not fitted to
the evolving interface). This then requires special finite element spaces, for example
an XFEM [18, 25], unfitted FEM with a Nitsche penalty term [22, 5] or a CutFEM
[8, 7, 9]. In this paper we restrict to the Eulerian approach.

Hence, for the time dependent Stokes interface problem described above we are
interested in a well-posed variational formulation in an Euclidean setting, similar to
those for one-phase (Navier-)Stokes equations known in the literature ([15, 36, 38]).
For one-phase (Navier-)Stokes equations new well-posed space-time formulations have
been developed in the recent papers [21, 33]. These formulations do not cover the
Stokes interface model described above, due to the lack of a tensor product structure.
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It turns out that in particular the discontinuity in the mass density ρ across the
interface causes significant difficulties conderning the analysis of well-posedness, as
explained in Remark 2.3. As a main contribution of this paper we develop an analysis
resulting in a well-posed space-time variational formulation. Main results on well-
posedness are given in Corollary 3.8, Theorem 3.9 and Theorem 4.1. Our analysis is
rather different from the analyses used in the derivation of a well-posed variational
one-phase Stokes [15, 36, 38].

Based on this space-time variational formulation we propose an space-time unfit-
ted finite element method. The method combines standard Discontinuous Galerkin
time discretization [3, 37, 35] with an XFEM or CutFEM approach [18, 25, 7, 9] to
account for the jump in pressure across the space-time interface S. We present results
of a numerical experiment with this method. An error analysis of this method is a
topic of current research and not considered in this paper.

The remainder of the paper is organized as follows. In Section 2 we introduce
a variational formulation of the Stokes interface problem (1.5)-(1.7) in an obvious
space-time Sobolev space of divergence free functions. In Remark 2.3 we explain
why the analysis of well-posedness of this formulation is problematic. This motivates
the introduction of other (related) spaces, for which well-posedness of a variational
formulation can be proved. This analysis is presented in Section 3. In Section 4 a
standard discontinuous Galerkin approach is applied to derive a well-posed space-time
variational formulation that allows a time stepping procedure. In Section 5 we study
well-posedness of a space-time variational problem involving the pressure variable
to satisfy the divergence free constraint. Based on this variational formulation we
introduce an unfitted space-time finite element method in Section 6 and give results
of a numerical experiment with this method. We finally give a summary and outlook
in Section 7.

2. Space-time variational formulation. We start with an assumption con-
cerning the required smoothness of the space-time interface S :=

⋃

t∈I Γ(t)× {t} and
the given velocity field w.

Assumption 2.1. Throughout the paper we assume that S is a connected Lips-
chitz hypersurface in R

d+1 and that the given velocity field w is divergence free and
w ∈ C(Ī;L2(Ω)d). The latter guarantees that the material derivative v̇ = ∂v

∂t
+w ·∇v

is well-defined in a weak sense as in [14]. The piecewise constant density ρ and the
velocity field w are assumed to satisfy the compatibility condition ρ̇ = 0.

Furthermore, we make the assumption w ∈ L∞(Q)d. This condition can be re-
placed by another (more natural) one which depends on the dimension d, cf. Re-
mark 3.2.

As is usually done in the analysis of (Navier-)Stokes equations, we restrict to suitable
subspaces of divergence free velocity fields and thus eliminate the pressure. We derive
well-posedness of a suitable variational formulation in these subspaces. Therefore we
introduce the spaces

V := { v ∈ H1
0 (Ω)

d | div v = 0 }, X := L2(I;V). (2.1)

Assume that the strong formulation (1.5)-(1.7) has a sufficiently smooth solution u.
Multiplication by test function v ∈ X and partial integration then implies:

(ρu̇,v)L2 + (µD(u), D(v))L2 = (ρg,v)L2 − τ

∫ T

0

∫

Γ(t)

κnΓ · v ds dt, (2.2)

4



where (·, ·)L2 denotes the (vector) L2 scalar product over the space-time cylinder Q.
Remark 2.1. Note that the second term in the right hand-side of (2.2) cor-

responds to a force that acts only on the space-time interface S. This induces a
discontinuity in the pressure Lagrange multiplier. Below, instead of the specific right
hand-side in (2.2) we consider a generic F ∈ X ′. If g ∈ L2(Q)d and κnΓ ∈ L2(S)d
then right hand-side satisfies F ∈ X ′. In order to have the normal nΓ and the cur-
vature κ in the classical (strong) sense, we need additional (C2) smoothness of Γ(t).
Weaker notions of curvature have been developed for cases with less smoothness. This
issue, however, is not relevant for the remainder of the paper.

A suitable weak material derivative can be defined in the standard distributional
sense. For this we first introduce further notation. Elements u ∈ X have values
u(x, t) := u(t)(x) ∈ R

d, (x, t) ∈ Q. Due to the zero boundary values on ∂Ω, the norm

‖v‖1 = (‖v‖2
L2(Ω) + ‖∇v‖2

L2(Ω))
1

2 on H1
0 (Ω) is equivalent to |v|1 := ‖∇v‖L2(Ω). In

the remainder we use the latter norm, with corresponding scalar product denoted by
(·, ·)1,Ω on V . The scalar product on X is denoted by

(u,v)X :=

∫ T

0

(
u(t),v(t)

)

1,Ω
dt =

d∑

i=1

∫ T

0

∫

Ω

∇ui(t) · ∇vi(t) dx dt = (∇u,∇v)L2 .

Recall that C1
0 (Ω)

d ∩V is dense in V and using the tensor product structure of X we
get that

D0 := {
n∑

i=1

giφi | n ∈ N, gi ∈ C∞
0 (I), φi ∈ C1

0 (Ω)
d ∩ V } ⊂ C1

0 (Q)d (2.3)

is dense in X , i.e., D0
‖·‖X

= X . For the case of an evolving interface and with
the material derivative in (1.5) it is natural to introduce the following weak material
derivative for functions from X . For v ∈ X we define the functional ρv̇ by

〈ρv̇,φ〉 = −(ρv, φ̇)L2 for φ ∈ D0. (2.4)

Note that in the L2 scalar product we use a weighting with the strictly positive
piecewise constant function ρ. We introduce the following analogon of the space
{v ∈ X | dv

dt
∈ X ′}:

W = {v ∈ X | ρv̇ ∈ X ′ }, ‖v‖2W = ‖v‖2X + ‖ρv̇‖2X′ .

An important difference between {v ∈ X | dv
dt

∈ X ′} and W is that, if ρ varies with
t (i.e., ρ1 6= ρ2 and the interface is not stationary), the latter does not have a tensor
product structure.

Remark 2.2. Inserting the definition of the material derivative we get

(ρv, φ̇)L2 = (ρv,
∂φ

∂t
)L2 + (ρv,w · ∇φ)L2 .

There is a constant c, which depends on ‖w‖L∞(Q), such that |(ρv,w · ∇φ)L2 | ≤
c‖v‖X‖φ‖X for all v ∈ X , φ ∈ D0. This implies that ρv̇ ∈ X ′ iff ∂(ρv)

∂t
∈ X ′, and

that the norms ‖∂(ρv)
∂t

‖X′ and ‖ρv̇‖X′ are equivalent.
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For smooth functions v,φ ∈ C1(Q̄)d∩X we obtain, using [14, Theorem II.6] (applied
to ρ and v · φ) and divw = 0, the following partial integration identity:

∫ T

0

∫

Ω

ρv̇ · φ+ ρv · φ̇ =

∫ T

0

∫

Ω

ρ
˙︷︸︸︷

v · φ

=
(
ρ(·, T )v(·, T ),φ(·, T )

)

L2(Ω)
(2.5)

−
(
ρ(·, 0)v(·, 0),φ(·, 0)

)

L2(Ω)
.

For φ ∈ D0 the boundary terms vanish, and thus we get

〈ρv̇,φ〉 = (ρv̇,φ)L2 for v ∈ C1(Q̄)d ∩X,φ ∈ D0, (2.6)

which means that the weak material derivative ρv̇ can be identified with the function
ρv̇. By a continuity argument it follows that the result in (2.6) also holds for all
φ ∈ X .

A natural weak formulation of (1.5)-(1.7) is as follows, cf. (2.2). Given F ∈ X ′,
determine u ∈ W with u(0) = 0 and

〈ρu̇,v〉+ (µD(u), D(v))L2 = F (v) for all v ∈ X. (2.7)

Remark 2.3. As noted above, the spaces X and W are very natural ones. We
are, however, not able to prove well-posedness of this formulation. The key difficulty
is to show that smooth functions are dense in W . For the case that the mass density
ρ is constant or S does not depend on t (stationary interface), density of smooth func-
tions can be proved using mollification procedures in Bochner spaces as in e.g., [38,
Chapter 25]. For the general case, however, we do not have a tensor product structure
and these techniques fail. We tried to develop a mollification technique in the full
space-time cylinder Rd+1. Such a mollification needs to satisfy a commutation prop-
erty between mollification and distributional differentation (2.4) (which involves the
discontinuous function ρ) and furthermore must respect the divergence free property
and the homogeneous Dirichlet boundary condition. We were not able to develop such
a mollification technique. If we would have a density of smooth functions property of
W , it can be shown that there is a bounded trace operator W → L2(Ω)d, u → u(·, t),
which ensures that u(0) is well-defined, and partial integration rules can be derived.
Well-posedness of (2.7) can then be derived using fairly standard arguments as in
e.g. [38, Chapter 26]. The density of smooth functions property, however, is an open
problem.

Remark 2.4. In (2.7) we consider a variational formulation in which a weak
material derivative u̇ is scaled with ρ, as in (1.5). The scaling with ρ (which does
not have tensor product structure) causes significant difficultities in the theoretical
analysis (Remark 2.3). One might consider a rescaling of the momentum equation in
(1.5) that eliminates the ρ term in front of the material derivative u̇. The two obvious
possibilities are to introduce p̃ := ρ−1p or ũ := ρu. In both cases we rescale µ, using
µ̃ := ρ−1µ. If we use p̃, then partial integration of the momentum equation (multiplied
by a test function v) over the domain Ω = Ω1(t) ∪ Ω2(t) results is an interface term
of the form

∫

Γ(t)
[(−p̃I + µ̃D(u))nΓ]v ds. This term can not be treated as a natural

interface term, because in the interface condition (1.6) we have the quantities p, µ
instead of p̃, µ̃. If we use ũ, then the term

∫

Γ(t)
[(−pI+ µ̃D(ũ))nΓ]v ds occurs, which

can be handled as a natural interface condition, due to µ̃D(ũ) = µD(u). However,
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from (1.7) we now obtain the interface condtion [ρ−1ũ] = 0, which implies that one
has to use the spaceH1

0 (Ω1(t)∪Ω2(t))
d for ũ instead of the (much nicer) spaceH1

0 (Ω)
d

for u. Using these rescalings we are not able to derive a simpler analysis for well-
posedness and therefore we keep the original formulation (1.5)-(1.7), which is closest
to physics.

3. Space-time variational formulation in modified spaces. As explained
in Remark 2.3, we encounter difficulties in the analysis of well-posedness of the vari-
ational formulation (2.7) using the space W . In this section we study a variational
formulation as in (2.7), but with W replaced by a (possibly) smaller space V (intro-
duced below). The structure of the analysis is as follows. In Section 3.1 we introduce
further spaces U and V and derive properties of these spaces. In Section 3.2 we study
an intermediate weak formulation and derive a well-posedness result. In Section 3.3
we introduce and analyze the final desired weak formulation analogon of (2.7), with
W replaced by V . Main results are given in Corollary 3.8 and Theorem 3.9.

3.1. Spaces U ⊂ V ⊂ W . For v ∈ X = L2(I;V) its weak derivative dv
dt

∈
D′(I;V ′) is defined in the usual distributional sense [38]. We define the spaces

U := {v ∈ X | dv
dt

∈ L2(I;L2(Ω)d) }, with norm ‖v‖2U = ‖v‖2X + ‖dv
dt

‖2L2 , (3.1)

V := U
‖·‖W

, with norm ‖v‖V = ‖v‖W . (3.2)

These are Hilbert spaces with continuous embeddings

U → V → W.

The norm ‖·‖U is equivalent to ‖·‖H1(Q)d . The space U has a tensor product structure
and we can use standard arguments to show that smooth functions are dense in U .
More precisely, let D(V) be the space of all functions v : R → V which are infinitely
differentiable and have a compact support. Then, cf. Lemma 25.1 in [38], D(V)|I is

dense in U . Using the density of C1
0 (Ω)

d ∩V in V we obtain that the space of smooth
functions D(C1

0 (Ω)
d ∩V)|I is dense in U . From the density of U in V we thus get the

density of smooth functions in V :

D(C1
0 (Ω)

d ∩ V)|I
‖·‖W

= V. (3.3)

Remark 3.1. It seems reasonable (based on analogous results for the tensor

product case) to claim that D(C1
0 (Ω)

d ∩ V)|I
‖·‖W

= W holds, i.e., V = W . We are,
however, not able to prove this claim, cf. Remark 2.3. Note that the well-posedness
result derived for V in Corollary 3.8 below implies that either V 6= W or the well-
posedness result holds for W .

Using the density result (3.3) important properties of V are derived in the follow-
ing lemma.

Lemma 3.1.

(i) For a.e. t ∈ [0, T ] the trace operator u → u(·, t) = u(t) can be extended to a
bounded linear operator from V into L2(Ω)d. Moreover, the inequality

sup
0≤t≤T

‖u(t)‖L2(Ω) ≤ c‖u‖V for all u ∈ V, (3.4)

holds with a constant c independent of u.
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(ii) For all u,v ∈ V , the following integration by parts identity holds:

〈ρu̇,v〉+ 〈ρv̇,u〉
=

(
ρ(T )v(T ),u(T )

)

L2(Ω)
−
(
ρ(0)v(0),u(0)

)

L2(Ω)
.

(3.5)

Proof. Take t ∈ [0, 12T ] (the case t ∈ [ 12 , T ] can be treated with very similar

arguments). Define te := t + 1
4T , Ĩ := (t, te), Q̃ := Ω × Ĩ ⊂ Q. It suffices to prove

the result in (3.4) for the dense subspace D := D(C1
0 (Ω)

d ∩ V)|I of smooth functions.

Take u ∈ D. The partial integration identity (2.5) on Q̃ yields

‖ρ(te)
1

2u(te)‖2L2(Ω) − ‖ρ(t) 1

2u(t)‖2L2(Ω) = 2(ρu̇,u)L2(Q̃). (3.6)

Let σ be a smooth decreasing scalar function with compact support and σ(t) = 1,
σ(te) = 0. Note that σu ∈ D holds. If in (3.6) we use σu, instead of u, we get, with
ρmin := min{ρ1, ρ2}:

‖u(t)‖2L2(Ω) ≤ ρ−1
min‖ρ(t)

1

2u(t)‖2L2(Ω) = 2ρ−1
min|(ρ ˙(σu), σu)L2(Q̃)|

≤ 2ρ−1
min

(
|(ρσ′σu,u)L2(Q̃)|+ |(ρu̇, σ2u)L2(Q̃)|

)
.

Note that |(ρσ′σu,u)L2(Q̃)| ≤ c‖u‖2
L2(Q̃)

≤ c‖u‖2X ≤ c‖u‖2V holds. Furthermore, with

X̃ := L2(Ĩ;V), and extending v ∈ X̃ by zero outside Ĩ, we have:

|(ρu̇, σ2u)L2(Q̃)| ≤ sup
v∈X̃

(ρu̇,v)L2(Q̃)

‖v‖X̃
‖σ2u‖X̃ = sup

v∈X̃

(ρu̇,v)L2(Q)

‖v‖X
‖σ2u‖X̃

≤ c sup
v∈X

(ρu̇,v)L2(Q)

‖v‖X
‖u‖X ≤ c‖ρu̇‖X′‖u‖X ≤ c‖u‖2V .

Thus we get

‖u(t)‖L2(Ω) ≤ c‖u‖V ,

with a constant (depending on T ) that is independent of u ∈ D. Due to density of D
this proves the result in (3.4), and thus (i).
We consider (ii). Due to density and the continuity result in (3.4) it suffices to prove
(3.5) for u, v ∈ D. The identity in (2.6) holds for φ ∈ X and thus for u,v ∈ D it
follows from (2.6) that

〈ρu̇,v〉+ 〈ρv̇,u〉 = (ρu̇,v)L2 + (ρv̇,u)L2 .

From this and the partial integration identity (2.5) the result (3.5) follows.

3.2. Well-posed space-time variational formulation in U . We define U0 :=
{u ∈ U | u(0) = 0 }, where u(0) is well-defined (in L2(Ω) sense) due to (3.4). In the
following theorem we treat a variational problem with a sufficiently smooth right hand-
side f and a bilinear form a(·, ·) on V×V that is independent of t. These assumptions
are such that we can apply a standard Galerkin procedure to show existence of a
unique solution in U0. This intermediate problem will be used in the next section to
derive well-posedness of a weak formution as in (2.7), with W replaced by the space
V ⊂ W .

8



Theorem 3.2. Take f ∈ C(I;L2(Ω)d) and let a(·, ·) be a continuous elliptic
bilinear form on V ×V (with norm | · |1) that does not depend on t. Then there exists
a unique u ∈ U0 such that

(ρu̇,v)L2 +

∫ T

0

a(u(t),v(t)) dt =

∫ T

0

(f(t),v(t))L2(Ω) dt for all v ∈ X. (3.7)

Furthermore

‖u‖U ≤ c‖f‖L2 (3.8)

holds, with a constant c independent of f .
Proof. The proof is based on a standard Galerkin technique known in the lit-

erature, e.g. [16]. Let (vk)k≥1 be a total orthonormal set in V and define Vm :=
span{v1, . . . ,vm}, Xm := L2(I;Vm). We consider the following problem: determine
um ∈ Xm with um(0) = 0 and such that:

(ρu̇m,v)L2 +

∫ T

0

a(um(t),v(t)) dt =

∫ T

0

(f(t),v(t))L2(Ω) dt for all v ∈ Xm. (3.9)

Using the representation um(t) =
∑m

j=1 gj(t)vj and with gm(t) := (g1(t), . . . , gm(t))T

this problem can be reformulated as a system of ODEs:

Mm(t)
dgm(t)

dt
+Bm(t)gm(t) = Fm(t)

gm(0) = 0,
(3.10)

with a symmetric positive definite matrixMm ∈ C(Ī;Rm×m), (Mm(t))i,j = (ρ(t)vj ,vi)L2(Ω)

and Bm ∈ C(Ī ;Rm×m), (Bm(t))i,j = (w(·, t) · ∇vj ,vi)L2(Ω) + a(vj ,vi) and Fm ∈
C(Ī ;Rm), (Fm(t))i = (f(t),vi)L2(Ω). Standard theory for ODEs implies that (3.10)
has a unique solution gm ∈ C1(Ī)m, and thus (3.9) has a unique solution um. We
take v = um in (3.9):

(ρu̇m,um)L2 +

∫ T

0

a(um(t),um(t)) dt = (f ,um)L2 .

The ellipticity of a(·, ·) on V implies that
∫ T

0
a(um(t),um(t)) dt ≥ γ‖um‖2X for a γ > 0

independent of um. Combining this with partial integration, a Cauchy inequality and
um(0) = 0 yields

‖ρ 1

2 (T )um(T )‖2L2(Ω) + γ‖um‖2X ≤ ‖f‖L2‖um‖X ,

which implies a uniform bound ‖um‖X ≤ γ−1‖f‖L2.
We take v = dum

dt
=

∑m
j=1 g

′
j(t)vj ∈ Xm in (3.9), and thus get:

(ρ
dum

dt
,
dum

dt
)L2 +

∫ T

0

a(um(t),
dum

dt
(t)) dt = (f ,

dum

dt
)L2 − (ρw · ∇um,

dum

dt
)L2 .

From a(um(t),um(t)) = gm(t)TAgm(t), with Ai,j = a(vi,vj) and gm(0) = 0 it follows
that a(um(0),um(0)) = 0. Using this we get

∫ T

0

a(um(t),
dum

dt
(t)) dt =

1

2

∫ T

0

d

dt
a(um(t),um(t)) dt =

1

2
a(um(T ),um(T )) ≥ 0.

(3.11)
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Using Cauchy inequalities and the uniform bound ‖um‖X ≤ γ−1‖f‖L2 we obtain
‖ dum

dt
‖L2 ≤ c‖f‖L2 with a constant c which only depends on ρ, ‖w‖∞ and γ. Hence

we have a uniform boundedness result

‖um‖U ≤ c‖f‖L2. (3.12)

Hence there is a subsequence, which we also denote by (um)m≥0, that weakly converges
um ⇀ u ∈ U , which implies um ⇀ u in X and dum

dt
⇀ du

dt
in L2(Q). Passing to the

limit and using continuity arguments we conclude that u ∈ U satisfies (3.7). We now
show that u(0) = 0 holds, i.e., u ∈ U0. Take an arbitrary v ∈ C1(Ī;VN ) ⊂ XN with
v(T ) = 0. From (3.7) and partial integration we obtain

−(ρu, v̇)L2 +

∫ T

0

a(u(t),v(t)) dt =

∫ T

0

(f(t),v(t))L2(Ω) − (ρ(0)u(0),v(0))L2(Ω).

(3.13)
We also get from (3.9), for m ≥ N , and using um(0) = 0:

−(ρum, v̇)L2 +

∫ T

0

a(um(t),v(t)) dt =

∫ T

0

(f(t),v(t))L2(Ω) dt. (3.14)

Comparing (3.13), (3.14) and using um ⇀ u in U it follows that ((ρ(0)u(0),v(0))L2(Ω) =
0 holds. This implies u(0) = 0 in L2(Ω). To show the uniqueness of u we take f = 0
and v = u in (3.7):

(ρu̇,u)L2 +

∫ T

0

a(u(t),u(t)) dt = 0.

Using (ρu̇,u)L2 = 1
2‖ρ

1

2 (T )u(T )‖2
L2(Ω) and the ellipticity of a(·, ·) it follows that

‖u‖X = 0, hence we have uniqueness. The bound in (3.8) follows from (3.12).

The assumption that the bilinear form a(·, ·) is independent of t is essential for the
derivation of a bound on ‖ du

dt
‖L2, for which the estimate in (3.11) is a key ingredient.

Remark 3.2. In the proof above we used the assumption w ∈ L∞(Q)d. This
assumption can be replaced by a different (more natural) assumption by using alter-
native estimates for the trilinear form (ρw · ∇u,v) which depend on the dimension
d, see [36, Section 2.3]. The assumption w ∈ L∞(Q) can be replaced by w ∈ V for
d = 2. For d = 3 we additionally need w ∈ L4(I;H1(Ω)3).

Corollary 3.3. Using that C(I;L2(Ω)d) is dense in L2(I;L2(Ω)d) one can now
derive the following well-posedness result: for each f ∈ L2(I;L2(Ω)d) there exists a
unique u ∈ U0 such that (3.7) and (3.8) hold.

3.3. Well-posed space-time variational formulation in V . We define V 0 :=
{v ∈ V | v(0) = 0 }, where the trace is well-defined due to (3.4). As an easy
consequence of the result obtained in Theorem 3.2 we obtain the following.

Corollary 3.4. Let a(·, ·) be a continuous elliptic bilinear form on V × V that
does not depend on t. For every F ∈ X ′ there exists a unique u ∈ V 0 such that

〈ρu̇,v〉 +
∫ T

0

a(u(t),v(t)) dt = F (v) for all v ∈ X. (3.15)

Furthermore

‖u‖V ≤ c‖F‖X′ (3.16)
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holds, with a constant c independent of F .
Proof. Take F ∈ X ′. Due to the density of C(Ī ;L2(Ω)d) in X ′ we can take a

sequence fn ∈ C(Ī ;L2(Ω)d), n ∈ N, with limn→∞ fn = F in X ′. Let un ∈ U0 be
the unique solution of (3.7). As test function we take v = un in (3.7). Using partial
integration, un(0) = 0 and ellipticity of a(·, ·) we get γ‖un‖2X ≤ ‖fn‖X′‖un‖X , with
ellipticity constant γ > 0, and thus ‖un‖X ≤ γ−1‖fn‖X′ . This implies that (un)n∈N

is a Cauchy sequence in X . Take u ∈ X such that limn→∞ un = u in X . Note that

〈ρu̇n,v〉 = (ρu̇n,v)L2 = −
∫ T

0

a(un(t),v(t)) dt +

∫ T

0

(fn(t),v(t))L2(Ω) dt ∀ v ∈ X.

(3.17)
Hence, ‖ρu̇n‖X′ ≤ c(‖un‖X + ‖fn‖X′). This implies that (ρu̇n)n∈N is a Cauchy se-
quence inX ′. Furthermore, limn→∞ ρun = ρu̇ inX ′ holds. Thus we get limn→∞ un =
u in V . From this and the trace inequality (3.4) we get u(0) = 0, hence u ∈ V 0. If
in (3.17) we take n → ∞ it follows that u satisfies (3.15). Uniqueness of u follows by
taking F = 0 and v = u in (3.15), partial integration identity (3.5) and elliptcity of
a(·, ·). From the estimates above we get ‖un‖X +‖ρu̇n‖X′ ≤ c‖fn‖X′ . Taking n → ∞
we obtain the result in (3.16).

If the (diffusion) coefficient µ in (2.7) would be constant, i.e., µ1 = µ2 the result in
Corollary 3.4 yields a well-posed weak formulation. In view of our applications, how-
ever, the case µ1 6= µ2 is highly relevant. Therefore, in the remainder of this section
we present an analysis that can handle the latter case. In that analysis the result
derived in Corollary 3.4 will play an important role.

For F ∈ X ′ we consider the following generalization of the problem in (3.15).
Determine u ∈ V 0 such that

b(u,v) := 〈ρu̇,v〉+
∫ T

0

a(t;u(t),v(t)) dt = F (v) for all v ∈ X. (3.18)

In the remainder of this section we assume that the (possibly) t-dependent bilinear
form a(t; ·, ·) has the following properties:

∃ γ > 0 : a(t;v,v) ≥ γ|v|21,Ω for all v ∈ V , t ∈ I, (3.19)

∃Γ > 0 : a(t;u,v) ≤ Γ|u|1,Ω|v|1,Ω for all u,v ∈ V , t ∈ I. (3.20)

In the remainder we prove well-posedness of the variational problem in (3.18). For
this we first use the framework of the BNB-conditions, cf. [15], to prove well-posedness
under the additional assumption that the bilinear form a(t; ·, ·) is symmetric. We then
extend the well-posedness result to a(t; ·, ·) that may be nonsymmetric.

From |
∫ T

0 a(t;u(t),v(t)) dt| ≤ Γ
∫ T

0 |u(t)|1,Ω|v(t)|1,Ω dt ≤ Γ‖u‖X‖v‖X for all
u,v ∈ X it follows that

|b(u,v)| ≤
√
2max{Γ, 1}‖u‖V ‖v‖X for all u ∈ V,v ∈ X.

Hence b(·, ·) is continuous on V 0 ×X .
Lemma 3.5. The inf-sup inequality

inf
06=u∈V 0

sup
06=v∈X

b(u,v)

‖u‖V ‖v‖X
≥ cs (3.21)
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holds with cs =
√
2 γ

2(1+Γ2) .

Proof. Take u ∈ V 0. From the uniform ellipticity of a(t; ·, ·) and the partial
integration result (3.5), combined with u(0) = 0, we get

b(u,u) = 〈ρu̇,u〉+
∫ T

0

a(t;u,u) ≥ γ‖u‖2X. (3.22)

This establishes the control of ‖u‖X . We also need control of ‖ρu̇‖X′ to bound the
full norm ‖u‖V . This is achieved by using a duality argument between the Hilbert
spaces X and X ′. By Riesz’ representation theorem, there is a unique z ∈ X such
that 〈ρu̇,v〉 = (z,v)X for all v ∈ X , and ‖z‖X = ‖ρu̇‖X′ holds. Thus we obtain

〈ρu̇, z〉 = (z, z)X = ‖ρu̇‖2X′ .

Therefore, using the uniform continuity of a(t; ·, ·), we get

b(u, z) = 〈ρu̇, z〉+
∫ T

0

a(t;u(t), z(t)) dt = ‖z‖2X +

∫ T

0

a(t;u(t), z(t)) dt

≥ ‖z‖2X − 1

2
Γ2‖u‖2X − 1

2
‖z‖2X =

1

2
‖ρu̇‖2X′ − 1

2
Γ2‖u‖2X .

(3.23)

This establishes control of ‖ρu̇‖X′ at the expense of the X-norm, which is controlled
in (3.22). Therefore, we make the ansatz v = z + δu ∈ X for some sufficiently large
parameter δ ≥ 1. We have the estimate

‖v‖X ≤ ‖z‖X + δ‖u‖X ≤ δ‖ρu̇‖X′ + δ‖u‖X ≤ δ
√
2‖u‖V . (3.24)

From (3.22) and (3.23) we conclude

b(u,v) ≥ 1

2
‖ρu̇‖2X′ + (δγ − 1

2
Γ2)‖u‖2X .

Taking δ := 1
2γ (1 + Γ2) ≥ 1, we get

b(u,v) ≥ 1

2
‖u‖2V ≥

√
2

4
δ−1‖u‖V ‖v‖X .

This completes the proof.

Lemma 3.6. Assume that for all t ∈ I the bilinear form a(t; ·, ·) is symmetric on
X. If b(u,v) = 0 holds for all u ∈ V 0, then v = 0.

Proof. Take v ∈ X such that

b(u,v) = 〈ρu̇,v〉+
∫ T

0

a(t;u(t),v(t)) dt = 0 for all u ∈ V 0. (3.25)

From Corollary 3.4 with F (w) :=
∫ T

0
Γ(v(t),w(t))1,Ω dt, w ∈ X , it follows that there

exists a unique z ∈ V 0 such that

〈ρż,w〉+
∫ T

0

Γ(z(t),w(t))1,Ω dt =

∫ T

0

Γ(v(t),w(t))1,Ω dt for all w ∈ X. (3.26)
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We take w = z in (3.26), and use (3.5), z(0) = 0. We get

Γ‖z‖2X ≤
∫ T

0

Γ(v(t), z(t))1,Ω dt ≤ Γ

∫ T

0

(v(t),v(t))
1

2

1,Ω(z(t), z(t))
1

2

1,Ω dt ≤ Γ‖v‖X‖z‖X .

Hence, ‖z‖X ≤ ‖v‖X holds. Using (3.25) and taking w = v in (3.26) we obtain:

Γ‖v‖2X = 〈ρż,v〉+
∫ T

0

Γ(z(t),v(t))1,Ω dt

=

∫ T

0

Γ(z(t),v(t))1,Ω − a(t; z(t),v(t)) dt.

(3.27)

We define

S := {t ∈ I | v(t) 6= 0 and z(t) 6= 0}.

If S has measure 0, then (3.27) shows that v = 0. Assume that |S| > 0 holds.
We apply, for t ∈ S, the Cauchy-Schwarz inequality to the symmetric positive semi-
definite bilinear form Γ(·, ·)1,Ω − a(t, ·, ·) and use the ellipticity property (3.19):

Γ‖v‖2X =

∫

S

Γ(z(t),v(t))1,Ω − a(t; z(t),v(t)) dt

≤
∫

S

(
Γ|z(t)|21,Ω − a(t; z(t), z(t))

) 1

2

(
Γ|v(t)|21,Ω − a(t;v(t),v(t))

) 1

2 dt

≤
∫

S

(Γ− γ)|z(t)|1,Ω|v(t)|1,Ω dt < Γ‖z‖X‖v‖X ≤ Γ‖v‖2X ,

which results in a contradiction. Hence v = 0 must hold.

As a direct consequence of the preceding two lemmas and the continuity of b(·, ·)
on V 0 ×X we obtain the following main well-posedness result.

Theorem 3.7. Assume that a(t; ·, ·) satisfies (3.19)-(3.20) and is symmetric. For
any F ∈ X ′, the problem (3.18) has a unique solution u ∈ V 0. This solution satisfies
the a-priori estimate

‖u‖V ≤ c−1
s ‖F‖X′, with cs =

√
2 γ

2(1 + Γ2)
. (3.28)

We can apply this result to the time dependent bilinear form used in the weak formu-
lation of our original problem, cf. (2.2). Hence, we obtain the following result, which
shows well-posedness of the problem (2.7) with W replaced by the (possibly) smaller
subspace V .

Corollary 3.8. For F ∈ X ′ there exists a unique u ∈ V 0 such that

〈ρu̇,v〉 + (µD(u), D(v))L2 = F (v) for all v ∈ X.

Furthermore ‖u‖V ≤ c‖F‖X′ holds with a constant c independent of F .

We derive a generalization of Theorem 3.7 in which the condition that a(t; ·, ·) is
symmetric is not needed.
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Theorem 3.9. Assume that a(t; ·, ·) satisfies (3.19)-(3.20). For any F ∈ X ′,
the problem (3.18) has a unique solution u ∈ V 0. This solution satisfies the a-priori
estimate

‖u‖V ≤ c−1
s ‖F‖X′, with cs =

√
2 γ

2(1 + Γ2)
. (3.29)

Proof. Recall the Neumann series result, that if A ∈ L(X,X) for some Banach
space X and ‖A‖L(X,X) < 1, then I + A is an isomorphism on X and (I + A)−1 ∈
L(X,X). We introduce some notation. Define the anti-symmetric part of a(t; ·, ·):

c(t;u,v) :=
1

2
a(t;u,v)− 1

2
a(t;v,u), u,v ∈ X.

We split the problem into a problem that we have treated in Theorem 3.7: Bu =

b(u, ·) −
∫ T

0
c(t;u, ·) ∈ X ′ and a anti-symmetric part Cu =

∫ T

0
c(t;u, ·) ∈ X ′, hence

(3.18) has the operator representation (B + C)u = F . For k ∈ N we set Ck := 1
k
C.

Take N ∈ N sufficiently large such that ‖CN‖L(X,X′) ≤ γ
2 holds. We prove the fol-

lowing statement by induction: for k ∈ N the operator B + kCN ∈ L(V 0, X ′) is an
isomorphism and ‖(B + kCN )−1‖L(X′,X) ≤ 1

γ
holds.

For k = 0 we can apply Theorem 3.7, because the symmetric part of a(t; ·, ·) also
satisfies (3.19)-(3.20). Hence B ∈ L(V 0, X ′) is an isomorphism. The estimate
‖B−1‖L(X′,X) ≤ 1

γ
follows from (3.22). We now treat the induction step. Assume

that for given k the statement holds. This implies

‖CN (B + kCN )−1‖L(X′,X′) ≤ ‖CN‖L(X,X′)‖(B + kCN )−1)‖L(X′,X) ≤
1

2

and thus by the the Neumann series result we get that I+CN (B+kCN )−1 ∈ L(X ′, X ′)
is an isomorphism on X ′. Using this, the induction hypothesis and the relation

B + (k + 1)CN =
(
I + CN (B + kCN )−1

)
(B + kCN )

it follows that B+(k+1)CN ∈ L(V 0, X ′) is an isomorphism. Using the antisymmetry
property of C, i.e., 〈CNu,u〉 = 0 and the ellipticity of B, cf. (3.22), we get for arbitrary
u ∈ V 0:

γ‖u‖2X ≤ 〈Bu,u〉 = 〈(B + (k + 1)CN )u,u〉 ≤ ‖(B + (k + 1)CN )u‖X′‖u‖X ,

hence, ‖(B + (k + 1)CN )−1‖L(X′,X) ≤ 1
γ
, which completes the induction. Taking

k = N we obtain that B + C ∈ L(V 0, X ′) is an isomorphism. From (3.21) and
b(u, ·) = F we get

cs‖u‖V ≤ sup
06=v∈X

b(u,v)

‖v‖X
= ‖F‖X′,

which completes the proof.

4. Space-time variational formulation in a broken space. In view of the
fact that we want to use a DG method in time, we will now study a time-discontinuous
weak formulation. Let N ∈ N, let 0 = t0 < · · · < tN = T and let In = (tn−1, tn) for
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n = 1, . . . , N . For v ∈ X we define vn := v|In ∈ Xn := L2(In;V) ⊂ X , 1 ≤ n ≤ N .
Furthermore

Vn := {vn | v ∈ V }, 1 ≤ n ≤ N, V b :=

N⊕

n=1

Vn ⊂ X.

We define jumps at tn in the usual way. For u ∈ V b:

[u]n := u(tn+)− u(tn−) =: un
+ − un

−, 0 ≤ n ≤ N − 1, u0
− := 0.

Note that the superscript n denotes an evaluation at t = tn, whereas vn denotes the
restriction of v to In. Note that

V 0 = {v ∈ V b | [v]n = 0, 0 ≤ n ≤ N − 1 }. (4.1)

For un ∈ Vn we define

〈ρu̇n,v〉n := 〈ρu̇,vn〉 for all v ∈ X.

Hence ρu̇n ∈ X ′
n.

Remark 4.1. On Qn := In×Ω we can define a set of smooth functions analogous
to (2.3) by

Dn
0 := {

m∑

i=1

giφi | m ∈ N, gi ∈ C∞
0 (In), φi ∈ C1

0 (Ω)
d ∩ V } ⊂ C1

0 (Qn)
d (4.2)

which is dense in Xn. Thus we get

〈ρu̇n,φ〉n = −
∫

In

(ρun(t), φ̇(t))L2 dt for all φ ∈ Dn
0 .

Hence ρu̇n is the same weak material derivative as in Section 2, with I replaced by In.
Thus we have analogous results, e.g. as in (2.5). In particular, for un ∈ C1(Q̄n)

d ∩X
we have

〈ρu̇n,v〉 =
∫

In

(ρu̇n(t),v(t))L2 dt for all v ∈ X. (4.3)

We also have

〈ρu̇,v〉 =
N∑

n=1

〈ρu̇,vn〉 =
N∑

n=1

〈ρu̇n,v〉n for all u ∈ V, v ∈ X.

Using X ′ = L2(I;V ′) = ⊕N
n=1L

2(In;V ′) we get

‖ρu̇‖2X′ =

∫

I

‖ρu̇(t)‖2V′ dt =

N∑

n=1

∫

In

‖ρu̇(t)‖2V′ dt =

N∑

n=1

‖ρu̇(t)‖2X′

n
for u ∈ V. (4.4)

A broken weak time derivative is defined in the canonical way:

〈ρu̇,v〉b :=
N∑

n=1

〈ρu̇n,v〉n , u ∈ V b, v ∈ X.
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Hence,

〈ρu̇,v〉b = 〈ρu̇,v〉 for all u ∈ V, v ∈ X. (4.5)

For controlling the jumps at the interval end points we introduce the usual dis-
continuous Galerkin bilinear form

d(u, z) :=

N−1∑

n=0

([u]n, zn)L2 , u ∈ V b, zn ∈ L2(Ω)d, (4.6)

with z = (z0, . . . , zN−1) ∈ (L2(Ω)d)N .
As test space in the weak formulation below we use Y := X ×HN = ⊕N

n=1(Xn ×
H), where H := VL2

. We consider the following weak formulation: given F ∈ X ′, G ∈
H ′ determine u ∈ V b such that

B(u, (v, z)) = F (v) +G(z) for all (v, z) ∈ Y,

with B(u, (v, z)) := 〈ρu̇,v〉b + d(u, z) +

∫ T

0

a(t;u(t),v(t)) dt.
(4.7)

Note that with b(·, ·) as in (3.18) we have

B(u, (v, z)) = b(u,v) for all u ∈ V, (v, z) ∈ Y. (4.8)

In the next theorem we derive equivalence results between different variational for-
mulations.

Theorem 4.1. Let the assumptions as in Theorem 3.9 be satisfied. For F ∈ X ′

let u ∈ V 0 be the unique solution of (3.18). Then u is also the unique solution of
each of the following variational problems:
1. The problem (4.7) with G = 0.
2. Determine u ∈ V b such that

〈ρu̇,v〉b + d(u, ρv+) +

∫ T

0

a(t;u(t),v(t)) dt = F (v) for all v ∈ V b, (4.9)

with ρv+ := (ρ(t0)v
0
+, . . . , ρ(tN−1)v

N−1
+ ).

Proof. Let u ∈ V 0 be the unique solution of (3.18). Then d(u, z) = 0 for all
z ∈ HN and, cf. (4.5), 〈ρu̇,v〉b = 〈ρu̇,v〉. Hence, u ∈ V 0 ⊂ V b solves (4.7) with
G = 0. Let u ∈ V b be a solution of (4.7) with G = 0. Taking v = 0 we get d(u, z) = 0
for all z ∈ HN . This implies [u]n = 0, 0 ≤ n ≤ N − 1, and thus, cf. (4.1), u ∈ V 0.
Take z = 0 and using 〈ρu̇,v〉b = 〈ρu̇,v〉 we conclude that u solves (3.18). Hence, the
unique solution u ∈ V 0 of (3.18) is also the unique solution of (4.7) with G = 0.
Let u ∈ V 0 be the unique solution of (3.18), which is also the unique solution
of (4.7) with G = 0. Taking arbitrary v ∈ V b ⊂ X and z ∈ HN such that
d(·, z) = d(·, ρv+) ∈ (HN )′ in (4.7) it follows that u is a solution of (4.9). Let u ∈ V b

be a solution of (4.9). The space { (v, d(·, ρv+)) | v ∈ V b } is dense in X × (HN )′.

Note that v → 〈ρu̇,v〉b, v →
∫ T

0 a(t;u(t),v(t)) dt are continuous functionals on X
and z → d(u, z) is continuous on HN . Using a density argument it follows that u

solves (4.7) with G = 0. Hence, the unique solution u ∈ V 0 of (3.18) is also the
unique solution of (4.9).

The factor ρ in the coupling term d(·, ·) in (4.9) is not essential. It is introduced to
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obtain a natural scaling, namely one that corresponds to the scaling with ρ in the
weak time derivative. Note that in (4.9) the initial condition u(0) = 0 is treated in a
weak sense (applies also to u(0) = u0 6= 0).

Remark 4.2. In Theorem 4.1 we (only) show that the problem (4.7) with G = 0
has a unique solution. For the variational problem (4.7) a more general well-posedness
result can be derived, namely that the bilinear form B(·, ·) defines a homeomorphism
V b → Y ′, with norms

‖u‖2V b := ‖u‖2X +

N∑

n=1

‖ρu̇n‖2X′

n
+
(
N−1∑

n=0

‖[u]n‖L2

)2
,

‖(v, z)‖2Y = ‖v‖2X +
(

max
0≤n≤N−1

‖zn‖L2

)2
.

Note that (V b, ‖ · ‖V b) and (Y, ‖ · ‖Y ) are Banach spaces. Continuity of the bilinear
form B(·, ·) on V b×Y is easy to show. Furthermore, provided a(t; ·, ·) satisfies (3.19)-
(3.20), it can be shown that the BNB infsup conditions are satisfied. We do not
include a proof in this paper. Given these results one obtains that under the above
assumptions on a(t; ·, ·), for any F ∈ X , G ∈ (HN )′ the problem (4.7) has a unique
solution u ∈ V b and the estimate

‖u‖V b ≤ c(‖F‖2X′ + ‖G‖2(HN )′)
1

2 ,

holds with a constant c depending only on γ, Γ from (3.19)-(3.20).

Remark 4.3. From the results above it follows that if the assumptions as in
Theorem 3.9 are satisfied, then the weak formulation (4.9) is well-posed variational
formulation of the original Stokes problem (1.5). This variational formulation, in
which the same trial and test space V b is used, can be reformulated using a time
stepping procedure. The unique solution u ∈ V b of (4.9) can be decomposed as
u = (u1, . . . ,uN ), with un ∈ Vn, and the solution of (4.9) is also the unique solution
of the problem: for n = 1, . . . , N , determine un ∈ Vn such that

〈ρu̇n,vn〉n + (ρ(tn−1)un(tn−1),v
n−1
+ )L2 +

∫

In

a(t;un(t),vn(t)) dt

= (ρ(tn−1)un−1(tn−1),v
n−1
+ )L2 + F (vn) for all vn ∈ Vn.

(4.10)

This is the usual form of a discontinuous Galerkin method for parabolic PDEs, cf.
[37]. If un has sufficient smoothness, e.g. un ∈ C1(Q̄n) ∩ Vn, the weak material
derivative reduces to the usual strong one: 〈ρu̇n,vn〉n =

∫

In
(ρu̇n(t),vn(t))L2 dt. This

formulation is a reasonable starting point for a Galerkin finite element discretization
in which the space V b is replaced by a (space-time) finite element subspace. This,
however, requires exactly divergence free finite element functions. Recently, such di-
vergence free finite element methods have been further developed using techniques
from finite element exterior calculus, e.g. [17]. These methods, however, have some
drawbacks, cf. the review paper [24]. Therefore, in Section 5 we introduce a variant
of the weak formulation (4.9) that involves the pressure Lagrange multiplier to satisfy
the divergence free contraint.
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5. Well-posed weak formulation with a pressure Lagrange multiplier.

In this section we reconsider the problem (3.18), for which a well-posedness result is
given in Theorem 3.9. In the variational problem (3.18), both in the solution space
V 0 and test space X we restrict to functions v which satisfy div v = 0 on Ω. In this
section we derive a formulation in which we eliminate this condition from the trial and
test space and instead introduce the pressure Lagrange multiplier for satisfying the
divergence free constraint. For this one typically needs additional regularity properties
of the solution u of (3.18), cf. Section 6.2.1 in [15]. The regularity property that we
require in Theorem 5.1 below will be discussed in Remark 5.1. We use an analysis
along the same lines as given for a time dependent Stokes problem with constant
coefficients (density and viscosity) in [15].

We first introduce a space-time variant of de Rham’s theorem. Let ∇ : L2
0(Ω) →

H−1(Ω)d be the weak gradient. A standard application of de Rham’s theorem, e.g.,
Corollary 2.4. in [20], yields:

∇ : L2
0(Ω) → V0 := {f ∈ H−1(Ω)d : f |V = 0} is an isomorphism, (5.1)

where L2
0(Ω) = { p ∈ L2(Ω) |

∫

Ω
p = 0 }. We define ∇⊗ = id ⊗ ∇ : L2(I;L2

0(Ω)) ∼
L2(I) ⊗ L2

0(Ω) → L2(I;H−1(Ω)d) ∼ L2(I) ⊗H−1(Ω)d in the usual way, i.e., for g ∈
L2(I;L2

0(Ω)), g(t) =
∑∞

i=0 αi(t)φi with αi ∈ L2(I), φi ∈ L2
0(Ω) we define (∇⊗g)(t) :=∑∞

i=1 αi(t)∇φi ∈ H−1(Ω)d. From (5.1) it follows that

∇⊗ : L2(I;L2
0(Ω)) → L2(I;V0) is an isomorphism. (5.2)

Furthermore, for g ∈ L2(I;L2
0(Ω)), v ∈ L2(I;H1

0 (Ω)
d) we have

〈∇⊗g,v〉 =
∫ T

0

〈∇⊗g(t),v(t)〉H−1(Ω) dt = −
∫ T

0

(g(t), div v(t))L2(Ω) dt. (5.3)

We introduce notation for spaces. Recall U = {v ∈ X | dv
dt

∈ L2(I;L2(Ω)d) }, cf. (3.1).
We define

Ũ := {v ∈ L2(I;H1
0 (Ω)

d) | dv
dt

∈ L2(I;L2(Ω)d) }.

Hence, U = {v ∈ Ũ | div v(t) = 0 a.e. for t ∈ I }. Clearly, opposite to U and

V = U
‖·‖W

, the space Ũ does not involve the divergence free constraint. Below we
use this space as trial space and L2(I;H1

0 (Ω)
d) (instead of X) as test space for the

velocity.
Theorem 5.1. Let the assumptions of Theorem 3.9 hold and assume that, for

given F ∈ L2(I;H−1(Ω)d) ⊂ X ′, the unique solution u of (3.18) has smoothness
du
dt

∈ L2(I;L2(Ω)d), i.e., u ∈ U . Consider the following problem: determine u ∈ Ũ ,
p ∈ L2(I;L2

0(Ω)) such that

(ρu̇,v)L2 +

∫ T

0

a(t;u(t),v(t)) dt −
∫ T

0

(p(t), div v(t))L2(Ω) dt = F (v), (5.4)

∫ T

0

(q(t), div u(t))L2(Ω) dt = 0, (5.5)

for all v ∈ L2(I;H1
0 (Ω)

d), q ∈ L2(I;L2
0(Ω)). This problem has a unique solution

(u, p) and u equals the unique solution of (3.18).
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Proof. Let u be the unique solution of (3.18), which by assumption has smooth-
ness du

dt
∈ L2(I;L2(Ω)d). Hence, 〈ρu̇,v〉 = (ρu̇,v)L2 for all v ∈ X and (5.4) holds for

all v ∈ X . Define

l(v) := F (v)− (ρu̇,v)L2 −
∫ T

0

a(t;u(t),v(t)) dt, v ∈ L2(I;H1
0 (Ω)

d).

Then l ∈ L2(I;V0). From (5.2) it follows that there exists a unique p ∈ L2(I;L2
0(Ω))

such that

〈∇⊗p,v〉 = l(v) for all v ∈ L2(I;H1
0 (Ω)

d).

Combining this with (5.3) we conclude that (u, p) satisfies (5.4) for all v ∈ L2(I;H1
0 (Ω)

d).
Furthermore, u trivially satisfies (5.5), due to divu(t) = 0. Hence, the unique solu-
tion u of (3.18) and the corresponding unique p ∈ L2(I;L2

0(Ω)) solve (5.4)-(5.5) for
all v ∈ L2(I;H1

0 (Ω)
d), q ∈ L2(I;L2

0(Ω)).

We now consider the other direction. Let (u, p) ∈ Ũ × L2(I;L2
0(Ω)) solve (5.4)-

(5.5) for all v ∈ L2(I;H1
0 (Ω)

d), q ∈ L2(I;L2
0(Ω)). From (5.5) it then follows that

divu(t) = 0 a.e. for t ∈ I and a.e. on Ω. Hence, u ∈ U holds. Taking v ∈ X in (5.4)
it follows that u must be equal to the unique solution of (3.18).

Since the unique solution of (3.18) is also the unique solution of (4.9) one can derive
the following time-discontinuous variant of the space-time saddle point problem (5.4)-
(5.5). Define Ũn := Ũ|In , Ũ

b := ⊕N
n=1Ũn. The unique solution of (5.4)-(5.5) is also

the unique solution of the following problem: determine (u, p) ∈ Ũ b × L2(I;L2
0(Ω))

such that

(ρu̇,v)L2 + d(u, ρv+) +

∫ T

0

a(t;u(t),v(t)) dt −
∫ T

0

(p(t), div v(t))L2(Ω) dt

= F (v) for all v ∈ Ũ b, (5.6)
∫ T

0

(q(t), divu(t))L2(Ω) dt = 0 for all q ∈ L2(I;L2
0(Ω)). (5.7)

This allows a time stepping procedure, similar to (4.10). The formulation (5.6)-(5.7),
which allows a time-stepping procedure and treats the divergence free constraint by
means of the pressure Lagrange multiplier, is a natural starting point for a Galerkin
space-time finite element discretization, which will be treated in the next section.

Remark 5.1. We briefly comment on the regularity assumption du
dt

∈ L2(I;L2(Ω)d)
for the solution u of (3.18), which is used in Theorem 5.1. One can derive (reasonable)
regularity conditions on the right hand-side functional F ∈ X ′ and on the given flow
field w that are sufficient for the solution u of (3.18) to have the required smooth-
ness du

dt
∈ L2(I;L2(Ω)d). For the derivation of such conditions one might consider to

substitute v = u̇ (or a smooth approximation of it) in (3.18) and then use properties
of a(·, ·) and smoothness assumptions on F to derive a suitable bound for 〈ρu̇, u̇〉
from which then u̇ ∈ L2(I;L2(Ω)d) can be concluded. This approach, however, does
not work, because we need test functions v which are divergence free. The material
derivative u̇ of a divergence free function u ∈ V , however, is in general not divergence
free. To circumvent this problem one can use a suitable Piola transformation or a
Hanzawa transform as used in [31, Section 1.3 ]. We outline a result that can be
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derived using the Piola transformation (but do not include the technical proof). For
a given y ∈ Ω we consider the ODE system

{
dΦ
dt
(y, t) = w(Φ(y, t), t), t ∈ I,

Φ(y, 0) = y,

where we assume that the velocity field w is sufficiently smooth such that this system
has a unique solution Φ ∈ C2(Ω̄× I). Let the assumptions of Theorem 3.9 hold and
let u ∈ V 0 be the unique solution of (3.18). Furthermore, assume that

∫ T

0

a(t;u(t), u̇(t)) ≥ −M‖u‖2X (5.8)

a(t;v, ṽ) ≤ Γ̃|v|1,Ω|ṽ|1,Ω for all v, ṽ ∈ H1
0 (Ω)

d, t ∈ I, (5.9)

for positive constants M, Γ̃, independent of u, v, ṽ. Then u has the smoothness
property du

dt
∈ L2(I;L2(Ω)d). One can show that the conditions in (5.8)-(5.9) are

satisfied for the bilinear form a(t;u,v) =
∫

Ω
µD(u) : D(v) dx.

6. An unfitted space-time finite element method. In this section we in-
troduce a Galerkin discretization scheme for (1.5)-(1.7). In this scheme we use a
standard space-time finite element space for the velocity approximation and a space-
time Cut-finite element space for approximation of the pressure. The latter space is
the same as the one used for a parabolic problem with a moving discontinuity in [26].
A similar Cut-finite element spaces is used for stationary Stokes interface problems
in [23]. We explain the method and then present results of a numerical experiment
with this method.

6.1. Discretization Scheme. We wish to determine both the velocity and the
pressure in (1.5)-(1.7). We use the weak formulation (5.6)-(5.7) to formulate a space-
time finite element discretization. We therefore take a pair of finite element spaces
U b
h ⊂ Ũ b, Qh ⊂ L2(I;L2

0(Ω)). These spaces are derived from standard space-time
tensor finite element spaces. For this we assume a family of shape regular simplicial
triangulations {Th}h>0 of the (polygonal) spatial domain Ω. The tensor product mesh
on the space-time domain is then given by

Mh,N = {In ×T | n = 1, . . . , N,T ∈ Th}.

Standard space-time finite element spaces are:

Qh = {p ∈ L2(I;H1(Ω) ∩ L2
0(Ω)) | p|In×T ∈ Pq(In;Pr−1(T)) ∀ In ×T ∈ Mh,N},

U b
h = {u ∈ Ũ b | u|In×T ∈ Pq(In;Pr(T)d) ∀ In ×T ∈ Mh,N , },

with integers q ≥ 0, r ≥ 2. In both finite element spaces we use the same polynomial
degree q with respect to time. On each time-slab In × Ω the finite element functions
in both spaces are continuous on the entire slab. Note that in the space variable we
have the Pr−1 − Pr Hood-Taylor pair. Clearly, using these spaces we can not expect
an accurate approximation of the jump in pressure. The large approximation errors
in the pressure will induce large spurious velocities. This can be remedied by using a
suitable Cut-finite element variant of the pressure finite element space. Such spaces
are well-known (in particular for stationary interface problems) in the literature and
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closely related to the extended finite element method (XFEM), cf. [26, 7]. This leads
to the following definition of an extension of Qh:

QX
h := R1Qh ⊕R2Qh ⊂ L2(I;L2

0(Ω)),

where Ri : q 7→ qχQi
is the restriction operator to the subdomain Qi := {(x, t) ∈

Ω × In | x ∈ Ωi(t) }, i = 1, 2. A similar extension of the velocity space U b
h could be

considered. This, however, yields additional difficulties, because the continuity of the
velocity across the interface has to be enforced weakly by a Nitsche method as in e.g.
[26, 7]. We will not do this here and leave this topic for future research (cf. Section 7).

A Galerkin discretization of the variational formulation (5.6)-(5.7) leads to the
following problem: determine uh ∈ U b

h, ph ∈ QX
h such that

(ρu̇h,vh)L2 + d(uh, ρ(vh)+) +

∫ T

0

a(t;uh(t),vh(t)) dt (6.1)

−
∫ T

0

(ph(t), div vh(t))L2(Ω) dt = F (vh), (6.2)

∫ T

0

(qh(t), divuh(t))L2(Ω) dt = 0, (6.3)

for all vh ∈ U b
h, qh ∈ QX

h . This global in time problem can be solved sequentially
by solving for each n = 1, . . . , N , cf. (4.10): determine un,h ∈ U b

h|In , ph,n ∈ (QX
h )|In

such that

(ρu̇h,n,vh,n)L2(Qn) + (ρ(tn−1)uh,n(tn−1), (vh,n)
n−1
+ )L2(Ω) +

∫

In

a(t;uh,n(t),vh,n(t)) dt

−
∫ T

0

(ph,n(t), div vh,n(t))L2(Ω) dt = (ρ(tn−1)uh,n−1(tn−1), (vh,n)
n−1
+ )L2 + F (vh,n)

∫ T

0

(qn,h(t), div un,h(t))L2(Ω) dt = 0,

(6.4)

for all vh,n ∈ U b
h|In , qn,h ∈ Qh|In , where un,h = uh|In , ph,n = qh|In .

Due to the fact that the triangulation is not fitted to the interface, special space-
time quadrature is needed on the prisms that are cut by the interface S. Moreover,
the geometry of these cut elements has to be (approximately) determined. One typ-
ically uses a piecewise polygonal approximation of S for which the cut elements and
corresponding quadrature rules can then be determined efficiently. Such an approach
for the space-time setting is treated in [25]. These methods are used in the numerical
experiment below.

6.2. Numerical experiment. We consider a problem with a prescribed smooth
moving interface. We take the space-time domain I × Ω = [0, 1]× [−1, 1]× [−1, 1]×
[− 3

4 ,
7
4 ]. We take a sphere which moves linearly in time, characterized as the zero level

of the level set function

φ(x, y, x, t) = x2 + y2 + (z − t)2 − 1/2.

The density and viscosity coefficients ρ and µ are taken as follows:

ρ =

{

1 φ > 0

10 φ < 0
, µ =

{

1 φ > 0

25 φ < 0
,
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and for the surface tension coefficient we take the value τ = 2. The pressure solution
is chosen to be smooth in the subdomains Qi and has a jump across S

p =

{

0 φ > 0
96
5 sin(2t)xy + 2

√
2 φ < 0.

.

The velocty solution u is chosen to be smooth in the entire domain:

u(x, y, z, t) = sin(2t)





1
5

(
x2 + 5 y2 − 10 tz + 5 z2

)
y

1
5

(
10 t2 + 5 x2 + y2 − 10 tz + 5 z2 − 8

)
x

4
5 (t− z)xy



 .

We use a smooth velocity field because in the unfitted space-time finite element
method introduced above for the velocity variable we restrict to the standard finite
element spaces (no CutFEM). We drop the advection term in (5.6)-(5.7) and take the
bilinear forms as in the original problem. This corresponds to taking

a(t,u,v) = (µ(t)Du : Dv))L2(Ω) − (ρ(t)w(t) · ∇u,v)L2(Ω)

in (6.2)-(6.3). The obtained differential equation does no longer depend explicitly on
w. The resulting PDE is defined by the position of the interface, which is given by
φ(x, y, z, t).

Remark 6.1. Note that this bilinear form is not elliptic, however, it does satisfy

a(t,u,u) ≥ γ|u|21 − k0‖u‖2L2

for some γ, k0 > 0 which depend on µ, ‖w‖L∞. The standard transformation u(t) 7→
exp(−λ0t)u(t), cf. [38, p. 397] can be used in order to apply Theorem 3.9.

The right hand-side g is adjusted to the prescribed solution and the surface tension
force. We divide the interval I intoN segments of length k = 1

N
. For the discretization

in space we construct a tetrahedral triangulation of Ω. For this the domain Ω is
divided into cubes with side length h := 1

NS
and each of the cubes is divided into

six tetrahedra. We use the finite element spaces Uh, Qh, Q
X
h which were introduced

in the previous section. For the implementation of the surface tension forces and the
pressure space QX

h one needs an approximation of the interface. For this the level
set function is interpolated by a piecewise bilinear function is space-time and the
zero level of this interpolation is used as approximation for the interface. Further
details concerning the space-time quadrature are given in [25]. Clearly this interface
approximation limits the accuracy to second order. Therefore, in the finite element
spaces we take q = 1 (linears in time) and r = 2 (linears for pressure, quadratics for
velocity).

Let uh, ph be the solution of (6.2)-(6.3) in the spaces U b
h and Qh and uX

h , pXh the
solution of (6.2)-(6.3) in the spaces U b

h and QX
h . We determine errors in the L2 ⊗H1

and the L2 ⊗ L2 norm. In Table 6.1 we show the error ‖u− uh‖L2⊗H1 .
As expected, we observe poor convergence with a rate that is much lower than

second order. In Table 6.2 we see the error ‖u− uX
h ‖L2⊗H1 .

The error is roughly of optimal order O(k2 + h2). Note that the spatial error
dominates after a few temporal refinements. We see that in absolute values the error
significantly improves if we use the extended finite element space QX

h for the pressure.
In Tables 6.3 and 6.4 we give L2 ⊗ L2 norms of the pressure errors.
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NS\N 4 8 16 32 64 128 EOCS

4 0.32167 0.25902 0.25045 0.24888 0.24852 0.24844
8 0.21797 0.13582 0.12703 0.12597 0.12577 0.12573 0.98264

16 0.18799 0.09090 0.08163 0.08095 0.08088 0.08086 0.63669
32 0.17626 0.06511 0.05425 0.05450 0.05466 0.05469 0.56423

EOCT 1.43670 0.26328 -0.00674 -0.00421 -0.00068
Table 6.1

Error ‖u − uh‖L2⊗H1 for finite element spaces Ub

h
and Qh. The estimated temporal (spatial)

order of convergence EOCT (EOCS) is computed using the last row (column).

NS\N 4 8 16 32 64 128 EOCS

4 0.29649 0.20900 0.19753 0.19552 0.19510 0.19507
8 0.18572 0.06802 0.04699 0.04390 0.04332 0.04318 2.17546

16 0.17339 0.04718 0.01736 0.01154 0.01064 0.01047 2.04410
32 0.17604 0.04423 0.01326 0.00525 0.00306 0.00267 1.97412

EOCT 1.99289 1.73737 1.33761 0.77615 0.20161
Table 6.2

Error ‖u−uX

h
‖L2⊗H1 for finite element spaces Ub

h
and QX

h
. The estimated temporal (spatial)

order of convergence EOCT (EOCS) is computed using the last row (column).

NS\N 4 8 16 32 64 128 EOCS

4 2.30681 2.22456 2.20904 2.20538 2.20451 2.20431
8 1.58330 1.57570 1.57848 1.57931 1.57950 1.57956 0.48080

16 1.18787 1.15924 1.17049 1.17305 1.17346 1.17348 0.42873
32 0.93573 0.83261 0.83562 0.84323 0.84483 0.84507 0.47365

EOCT 0.16845 -0.00521 -0.01308 -0.00273 -0.00041
Table 6.3

Error ‖p − ph‖L2⊗L2 for finite element spaces Ub

h
and Qh. The estimated temporal (spatial)

order of convergence EOCT (EOCS) is computed using the last row (column).

NS\N 4 8 16 32 64 128 EOCS

4 1.81460 1.11767 0.99726 0.96497 0.97083 0.98616
8 0.60974 0.26134 0.17501 0.16322 0.16244 0.16315 2.59559

16 0.72751 0.27060 0.10682 0.04883 0.04331 0.04355 1.90560
32 1.79975 0.40515 0.17825 0.07309 0.02646 0.01895 1.20034

EOCT 2.15127 1.18458 1.28605 1.46568 0.48186
Table 6.4

Error ‖p − pX
h
‖L2⊗L2 for finite element spaces Ub

h
and QX

h
. The estimated temporal (spatial)

order of convergence EOCT (EOCS) is computed using the last row (column).

We observe that for the space Qh the error ‖p − ph‖L2 has a poor spatial order

O(h
1

2 ). This is known from the stationary case, cf. [20, Section 7.10]. This spatial
error dominates and we therefore see no temporal convergence order. If we use the
spaceQX

h , then we see a significant improvement (Table 6.4), however we do not see an
optimal convergence rate O(k2+h2). It is unclear what the temporal convergence rate
is. The observed spatial convergence rate is consistent with results from stationary
simulations, e.g. [20, Table 7.17]. The spatial convergence order O(h1.5) is probably
caused by a dominating error in the approximation of the surface tension. In [19]
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it is shown that the surface tension approximation method that we use induces a
discretization error of order O(h1.5).

7. Summary and outlook. We have studied a time dependent Stokes problem
that is motivated by a standard sharp interface model for the fluid dynamics of two-
phase flows. This Stokes interface problem has discontinuous density and viscosity
coefficients and a pressure solution that is discontinuous across the evolving interface.
We consider this strongly simplified two-phase Stokes equation to be a good model
problem for the development and analysis of finite element discretization methods for
two-phase flow problems. Well-posedness results for this Stokes interface problem are
not known in the literature. We introduce (natural) space-time variational formula-
tions in a Euclidean setting and derive well-posedness results for these formulations.
Different variants are considered, namely one with suitable spaces of divergence free
functions, a discrete in time version of it, and variants in which the divergence free
constraint in the solution space is treated by a pressure Lagrange multiplier. Although
techniques known from the literature are used, the approach applied in the analysis
of well-posedness is significantly different from known analyses of well-posedness of
time-dependent (Navier-)Stokes problems. The reason for this is explained in Re-
mark 2.3. The discrete-in-time variational formulation involving the pressure variable
for the divergence free constraint, for which well-posedness is derived, is a very natural
starting point for a space-time finite element discretization. Such a method, based on
a standard DG time-stepping scheme and a special space-time extended finite element
space (XFEM) for the pressure, is explained and results of a numerical experiment
with this method are presented.

In forthcoming work the following topics could be addressed. A modified analy-
sis of well-posedness may be possible which needs weaker regularity requirements on
w. This then leads to a smaller gap between regularity of w and the regularity of
the solution u. This is especially challenging for the regularity of u and w which is
required to solve the full problem involving the pressure unknown. The finite element
method can (and should) be combined with further methods which are already used
in a stationary setting. For example, a stabilization term can be introduced for the
pressure unknown to improve the conditioning of the stiffness matrix. Furthermore,
a Nitsche-XFEM method can be developed to treat problems in which the velocity is
nonsmooth across the interface (which is typically the case). Another topic which we
consider to be highly interesting for future research is an error analysis of the finite
element method.
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